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A Probabilistic View on Predictive
Constructions for Bayesian Learning
Patrizia Berti, Emanuela Dreassi, Fabrizio Leisen, Luca Pratelli and Pietro Rigo

Abstract. Given a sequence X = (X1,X2, . . .) of random observations, a
Bayesian forecaster aims to predict Xn+1 based on (X1, . . . ,Xn) for each
n ≥ 0. To this end, in principle, she only needs to select a collection σ =
(σ0, σ1, . . .), called “strategy” in what follows, where σ0(·) = P(X1 ∈ ·) is
the marginal distribution of X1 and σn(·) = P(Xn+1 ∈ ·|X1, . . . ,Xn) the nth
predictive distribution. Because of the Ionescu–Tulcea theorem, σ can be
assigned directly, without passing through the usual prior/posterior scheme.
One main advantage is that no prior probability is to be selected. In a nutshell,
this is the predictive approach to Bayesian learning. A concise review of
the latter is provided in this paper. We try to put such an approach in the
right framework, to make clear a few misunderstandings, and to provide a
unifying view. Some recent results are discussed as well. In addition, some
new strategies are introduced and the corresponding distribution of the data
sequence X is determined. The strategies concern generalized Pólya urns,
random change points, covariates and stationary sequences.

Key words and phrases: Bayesian inference, conditional identity in distri-
bution, exchangeability, predictive distribution, sequential predictions, sta-
tionarity.

1. INTRODUCTION

This paper has been written having the following inter-
pretation of Bayesian inference in mind. (We declare this
interpretation from the outset just to make transparent our
point of view and easier the understanding of the paper).
Let us call O the object of inference. Roughly speaking,
O denotes whatever we ignore but would like to know. For
instance, O could be a parameter (finite or infinite dimen-
sional), a set of future observations, an unknown prob-
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ability distribution, the effect of some action, or some-
thing else. According to us, the distinguishing feature of
the Bayesian approach is to regard O as the realization of
a random element, and not as an unknown but fixed con-
stant. As a consequence, the main goal of any Bayesian
inferential procedure is to determine the conditional dis-
tribution of O given the available information.

Note that, unless O itself is a parameter, no other pa-
rameter is necessarily involved.

Prediction of unknown observable quantities is a funda-
mental part of statistics. Initially, it was probably the most
prevalent form of statistical inference. The wind changed
at the beginning of the 20th century when statisticians’ at-
tention shifted to other issues, such as parametric estima-
tion and testing; see, for example, [36]. Nowadays, pre-
diction is back in the limelight again, and plays a role in
modern topics including machine learning and data min-
ing; see, for example, [17, 18, 27, 43].

This paper deals with prediction of future observations,
based on the past ones, from the Bayesian point of view.
Precisely, we focus on a sequence

X = (X1,X2, . . .)

of random observations and, at each time n, we aim to
predict Xn+1 based on (X1, . . . ,Xn). Hence, for each n,
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the object of inference is O = Xn+1, the available infor-
mation is (X1, . . . ,Xn), and the target is the predictive
distribution P(Xn+1 ∈ ·|X1, . . . ,Xn). We point out that,
apart from technicalities, most of our considerations could
be generalized to the case where O is an arbitrary (mea-
surable) function of the future observations, say

O = f (Xn+1,Xn+2, . . .).

This case is recently object of increasing attention; see,
for example, [29, 40].

No parameter θ plays a role at this stage. The forecaster
may involve some θ , if she thinks it helps, but she is not
interested in θ as such. To involve θ means to model the
probability distribution of X as depending on θ , and then
to exploit this fact to calculate the predictive distributions
P(Xn+1 ∈ ·|X1, . . . ,Xn).

To better address our prediction problem, it is conve-
nient to introduce the notion of strategy. Let (S,B) be a
measurable space, with S to be viewed as the set where
the observations Xn take values. Following Dubins and
Savage [26], a strategy is a sequence

σ = (σ0, σ1, σ2, . . .)

such that

• σ0 and σn(x) are probability measures on B for all n ≥
1 and x ∈ Sn;

• The map x �→ σn(x,A) is Bn-measurable for fixed n ≥
1 and A ∈ B.

Here, σ0 should be regarded as the marginal distribution
of X1 and σn(x) as the conditional distribution of Xn+1
given that (X1, . . . ,Xn) = x. Moreover, σn(x,A) denotes
the value taken at A by the probability measure σn(x). We
also note that strategies are often called prediction rules in
the framework of species sampling sequences; see [54],
p. 251.

Strategies are a natural tool to frame a prediction prob-
lem from the Bayesian standpoint. In fact, a strategy σ

can be regarded as the collection of all predictive dis-
tributions (including the marginal distribution of X1) in
the sense that σn(x, ·) = P(Xn+1 ∈ ·|(X1, . . . ,Xn) = x)

for all n ≥ 0 and x ∈ Sn. Thus, in a sense, everything a
Bayesian forecaster has to do is to select a strategy σ .
Obviously, the problem is how to do it. A related problem
is whether, in order to choose σ , involving a parameter θ

is convenient or not.
An important special case is exchangeability. In fact,

if X is assumed to be exchangeable, there is natural way
to involve a parameter θ . To see this, take the parameter
space � as

� = {all probability measures on B}.
Moreover, for each θ ∈ �, denote by Pθ a probability
measure which makes X i.i.d. with common distribution

θ , that is,

Pθ(X1 ∈ A1, . . . ,Xn ∈ An) =
n∏

i=1

θ(Ai)

for all n ≥ 1 and A1, . . . ,An ∈ B. Then, under mild con-
ditions on (S,B), de Finetti’s theorem yields

P(X ∈ ·) =
∫
�

Pθ(X ∈ ·)π(dθ)

for some (unique) prior probability π on �. Thus, condi-
tionally on θ ∈ �, the observations are i.i.d. with common
distribution θ . This suggests calculating the strategy σ as
follows:

(i) Select a prior π on �;
(ii) For each n ≥ 1 and x ∈ Sn, evaluate the posterior of

θ given x, namely, the conditional distribution of θ

given that (X1, . . . ,Xn) = x;
(iii) Calculate σ as

σn(x,A) =
∫
�

θ(A)πn(dθ |x) for all A ∈ B,

where πn(·|x) is the posterior and π0(·|x) is meant
as π0(·|x) = π .

Steps (i), (ii) and (iii) are familiar in a Bayesian frame-
work. Henceforth, if σ is selected via (i), (ii) and (iii), the
forecaster is said to follow the inferential approach (I.A.).

1.1 Predictive Approach to Bayesian Modeling

There is another approach to Bayesian prediction, usu-
ally called the predictive approach (P.A.), which is quite
recurrent in the Bayesian literature and recently gained
increasing attention. (Such an approach, incidentally, has
been referred to as the “nonstandard approach” in [5, 6]).
According to P.A., the forecaster directly selects her strat-
egy σ . Merely, for each n ≥ 0, she selects the predictive
σn without passing through the prior/posterior scheme de-
scribed above. Among others, P.A. is supported by de
Finetti, Savage, Dubins [22, 23, 26] and more recently
by Diaconis and Regazzini [10, 16, 24, 25, 31]. P.A. is
also strictly connected to Dawid’s prequential approach
[19–21] and to Pitman’s treatment of species sampling
sequences [54–56]. In addition, several prediction pro-
cedures arising in nonnecessarily Bayesian frameworks,
such as machine learning and data mining, are consistent
with P.A.; see, for example, [17, 18, 27, 43]. Some further
related references are [5, 6, 29, 30, 32, 40, 41, 44].

The theoretical foundation of P.A. is the Ionescu–
Tulcea theorem; see, for example, [46], p. 159. Roughly
speaking, this theorem states that, to assign the joint distri-
bution of X, it suffices to choose, in an arbitrary way, the
marginal distribution of X1, the conditional distribution
of X2 given X1, the conditional distribution of X3 given
(X1,X2), and so on. Note that this fact would be obvious
if X would be replaced by a finite-dimensional random



PREDICTIVE APPROACH TO BAYESIAN LEARNING 3

vector (X1, . . . ,Xm). So, in a sense, the Ionescu–Tulcea
theorem extends to infinite sequences a straightforward
property of finite-dimensional vectors. In any case, a for-
mal statement of the theorem is as follows.

THEOREM 1 (Ionescu–Tulcea). For each n ≥ 1, let
Xn be the nth coordinate random variable on (S∞,B∞).
Then, for any strategy σ , there is a unique probability
measure Pσ on (S∞,B∞) such that

Pσ (X1 ∈ ·) = σ0(·) and

Pσ

(
Xn+1 ∈ ·|(X1, . . . ,Xn) = x

) = σn(x, ·)(1)

for all n ≥ 1 and Pσ -almost all x ∈ Sn.

