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 27 

 28 

 29 

Abstract  30 

Objective 31 

Neural signals can be decoded and used to move neural prostheses with the purpose of restoring motor 32 

function in patients with mobility impairments. Such patients typically have intact eye movement control and 33 

visual function, suggesting that cortical visuospatial signals could be used to guide external devices. Neurons 34 

in parietal cortex mediate sensory-motor transformations, encode the spatial coordinates for reaching goals, 35 

hand position and movements, and other spatial variables. We studied how spatial information is 36 

represented at the population level, and the possibility to decode not only the position of visual targets and 37 

the plans to reach them, but also conditional, non-spatial motor responses.  38 

Approach 39 

The animals first fixated one of nine targets in 3D space and then, after the target changed color, either 40 

reached toward it, or performed a non-spatial motor response (lift hand from a button). Spiking activity of 41 

parietal neurons was recorded in monkeys during two tasks. We then decoded different task related 42 

parameters.  43 

Main results 44 

We first show that a maximum-likelihood estimation (MLE) algorithm trained separately in each task 45 

transformed neural activity into accurate metric predictions of target location. Furthermore, by combining 46 

MLE with a Naïve Bayes classifier, we decoded the monkey’s motor intention (reach or hand lift) and the 47 

different phases of the tasks. These results show that, although V6A encodes the spatial location of a target 48 

during a delay period, the signals they carry are updated around the movement execution in an 49 

intention/motor specific way.  50 

Significance 51 
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These findings show the presence of multiple levels of information in parietal cortex that could be decoded 52 

and used in brain machine interfaces to control both goal-directed movements and more cognitive 53 

visuomotor associations. 54 

 55 

 56 

Keywords 57 

Reaching, brain computer interfaces, decoding, electrophysiology, posterior parietal cortex, monkey 58 

 59 

1. Introduction  60 

A large body of evidence shows that motor intentions can be decoded from neural activity and used to control 61 

artificial limbs (1–6). In most of these cases, neural activity was recorded from motor cortex, where signals 62 

are highly correlated with desired movement trajectories (1,3). An alternative approach is to exploit signals 63 

earlier in the sensorimotor pathways, particularly in posterior parietal cortex (PPC), where neurons are 64 

sensitive to movement parameters and more abstract representations of intention and visuospatial attention 65 

(7–13). The spatial target of a reach, for example, can be decoded from a small number of neurons in PPC in 66 

monkeys (14–17), and from fMRI signals (18,19) or intracortical signals (2) in humans. 67 

 68 

A device that relies on signals from PPC, rather than from motor cortex, has the potential advantage that it 69 

could (also) infer the intended outcome of an action rather than the kinematics of a specific movement. This 70 

could provide greater flexibility in its use across a range of assistive technologies. However, PPC signals are 71 

multi-modal and high-dimensional (8,20,21), making difficult to disentangle between these signals.  72 

 73 

Here, we tested whether multiple task- and intention-related variables could be decoded simultaneously 74 

from population activity in area V6A, located in the posterior parietal cortex ( PPC) (22,23). V6A neurons are 75 

involved in both reaching and grasping (24–27), and are tuned for kinematic parameters such as direction 76 

(28,29) and amplitude of hand movement (24). In addition, they encode visual target location in 3D in the 77 
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absence of reaching (27,30–32), thus enabling the use of visuospatial information in task contexts where no 78 

arm movement is planned.  79 

  80 

To test this hypothesis, we decoded neural activity recorded from area V6A in macaques while they 81 

performed sequentially two sensorimotor tasks (Fig. 1). Both tasks required fixation of a visual target that 82 

varied position in 3D space across trials, but they differed in the type of motor response required: a reach 83 

movement towards the target (fixate-to-reach task), or a non-spatial motor response (fixate-to-hand lift task) 84 

that was instructed by the color code of the target, but not directed towards it. We used a Maximum 85 

Likelihood Estimator (MLE) that permits a metric estimation of the target position. 86 

We then compared population codes between the two tasks during the delay period. At the single neuron 87 

level, we recently reported that the most represented type of V6A cells (44%) showed different firing 88 

between these two tasks (33), so we expected that the population signals would be different. In addition, we 89 

looked for activity patterns related to distinct task stages and how they gradually evolved to support the 90 

movement. These switches can be useful to trigger prosthesis movement (17,34).  91 

We found that we could reliably decode: target position, type of intended movement and different cognitive 92 

states from the very same population of neurons. At the same time, generalization analysis across tasks 93 

showed that the neural codes were very similar in most task phases and diverged only immediately before 94 

the movement onset. The finding that multiple variables and types of motor responses were coded 95 

dynamically in the same brain area could be exploited for neuroprosthetic applications.  96 

 97 

2. Methods 98 

 99 

The experimental part of this study was performed in accordance with the guidelines of the EU Directives 100 

(86/609/EEC; 2010/63/EU) and the Italian national law (D.L. 116-92, D.L. 26-2014) on the use of animals in 101 

scientific research. Protocols were approved by the Animal-Welfare Body of the University of Bologna. During 102 
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training and recording sessions, particular attention was paid to any behavioral and clinical sign of pain or 103 

distress.   104 

 105 

 106 

2.1 Experimental Procedures  107 

 108 

Two male macaque monkeys (Macaca fascicularis) weighing 4.4 kg (Monkey 1, M1) and 3.8 kg (Monkey 2, 109 

