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Little is known about the genetic architecture of traits affecting educational attainment 43 

other than cognitive ability. We used Genomic Structural Equation Modeling and prior 44 

genome-wide association studies (GWAS) of educational attainment (n = 1,131,881) and 45 

cognitive test performance (n = 257,841) to estimate SNP associations with educational 46 

attainment variation that is independent of cognitive ability. We identified 157 genome-47 

wide significant loci and a polygenic architecture accounting for 57% of genetic 48 

variance in educational attainment. Non-cognitive genetics were enriched in the same 49 

brain tissues and cell types as cognitive performance but showed different associations 50 

with gray-matter brain volumes. Non-cognitive genetics were further distinguished by 51 

associations with personality traits, less risky behavior, and increased risk for certain 52 

psychiatric disorders. For socioeconomic success and longevity, non-cognitive and 53 

cognitive-performance genetics demonstrated similar-magnitude associations. By 54 

conducting a GWAS of a phenotype that was not directly measured, we offer a first 55 

view of genetic architecture of non-cognitive skills influencing educational success.  56 

 57 

“It takes something more than intelligence to act intelligently.” 58 

– Fyodor Dostoyevsky, Crime and Punishment 59 

 60 

Success in school—and life—depends on skills beyond cognitive ability1–4. Randomized 61 

trials of early-life education interventions find substantial benefits to educational outcomes, 62 

employment, and adult health, even though the interventions have no lasting effects on 63 

children’s cognitive functions5,6. These results have captured attention of educators and 64 

policy makers, motivating interest in so-called “non-cognitive skills”7–9. Non-cognitive skills 65 

suspected to be important for educational success include motivation, curiosity, persistence, 66 
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and self-control1,10–13. However, questions have been raised about the substance of these 67 

skills and the magnitudes of their impacts on life outcomes14.  68 

Twin studies find evidence that non-cognitive skills are heritable3,15–18. Genetic 69 

analysis could help clarify the contribution of these skills to educational attainment and 70 

elucidate their connections with other traits. However, lack of consistent and reliable 71 

measurements of non-cognitive skills in existing genetic datasets pose challenges19.  72 

To overcome these challenges, we designed a GWAS of a latent trait, i.e. a trait not 73 

measured in any of the genotyped subjects20. We borrowed the strategy used in the original 74 

analysis of non-cognitive skills within the discipline of economics21,22: we defined genetic 75 

influences on non-cognitive skills as the genetic variation in educational attainment that was 76 

not explained by cognitive skills. We then performed GWAS on this residual “non-cognitive” 77 

genetic variation in educational attainment. This approach is a necessarily imperfect 78 

representation of the true relationship between cognitive and non-cognitive skills; in human 79 

development, cognitive abilities and other skills relevant for educational attainment likely 80 

interact dynamically, each influencing the other23. Our analysis excludes genetic influences 81 

on education-relevant skills that also influence measured cognitive abilities. The value of this 82 

imperfect approach is to make a quantity otherwise difficult to study tractable for analysis.  83 

We conducted analysis using Genomic Structural Equation Modeling (Genomic-84 

SEM)24 applied to published GWAS summary statistics for educational attainment and 85 

cognitive performance25. Our analysis used these summary statistics to “subtract” genetic 86 

influence on cognitive performance from the association of each single-nucleotide 87 

polymorphism (SNP) with educational attainment. The remaining associations of each SNP 88 

with educational attainment formed a new GWAS of a non-cognitive skills phenotype that 89 

was never directly measured. We call this novel statistical approach GWAS-by-subtraction.  90 
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We used results from the GWAS-by-subtraction of non-cognitive skills to conduct 91 

two sets of analyses. First, we conducted hypothesis-driven analysis using the phenotypic 92 

annotation approach26. We used genetic correlation and polygenic score analysis to test the 93 

hypothesis that non-cognitive skills influence educational and economic attainments and 94 

longevity and to investigate traits and behaviors that constitute non-cognitive skills. Second, 95 

we conducted hypothesis-free bioinformatic annotation analysis to explore the tissues, cell-96 

types, and brain structures that might distinguish the biology of non-cognitive skills from the 97 

biology mediating cognitive influences on educational attainment.  98 

 99 

Results 100 

GWAS-by-subtraction identifies genetic associations with non-cognitive variance in 101 

educational attainment. The term “non-cognitive skills” was originally coined by 102 

economists studying individuals who were equivalent in cognitive ability but who differed in 103 

educational attainment22. Our analysis of non-cognitive skills was designed to mirror this 104 

original approach: we focused on genetic variation in educational outcomes not explained by 105 

genetic variation in cognitive ability. Specifically, we applied Genomic Structural Equation 106 