Because of Theorem 1, to make predictions on the se-
quence X, the forecaster is free to select an arbitrary strat-
egy σ . In fact, for any σ , there is a (unique) probability
distribution for X, denoted above by Pσ , whose predic-
tives Pσ (Xn+1 ∈ ·|X1, . . . ,Xn) agree with σ in the sense
of equation (1).

The strengths and weaknesses of I.A. versus P.A. are
discussed in a number of papers; see, for example, [6, 18,
27, 36, 58] and references therein. Here, we summarize
this issue (from our point of view) under the assumption
that prediction is the main target.

I.A. is not motivated by prediction alone. The main goal
of I.A. is to make inference on other features of the data
distribution (typically some parameters) and in this case
the prior π is fundamental. It should be added that π of-
ten provides various meaningful information on the data
generating process. However, to assess π is not an easy
task. In addition, once π is selected, to evaluate the poste-
rior πn(·|x) is quite difficult as well. Frequently, πn(·|x)

cannot be written in closed form but only approximated
numerically. In short, I.A. is a cornerstone of Bayesian
inference, but when prediction is the main target, it is ac-
tually quite involved.

In turn, P.A. has essentially four merits. First, P.A. al-
lows to avoid an explicit choice of the prior π . Indeed,
when prediction is the main target, why select π explic-
itly? Rather than wondering about π , it seems reason-
able to reflect on how the information in (X1, . . . ,Xn) is
conveyed in the prediction of Xn+1. Second, the data se-
quence X is not required any distributional assumption.
This point is developed in Sections 1.2 and 1.3. By now,
we stress a consequence of such a point. The Bayesian
nature of a prediction procedure does not depend on the
data distribution. For instance, a forecaster applying P.A.
is certainly Bayesian independently of the distribution at-
tached to X. Third, P.A. requires the assignment of proba-
bilities on observable facts only. The value of Xn+1 is ac-
tually observable, while π and πn (being probabilities on
�) do not necessarily deal with observable facts. Fourth,
the strategy σ may be assigned stepwise. At each time
n, the forecaster has observed x = (x1, . . . , xn) ∈ Sn and

has already selected σ0, σ1(x1), . . . , σn−1(x1, . . . , xn−1).
Then, to predict Xn+1, she is still free to select σn(x) as
she wants. No choice of σn(x) is precluded. This is con-
sistent with the Bayesian view, where the observed data
are fixed and one should condition on them. In spite of
these advantages, P.A. has an obvious drawback. In fact,
assigning a strategy σ directly may be very difficult, in
principle as difficult as selecting a prior π .

A last (basic) remark is that, if X is exchangeable, both
I.A. and P.A. completely determine the probability distri-
bution of X. Selecting a prior π or choosing a strategy σ

are just equivalent routes to fix the distribution of X. In
particular, selecting σ uniquely determines π . An intrigu-
ing line of research is in fact to identify the prior corre-
sponding to a given σ ; see, for example, [4, 24, 25, 31].

1.2 Characterizations

Recall that, for any strategy σ , there is a unique proba-
bility measure Pσ on (S∞,B∞) satisfying condition (1).

In principle, when applying P.A., the data sequence X

is free to have any probability distribution. Nevertheless,
in most applications, it is reasonable (if not mandatory) to
impose some conditions on X. For instance, the forecaster
may wish X to be exchangeable, or stationary, or Markov
or a martingale, and so on. In these cases, σ is subjected
to some constraints. If X is required to be exchangeable,
for instance, σ should be such that Pσ is exchangeable.
Hence, those strategies σ which make Pσ exchangeable
should be characterized.

More generally, fix any collection C of probability mea-
sures on (S∞,B∞) and suppose the data distribution is
required to belong to C. Then P.A. gives rise to the fol-
lowing problem:

Problem (*): Characterize those strategies σ such that
Pσ ∈ C.

Sometimes, Problem (*) is trivial (Markov, martingales)
but sometimes it is not (stationarity, exchangeability). To
illustrate, we mention three examples (which correspond
to the three dependence forms examined in the sequel).

In the exchangeable case, Problem (*) admits a solu-
tion [31], Theorem 3.1, but the conditions on σ are quite
hard to check in real problems. Hence, applying P.A. to
exchangeable data is usually difficult (even if there are
some exceptions; see Section 2).

A condition weaker than exchangeability is conditional
identity in distribution. Say that X is conditionally iden-

tically distributed (c.i.d.) if X2
d= X1 and, for each n ≥ 1,

the conditional distribution of Xk given (X1, . . . ,Xn) is
the same for all k > n; see Section 3. It can be shown that

X is exchangeable ⇔ X is stationary and c.i.d.;

see [7, 47]. Hence, conditional identity in distribution can
be regarded as one of the two basic ingredients of ex-
changeability (the other being stationarity). Now, in the
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c.i.d. case, Problem (*) has been solved [8], Theorem 3.1,
and the conditions on σ are quite simple. The class of ad-
missible strategies includes several meaningful elements
which cannot be used if X is required to be exchangeable.
As a consequence, P.A. works quite well for c.i.d. data;
see [5, 6].

The stationary case is more involved. In fact, to our
knowledge, there is no general characterization of the
strategies σ which make Pσ stationary. However, such
a characterization is available in some meaningful spe-
cial cases (for instance, when Pσ is also required to be
Markov); see Section 4.

Finally, Problem (*) is usually easier in a few (mean-
ingful) special cases. For instance, Problem (*) is simpler
if Pσ is also asked to be Markov; see, for example, [33]
and Section 4. Or else, if the strategy σ is required to be
dominated.

Dominated strategies: Let λ be a σ -finite measure
on (S,B). Say that a strategy σ is dominated by λ if
each σn(x) admits a density fn(·|x) with respect to λ,
namely,

σ0(dy) = f0(y)λ(dy) and

σn(x, dy) = fn(y|x)λ(dy)

for all n ≥ 1 and x ∈ Sn. Here, f0 : S → R
+ and fn :

S × Sn →R
+ are nonnegative measurable functions.

For instance, if S = R and σn(x) is a nondegenerate
normal distribution for all n and x, then σ is dominated
by λ = Lebesgue measure. Or else, if S is countable,
any strategy is dominated by λ = counting measure. In-
stead, if S is uncountable, a nondominated strategy is
σn(x1, . . . , xn) = δxn where δxn denotes the unit mass at
the point xn. Another nondominated strategy is the em-
pirical measure σn(x1, . . . , xn) = (1/n)

∑n
i=1 δxi

.
In a sense, dominated strategies play an analogous role

to the usual dominated models in parametric statistical in-
ference. The main advantage is that one can use the condi-
tional density fn(·|x) instead of the conditional measure
σn(x). A related advantage is that, if one fixes λ and re-
stricts to strategies dominated by λ, Problem (*) becomes
simpler. However, even in applied data analysis, various
familiar strategies are not dominated. In the framework of
species sampling sequences, for instance, most strategies
are not dominated. Therefore, in this paper, we focus on
general strategies while the dominated ones are regarded
as an important special case.

1.3 Content of This Paper and Further Notation

This is a review paper on P.A., which also includes
some (minor) new results. Our perspective is mainly on
the probabilistic aspects of Bayesian predictive construc-
tions. Moreover, we tacitly assume that the major target is

to predict future observations (and not to make inference
on other random elements, such as random parameters).

Essentially, we aim to achieve three goals. First, we try
to put P.A. in the right framework, to provide a unifying
view, and to make clear a few misunderstandings. This
has been done in the Introduction. Second, in Section 2
and Section 3.1, we report some known results. Third, we
provide some new strategies and we prove a few related
results. The strategies, introduced by means of examples,
deal with generalized Pólya urns, random change points,
covariates and stationary sequences. The results consist
in determining the distribution of the data sequence X un-
der such strategies. To our knowledge, Examples 7, 9, 12,
14 and Theorems 8, 11, 13 are actually new, while Theo-
rem 6 makes precise a claim contained in [29]. Moreover,
as far as we know, Section 4 is the first attempt to develop
P.A. for stationary data. It provides a brief discussion of
Problem (*) and introduces two large classes of stationary
sequences.

As already noted, even if X could be potentially given
any distribution, in most applications X is required some
conditions. There is obviously a number of such condi-
tions. Among them, we decided to focus on exchangeabil-
ity, stationarity and conditional identity in distribution.
This choice seems reasonable to keep the paper focused,
but of course it leaves out various interesting conditions,
such as partial exchangeability. To write a paper of rea-
sonable length, however, some choice was necessary.

To defend our choice, we note that, in addition to be
natural in various practical problems, exchangeability is
the usual assumption in Bayesian prediction. Hence, tak-
ing exchangeability into account is more or less manda-
tory. Moreover, since X is exchangeable if and only if it is
stationary and c.i.d., the other two conditions can be mo-
tivated as the basic components of exchangeability. But
there are also other reasons for dealing with them. Sta-
tionarity is in fact a routine assumption in the classical
treatment of time series, and it is reasonable to consider
it from the Bayesian point of view as well. Conditional
identity in distribution, even if not that popular, seems to
be quite suitable for P.A.; see Section 3.