M2) were used. Single cell activity was recorded extracellularly by means of single electrode from the anterior 110 

bank of the parieto-occipital sulcus (POs). We performed multiple electrode penetrations using a five-channel 111 

multielectrode recording system that permitted to record from up to five single electrodes at once (Thomas 112 

Recording GmbH, Giessen, Germany). We recorded the activity of 162 V6A (36) neurons, 100 cells from M1 113 

and 62 cells from M2. Although five electrodes was the maximum number of our recording system, on 114 

average we were recording from 2-3 neurons at once; in total, the number of sessions distributed between 115 

M1 and M2 was 45 (22 + 23). Action potentials (spikes) in each channel were isolated with a waveform 116 

discriminator (Multi Spike Detector; Alpha Omega Engineering Nazareth, Israel) and were sampled at 100 117 

kHz. Quality of single-unit isolation was determined by the homogeneity of spike wave forms and clear 118 

refractory periods in ISI histograms during spike-sorting. Only well-isolated units not changing across tasks 119 

were considered.  The experimental procedures are described in full detail in Breveglieri et al. (2014). 120 

 121 

2.2 Behavioral Tasks 122 

 123 

Electrophysiological signals were collected while the monkeys were performing two instructed-delay tasks: 124 

a fixate-to-reach task (fix-reach) and a fixate-to-lift hand task (fix-lift), as illustrated in Figure 1. In both tasks, 125 

one of nine targets placed in several locations in 3-D space was switched on and the animal had to fixate it 126 

and, when instructed (target color change), either perform a reach toward the target (fix-reach), or lift the 127 

hand from the home button (fix-lift). Monkeys sat in a primate chair, with the head restrained, and faced a 128 
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horizontal panel located at eye level. Nine light-emitting diodes (LEDs) mounted on the panel at different 129 

distances from the eyes were used as fixation and reaching targets (Figure 1A, left). As shown in the right 130 

part of Figure 1A, the nine target LEDs were arranged in a radial grid consisting of three directions: version 131 

angles of −15°, 0°, and +15° and three depths i.e., vergence angles of 17.1°, 11.4°, and 6.9°. The two animals 132 

had the same interocular distance (3.0 cm), so we placed the grid at the same distance from the monkeys in 133 

both animals (nearest targets: 10 cm; intermediate targets: 15 cm; far targets: 25 cm). The range of vergence 134 

angles was chosen to be within the limits of peripersonal space, so the monkeys were able to reach all target 135 

positions. The animals performed the tasks with the arm contralateral to the recording site. The two tasks 136 

were performed in separate blocks. In case of fix-lift task, a plexiglass barrier prevented the hand movement 137 

toward the target.  138 

In both tasks, the animal initiated a trial by pressing and holding a home button (HB; 2.5 cm in diameter, 139 

Figure 2A) placed 5 cm in front of the torso, outside the field of view (FREE epoch). After a delay of 1000 ms, 140 

one of the nine LEDs was turned on in green, cuing the animal to initiate fixation. After a delay of 1700–2500 141 

ms (DELAY epoch), the LED changed to red, cuing the animal to either perform a reach to the target (fix-reach 142 

task) or to simply release the button (fix-lift task) (MOV epoch). In the case of fix-reach task, monkeys had 1 143 

sec after the go signal to reach the target, otherwise the trial was aborted. Then, monkeys pressed the target 144 

and held the hand on it for 800–1200 ms. The target offset cued the monkeys to release the LED and return 145 

to the home button, which ended the trial and allowed monkeys to receive reward. In the case of fix-lift task, 146 

monkeys had 1 s to release the button to have the reward.  147 

Only correctly executed trials were used in this analysis. We collected 10 correct trials for each of the 9 148 

conditions (targets) and for each tested task.  149 

 150 

2.3 Data Analysis 151 

 152 

2.3.1 Preprocessing. Neurons activities were analyzed as spike counts within single trials. The spike times on 153 

each trial were counted within a 100-ms window that stepped in 100 ms increments. Because these neurons 154 
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were not recorded simultaneously, a “trial” in this context refers to a synthetic dataset in which a single 155 

experimental trial was drawn randomly for each neuron from a common behavioral condition and collated. 156 

This is a common and useful way to simulate population codes in the brain from single neuron data (37–40). 157 

It should be noted, however, that this approach ignores potential effects of correlated spike-count variability 158 

on the coding of target position. 159 

 160 

2.3.2 Population Decoding. To decode the different parameters which describes the fix-reach or the fix-lift 161 

task, two different decoding algorithms were used in our analysis: a Maximum Likelihood Estimator (MLE) 162 

and a Naïve Bayes classifier (NB). Metric estimation of target positions (in a 2D grid) relied on MLE decoding 163 

algorithm. This algorithm was used successfully to decode eye position signals from macaque parietal and 164 

temporal cortex (37,38). We adapted this implementation to our motor task using signals from area V6A. In 165 

addition to the decoding of the target spatial position, we examined two additional parameters: given a 166 

random bin of activity, whether it was possible to predict the current task type (fix-reach or fix-lift) and the 167 

current task phase (epoch free, or delay, or movement, see below). These latter parameters, together with 168 

metric estimation of target location provide a detailed snapshot of the ongoing action. In particular, we 169 

combined the MLE and NB decoders to recognize whether the monkey performed a reach toward the target 170 

or simply lifted his hand off the button. Decoding of task phase was performed using a simple NB 171 

implementation to identify the different epochs of tasks.   172 

 173 

2.3.3 Target decoding. MLE decoder estimated the spatial coordinates of targets given the population neural 174 

activity. The implementation is described in full detail in Morris et al. (37,38): here are summarized the key 175 

steps. A regression surface (second order polynomial, eq.1 and a real example in Fig.2A) was calculated for 176 

each neuron and it was used to estimate the effect of target position (direction X, depth Y) on mean spike 177 

counts (𝑐̂).  178 

Eq. 1   𝑐̂(𝑋, 𝑌) =  𝑎0 +  𝑎1𝑋 +  𝑎2𝑌 + 𝑎3𝑋2 +  𝑎4𝑌2 +  𝑎5𝑋𝑌  179 
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Assuming Poisson statistics, eq.1 becomes a description of how both the mean and variance (both equal to  180 