Modeling (Genomic-SEM)24 to summary statistics from GWASs of educational attainment25 107 

and cognitive performance25. Both phenotypes were regressed on a latent factor representing 108 

genetic variance in cognitive performance (hereafter “Cog”). Educational attainment was 109 

further regressed on a second latent factor representing the residual genetic variance in 110 

educational attainment left over after regressing-out variance related to cognitive 111 

performance (hereafter “NonCog”). By construction, NonCog genetic variance was 112 

independent of Cog genetic variance (rg = 0). In other words, the NonCog factor represents 113 

genetic variation in educational attainment that is not accounted for by the Cog factor. These 114 

two latent factors were then regressed on individual SNPs, yielding a GWAS of the latent 115 



 

 6 

constructs NonCog and Cog. A graphical representation of the model is presented in Figure 116 

1. Parameters are derived in terms of the observed moments of the joint distribution of 117 

educational attainment, cognitive performance, and a SNP (see Supplementary Note).  118 

The NonCog latent factor accounted for 57% of total genetic variance in educational 119 

attainment. Using LD Score regression27, we estimated SNP-heritability for NonCog to be 120 

h2
NonCog = 0.0637 (SE = 0.0021). After conventional GWAS significance threshold correction, 121 

GWAS of NonCog identified 157 independent genome-wide significant lead SNPs 122 

(independent SNPs defined as outside a 250-kb window, or within a 250-kb window and r2 < 123 

0.1). The results from the NonCog GWAS are graphed as a Manhattan plot in Figure 2. 124 

NonCog and Cog GWAS details are reported in Supplementary Tables 1-4, 125 

Supplementary Figure 1, and the Supplementary Note. In addition, we report a series of 126 

sensitivity analyses as follows: analysis of potential biases due to cohort differences 127 

(Supplementary Table 5 and Supplementary Figs. 2-4); analysis of impact of allowing for 128 

positive genetic correlations between NonCog and Cog (Supplementary Tables 6 and 7, and 129 

Supplementary Figs. 5 and 6; analysis of impact of allowing for a moderate causal effect of 130 

educational attainment on cognitive performance28 (Supplementary Table 8 and 131 

Supplementary Figs. 7-9). 132 

 133 

Phenotypic annotation analysis elucidates behavioral, psychological and psychiatric 134 

correlates of non-cognitive skills genetics. Our phenotypic annotation analyses proceeded 135 

in two steps. First, we conducted polygenic score (PGS) and genetic correlation (rG) analysis 136 

to test whether our GWAS-by-subtraction succeeded in identifying genetic influences that 137 

were important to educational attainment and also distinct from genetic influences on 138 

cognitive ability. Second, we conducted PGS and rG analyses to explore how NonCog related 139 
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to a network of phenotypes that psychology and economics research suggests might form the 140 

basis of non-cognitive influences on educational attainment.  141 

NonCog genetics are distinct from cognitive performance and are important to 142 

education, socioeconomic attainment, and longevity. To establish whether the Genomic-SEM 143 

GWAS-by-subtraction succeeded in isolating genetic variance in education that was 144 

independent of cognitive function, we compared genetic associations of NonCog and Cog 145 

with educational attainment and cognitive test performance. Results for analysis of education 146 

and cognitive test phenotypes are graphed in Figure 3. 147 

We conducted PGS analysis of educational attainment in the Netherlands Twin 148 

Register29 (NTR), National Longitudinal Study of Adolescent to Adult Health30 (AddHealth), 149 

Dunedin Longitudinal Study31, E-Risk32, and Wisconsin Longitudinal Study33 (WLS) cohorts 150 