The rest of the paper is organized in three sections, each
concerned with a specific assumption on X, plus a final
section of open problems. All the proofs are gathered in
the Appendix.

We close this Introduction with some further notation.
As usual, δu is the unit mass at the point u. For each

x ∈ Sn, where n is a positive integer or n = ∞, we denote
by xi the ith coordinate of x. Moreover, we take X to
be the sequence of coordinate random variables on S∞,
namely,

Xi(x) = xi for all i ≥ 1 and x ∈ S∞.
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From now on, we fix a strategy σ and we assume

X
d= Pσ .

We write ν instead of σ0 (i.e., we let σ0 = ν). Hence, ν

is a probability measure on B to be regarded as the distri-
bution of X1 under the strategy σ . Finally, to avoid tech-
nicalities, S is assumed to be a Borel subset of a Polish
space and B the Borel σ -field on S.

2. EXCHANGEABLE DATA

A permutation of Sn is a map φ : Sn → Sn of the form

φ(x) = (xj1, . . . , xjn) for all x ∈ Sn,

where (j1, . . . , jn) is a fixed permutation of (1, . . . , n).
A sequence Y = (Y1, Y2, . . .) of random variables is ex-
changeable if

φ(Y1, . . . , Yn)
d= (Y1, . . . , Yn)

for all n ≥ 2 and all permutations φ of Sn.
As noted in Section 1.2, if X is required to be exchange-

able, applying P.A. is usually hard. But there are a few
exceptions and two of them are discussed in this section.
We first recall that X is a Dirichlet sequence (or a Pólya
sequence, see [11]) if

σn(x) = cν + ∑n
i=1 δxi

n + c
for all n ≥ 0 and x ∈ Sn,

where c > 0 is a constant, ν a probability measure on B,
and σ0(x) is meant as σ0(x) = ν. The role of Dirichlet
sequences is actually huge in various frameworks, includ-
ing Bayesian nonparametrics, population genetics, ecol-
ogy, combinatorics and number theory; see, for example,
[28, 37, 45, 54–56]. From our point of view, however, two
facts are to be stressed. First, a Dirichlet sequence is ex-
changeable. Second, being defined through its predictive
distributions, a Dirichlet sequence is a natural candidate
for P.A.

2.1 Species Sampling Sequences

For n ≥ 1 and x = (x1, . . . , xn) ∈ Sn, denote by kn =
kn(x) the number of distinct values in the vector x and
by x∗

1 , . . . , x∗
kn

such distinct values (in the order that they
appear). Say that X is a species sampling sequence if it is
exchangeable, σ0 = ν is nonatomic, and

σn(x) =
kn∑

j=1

pj,n(x)δx∗
j
+ qn(x)ν

for all n ≥ 1 and x ∈ Sn,

where the pj,n are nonnegative measurable functions on
Sn and qn = 1 − ∑kn

j=1 pj,n. Under this strategy, quoting
from [42], p. 253, X can be regarded as: “the sequence of
species of individuals in a process of sequential random

sampling from some hypothetical infinite population of
individuals of various species. The species of the first in-
dividual to be observed is assigned a random tag X1 = X∗

1
distributed according to ν. Given the tags X1, . . . ,Xn of
the first n individuals observed, it is supposed that the next
individual is one of the j th species observed so far with
probability pj,n, and one of a new species with probabil-
ity qn.”

A nice consequence of the definition is that pj,n(x)

depends on x only through the vector (N1,n, . . . ,Nkn,n),
where

Nj,n = Nj,n(x) = card
{
k : 1 ≤ k ≤ n,xk = x∗

j

}
is the number of times that x∗

j appears in the vector x; see
[42, 54].

The most popular example of species sampling se-
quence is probably the two-parameter Poisson–Dirichlet,
introduced by Pitman in [53], which corresponds to the
weights

pj,n(x) = Nj,n − b

n + c
and qn(x) = bkn + c

n + c
,

where b and c are constants such that: either (i) 0 ≤ b < 1
and c > −b or (ii) b < 0 and c = −mb for some integer
m ≥ 2. In this model, if L denotes the number of distinct
values appearing in the sequence X, one obtains L

a.s.= ∞
under (i) and L

a.s.= m under (ii). Note also that X reduces
to a Dirichlet sequence in the special case b = 0.

Another example, due to [38], is

pj,n(x) = (Nj,n + 1)(n − kn + b)

n2 + bn + c

and qn(x) = k2
n − bkn + c

n2 + bn + c
,

where b > 0 and c is such that k2 +bk +c > 0 for all inte-
gers k > 0. This time, unlike the two-parameter Poisson–
Dirichlet, L is a finite but nondegenerate random variable.

In general, to obtain a species sampling sequence, the
forecaster needs to select ν and the weights pj,n. While
the choice of ν is free (apart from nonatomicity), the pj,n

are subjected to the constraint that X should be exchange-
able. (Incidentally, the choice of pj,n is a good example
of the difficulty of applying P.A. when X is required to be
exchangeable). The usual method to select pj,n involves
exchangeable random partitions. Let N = {1,2, . . .} and
let 
 be a random partition of N. For each n ≥ 1, call

n the restriction of 
 to {1, . . . , n}, namely, the random
partition of {1, . . . , n} whose elements are of the form
{1, . . . , n} ∩ A for some A ∈ 
. Say that 
 is exchange-
able if

ϕ(
n)
d= 
n

for all n ≥ 1 and all permutations ϕ of (1, . . . , n),
where ϕ(
n) denotes the random partition ϕ(
n) =
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{ϕ(B) : B ∈ 
n}. For instance, given any sequence Y =
(Y1, Y2, . . .) of random variables, define 
 to be the ran-
dom partition of N induced by the equivalence relation
i ∼ j ⇔ Yi = Yj . Then 
 is exchangeable provided Y is
exchangeable. Now, the weights pj,n of a species sam-
pling sequence correspond, in a canonical way, to the
probability law of an exchangeable partition; see [53, 54].
Hence, choosing the pj,n essentially amounts to choosing
an exchangeable partition. We stop here since a detailed
discussion of exchangeable partitions is bejond the scopes
of this paper. The interested reader is referred to [38, 39,
48, 49, 53, 55] and references therein.

A last remark is that the definition of species sampling
sequences can be generalized. In particular, nonatomicity
of ν can be dropped (as in [3] and [13]) and exchange-
ability can be replaced by some weaker condition (as in
[1] and [2]).

2.2 Kernel-Based Dirichlet Sequences

In [4], to generalize Dirichlet sequences while preserv-
ing their main properties, a class of strategies has been
introduced. Among other things, such strategies make X

exchangeable.
A kernel α on (S,B) is a collection

α = {
α(·|x) : x ∈ S

}
such that α(·|x) is a probability measure on B, for each
x ∈ S, and the map x �→ α(A|x) is measurable for each
A ∈ B. Sometimes, to make the notation easier, we will
write αx instead of α(·|x). A straightforward example of
kernel is αx = δx for each x ∈ S.

Fix a probability measure ν on B, a constant c > 0, a
kernel α on (S,B), and define the strategy

σn(x) = cν + ∑n
i=1 αxi

n + c
(2)

for all n ≥ 0 and x ∈ Sn. Clearly, X reduces to a Dirichlet
sequence if α = δ. In this case, we also say that X is a
classical Dirichlet sequence.

If α is an arbitrary kernel, X may fail to be exchange-
able. However, a useful sufficient condition for exchange-
ability is available. In fact, X is exchangeable if α agrees
with the conditional distribution for ν given some sub-σ -
field G ⊂ B. For instance, if G = B, then α = δ and X is
a classical Dirichlet sequence. At the opposite extreme, if
G is the trivial σ -field, then αx = ν for all x ∈ S and X is
i.i.d. with common distribution ν. In general, for fixed ν

and c, a strategy σ which makes X exchangeable can be
associated with any sub-σ -field G ⊂ B. It suffices to take
α as the conditional distribution for ν given G.

EXAMPLE 2 (Countable partitions). Let H be a (non-
random) countable partition of S such that H ∈ B and
ν(H) > 0 for all H ∈ H. For x ∈ S, denote by Hx the

only H ∈H such that x ∈ H . The conditional distribution
for ν given the sub-σ -field generated by H is

α(·|x) = ∑
H∈H

1H (x)ν(·|H) = ν(·|Hx) for all x ∈ S.

Hence, X is exchangeable whenever

σn(x) = cν + ∑n
i=1 ν(·|Hxi

)

n + c
for all n ≥ 0 and x ∈ Sn.

Some remarks on the above strategy σ are in order.

• σ may be reasonable when the basic information pro-
vided by each observation xi is Hxi

, namely, the ele-
ment of the partition H including xi .