λ) of spike counts varied as a function of target position. Thus,  conditional probability over spike counts for 181 

a given target position (x,y) was: 182 

Eq. 2    𝑝̂(𝐶|𝑥, 𝑦) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛[λ(x, y)] where λ(x, y) = 𝑐̂(𝑥, 𝑦) 183 

Equation 2 provides a critical quantitative link between target position and the neural response: the 184 

probability of a neural response given a target position (in statistical terms, a “likelihood function”); but 185 

without additional steps, they do not provide the information needed for decoding. Decoding implements 186 

the reverse direction of inference, so it requires an estimate of the probability of each target position given 187 

an observed spike count (i.e. 𝑝(𝑋, 𝑌|𝑐), the posterior probability distribution (Fig. 2B). These two types of 188 

conditional probability are related via the Bayes rule. Assuming statistical independence among N neurons, 189 

the optimal way to combine posterior probability density functions across the population is to take their 190 

product, which is usually implemented as a sum of their logarithms. As the final step, the eye position 191 

associated with the maximum a posteriori (MAP) log-likelihood (i.e., the MAP estimate) in log 192 

𝑝(𝑋, 𝑌|𝐶 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) was selected as the point estimate for target direction and depth (Fig. 2C). To assess 193 

the ability of our model to predict the correct target positions, we used a R2 metric, R2 is the proportion of 194 

the variance in the dependent variable (x,y of targets) that is predictable from the independent variable 195 

(decoded spike counts). Accuracy was evaluated as the Euclidean distance from the mean of predictions (over 196 

cross-validation) to the real target position. Similarly, precision was computed as distance from predictions 197 

to the mean of predictions for a given target position. 198 

 199 

2.3.4. Task type decoding. To identify which task the monkey executed, i.e. fix-reach or fix-lift, we used a 200 

combination of the MLE decoder used for target decoding and a Bayesian classifier. In this case we were not 201 

interested to predict the target position, so the analysis was conducted pooling together spike counts from 202 

different positions but keeping separate the data of the two tasks.  First, a regression surface for each neuron 203 

was calculated in the same way as the method proposed above. Second, residuals from surface fitting were 204 

used to train a NB classifier to discriminate between tasks. Residuals are a common way to express the 205 
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distance between the model resulting from the fitting and the real data. Deviations from the model can be 206 

used as feature for machine learning algorithms, in the way that they are very informative about the 207 

uncommon part between the two datasets. Since we wanted to solve a simple binary classification problem 208 

between two classes (i.e. given the spike count of any bin taken in the interval of one of the two tasks predict 209 

which task it belonged to) we adopted a Naïve Bayesian classifier. Keeping the assumption of independence 210 

between features, Naive Bayesian classifiers are robust, fast and widely used as neural decoders in case the 211 

goal is to classify discrete quantities as neural states can be. Matlab ‘ClassificationNaiveBayes’ class 212 

implementation was used. Results are given as recognition rate computed from a 50-fold cross-validation. 213 

Such cross-validation was used to keep the analysis fair compared to the others where fewer trials were 214 

available; here 90 trials per class were available and keeping out 3 trials for testing per cross-validation 215 

iteration seemed a good compromise.  216 

 217 

2.3.5. Task phase decoding. To test whether the spike counts (100ms bin) contained information about the 218 

different task phases, we trained a NB classifier to discriminate between the three FREE, DELAY and 219 

MOVEMENT states (see 2.2 for behavioral epochs). Simple spike counts were used to build-up the population 220 

feature vectors with dimension n neurons by 10 trials x 9 conditions x 3 states (270 vectors). The three states 221 

correspond to three classes for the classifier. A leave one out cross-validation over 10 trials was used. A 222 

custom Python script based on scikit-learn implementation of Naïve Bayes classifier with a Poisson 223 

assumption was used (41). Results are reported as probability for each state along the time (Fig. 7A) and 224 

confusion matrices (Fig. 7B). 225 

 226 

2.3.6 Cross-validation. Leave-One-Out (LOO) cross-validation was used to ensure that the results of 227 

population decoding reflected reliable characteristics of the neural code for target position and not effects 228 

of overfitting. For each cross-validation set, the spike counts at each of the 9 target positions and the 229 

associated regression coefficients were estimated from 90% of the available trials for each neuron (“training 230 

set”). Decoding was then performed on 100 synthetic trials (see 2.3.1) drawn at random from the remaining 231 
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trial for each neuron. Unless otherwise stated, the population decoding results presented herein were 232 

therefore derived from 900 synthetic trials (100 test trials for each cross-validation sets). 233 