(meta-analysis n = 24,056; cohorts descriptions in Supplementary Tables 9 and 10 and 151 

Supplementary Note). PGS effect-sizes were the same for NonCog and Cog (NonCog 𝛽 = 152 

0.24 (SE = 0.03), Cog 𝛽 = 0.24 (SE = 0.02), Pdiff = 0.702; all PGS results are reported in 153 

Supplementary Tables 11 and 12). We conducted complementary genetic correlation 154 

analysis using Genomic SEM and GWAS summary statistics from a hold-out-sample GWAS 155 

of educational attainment (Supplementary Note). This analysis allowed us to compute an 156 

out-of-sample genetic correlation of NonCog with educational attainment. NonCog showed a 157 

stronger genetic correlation with educational attainment as compared to Cog (NonCog rg = 158 

0.71 (SE = 0.02), Cog rg = 0.57 (SE = 0.02), Pdiff < 0.0001; all genetic correlation results are 159 

reported in Supplementary Tables 13 and 14).  160 

We conducted PGS analysis of cognitive test performance in the NTR, Texas Twin 161 

Project34, Dunedin, E-Risk, and WLS cohorts (combined n = 11,351). The goal of our 162 

GWAS-by-subtraction analysis was to exclude, as much as possible, genetic variance in 163 

cognitive ability from genetic variance in skills relevant for education. Consistent with this 164 
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goal, effect-sizes for NonCog PGS associations with full-scale IQ were smaller by half as 165 

compared to Cog PGS associations (NonCog 𝛽 = 0.17 (SE = 0.02), Cog 𝛽 = 0.29 (SE = 0.03); 166 

Pdiff < 0.0001). However, the non-zero correlation between the NonCog PGS and full-scale 167 

IQ is a reminder that the cognitive performance GWAS used in our GWAS-by-subtraction 168 

analyses does not capture the entirety of genetic influences on all forms of cognitive tests 169 

measured at all points in the lifespan. Additional PGS analyses of IQ subscales are reported 170 

in Supplementary Figure 10 and Supplementary Tables 11 and 12.  171 

We conducted complementary genetic correlation analysis using results from a 172 

published GWAS of childhood IQ35. Parallel to PGS analysis, the NonCog genetic correlation 173 

with childhood IQ was smaller by more than half as compared to the Cog genetic correlation 174 

(NonCog rg = 0.31 (SE = 0.06), Cog rg = 0.75 (SE = 0.08), Pdiff_fdr < 0.0001). Of the total 175 

genetic correlation between childhood IQ and educational attainment, 31% of the covariance 176 

was explained by NonCog and 69% by Cog.  177 

We next examined downstream economic and health outcomes associated with 178 

greater educational attainment36,37. In PGS analysis in the AddHealth and Dunedin cohorts (n 179 

= 6,358), NonCog and Cog PGSs showed similar associations with occupational attainment 180 

(NonCog 𝛽 = 0.21 (SE = 0.01), Cog 𝛽 = 0.21 (SE = 0.01), Pdiff = 0.902). In genetic correlation 181 

analysis, NonCog showed a similar relationship to income38 as Cog (NonCog rg = 0.62, (SE = 182 

0.04), Cog rg = 0.62 (SE = 0.04), Pdiff_fdr = 0.947) and a stronger relationship with 183 

neighborhood deprivation38, a measure related to where a person can afford to live (NonCog 184 

rg = -0.51 (SE = 0.05), Cog rg = -0.32 (SE = 0.04), Pdiff_fdr = 0.001). In Genomic-SEM 185 

analysis, NonCog explained 53% of the genetic correlation between educational attainment 186 

and income and 65% of the genetic correlation between educational attainment and 187 

neighborhood deprivation (Supplementary Table 15).  188 
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We conducted genetic correlation analysis of longevity based on GWAS of parental 189 

lifespan39. Genetic correlations were stronger for NonCog as compared to Cog (NonCog rg = 190 

0.37 (SE = 0.03); Cog rg = 0.27 (SE = 0.03); Pdiff_fdr = 0.024). In Genomic-SEM analysis, 191 