• If S is countable, each sub-σ -field G ⊂ B is generated
by a partition H of S. Hence, α is necessarily as above.

• σn(x) is absolutely continuous with respect to ν for
all n and x. This is a striking difference with classical
Dirichlet sequences. To make an example, call σ ∗ the
strategy obtained by σ replacing α with δ. Under σ ∗, X
is a classical Dirichlet sequence. Moreover, suppose ν

is nonatomic and define the set B(x) = {x1, . . . , xn} for
each x = (x1, . . . , xn) ∈ Sn. Since ν is nonatomic and
B(x) is finite,

Pσ

(
Xn+1 = Xi for some i ≤ n|(X1, . . . ,Xn) = x

)
= σn

(
x,B(x)

) = 0.

On the other hand, since δxi
(B(x)) = 1 for each i =

1, . . . , n,

Pσ ∗
(
Xn+1 = Xi for some i ≤ n|(X1, . . . ,Xn) = x

)
= σ ∗

n

(
x,B(x)

) = n/(n + c).

As a consequence, one obtains

Pσ (all the observations are distinct) = 1,

Pσ ∗(all the observations are distinct) = 0.

• σ can be generalized replacing α with

β(·|x) = 1A(x)δx + 1Ac(x)ν
(·|Ac ∩ Hx

)
,

where A ∈ B is a suitable set. Note that β reduces to α

if A = ∅. Roughly speaking, β is reasonable in those
problems where there is a set A such that xi is informa-
tive about the future observations only if xi ∈ A. Other-
wise, if xi /∈ A, the only relevant information provided
by xi is Hxi

. As a trivial example, take S = R and

H = {
(−∞,0), {0}, (0,∞)

}
, A = [−u,u]

for some u > 0. Then β is reasonable if xi is informa-
tive only if |xi | ≤ u. Otherwise, if |xi | > u, the only
meaningful information provided by xi is its sign.
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EXAMPLE 3 (Pólya urns). Some Pólya urns are cov-
ered by Example 2. It follows that, for such urns, the
sequence X of observed colors is exchangeable. To our
knowledge, this fact was previously unknown.

As an example, consider sequential draws from an urn
and denote by Xn the color of the ball extracted at time
n ≥ 1. At time n = 0, the urn contains mj balls of color j

where j ∈ {1, . . . , k}. Define

S = {1, . . . , k}, m =
k∑

j=1

mj and ν{j} = mj

m

for each j ∈ S. The sampling scheme is as follows. Fix a
partition H of S and define

m∗
j = mν

({j}|Hj

) = mmj∑
i∈Hj

mi

.

For each n ≥ 1, one obtains Xn ∈ H for some unique
H ∈ H. In this case (i.e., if Xn ∈ H ) the extracted ball is
replaced together with m∗

j more balls of color j for each
j ∈ H . In other terms, if the observed color belongs to
H , each color in H is reinforced (and not only the ob-
served color). In particular, after each draw, m new balls
are added to the urn. Hence, denoting by σ the strategy of
Example 2 with c = 1, one obtains

P
(
Xn+1 = j |(X1, . . . ,Xn) = x

)
= mj + ∑n

i=1 1Hj
(xi)m

∗
j

m + mn

= ν{j} + ∑n
i=1 1Hj

(xi)ν({j}|Hj)

1 + n

= cν{j} + ∑n
i=1 ν({j}|Hxi

)

c + n
= σn(x){j}.

If σ is the strategy (2), in addition to exchangeability, X
satisfies various other properties of classical Dirichlet se-
quences. We refer to [4] for details. Here, we just note
that the prior π and the posterior πn can be explicitly
determined. In particular, up to replacing δ with α, the
Sethuraman’s representation of π (see [57]) is still true.
Precisely, π is the probability distribution of a random
probability measure μ of the form

μ(·) = ∑
j

Vjα(·|Zj),

where:

• (Zj ) and (Vj ) are independent sequences of random
variables;

• (Zj ) is i.i.d. with common distribution ν;

• Vj = Uj

∏j−1
i=1 (1−Ui) for all j ≥ 1, where (Ui) is i.i.d.

with common distribution beta(1, c). Namely, (Vj ) has
the stick breaking distribution with parameter c.

3. CONDITIONALLY IDENTICALLY DISTRIBUTED
DATA

A sequence Y = (Y1, Y2, . . .) of random variables is

conditionally identically distributed (c.i.d.) if Y2
d= Y1 and

P(Yk ∈ ·|Y1, . . . , Yn) = P(Yn+1 ∈ ·|Y1, . . . , Yn) a.s.

for all k > n ≥ 1. A c.i.d. sequence Y is identically dis-
tributed. It is also asymptotically exchangeable in the
sense that, as n → ∞, the probability distribution of the
shifted sequence (Yn,Yn+1, . . .) converges weakly to an
exchangeable law. Moreover, as already stressed, Y is ex-
changeable if and only if it is stationary and c.i.d.

Conditionally identically distributed sequences have
been introduced in [7, 47] and then investigated or ap-
plied in various papers; see, for example, [1, 2, 5, 6, 8, 9,
14, 15, 29, 30, 35].

There are reasons for taking c.i.d. data into account in
Bayesian prediction. In fact, in a sense, c.i.d. sequences
have been introduced having prediction in mind. If X is
c.i.d., at each time n, the future observations (Xk : k > n)

are identically distributed given the past, and this is rea-
sonable in several prediction problems. Examples arise in
clinical trials, generalized Pólya urns, species sampling
models, survival analysis and disease surveillance; see [1,
2, 5–7, 14, 15, 29, 30, 34]. A further reason for assum-
ing X c.i.d. is that the asymptotics is very close to that
of exchangeable sequences. As a consequence, a mean-
ingful part of the usual Bayesian machinery can be devel-
oped under the sole assumption that X is c.i.d.; see [29].
Finally, the strategies which make X c.i.d. can be easily
characterized; see Theorem 15 in the Appendix. Hence,
unlike the exchangeable case, P.A. can be easily imple-
mented for c.i.d. data. A number of interesting strategies,
which cannot be used if X is required to be exchangeable,
become available if X is only asked to be c.i.d.; see, for
example, [5, 6].

As a concrete example, fix a constant q ∈ (0,1) and
define

σn(x) = qnν + (1 − q)

n∑
i=1

qn−iδxi
(3)

for all n ≥ 0 and x ∈ Sn. Using σ to make predictions
corresponds to exponential smoothing. It may be reason-
able when the forecaster has only vague opinions on the
dependence structure of the data, and yet she feels that
the weight of the ith observation xi should be a decreas-
ing function of n − i. In this case, X is not exchangeable,
since σn(x) is not invariant under permutation of x, but it
can be easily seen to be c.i.d.; see [6], Example 7.

In this section, following [5, 6], P.A. is applied to c.i.d.
data. We first report some known strategies (Section 3.1)
and then we introduce two new strategies which make X

c.i.d. (Section 3.2).
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3.1 Fast Recursive Update of Predictive Distributions

A possible condition for a strategy σ is

σn+1(x, y) is a function of σn(x) and y(4)

for all n ≥ 0, x ∈ Sn and y ∈ S, where y denotes the (n +
1)-th observation and

(x, y) = (x1, . . . , xn, y).

Under (4), the predictive σn+1(x, y) is just a recursive up-
date of the previous predictive σn(x) and the last obser-
vation y. Recursive properties of this type are useful in
applications. They have a long history (see, e.g., [51, 52,
59]) and have been recently investigated in [41].

For each n ≥ 0, let qn : Sn → [0,1] be a measurable
function (with q0 constant) and αn a kernel on (S,B). De-
fine a strategy σ through the recursive equations

σ0 = ν and

σn+1(x, y) = qn(x)σn(x) + (
1 − qn(x)

)
αn(·|y)

(5)

for all n ≥ 0, x ∈ Sn and y ∈ S. Since σn+1(x, y) is a con-
vex combination of the previous predictive σn(x) and the
kernel αn(·|y), which depends only on y, the strategy σ

satisfies condition (4). The obvious interpretation is that,
at time n + 1, after observing (x, y), the next observa-
tion is drawn from σn(x) with probability qn(x) and from
αn(·|y) with probability 1 − qn(x).

An example of strategy satisfying equation (5) is New-
ton’s algorithm [51, 52]. More precisely, Newton’s algo-
rithm aims to estimate the latent distribution in a mixture
model rather than to make predictions. However, if rein-
terpreted as a predictive rule, Newton’s algorithm corre-
sponds to a strategy σ and such a σ meets equation (5)
for a suitable choice of qn and αn; see, for example, [34],
p. 1095. Moreover, as shown in [34], σ makes X c.i.d.