 234 

2.3.7 Generalization. In order to compare neural activation patterns under different experimental paradigm 235 

we can build models (training the algorithm) on neural data from a specific task, then using data from the 236 

other task to make predictions. Prediction accuracy (expected vs predicted) represents metric for the grade 237 

of similarity between codes. Given the example for training on fix-reach and testing on fix-lift task, we 238 

computed the regression surfaces with spike counts from fix-reach task. 239 

 240 

3. Results 241 

Two monkeys were trained to perform in randomized block sequence the fix-reach and the fix-lift task. 242 

Fixation and reach targets were nine touch-sensitive LEDs, placed in the 3-D space at three different 243 

directions (version angles -15°, 0°, +15°) and three different distances (vergence angles, 17.1°, 11.4° and 6.9°; 244 

Fig. 1A). The two tasks were identical except for the motor response (reaches vs. hand lifts; Fig.1B-C). Neurons 245 

were recorded from two macaque monkeys (see 2.1 for more details) and were included in the subsequent 246 

analyses, only if ten trials were completed for each target in both tasks. No other selection criteria have been 247 

applied. From the original population of 162 neurons, this procedure yielded 145 neurons for analysis (89 in 248 

monkey 1, M1, 56 in monkey 2, M2). 249 

 250 

Single neuron activity was recorded and then quantified into spike counts calculated in 100ms bins that were 251 

then used to build up features population vectors to train the MLE and Naïve Bayes (NB) decoders. Thus a 252 

single features vector included, for a given time bin, spike counts calculated for each element (neuron) of the 253 

examined population, that is 89 elements for monkey 1 and 56 for monkey 2. Features space was obtained 254 

concatenating horizontally all 10 trials by 9 possible positions (90 feature vectors). Note that neurons were 255 

recorded one at time, therefore feature vectors describe the activity of a pseudo-population (2.3.1). 256 
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We were interested in studying to what extent signals extracted from V6A could support cognitive neuro 257 

prosthetics. Unlike the traditional approach where the trajectory of movement is decoded, here we used a 258 

combinations of MLE and NB decoders to decode: a) target location, b) the intention to perform a reach or a 259 

non-spatial motor response and c) the different phases that follow one another for the realization of the 260 

movement, free, delay and movement.  261 

 262 

3.1 Target decoding. The first property we decoded was target position in space. We have previously decoded 263 

target position in categorical space (left/right, near/far) using a Bayesian classifier (42). Given that the space 264 

is a continuous physical quantity, such method would have insufficient application in real life conditions. To 265 

overcome this limitation, we employed here an MLE decoder which, starting from the x, y coordinates of 266 

target position in space (x,y for direction and depth axis, respectively) and the corresponding spike counts, 267 

fitted a polynomial regression surface for each neuron. Using Bayes’ rule we calculated continuous maps 268 

which describe the probability of target’s x,y location given a spike count. Combining maps across neurons 269 

we obtained the most likely target position given the population spike counts vector. 270 

 271 

Figure 3 reports the results of this analysis performed on a time interval that spanned from 500ms before, 272 

till the movement onset for M1 and M2 populations. Averaged decoded positions (black dots) were typically 273 

very close to the real position of targets (green crosses). Estimated positions using signals from M1 274 

population (n=89) yielded good accuracy and precision: we calculated an overall mean constant error (over 275 

100 cross validations and 9 positions) of 1.1 cm (S.D. 1.1) and a mean dispersion of 1.4 cm (Fig.3 left, S.D. 276 

1.2). For M2 population, we found similar results with a mean constant error of 0.9 cm (SD 0.6) and a mean 277 

dispersion of 2.3 cm (Fig.3 right, SD 2.1). Besides a lower accuracy for M2 monkey probably due to a smaller 278 

neural population, results were very comparable between the two monkeys. Similar results were obtained 279 

pooling together neurons from M1 and M2 (compare M1 results with Fig.4 where M1 + M2 population was 280 

used) with an even higher precision and accuracy, 1.1cm, SD 0.7, and 1.1cm, SD 0.8, respectively. The analyses 281 

presented below were obtained by pooling together data from M1 and M2. 282 
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283 

First, we analyzed three distinct 300-ms intervals in each task (Fig. 1D). The first interval, termed ‘early delay’, 284 

extended from the beginning of target fixation till 300 ms after it. The second interval, ‘late delay’, included 285 

the last 300 ms before the ‘Go” cue. While in ‘early delay’ visuospatial signals related to the newly fixated 286 

target were expected to be dominant, in the ‘late delay’ we assumed that activity would also be influenced 287 

by the preparation of the upcoming movement. The third interval we analyzed started at the ‘GO’ cue and 288 

lasted for 300 ms, thus encompassing monkey’s reaction time, which is variable between trials (285 ms SD 289 

44 ms), and part of movement (409 ms SD 99 ms from the release of the home button to the touch of the 290 

target). By examining these three intervals we examined whether decoding accuracy of target’s location 291 

changes across distinct task stages. 292 

Overall results of Figure 4 show a high decoding performance in all three intervals. Decoding accuracy 293 

increased moving toward the movement onset, with distances (ellipses size) between predicted and real 294 

target position progressively decreasing throughout the task. No remarkable differences were noticeable 295 

between the fix-reach and fix-lift tasks (Mann-Whitney test, p>0.05). 296 

297 

While using wide time intervals (i.e. 300 ms) for the analysis reduces noise increasing overall decoding 298 

performance, it provides less information about the dynamics of neural coding. To resolve this issue, we 299 

performed the same decoding analysis using a 100-ms window that moved in steps of 20 ms. A full 100-fold 300 

cross-validation was performed, R2 values were plotted as function of time (Fig. 5). Blue and red solid lines 301 