NonCog explained 61% of the genetic correlation between educational attainment and 192 

longevity. 193 

In sum, NonCog and Cog genetics showed similar relationships with educational 194 

attainment and its long-term outcomes, despite NonCog genetic having a much weaker 195 

relationship to measured cognitive test performance than Cog genetics. These findings 196 

broadly support the hypothesis that non-cognitive skills distinct from cognitive abilities are 197 

an important contributor to success across the life course.  198 

We next conducted a series of genetic correlation analyses to explore the network of 199 

phenotypes to which NonCog was genetically correlated. To develop understanding of the 200 

substance of non-cognitive skills, we tested where in that network of phenotypes genetic 201 

correlations with NonCog diverged from genetic correlations with Cog. Our analysis was 202 

organized around four themes: decision-making preferences, health-risk and fertility 203 

behaviors, personality traits, and psychiatric disorders. Results of genetic correlation analyses 204 

are graphed in Figure 4 and Supplementary Figure 11. Results are reported in 205 

Supplementary Table 14.  206 

NonCog genetics were associated with decision-making preferences. In economics, 207 

non-cognitive influences on achievement and health are often studied in relation to decision-208 

making preferences40–43. NonCog was genetically correlated with higher tolerance of risks44 209 

(rg = 0.10 (SE = 0.03)) and willingness to forego immediate gratification in favor of a larger 210 

reward at a later time45 (delay discounting rg = -0.52 (SE = 0.08)). In contrast, Cog was 211 

genetically correlated with generally more cautious decision-making characterized by lower 212 
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levels of risk tolerance (rg = -0.35 (SE = 0.07), Pdiff_fdr < 0.0001) and delay discounting (rg = -213 

0.35 (SE = 0.07), Pdiff_fdr = 0.082).  214 

NonCog genetics were associated with less health-risk behavior and delayed fertility. 215 

An alternative approach to studying specific non-cognitive skills is to infer individual 216 

differences in non-cognitive skills from patterns of health-risk behavior. NonCog was 217 

genetically correlated with less health-risk behavior as indicated by analysis of obesity46, 218 

substance use44,47–50, and sexual behaviors and early fertility44,51,52 (rg range 0.2-0.5), with the 219 

exception that the rg with alcohol use was not different from zero and rg with cannabis use 220 

was positive. Genetic correlations for Cog were generally in the same direction but of smaller 221 

magnitude. 222 

NonCog genetics were associated with a broad spectrum of personality 223 

characteristics linked with social and professional competency. In psychology, non-cognitive 224 

influences on achievement are conceptualized as personality traits, i.e. patterns of stable 225 

individual differences in emotion and behavior. The model of personality that has received 226 

the most attention in genetics is a five-factor model referred to as the Big Five. Genetic 227 

correlation analysis of the Big Five personality traits53–55 revealed NonCog genetics were 228 

most strongly associated with Openness to Experience (being curious and eager to learn; rg = 229 

0.30 (SE = 0.04)) and were further associated with a pattern of personality characteristic of 230 

changes that occur as people mature in adulthood56. Specifically, NonCog showed a positive 231 

rg with Conscientiousness (being industrious and orderly; rg = 0.13 (SE = 0.03)), Extraversion 232 

(being enthusiastic and assertive; rg = 0.14 (SE = 0.03)), and Agreeableness (being polite and 233 

compassionate; rg = 0.14 (SE = 0.05)), and negative rg with Neuroticism (being emotionally 234 

volatile; rg = -0.15 (SE = 0.04)). Genetic correlations of Cog with Openness to Experience 235 

and Neuroticism were similar to those for NonCog (Pdiff_fdr-Openness = 0.040, Pdiff_fdr-Neuroticism = 236 

0.470). In contrast, genetic correlations of Cog with Conscientiousness, Extraversion, and 237 
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Agreeableness were in the opposite direction (rg = -0.25 to -0.12, Pdiff_fdr < 0.0005). PGS 238 

analysis of personality traits is reported in Supplementary Table 12, Supplementary 239 

Figure 12, and the Supplementary Note.  240 

NonCog genetics were associated with higher risk for multiple psychiatric disorders. 241 