The strategies satisfying equation (5) are investigated in
[5]. Under such strategies, X is usually not exchangeable
but it is c.i.d. under some conditions on the kernels αn.
Precisely, X is c.i.d. if αn is the conditional distribution
for ν given Gn for each n ≥ 0, where

G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ B

is any filtration (i.e., any increasing sequence of sub-σ -
fields of B). This condition is trivially true if αn(·|y) = δy

for all y ∈ S (just take Gn = B for all n ≥ 0).

EXAMPLE 4 (Finer countable partitions). For each
n ≥ 0, let Hn be a countable partition of S such that
H ∈ B and ν(H) > 0 for all H ∈ Hn. Suppose that Hn+1
is finer than Hn for all n ≥ 0. Define σ through equation
(5) with

αn(·|y) = ∑
H∈Hn

1H (y)ν(·|H) = ν
(·|Hn

y

)
,

where Hn
y denotes the only H ∈ Hn such that y ∈ H . The

kernel αn is the conditional distribution for ν given Gn,
where Gn is the σ -field generated by Hn. Since Hn+1 is
finer than Hn, one obtains Gn ⊂ Gn+1. Hence, X is c.i.d.
Note also that the Hn could be chosen such that

{y} = ⋂
n

Hn
y for all y ∈ S.

In this case, as n → ∞, the partitions Hn shrink to the
partition of S in the singletons.

For instance, in Example 2, suppose the forecaster
wants to replace the fixed partition H with a sequence Hn

of finer partitions. This is possible at the price of having X

c.i.d. instead of exchangeable. In fact, with qn = n+c
n+1+c

,
one obtains

σn(x) = cν + ∑n
i=1 αi−1(·|xi)

n + c

= cν + ∑n
i=1 ν(·|Hi−1

xi
)

n + c
.

Similarly, to decrease the impact of the observed data
while preserving the c.i.d. condition, the strategy (3)
could be modified as

σn(x) = qnν + (1 − q)

n∑
i=1

qn−iν
(·|Hi−1

xi

)
.

We next turn to a strategy introduced in [41]. Once
again, under this strategy, the data are c.i.d. but not neces-
sarily exchangeable.

EXAMPLE 5 (Hahn, Martin and Walker; Copulas). In
this example, S = R and “density function” means “den-
sity function with respect to Lebesgue measure.” A bi-
variate copula is a distribution function on R

2 whose
marginals are uniform on (0,1). The density function of a
bivariate copula, provided it exists, is said to be a copula
density.

In [41], in order to realize condition (4), the follow-
ing updating rule is introduced. Fix a density f0 and a
sequence c1, c2, . . . of bivariate copula densities. For the
sake of simplicity, we assume f0 > 0 and cn > 0 for all
n ≥ 1. For n = 0, define σ0(dz) = f0(z) dz and call F0
the distribution function corresponding to σ0. Then, for
each y ∈ R, define

σ1(y, dz) = f1(z|y)dz, where

f1(z|y) = c1
{
F0(z),F0(y)

}
f0(z).

In general, for each n ≥ 0 and x ∈ R
n, suppose σn(x) has

been defined and denote by fn(·|x) and Fn(·|x) the den-
sity and the distribution function of σn(x). Then, for all
y ∈ R, one can define

σn+1(x, y, dz) = fn+1(z|x, y) dz, where

fn+1(z|x, y) = cn+1
{
Fn(z|x),Fn(y|x)

}
fn(z|x).

(6)
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Equation (6) defines a strategy σ dominated by the
Lebesgue measure.

In [41] (but not here) the cn are also required to be sym-
metric. Furthermore, in [41], equation (6) is not neces-
sarily viewed as a method for obtaining a strategy but is
deduced as a consequence of exchangeability. From our
point of view, instead, equation (6) defines a strategy σ

which we call HMW’s strategy.
Under HMW’s strategy, X is not necessarily exchange-

able, even if the cn are symmetric and cn → 1 (in some
sense) as n → ∞. To see this, recall that X is i.i.d. if and
only if it is exchangeable and X1 is independent of X2. In
turn, X1 is independent of X2 if c1 is the independence
copula density (i.e., c1(u, v) = 1 for all (u, v) ∈ [0,1]2).
Therefore, X fails to be exchangeable whenever c1 is the
independence copula density and c2 = c1. However, as
noted in [29], X turns out to be c.i.d.

THEOREM 6. If σ is HMW’s strategy, then X is c.i.d.

A proof of Theorem 6 is provided in the Appendix. We
note that, for Theorem 6 to hold, the positivity assumption
on f0 and cn may be dropped and the cn can be taken to
be conditional copula densities; see Remark 16.

3.2 Further Examples

In the next example, the data are exchangeable until a
stopping time T and then go on so as to form a c.i.d. se-
quence. The time T should be regarded as the first time
when something meaningful happens, possibly something
modifying the nature of the observed phenomenon. Even
if apparently involved, the example could find some ap-
plications. For instance, to model censored survival times,
with T − 1 the first time when a given number of survival
times is observed.

EXAMPLE 7 (Change points). A predictable stopping
time is a function T on S∞, with values in {2,3, . . . ,∞},
satisfying

{T = n + 1} = {
(X1, . . . ,Xn) ∈ An

}
(7)

for some set An ∈ Bn. Basically, condition (7) means that
the event {T = n + 1} depends only on (X1, . . . ,Xn).
Similarly, {T ≤ n + 1} = ⋃n+1

j=2{T = j} depends only on
(X1, . . . ,Xn). Therefore, for all x ∈ Sn and y ∈ S, the in-
dicators of {T ≤ n + 1} and {T > n + 1} depend on x but
not on y.

Fix a predictable stopping time T and a strategy β =
(β0, β1, . . .), which makes X exchangeable. Moreover, as
in Section 3.1, fix the measurable functions qn : Sn →
[0,1]. Then define σ0 = β0, σ1 = β1, and

σn+1(x, y)

= 1{T >n+1}(x)βn+1(x, y)

+ 1{T ≤n+1}(x)
{
qn(x)σn(x) + (

1 − qn(x)
)
δy

}
for all n ≥ 1, x ∈ Sn and y ∈ S. The next result is proved
in the Appendix.

THEOREM 8. The above strategy σ makes X c.i.d.
Moreover, if

An is invariant under permutations of Sn for all n ≥ 1,

where An is the set involved in condition (7), then
(X1, . . . ,Xn) is exchangeable conditionally on T > n.
Precisely,

Pσ

(
φ(X1, . . . ,Xn) ∈ · |T > n

)
= Pσ

(
(X1, . . . ,Xn) ∈ · |T > n

)
for all n such that Pσ (T > n) > 0 and all permutations φ

of Sn.

Theorem 8 is still valid if σ is defined differently at the
times subsequent to T . For instance, given a countable
partition H of S, the conclusions of Theorem 8 are true
even if

σn+1(x, y) = qn(x)σn(x) + (
1 − qn(x)

)
σn(x, ·|Hy)

for all x ∈ Sn and y ∈ S such that T ≤ n + 1 and
σn(x,Hy) > 0. Here, σn(x, ·|Hy) denotes the probability
measure

σn(x,A|Hy) = σn(x,A ∩ Hy)

σn(x,Hy)
for all A ∈ B.

Censored survival times are a possible application of σ .
Suppose that S = {0,1} × (0,∞) and the ith observation
is a pair xi = (ji, ti) where ti is the survival time of item
i, or the time when item i leaves the trial, according to
whether ji = 1 or ji = 0. In this framework, T − 1 could
be the first time when a fixed number k of survival times
is observed, namely,

T = 1 + inf

{
n :

n∑
i=1

ji = k

}

with the usual convention inf∅ = ∞. Finally, the strategy
β could be as in Section 2.2. In fact, classical Dirichlet
sequences are a quite popular model to describe censored
survival times but have the drawback of ties. This draw-
back may be overcome if β is of the form

βn(x) = cν + ∑n
i=1 αxi

n + c
,

where the kernel α satisfies the conditions of Section 2.2
and ν and αx are nonatomic for all x ∈ S.

So far, the nth predictive distribution has been meant as
the conditional distribution of Xn+1 given (X1, . . . ,Xn).
But the information available at time n is often strictly
larger than (X1, . . . ,Xn). To model this situation, we sup-
pose to observe the sequence

Y = (X1,Z1,X2,Z2, . . .),

where Z = (Z1,Z2, . . .) is any sequence of random vari-
ables. The Zn can be regarded as covariates. At each
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time n, the forecaster aims to predict Xn+1 based on
(X1,Z1, . . . ,Xn,Zn). She is not interested in Zn+1 as
such, but Z1, . . . ,Zn cannot be neglected since they are
informative on Xn+1. Moreover, she wants X to be c.i.d.
and Z unconstrained as much as possible. One solution
could be a strategy, which makes Y c.i.d. However, if Y

is c.i.d., both X and Z are marginally c.i.d., and having Z

c.i.d. may be unwelcome. In the next example, X is c.i.d.
but Z is not. In addition, X satisfies a condition stronger

than the c.i.d. one, that is, X2
d= X1 and

P(Xk ∈ ·|X1,Z1, . . . ,Xn,Zn)

= P(Xn+1 ∈ ·|X1,Z1, . . . ,Xn,Zn)
(8)

a.s. for all k > n ≥ 1; see [7].