of Figure 5 refer to R2 values for cross-validated models of fix-reach and fix-lift tasks, respectively. Decoding 302 

accuracy started to increase as soon as the target was presented (Fig.1, LED ON), was stable during delay and 303 

movement and then decreased at the end of each task. This performance was used as reference for the 304 

generalization analysis. With this analysis we investigated how much the task-specific movements (reach vs 305 

hand lift) affected the population activity. Generalization typically works well in case of similar pattern of 306 

neural activity, whereas poor results are obtained when neural codes differ. The generalization analysis was 307 

implemented by training the MLE decoding algorithm on one task and testing it on the other task, with results 308 
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plotted as dashed lines in Figure 5. As shown, the generalization performance during the delay epoch was 309 

comparable with decoding performed within the same task (solid lines), suggesting that activity during delay 310 

reflected mostly an abstract encoding of movement preparation and/or cue anticipation shared between the 311 

two tasks. Differently, after GO signal the generalization performance dropped abruptly. This finding most 312 

likely reflects the different motor response (reach vs. hand lift).  313 

   314 

3.2. Task decoding. The generalization analysis reported in Figure 5 showed that the patterns of population 315 

activity in the two tasks were similar during the delay period and then they diverged immediately before and 316 

during the movement. The similarity during the delay makes questionable whether it is feasible to extract 317 

task-specific information from the activity before the movement execution. This information would be useful 318 

for a prosthesis about the real intention of the subject. To maximize the differences in neuronal activity linked 319 

to the specific movement plans of the two tasks and to allow a decoder to better discriminate between them, 320 

we performed another analysis. We used the residuals from regressions fits performed for the MLE decoding 321 

described above as feature to train a Naïve Bayes classifier. Residuals describe how much the observed data 322 

(spike counts) deviated from the model; in this case, polynomial fit was calculated pooling together the fix-323 

reach and fix-lift datasets, thus plausibly the model was halfway between the real data of fix-reach and fix-324 

lift, making the residuals suitable to describe the differences. As shown in Figure 6 the Naïve Bayes decoder 325 

correctly assigned, to fixate-to-reach or fixate-to-lift, residuals coming from the polynomial model. 326 

Recognition rates were above 90% before and after the GO signal, thus confirming the feasibility of extracting 327 

the task-specific motor plan well before movement onset.     328 

  329 

3.3. State decoding. To develop neural prosthetics as autonomous as possible, the algorithm would have to 330 

determine when the subject intend to start the action. Decoding of neural states has been pursued as trigger 331 

for neuroprosthetic control (17,34). Yet identifying the exact temporal sequence of neural states can help to 332 

understand how similar neural activation patterns are reused in different tasks, and how these latent states 333 

gradually evolve towards movement execution (43). PPC seems to be the ideal region to extract information 334 
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regarding task phases, as PPC neurons often exhibit activity modulation according to the task phase 335 

(24,29,44,45). To examine this aspect, we trained a Naive Bayes classifier to recognize the correct task phase 336 

between FREE, DELAY and MOV epochs given the spike counts in these epochs. We found that the high 337 

probabilities of a certain state matched the behavioral epoch that was source of spike counts. Accordingly, it 338 

was possible to identify the correct task state giving spike counts from a random 100 ms bin (Fig. 7A, top row) 339 

both for fix-reach and fix-lift. Applying the generalization approach (Fig. 7A, bottom row) yielded accurate 340 

epoch recognition during FREE and DELAY (i.e. the fix-reach and fix-lift codes are very similar). As expected, 341 

MOVEMENT epoch is not recognized in the context of generalization because of the very different nature of 342 

movement type between the tasks (reaching vs hand lift). Accuracy score for single classes (epochs) reported 343 

in confusion matrices (Fig.7B) are consistent with state probabilities of Fig.7A: codes are very similar during 344 

free and delay epoch, but not during MOV. For the MOV epoch, in particular where the decoder was trained 345 

during the fix-reach and tested during the fix-lift task, the classifier yielded a rather unexpected result. In 346 

fact, state probabilities were unbalanced towards being in the state delay (see green line in the corresponding 347 

box of Fig.7A), this lead to a bias in the confusion matrix where a 33% chance level was expected (here 83% 348 

of MOV bins were attributed to the delay epoch). The result indicates that during the movement epoch of 349 

the fix-lift task visuospatial information that is present also in fix-reach task is preserved. On the contrary, 350 

visuospatial signals in fix-lift task were not strong enough to support decoding generalization in the fix-reach 351 

task. In other words, while in the case of the fix-reach task the information about the spatial position of the 352 

target remained relevant during MOV, this was not the case for the corresponding interval of the fix-lift task 353 

where the simple release of the button did not require spatial information. 354 

355 

4. Discussion356 

We examined whether we could decode from the population activity of PPC area V6A information regarding 357 

the target position, the required movement type and the time interval along the task progress at the same 358 

time. We trained a MLE algorithm to yield a metric estimation of the target positions. Then we used a 359 

combination of MLE and a NB classifier to obtain a classification of task type. Finally, we demonstrated that, 360 
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supplying the algorithm with spike counts from small time intervals of the trial, these were attributed 361 

correctly to the corresponding free, delay or movement epoch.  362 

Taken together, these results indicate that neurons in V6A encode, in the same population, several types of 363 

information such as spatial position, intention for a specific motor response and progress of the task. This 364 

finding supports the idea that neurons are not simply tuned to a single feature, but they encode several task-365 

relevant variables in the same time. Decoding of multiple parameters from the same area could be 366 

advantageous for BCI applications in terms of implant invasiveness and accuracy of the reconstructed 367 

information. 368 

 369 

 370 

 371 

4.1 Decoding of visuospatial, movement planning and motor signals.  372 

 373 

Monkeys performed both tasks while always looking at the targets, so our task cannot discriminate whether 374 

we are solely decoding gaze position or attentional/visuospatial signals useful to guide the motor response. 375 