In clinical psychology and psychiatry, research is focused on mental disorders. Mental 242 

disorders are generally associated with impairments in academic achievement and social role 243 

functioning57,58. However, positive genetic correlations with educational attainment and 244 

creativity have been reported for some disorders59,60. We therefore tested NonCog rg with 245 

psychiatric disorders based on published case-control GWAS of mental disorders61–67. 246 

NonCog was associated with higher risk for multiple clinically defined disorders, including 247 

anorexia nervosa (rg = 0.26 (SE = 0.04)), obsessive-compulsive disorder (rg = 0.31 (SE = 248 

0.06)), bipolar disorder (rg = 0.27 (SE = 0.03)), and schizophrenia (rg = 0.26 (SE = 0.02)). 249 

Genetic correlations between Cog and psychiatric disorders were either smaller in magnitude 250 

(anorexia nervosa rg = 0.08 (SE = 0.03), Pdiff_fdr < 0.001; obsessive-compulsive disorder rg = 251 

0.05 (SE = 0.05), Pdiff_fdr = 0.002) or in the opposite direction (bipolar disorder rg = -0.07 (SE 252 

= 0.03), Pdiff_fdr < 0.001; schizophrenia rg = -0.22 (SE = 0.02), Pdiff_fdr < 0.001). Both NonCog 253 

and Cog showed negative genetic correlations with attention-deficit/hyperactivity disorder 254 

(NonCog rg = -0.37 (SE = 0.03), Cog rg = -0.37 (SE = 0.04), Pdiff_fdr = 0.947).  255 

In sum, NonCog genetics were associated with phenotypes from economics and 256 

psychology thought to mediate non-cognitive influences on educational success. These 257 

associations contrasted with associations for Cog genetics, supporting distinct pathways of 258 

influence on achievement in school and later in life. Opposing patterns of association were 259 

also observed for psychiatric disorders, suggesting that the unexpected positive genetic 260 

correlation between educational attainment and mental health problems uncovered in 261 
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previous studies60,68,69 arises from non-cognitive genetic influences on educational 262 

attainment.  263 

 264 

Biological annotation analyses reveal shared and specific neurobiological correlates. The 265 

goal of biological annotation of GWAS discoveries is to elucidate molecular mechanisms 266 

mediating genetic influences on the phenotype of interest. Our biological annotation analysis 267 

proceeded in two steps. First, we conducted enrichment analysis to test whether some tissues 268 

and cell-types were more likely to mediate NonCog and Cog heritabilities than others. 269 

Second, we conducted genetic correlation analysis to explore how NonCog and Cog genetics 270 

related to different brain structures. 271 

NonCog and Cog genetics were enriched in similar tissues and cells. We tested 272 

whether common variants in genes specifically expressed in 53 GTEx tissues70 or in 152 273 

tissues captured in a previous aggregation of RNA-seq studies71,72 were enriched in their 274 

effects on Cog or NonCog. Genes predominantly expressed in the brain rather than peripheral 275 

tissues were enriched in both NonCog and Cog (Supplementary Table 16).  276 

To examine expression patterns at a more granular level of analysis, we used 277 

MAGMA73 and stratified LD score regression74 to test enrichment of common variants in 265 278 

nervous system cell-type-specific gene-sets75 (Supplementary Table 17). In MAGMA 279 

analysis, common variants in 95 of 265 gene-sets were enriched for association with NonCog. 280 

The enriched cell-types were predominantly neurons (97%), with enrichment most 281 

pronounced for telencephalon-projecting neurons, di- and mesencephalon neurons, and to a 282 

lesser extent, telencephalon interneurons (Supplementary Fig. 13 and Supplementary 283 

Table 18). Enrichment for Cog was similar to NonCog (correlation between Z-statistics 284 

Pearson’s r = 0.85), and there were no differences in cell-type-specific enrichment, 285 

suggesting that the same types of brain cells mediate genetic influences on NonCog and Cog 286 



 

 13 

(Supplementary Fig. 14). Stratified LDSC results were similar to results from MAGMA 287 

(Supplementary Note, Supplementary Fig. 15, and Supplementary Table 19).  288 

The absence of differences in cell-type specific enrichment is surprising given that 289 