EXAMPLE 9 (Covariates). Let S = R
2 and

0 = b0 < b1 < b2 < · · · , sup
n

bn ≤ 1,

a bounded strictly increasing sequence of real numbers.
Take σ0 as the probability distribution of (U + V,V )

where

U independent of V, U
d=N (0, b1),

V
d=N (0,1 − b1).

Similarly, for each n ≥ 1 and

y = (y1, . . . , yn) = (x1, z1, . . . , xn, zn),

take σn(y) as the probability distribution of (Un(y) +
Vn(y),Vn(y)) where

Un(y) independent of Vn(y),

Un(y)
d= N (xn − zn, bn+1 − bn),

Vn(y)
d= N (0,1 − bn+1).

Then Z is not c.i.d. while X satisfies condition (8). Fur-
thermore, arguing as in [5], Section 4, the normal distri-
bution could be replaced by any symmetric stable law.

To see that Z is not c.i.d., just note that Z fails to be
identically distributed. To prove condition (8), take a col-
lection {Tn,Wn : n ≥ 1} of independent standard normal
random variables and define the sequence

Y ∗ = (
X∗

1,Z∗
1 ,X∗

2,Z∗
2, . . .

)
,

where Z∗
n = √

1 − bnWn and

X∗
n =

n∑
j=1

√
bj − bj−1Tj + Z∗

n.

It is not hard to verify that Y ∗ d= Y . Hence, it suffices to
prove (8) with Y ∗ in the place of Y , and this can be done
as in [7], Example 1.2. We omit the explicit calculations.

4. STATIONARY DATA

A sequence Y = (Y1, Y2, . . .) of random variables is sta-
tionary if

(Y2, . . . , Yn+1)
d= (Y1, . . . , Yn) for all n ≥ 1.

In the non-Bayesian approaches to prediction, station-
arity is a classical assumption. In a Bayesian framework,
instead, stationarity seems to be less popular. In particu-
lar, to our knowledge, there is no systematic treatment of
P.A. for stationary data. This section aims to fill this gap
and begins an investigation of P.A. when X is required to
be stationary. It is just a preliminary step and much more
work is to be done.

After some general remarks on Problem (*), two large
classes of stationary sequences will be introduced. In-
cidentally, these two classes may look unusual for a
Bayesian forecaster. We do not know whether this is true,
but we recall that P.A. is consistent with any probability
distribution for X. Hence, in a Bayesian framework, using
data coming from such classes is certainly admissible.

If X is required to be stationary, for P.A. to apply, the
strategies which make X stationary should be character-
ized. Hence, one comes across Problem (*) with C the
class of stationary probability measures on (S∞,B∞).
This version of Problem (*) is quite hard and we are not
aware of any general solution; see, for example, [12, 50]
and references therein. Fortunately, however, Problem (*)
is simple (or even trivial) in a few special cases. As an
example, a strategy σ makes X a stationary (first-order)
Markov chain if and only if∫

σ1(x, ·)σ0(dx) = σ0(·) and σn(x) = σ1(xn)

for all n ≥ 1 and Pσ -almost all x ∈ Sn. Even if obvious,
this fact has a useful practical consequence. If the data are
required to be stationary and Markov, in order to make
Bayesian predictions, applying P.A. is straightforward.

Another remark is that, unlike the exchangeable case,
a finite-dimensional stationary random vector can be al-
ways extended to an (infinite) stationary sequence. To for-
malize this fact, we first recall that the probability distri-
bution of the random vector (X1, . . . ,Xn) is completely
determined by σ0, σ1, . . . , σn−1.

LEMMA 10. Fix n ≥ 1, select σ0, σ1, . . . , σn−1 and
define

σj (u, x) = σn−1(x)

for all j > n − 1, u ∈ Sj−n+1 and x ∈ Sn−1. Then X is

stationary provided (X2, . . . ,Xn)
d= (X1, . . . ,Xn−1).

Lemma 10 is probably well known, but again we do
not know of any explicit reference. Anyway, the proof is
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straightforward. It suffices to note that, under the strat-
egy of Lemma 10, Xj+1 is conditionally independent of
(X1, . . . ,Xj−n+1) given (Xj−n+2, . . . ,Xj ).

A last remark is that Problem (*) admits an obvious so-
lution for dominated strategies. In this case, incidentally,
Problem (*) can be easily solved even for exchangeable
data.

THEOREM 11. Let λ be a σ -finite measure on (S,B)

and σ a strategy dominated by λ, say

σ0(dy) = f0(y)λ(dy) and σn(x, dy) = fn(y|x)λ(dy)

for all n ≥ 1 and x ∈ Sn. Define

gn(x) = f0(x1)f1(x2|x1) · · ·fn−1(xn|x1, . . . , xn−1)

for all n ≥ 1 and x ∈ Sn. Then:

• Pσ is stationary if and only if

gn(x) =
∫

gn+1(u, x)λ(du)

for all n ≥ 1 and Pσ -almost all x ∈ Sn.
• Pσ is exchangeable if and only if

gn

(
φ(x)

) = gn(x)

for all n ≥ 2, all permutations φ of Sn and Pσ -almost
all x ∈ Sn.

The proof of Theorem 11 is given in the Appendix.
We finally give two examples. In both, X is a stationary

Markov sequence, possibly of order greater than 1.

EXAMPLE 12 (Generalized autoregressive sequences).
Let S = R. Fix a probability measure μ on B and a mea-
surable function f :R→R. Define

σ1(x,A) = P
(
f (x) + U ∈ A

)
for all x ∈ R and A ∈ B,

where U is a real random variable such that U
d= μ. Sup-

pose now that∫
σ1(x,A)ν(dx) = ν(A), A ∈ B,(9)

for some probability measure ν on B. Then X is a station-
ary Markov chain provided

σ0 = ν and σn(x) = σ1(xn)

for all n ≥ 2 and x ∈ R
n.

Note that Y
d= Pσ for any sequence Y = (Y1, Y2, . . .) such

that

Y1
d= ν and Yn = f (Yn−1) + Un for n ≥ 2,

where (Un : n ≥ 2) is i.i.d., independent of Y1, and U2
d=

μ. Thus, μ can be regarded as the distribution of the “er-
rors” Un and ν as the marginal distribution of the obser-
vations Yn. For instance, the usual Gaussian (first-order)

autoregressive processes correspond to f (x) = cx, μ =
N (0, b) and ν =N (0, b/(1−c2)), where c ∈ (−1,1) and
b > 0 are constants.

To make the above argument concrete, the following
problem is to be solved: For fixed f and μ, give condi-
tions for the existence of ν satisfying equation (9). More
importantly, give an explicit formula for ν provided it ex-
ists. We next focus on this problem in the (meaningful)
special case where μ is a symmetric stable law.

Let γ ∈ (0,2] be a constant and Z a real random vari-
able with characteristic function

E
{
exp(itZ)

} = exp
(
−|t |γ

2

)
for all t ∈ R.

(The exponent γ is usually denoted by α, but this notation
cannot be adopted in this paper since α denotes a kernel).
For a ∈ R and b > 0, denote by S(a, b) the probability
distribution of a + b1/γ Z, namely,

S(a, b;A) = P
(
a + b1/γ Z ∈ A

)
for all A ∈ B.

The probability measure S(a, b) is said to be a sym-
metric stable law with exponent γ . Note that S(a, b) =
N (a, b) if γ = 2 and S(a, b) = C(a, b) if γ = 1, where
C(a, b) is the Cauchy distribution with density f (x) =
2b
π

1
b2+4(x−a)2 (the standard Cauchy distribution corre-

sponds to a = 0 and b = 2).

THEOREM 13. Let c ∈ (−1,1) be a constant. If μ =
S(a, b) and f (x) = −a+cx, then equation (9) is satisfied
by

ν = S
(

0,
b

1 − |c|γ
)
.

By Theorem 13, which is proved in the Appendix, one
obtains (first-order) stationary autoregressive processes
with any symmetric stable marginal distribution.