In a previous work where we dissociated  gaze from target, the decoding of target position was still possible, 376 

though less accurate (42). This suggested that V6A neurons carry both attentional and gaze signals. Signals 377 

related to gaze position and visuospatial attention have been shown to be useful for decoding and 378 

neuroprosthetic purposes (46–48). Thus, although in the present case it was not possible to separate the two 379 

components, this is not a limitation for the proposed method, since often the spatial attention matches the 380 

gaze position in naturalistic conditions.  381 

Single cell analysis over the population used here showed that about 44% of cells were influenced by both 382 

target location and task type. Another fraction of cells (25%) were tuned by target location, but not task type, 383 

while a smaller number (17%) encoded task type only (33). Given the tight relationship between the tuning 384 

of a neural population to a given parameter and the decoding accuracy of that parameter using population 385 

activity(42,49–51), it should be taken for granted that each of the homogeneous sub-populations mentioned 386 
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above would excel in decoding the variable(s) that is tuned for. For example, the sub-population of cells 387 

sensitive only to the type of task (i.e. their firing rate does not significantly change between different spatial 388 

position), will not contribute to the spatial position decoding of the target, which would rely on signals from 389 

the other two subpopulations. At this regard, the reliable decoding of target position from population signals 390 

in both tasks (Fig.5), is in line with the high incidence (44% + 25%) of neurons sensitive to target location as 391 

reported in Breveglieri et al.(32) and was also confirmed by the generalization analysis. Our decoding 392 

analyses put together these subpopulations in order to extract information from the whole population 393 

activity and thus achieve the best decoding performance. 394 

Generalization of decoders between tasks can help to examine the nature of encoded information. Different 395 

authors used a generalization approach to test stationarity of temporal code within a neural population (51–396 

53), or to compare population activation patterns between different, but related tasks (43). Similarly, we 397 

wanted to compare codes employed for tasks that shared initial stages, but differed in the subsequent motor 398 

response and its related planning. After the GO signal, the neural population activity changed to encode the 399 

upcoming movement, so the decoder’s generalization performance dropped rather abruptly.  400 

Slightly before the Go signal, the generalization performance was still high, thus suggesting that planning 401 

activity was similar between the two tasks. This finding, though surprising, might be attributed to the 402 

presence of a default reach plan/intention also when no reach is executed, as some evidence suggests 403 

(54,55). However, given that the two tasks were performed in separate blocks, the animal was always aware 404 

whether it was required to perform a reach movement, or simply lift its hand. Furthermore, given that a 405 

simple hand lift was enough to obtain the reward, we would expect that monkey’s intention and commitment 406 

to perform a reach was significantly attenuated in the fixation-to-lift task. In line with this view, Breveglieri 407 

et al. (33)  found that  the majority of V6A cells show different activity between these two tasks. Whether 408 

these neurons were still encoding a default or uncompleted reach plan cannot be answered directly in the 409 

present study. Nevertheless, we could still discriminate task type (Fig.6) despite the fact that the codes were 410 

very similar during the delay (code generalization of Fig. 5). Such a result would not have been achieved if 411 

the neural codes in the two tasks were the same. The high levels of generalization obtained in the period 412 
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before the movement could be attributed to the strong visuospatial signals in V6A that, being invariant 413 

between tasks, masked the task-specific signals related to movement planning and preparation. 414 

Our decoding method was based on fitting residuals. Residuals represent the distance between actual spike 415 

counts and regression surfaces: thinking at these surfaces as a midline between fixate-to-reach and fixate-416 

to-lift condition (because of fitting of dispersed data), shifts from this midline are still informative about the 417 

task type. A point of strength of this analysis is the type of feature we used in the classifier. The model was 418 

computed pooling together data from different target positions; this ensures that the present method works 419 

independently from position constraints. The possibility to discriminate in advance if the subject will execute 420 

the reach movement or just lift the hand, could be potentially useful for neuroprosthetic purposes. In case 421 

where a Go signal is spatially dissociated from the target of the action (e.g. clicking a computer mouse while 422 

looking at the screen), decoded information may allow to select the appropriate action: to prepare for 423 

moving or to withhold the robotic limb. In our case the decoding is limited to distinguish two scenarios, but 424 

the system could be trained to recognize different tasks and act accordingly. 425 

  426 

 427 

4.2 Metric estimation of target position from PPC.     428 

In a previous work we used a Bayesian classifier from PPC activity to discriminate between the nine target 429 

positions on the same panel used here (42). This method yielded very high target recognition rates and a 430 

small neuronal population was sufficient to obtain very good results (about 10-20 neurons). The present 431 

method enables a metric estimation of target positions at the cost of a larger number of neurons required to 432 

give an accurate prediction. 56 neurons were found to be barely enough (see very high dispersion in M2 case) 433 

to get a good decoding accuracy, whereas ~90 neurons (see M1 case) were fairly enough. Given that simple 434 