NonCog and Cog are genetically uncorrelated. We therefore used the TWAS/Fusion tool76 to 290 

conduct gene-level analysis. This analysis revealed a mixture of concordant and discordant 291 

gene effects on NonCog and Cog consistent with the genetic correlation of zero 292 

(Supplementary Note, Supplementary Fig. 16, and Supplementary Table 20). 293 

NonCog and Cog genetics show diverging associations with total and regional brain 294 

volumes. Educational attainment has previously been found to be genetically correlated with 295 

greater total brain volume77,78. We therefore used a GWAS of regional brain volume to 296 

compare the rg of NonCog and Cog with total brain volume and with 100 regional brain 297 

volumes (99 gray matter volumes and white matter volume) controlling for total brain 298 

volume (Supplementary Table 21)79. For total brain volume, genetic correlation was 299 

stronger for Cog as compared to NonCog (Cog rg = 0.22 (SE = 0.04), NonCog rg = 0.07 (SE = 300 

0.03), Pdiff = 0.005). Total gray matter volume, controlling for total brain volume, was not 301 

associated with either NonCog or Cog (NonCog: rg = 0.07 (SE = 0.04); Cog: rg = 0.06 (SE = 302 

0.04)). For total white matter volume, conditional on total brain volume, genetic correlation 303 

was weakly negative for NonCog as compared to Cog (NonCog rg = -0.12 (SE = 0.04), Cog 304 

(rg = -0.01 (SE = 0.04), Pdiff = 0.04). 305 

NonCog was not associated with any of the regional gray-matter volumes after FDR 306 

correction. In contrast, Cog was significantly associated with regional gray-matter volumes 307 

for the bilateral fusiform, insula and posterior cingulate (rg range 0.11-0.17), as well as left 308 

superior temporal (rg = 0.11 (SE = 0.04)), left pericalcarine (rg = -0.16 (SE = 0.05)) and right 309 

superior parietal volumes (rg = -0.22 (SE = 0.06)) (Fig. 5).  310 



 

 14 

Finally, we tested genetic correlation of NonCog and Cog with white matter tract 311 

integrity as measured using diffusion tensor imaging (DTI)80. Analyses included 5 DTI 312 

parameters in each of 22 white matter tracts (Supplementary Table 22). NonCog was 313 

positively associated with the mode of anisotropy parameter (which denotes a more tubular, 314 

as opposed to planar, water diffusion) in the corticospinal tract, retrolenticular limb of the 315 

internal capsule, and splenium of the corpus callosum (Fig. 5). However, all correlations 316 

were small (0.10 < rg < 0.14), and we detected no genetic correlations that differed between 317 

NonCog and Cog (Supplementary Note). 318 

 319 

Discussion 320 

GWAS of non-cognitive influences on educational attainment identified 157 independent loci 321 

and polygenic architecture accounting for more than half the genetic variance in educational 322 

attainment. In genetic correlation and PGS analysis, these non-cognitive (NonCog) genetics 323 

showed similar magnitude of associations with educational attainment, economic attainment, 324 

and longevity to genetics associated with cognitive influences on educational attainment 325 

(Cog). As expected, NonCog genetics had much weaker associations with cognition 326 

phenotypes as compared to Cog genetics. These results contribute new GWAS evidence in 327 

support of the hypothesis that heritable non-cognitive skills influence educational attainment 328 

and downstream life-course economic and health outcomes.    329 

Phenotypic and biological annotation analyses shed light on the substance of heritable 330 

non-cognitive skills influencing education. Economists hypothesize that preferences that 331 

guide decision-making in the face of risk and delayed rewards represent non-cognitive 332 

influences on educational attainment. Consistent with this hypothesis, NonCog genetics were 333 

associated with higher risk tolerance and lower time discounting. These decision-making 334 

preferences are associated with financial wealth, whereas opposite preferences are 335 
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hypothesized to contribute to a feedback loop perpetuating poverty81. Consistent with results 336 

from analysis of decision-making preferences, NonCog genetics were also associated with 337 

healthier behavior and later fertility.  338 

Psychologists hypothesize that the Big Five personality characteristics of 339 

conscientiousness and openness are the two “pillars of educational success”2,3,82. Our results 340 

provide some support for this hypothesis, with the strongest genetic correlation evident for 341 

openness. However, they also show that non-cognitive skills encompass the full range of 342 

personality traits, including agreeableness, extraversion, and the absence of neuroticism. This 343 

pattern mirrors the pattern of personality change that occurs as young people mature into 344 

adulthood56. Thus, non-cognitive skills share genetic etiology with what might be termed as 345 