EXAMPLE 14 (Markov sequences of arbitrary order).
Let λ be a σ -finite measure on (S,B). Fix n ≥ 2 and
a measurable function h on Sn such that h > 0 and∫

hdλn = 1. Given h, define a further function g via
cyclic permutations of h, namely,

g(x) = 1

n

{
h(x1, . . . , xn) + h(x2, . . . , xn, x1)

+ · · · + h(xn, x1, . . . , xn−1)
}

for all x ∈ Sn. Such a g is still a density with respect to λn

(since
∫

g dλn = 1) and satisfies

g(x, y) = g(y, x) for all x ∈ Sn−1 and y ∈ S.(10)

Next, define

f0(x) =
∫

g(x, v)λn−1(dv) for all x ∈ S,

fn−1(xn|x1, . . . , xn−1)

= g(x)∫
g(x1, . . . , xn−1, v)λ(dv)
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for all x ∈ Sn, and

fj−1(xj |x1, . . . , xj−1)

=
∫

g(x, v)λn−j (dv)∫
g(x1, . . . , xj−1, v)λn−j+1(dv)

for all 2 ≤ j ≤ n− 1 and x ∈ Sj . Finally, define a strategy
σ dominated by λ as

σ0(dz) = f0(z)λ(dz),

σj (x, dz) = fj (z|x)λ(dz)

if 1 ≤ j ≤ n − 1 and x ∈ Sj , and

σj (u, x) = σn−1(x)

if j > n−1, u ∈ Sj−n+1 and x ∈ Sn−1. Under σ , a density
of (X1, . . . ,Xn) is given by g. By equation (10),∫

g(v, x)λ(dv) =
∫

g(x, v)λ(dv) for all x ∈ Sn−1

and this in turn implies

(X2, . . . ,Xn)
d= (X1, . . . ,Xn−1).

Therefore, X is stationary because of Lemma 10. Note
also that X is a Markov sequence of order n − 1.

5. CONCLUDING REMARKS AND OPEN PROBLEMS

When prediction is the main target, P.A. has some ad-
vantages with respect to I.A. This is only our opinion, ob-
viously, and we tried to support it along this paper. Even
if one agrees, however, some further work is to be done
to make P.A. a concrete tool. We close this paper with a
brief list of open problems and possible hints for future
research.

• In various applications, the available information strict-
ly includes the past observations on the variable to be
predicted. For instance, as in Example 9, suppose one
aims to predict Xn+1 based on (X1,Z1, . . . ,Xn,Zn)

where Z1, . . . ,Zn are any random elements. Suppose
also that Z1, . . . ,Zn cannot be neglected for they are
informative on Xn+1. In this case, one needs the condi-
tional distribution of Xn+1 given (X1,Z1, . . . ,Xn,Zn).
Situations of this type are practically meaningful and
should be investigated further.

• Section 4 should be expanded. It would be nice to have
a general solution of Problem (*) for both the stationary
and the stationary-ergodic cases. Further examples of
stationary sequences (possibly, non-Markovian) would
be welcome as well.

• Obviously, P.A. could be investigated under other dis-
tributional assumptions, in addition to exchangeability,
stationarity and conditional identity in distribution. In
particular, partial exchangeability should be taken into
account.

• A question, related to Example 5, is: Under what con-
ditions X is exchangeable when σ is HMW’s strategy?

• While probably hard, the problem raised in Example 12
looks intriguing. In Theorem 13, such a problem has
been addressed when μ is a symmetric stable law and
f has a special form. What happens if μ and f are
arbitrary?

• In case of I.A., the empirical Bayes point of view
(where the prior is allowed to depend on the data) may
be problematic. In case of P.A., instead, this point of
view is certainly admissible. In fact, suppose a strategy
σ depends on some unknown constants, and an empiri-
cal Bayes forecaster decides to estimate these constants
based on the available data. Acting in this way, she is
merely replacing a strategy with another. Instead of σ ,
she is working with σ̂ , where σ̂ is the strategy obtained
from σ estimating the unknown constants. This empir-
ical form of P.A. looks reasonable and could be inves-
tigated.

APPENDIX

This Appendix contains the proofs of some claims scat-
tered throughout the text. We will need the following char-
acterization of c.i.d. sequences in terms of strategies.

THEOREM 15 (Theorem 3.1 of [8]). Let σ be a strat-
egy. Then, Pσ is c.i.d. if and only if

σn(x,A) =
∫

σn+1(x, y,A)σn(x, dy)(11)

for all n ≥ 0, all A ∈ B and Pσ -almost all x ∈ Sn.

PROOF OF THEOREM 6. In this proof, “density
function” stands for “density function with respect to
Lebesgue measure.” We first recall a well-known fact.

Let C be a bivariate copula and F1, F2 distribution
functions on R. Suppose that C, F1 and F2 all have den-
sities, say c, f1 and f2, respectively. Then

F(x, y) = C
{
F1(x),F2(y)

}
is a distribution function on R

2 and

f (x, y) = c
{
F1(x),F2(y)

}
f1(x)f2(y)

is a density of F . Therefore, for all y ∈ R with f2(y) > 0,
one obtains∫

c
{
F1(x),F2(y)

}
f1(x) dx =

∫
f (x, y)

f2(y)
dx = 1.

We next show that equation (6) actually defines a strat-
egy σ . Fix a density f0 > 0 and a sequence c1, c2, . . . of
strictly positive bivariate copula densities. For each y ∈ R,∫

f1(z|y)dz =
∫

c1
{
F0(z),F0(y)

}
f0(z) dz = 1

since f0(y) > 0. Moreover, f1(z|y) > 0 for all z due to
f0 > 0 and c1 > 0. Next, suppose that fn(·|x) is a strictly
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positive density for some n ≥ 1 and x ∈ R
n. Then, for all

y ∈ R,∫
fn+1(z|x, y) dz

=
∫

cn+1
{
Fn(z|x),Fn(y|x)

}
fn(z|x)dz = 1

since fn(y|x) > 0. Furthermore, fn+1(z|x, y) > 0 for all
z since fn(·|x) > 0 and cn+1 > 0. By induction, this
proves that fn(·|x) is a density for all n ≥ 1 and x ∈
R

n. Therefore, equation (6) defines a strategy σ (called
HMW’s strategy in Example 5).

Finally, we prove that Pσ is c.i.d. if σ is HMW’s strat-
egy. By Theorem 15, it suffices to prove condition (11).
In turn, since σ is dominated by the Lebesgue measure,
condition (11) reduces to

fn(z|x) =
∫

fn+1(z|x, y)fn(y|x)dy

for all n ≥ 0, almost all z ∈ R and Pσ -almost all x ∈ R
n.

Such a condition follows directly from the definition of σ .
In fact, for all n ≥ 0 an x ∈ R

n, one obtains∫
fn+1(z|x, y)fn(y|x)dy

=
∫

cn+1
{
Fn(z|x),Fn(y|x)

}
fn(z|x)fn(y|x)dy

= fn(z|x) for almost all z.

This concludes the proof. �
REMARK 16. HMW’s strategy σ has been defined

under the assumption that f0 > 0 and cn > 0 for all n ≥ 1.
Such an assumption is superfluous and has been made
only to avoid annoying complications in the definition
of σ . Similarly, X is c.i.d. even if the cn are conditional
copulas, in the sense that they are allowed to depend on
past data. Precisely, for each n ≥ 1 and x ∈ R

n, fix a bi-
variate copula density cn+1(·|x). Then the proof Theo-
rem 6 still applies if fn+1(z|x, y) is rewritten as

fn+1(z|x, y) = cn+1
{
Fn(z|x),Fn(y|x)|x}

fn(z|x).

PROOF OF THEOREM 8. We show that X is c.i.d. via
Theorem 15. Fix A ∈ B and n ≥ 0. Since Pβ is exchange-
able (and thus c.i.d.) Theorem 15 yields

βn(x,A) =
∫

βn+1(x, y,A)βn(x, dy)(12)

for Pβ -almost all x ∈ Sn. Hence, up to changing β on a
Pβ -null set, equation (12) can be assumed to hold for all
x ∈ Sn. If n = 0,∫

σ1(y,A)σ0(dy) =
∫

β1(y,A)β0(dy) = β0(A)

= σ0(A),

where the first equality is because σ0 = β0 and σ1 = β1
while the second follows from (12). Next, suppose n ≥ 1
and take x ∈ Sn and y ∈ S. By assumption, the events
{T > n + 1} and {T ≤ n + 1} depend on x but not on y.
If T > n + 1, one obtains σn+1(x, y) = βn+1(x, y) and
σn(x) = βn(x). Hence, equation (12) implies again∫

σn+1(x, y,A)σn(x, dy) =
∫

βn+1(x, y,A)βn(x, dy)

= βn(x,A) = σn(x,A).

Similarly, if T ≤ n + 1,∫
σn+1(x, y,A)σn(x, dy)

=
∫ {

qn(x)σn(x,A) + (
1 − qn(x)

)
δy(A)

}
σn(x, dy)

= qn(x)σn(x,A) + (
1 − qn(x)

) ∫
δy(A)σn(x, dy)

= σn(x,A).

In view of Theorem 15, this proves that X is c.i.d.
Finally, suppose that An is invariant under permutations

of Sn for each n ≥ 1. We have to show that (X1, . . . ,Xn)

is exchangeable conditionally on T > n. Fix n, a set C ∈
Bn, and a permutation φ of Sn. For each j ≥ n, it is easily
seen that

Pσ

(
T = j + 1, φ(X1, . . . ,Xn) ∈ C

)
= Pβ

(
T = j + 1, φ(X1, . . . ,Xn) ∈ C

)
.