(second-order) polynomials were used to model single neuron tuning, our results suggest that good 435 

performance could also be observed for intermediate target positions never seen by the decoder. This is a 436 

desirable characteristic for a fully implemented neural decoder.  437 

 438 
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 439 

4.3 Encoding of task progress. 440 

Thus, V6A signals were adequate to obtain a metric estimation of target, both in the fix-reach and fix-lift task, 441 

and to decode the intended action. In addition, we provided evidence that a time interval of 100 ms, putting 442 

together contributions of a population of V6A neurons, was sufficient to decode reliably the corresponding 443 

phase in the task progress (Fig.7A-B). Although much effort has been put into decoding intended reaching 444 

goals (2,16,56), deciphering the intended action onset is equally important (17,34,57). Different task phases 445 

have been typically correlated to different neural states, proceeding through the tasks entail moving through 446 

neural states. So, in our fix-reach task we expected at least three neural states: a resting state (no task 447 

engagement), a waiting time where the animal waited the go signal and finally the actual reaching 448 

movement. A similar task was studied in premotor areas (34). They used a hidden Markov model (HMM) to 449 

detect baseline, preparation and execution states. In addition, they implemented an extended model to 450 

decode multiple states, one for each reaching goal. In another study a four states (additional holding state) 451 

HMM was used to detect hidden neural states and so to develop a task independent decoder (58). Here we 452 

used a simpler, but equally informative, Bayesian decoder to obtain posterior probabilities of free, delay and 453 

movement states. Our results demonstrate that also signals from V6A are adequate to detect the switch from 454 

pre-movement to movement neural state that might be useful to trigger neural prosthesis movement. 455 

 456 

 457 

 458 

4.4. Different parameters encoded in the same circuit is advantageous for BCI. 459 

A large amount of evidence has already reported that single PPC neurons can encode both spatial (sensory) 460 

and non-spatial (cognitive) information (53,58–61). For example, attention toward a specific spatial location 461 

or toward non-spatial visual features modulate lateral intraparietal neurons (51,61,62), parietal reach region 462 

encodes both the target location and the movement intention (59,60). Information of spatial location of 463 

target and the intention for performing one action or another are of great interest for neuroprosthetic 464 
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applications, yet few works tried to perform population decoding of both spatial and non-spatial PPC signals 465 

and explore the potential from a neuroprosthetic perspective. In Hauschild et al.(14), monkey brain activity 466 

controlled a cursor in a 3D environment, but the cognitive information that can be decoded from PPC to 467 

improve the decoder was not considered. Similarly another study by Shenoy and colleagues (17) decoded 468 

the information about task stage, either free, plan or movement, but they did not attempt to generalize the 469 

decoder over other tasks.        470 

Recent studies have demonstrated that neurons in parietal (24,63–68) and frontal (69,70) areas have mixed 471 

selectivity: individual neurons are modulated by multiple task parameters. Rather than having specialized 472 

networks for specific behaviors, mixed selectivity is considered to offer a significant computational advantage 473 

by encoding multiple feature information over a single neural network (69,71,72). In everyday life, we often 474 

look at objects that we are going to reach and grasp, but we also look and attend to stimuli in one location 475 

and perform a motor response in another location. Here we provide evidence that both action plans that 476 

involve different sensory-to-motor transformations can be decoded from the same neural population in V6A 477 

and this finding is relevant also as fundamental knowledge.  478 

 479 

4.5 Future application in human. 480 

Functional MRI studies proposed a putative human homologue of area V6A (35), which approximately 481 

corresponds to the anterior part of the superior parieto-occipital cortex (SPOC) (12). SPOC shows enhanced 482 

visual activation to objects presented within the peripersonal space, even when the potential action is not 483 

actually executed (73). Decoding of pre-movement activity of SPOC with fMRI pattern analysis allowed 484 

reliable classification of specific actions that were subsequently performed, with a clear distinction between 485 

reaching and grasping movements (19). Although fMRI technique does not allow to study mixed selectivity 486 

due to poor spatial resolution, analogies between monkey and putative human V6A (35,74) give hope to 487 

translate findings from monkey to human. 488 

 489 

5. Conclusions 490 
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In conclusion, these results show that V6A signals can be used to reliably decode visuospatial properties, 491 

information about the type of intended movement (spatial, goal-directed reach, or non-spatial button 492 

release), and task progression. Recently, V6A signals were used to decode up to 5 grip types during a grasping 493 

task and 9 different goal locations during reach (41,42). Previous and present results support prostheses that 494 

extract the target of a movement and respond as the intention to move is formed. Furthermore, present 495 

findings show that conditional motor responses like when a visual cue instructs a movement somewhere else 496 

in space could be also decoded and subsequently used to control a prosthesis. Having multiple information 497 

coded in a single area is advantageous for neuroprosthetics, allowing a single electrode array to decode 498 

multiple action scenarios.       499 
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Figures: 679 

 680 
Figure 1. Experimental setup and schematic representation of the tasks. (A) Scheme of the setup used for 681 

the fix-reach and fix-lift tasks. Exact distances are indicated in the lateral (left) and top (right) views. Nine 682 