Therefore,

Pσ

(
T = j + 1, φ(X1, . . . ,Xn) ∈ C

)
= Pβ

(
T = j + 1, φ(X1, . . . ,Xn) ∈ C

)
= Pβ

(
(X1, . . . ,Xj ) ∈ Aj ,φ(X1, . . . ,Xn) ∈ C

)
= Pβ

(
(X1, . . . ,Xj ) ∈ Aj , (X1, . . . ,Xn) ∈ C

)
,

where the last equality is because Pβ is exchangeable and
Aj is invariant under permutations of Sj . In turn, this im-
plies

Pσ

(
T > n,φ(X1, . . . ,Xn) ∈ C

)
= ∑

j≥n

Pσ

(
T = j + 1, φ(X1, . . . ,Xn) ∈ C

)

= ∑
j≥n

Pβ

(
T = j + 1, (X1, . . . ,Xn) ∈ C

)

= ∑
j≥n

Pσ

(
T = j + 1, (X1, . . . ,Xn) ∈ C

)

= Pσ

(
T > n, (X1, . . . ,Xn) ∈ C

)
.

This concludes the proof. �
PROOF OF THEOREM 11. Just note that gn is a den-

sity of (X1, . . . ,Xn) with respect to λn. Therefore, The-
orem 11 follows from the very definitions of stationarity
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and exchangeability, after noting that
∫

gn+1(u, ·)λ(du) is
a density of (X2, . . . ,Xn+1) with respect to λn. �

PROOF OF THEOREM 13. We first recall that∫
S(x, b;A)S(0, r;dx) = S(0, b + r;A)

for all A ∈ B and b, r > 0. This can be checked by a di-
rect calculation; see the Claim contained in the proof of
Theorem 3 of [5]. Having noted this fact, define

μ = S(a, b), f (x) = −a + cx, ν = S
(

0,
b

1 − |c|γ
)
,

and denote by Z a real random variable such that Z
d=

S(0,1). Define also

r = b|c|γ
1 − |c|γ , h(x) = cx,

and call ν∗ the probability distribution of h under ν. On
noting that

a + b1/γ Z
d= μ and ν∗ = S(0, r),

one obtains∫
σ1(x,A)ν(dx) =

∫
P

(
f (x) + a + b1/γ Z ∈ A

)
ν(dx)

=
∫

P
(
h(x) + b1/γ Z ∈ A

)
ν(dx)

=
∫

P
(
x + b1/γ Z ∈ A

)
ν∗(dx)

=
∫

S(x, b;A)S(0, r;dx)

= S(0, b + r;A)

= S
(

0,
b

1 − |c|γ ;A
)

= ν(A).

Therefore, equation (9) holds. �
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Selected articles from San Antonio Conference in honour of C.
R. Rao (San Antonio, TX, 2000). MR1981761

[52] NEWTON, M. A. and ZHANG, Y. (1999). A recursive algorithm
for nonparametric analysis with missing data. Biometrika 86 15–
26. MR1688068 https://doi.org/10.1093/biomet/86.1.15

[53] PITMAN, J. (1995). Exchangeable and partially exchangeable
random partitions. Probab. Theory Related Fields 102 145–158.
MR1337249 https://doi.org/10.1007/BF01213386

[54] PITMAN, J. (1996). Some developments of the Blackwell–
MacQueen urn scheme. In Statistics, Probability and Game
Theory. Institute of Mathematical Statistics Lecture Notes—
Monograph Series 30 245–267. IMS, Hayward. MR1481784
https://doi.org/10.1214/lnms/1215453576

[55] PITMAN, J. (2006). Combinatorial Stochastic Processes. Lecture
Notes in Math. 1875. Springer, Berlin. Lectures from the 32nd
Summer School on Probability Theory held in Saint-Flour, July
7–24, 2002, With a foreword by Jean Picard. MR2245368

[56] PITMAN, J. and YOR, M. (1997). The two-parameter Poisson–
Dirichlet distribution derived from a stable subordinator. Ann.
Probab. 25 855–900. MR1434129 https://doi.org/10.1214/aop/
1024404422

[57] SETHURAMAN, J. (1994). A constructive definition of Dirichlet
priors. Statist. Sinica 4 639–650. MR1309433

[58] SHMUELI, G. (2010). To explain or to predict? Statist. Sci. 25
289–310. MR2791669 https://doi.org/10.1214/10-STS330

[59] SMITH, A. F. M. and MAKOV, U. E. (1978). A quasi-Bayes
sequential procedure for mixtures. J. Roy. Statist. Soc. Ser. B 40
106–112. MR0512148

http://www.ams.org/mathscinet-getitem?mr=1508036
http://www.ams.org/mathscinet-getitem?mr=1092946
http://www.ams.org/mathscinet-getitem?mr=0520238
http://www.ams.org/mathscinet-getitem?mr=0236983
http://www.ams.org/mathscinet-getitem?mr=4107663
https://doi.org/10.1080/01621459.2020.1762613
http://www.ams.org/mathscinet-getitem?mr=0350949
http://arxiv.org/abs/arXiv:2202.10361v1
http://www.ams.org/mathscinet-getitem?mr=1769738
http://www.ams.org/mathscinet-getitem?mr=2949087
https://doi.org/10.1214/11-BJPS176
http://www.ams.org/mathscinet-getitem?mr=3624870
https://doi.org/10.3150/15-BEJ787
http://www.ams.org/mathscinet-getitem?mr=4136504
http://www.ams.org/mathscinet-getitem?mr=3758339
https://doi.org/10.1016/j.spa.2017.06.008
http://www.ams.org/mathscinet-getitem?mr=1252174
https://doi.org/10.1007/978-1-4899-4467-2
http://www.ams.org/mathscinet-getitem?mr=3587782
https://doi.org/10.1017/9781139029834
http://www.ams.org/mathscinet-getitem?mr=2606505
https://doi.org/10.1214/ECP.v15-1532
https://math.la.asu.edu/%20prhahn/pred-bayes.pdf
http://www.ams.org/mathscinet-getitem?mr=3862341
https://doi.org/10.1080/01621459.2017.1304219
http://www.ams.org/mathscinet-getitem?mr=1745692
https://doi.org/10.1016/S0167-7152(99)00109-1
http://www.ams.org/mathscinet-getitem?mr=2722294
https://doi.org/10.1007/978-0-387-84858-7
http://www.ams.org/mathscinet-getitem?mr=1224406
http://www.ams.org/mathscinet-getitem?mr=2722987
https://doi.org/10.1017/CBO9780511802478
http://www.ams.org/mathscinet-getitem?mr=0929061
http://www.ams.org/mathscinet-getitem?mr=3112406
https://doi.org/10.1214/12-sts407
http://www.ams.org/mathscinet-getitem?mr=2434179
https://doi.org/10.1214/07-AAP495
http://www.ams.org/mathscinet-getitem?mr=4255241
https://doi.org/10.1214/20-ps345
http://www.ams.org/mathscinet-getitem?mr=1981761
http://www.ams.org/mathscinet-getitem?mr=1688068
https://doi.org/10.1093/biomet/86.1.15
http://www.ams.org/mathscinet-getitem?mr=1337249
https://doi.org/10.1007/BF01213386
http://www.ams.org/mathscinet-getitem?mr=1481784
https://doi.org/10.1214/lnms/1215453576
http://www.ams.org/mathscinet-getitem?mr=2245368
http://www.ams.org/mathscinet-getitem?mr=1434129
https://doi.org/10.1214/aop/1024404422
http://www.ams.org/mathscinet-getitem?mr=1309433
http://www.ams.org/mathscinet-getitem?mr=2791669
https://doi.org/10.1214/10-STS330
http://www.ams.org/mathscinet-getitem?mr=0512148
https://doi.org/10.1007/978-1-4899-4467-2
https://doi.org/10.1017/9781139029834
https://math.la.asu.edu/%20prhahn/pred-bayes.pdf
https://doi.org/10.1080/01621459.2017.1304219
https://doi.org/10.1016/S0167-7152(99)00109-1
https://doi.org/10.1017/CBO9780511802478
https://doi.org/10.1214/12-sts407
https://doi.org/10.1214/aop/1024404422

	Introduction
	Predictive Approach to Bayesian Modeling
	Characterizations
	Content of This Paper and Further Notation

	Exchangeable Data
	Species Sampling Sequences
	Kernel-Based Dirichlet Sequences

	Conditionally Identically Distributed Data
	Fast Recursive Update of Predictive Distributions
	Further Examples

	Stationary Data
	Concluding Remarks and Open Problems
	Appendix
	Acknowledgments
	References