LEDs are used as targets, embedded in a panel located at eye level. HB = home button. (B, C) Time courses 683 

and behavioral epochs in the fix-reach (B) and fix-lift (C) tasks. The two tasks shared the first part, holding 684 

of home button, start of fixation, waiting for the GO signal. Then, in the fix-reach task the reaching 685 

movement is performed cued by the GO signal (target color changed from green to red), whereas in the fix-686 

lift task the GO signal was the cue to lift the hand from the home button, and no reaching movement was 687 

performed. Black arrows indicate hand actions performed in the two tasks. (D) Schematic of the time 688 

intervals used in the analysis, with every interval lasting 300 ms. EARLY DELAY, from the start of the target 689 

fixation till 300 ms after it; LATE DELAY, the last 300 ms before the GO signal; PRE-/MOV, from the GO 690 

signal to 300 ms after it, this encompassed the reaction time plus the very first part of movement.   691 
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 692 
Figure 2. MLE decoder. (A) Activity of an exemplary V6A neuron and regression surface. In a first step a 693 
GLM was used to fit a regression surface over spike counts in the training set. Black vertical solid lines 694 
depict mean spike counts over the 9 panel positions with their standard deviation (red spheres). This 695 
neuron discharged for far positions, especially for the far-left position and was downregulated for 696 
intermediate positions. The regression surface was interpreted probabilistically, such that it specified the 697 
conditional probability of spike count given x,y target positions (p(count | X,Y)), assuming spike counts were 698 
Poisson-distributed. Using Bayes’ rule, this could be converted to the probability of all target positions, X,Y, 699 
given a spike count (p(X,Y | count) in the test set. In (B) left, the probability map of neuron (A) given a low 700 
spike count (high probability in intermediate area) and (B) right, the probability maps given ahigh spike 701 
count (high probability for far and near area). (C) Given a vector of spike counts (c) for all neurons in a 702 
sample, (c1,c2, …, cn), and corresponding probability maps, a population probability map was obtained by 703 
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summing the (log) probabilities. As the final step, the target position associated with the maximum a 704 
posteriori (MAP) log-likelihood (i.e., the MAP estimate) in log p(X,Y | CountPopulation) was selected as the 705 
point estimate.  706 

 707 

 708 
 709 

Figure 3. Metric estimation of target positions. The array of the 9 targets is illustrated in a two-dimensional 710 

view from above, green crosses show the real position of each targets, black dots are target estimated 711 

positions with their error distribution (light grey ellipses). Distances are reported in cartesian x,y (cm)  712 

coordinates, with x being the distance from the monkey’s midsagittal level and y being the distance from 713 

the frontal eye level. Left panel, monkey 1 (89 neurons), right panel monkey 2 (56 neurons). Time analyzed 714 

was an interval of 500 ms before movement onset.      715 

 716 
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 717 
 718 

Figure 4. Metric estimation of targets position for different time intervals and tasks. Analysis was 719 

performed extracting spike counts from 100 ms time intervals and pooled together in 300 ms time windows 720 

corresponding to EARLY DELAY, LATE DELAY and PRE-/MOV epochs. These time intervals were analyzed for 721 

fix-reach task (top) where target position signals were transformed into arm action, and fix-lift task where 722 

no reaching movement was required (bottom). Neural population used in the analysis included both 723 

neurons from monkey 1 and monkey 2. Other conventions same as Figure 3. 724 

  725 
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 726 
 727 

Figure 5. Decoding time course. R2 values are reported for each of 100ms time intervals analyzed. The time 728 

window slid over the trial time with a 20ms step. Cross validated results are reported for fix-lift (solid red 729 

line) and fix-reach (solid blue line) tasks. A code generalization approach was used to obtain target 730 

estimations using the decoder trained with the opposite task dataset, that is, the algorithm was trained on 731 

fix-lift task and the code was generalized to decode fix-reach neural activity (blue dashed line), as opposed 732 

to training on fix-reach and estimation on fix-lift task (red dashed line). The plot required a double 733 

alignment (target LED ON and HB RELEASE, i.e. movement onset), as delay was randomized between trials. 734 

During the initial fixation and delay epochs across-task decoder performance was comparable to its within-735 

task performance. This suggests that visuospatial and motor preparation codes were similar during the 736 

delay period. The two codes diverged shortly after the cue to execute the required motor response 737 

(reach/hand lift). 738 

 739 

 740 
Figure 6. Decoding of task type. Binary classification of task type obtained feeding a naïve Bayes classifier 741 

with residuals from polynomial fits. Data from different targets were pooled together. A 50 folds’ cross 742 
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validation was used. Residuals were good predictors for task type discriminations as evidenced by the 743 

recognition rate being always well above chance levels.  744 

 745 

 746 

 747 
 748 

Figure 7. Decoding of task state. Spike counts were used as predictor of different task phases, free, delay or 749 

movement epochs. (A) Probability of each state, blue, green or red, respectively free, delay and movement 750 

states, were plotted over the time. Solid bold lines correspond to averages calculated over single trial 751 

probabilities (light lines). Due to different durations of delay between trials, two separate time intervals 752 

were artificially merged: 1 second before target led on (free epoch) and from -1.5s to 0.5s centered on 753 

movement onset. On the top row within-task decoding for reaching (left) and fixation (right) task are 754 
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shown, “leave one out” cross validation was used. Bottom row reports task generalization performance, i.e. 755 

training on fix-reach and testing on fix-lift task (left), and vice versa (right). During free and delay epochs 756 

the decoder can generalize across tasks; this gives an accurate epoch recognition, whereas movement 757 

epoch is correctly recognized only in the context of the same task. (B) The probabilities obtained for the 758 

states in Figure 7A were processed with an argmax function in order to calculate the classification results 759 

plotted in confusion matrices. The rows correspond to the real labels (epochs free, delay and movement), 760 

the columns to predicted labels.     761 

 762 
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