“mature personality”. The absolute magnitudes of genetic correlations between NonCog and 346 

individual personality traits are modest. This result suggests that the personality traits 347 

described by psychologists capture some, but not all, genetic influence on non-cognitive 348 

skills.  349 

Although the general pattern of findings in our phenotypic annotation analysis 350 

indicated non-cognitive skills were genetically related to socially desirable characteristics and 351 

behaviors, there was an important exception. Genetic correlation analysis of psychiatric 352 

disorder GWAS revealed positive associations of NonCog genetics with schizophrenia, 353 

bipolar disorder, anorexia nervosa, and obsessive-compulsive disorder. Previously, these 354 

psychiatric disorders have been shown to have a positive rg with educational attainment, a 355 

result that has been characterized as paradoxical given the impairments in educational and 356 

occupational functioning typical of serious mental illness. Our results clarify that these 357 

associations are driven by non-cognitive factors associated with success in education. These 358 

results align with the theory that clinically defined psychiatric disorders represent extreme 359 
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manifestations of dimensional psychological traits, which might be associated with adaptive 360 

functioning within the normal range83–85. 361 

Finally, biological annotation analyses suggested that genetic variants contributing to 362 

educational attainment not mediated through cognitive abilities are enriched in genes 363 

expressed in the brain, specifically in neurons. Even though NonCog and Cog were 364 

genetically uncorrelated, variants in the same neuron-specific gene-sets were enriched for 365 

both traits. Although we found some evidence of differences between NonCog and Cog in 366 

associations with gray matter volumes, moderate sample sizes in neuroimaging GWAS mean 367 

these results must be treated as preliminary, requiring replication with data from larger-scale 368 

GWAS of white-matter and gray-matter phenotypes. Limited differentiation of NonCog and 369 

Cog in biological annotation analyses focused at the levels of tissue and cell type highlights 370 

need for finer-grained molecular data resources to inform these analyses and the 371 

complementary value of phenotypic annotation analyses focused at the level of psychology 372 

and behavior. 373 

We acknowledge limitations. Cognitive and non-cognitive skills develop in 374 

interaction with one another. For example, the dynamic mutualism hypothesis86 proposes that 375 

non-cognitive characteristics shape investments of time and effort, leading to differences in 376 

the pace of cognitive development87,88. However, in Genomic-SEM analysis, the NonCog 377 

factor is, by construction, uncorrelated with genetic influences on adult cognition as 378 

measured in the Cog GWAS. Our statistical separation of NonCog from cognition is thus a 379 

simplified representation of development. Longitudinal studies with repeated measures of 380 

cognitive and candidate non-cognitive skills are needed to study their reciprocal relationships 381 

across development89,90. Our statistical separation of NonCog from cognition is also 382 

incomplete. The ability to control statistically for any variable, genetic or otherwise, depends 383 

on how well and comprehensively that variable is measured91
. The tests of cognitive 384 
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performance included in the Cog GWAS likely do not capture all genetic influences on all 385 

forms of cognitive ability across the lifespan92,93. Despite these limitations, our simplified and 386 

incomplete statistical separation of NonCog from Cog allowed us to test whether heritable 387 

traits other than cognitive ability influenced educational attainment and to explore what those 388 

traits might be.  389 

Because our analysis was based on GWAS of educational attainment, non-cognitive 390 

genetics identified here may differ from non-cognitive genetics affecting other 391 

socioeconomic attainments like income, or traits and behaviors that mediate responses to 392 

early childhood interventions, to the extent that those genetics do not affect educational 393 

attainment. Parallel analysis of alternative attainment phenotypes will clarify the specificity 394 

of discovered non-cognitive genetics. 395 

In the case of GWAS of educational attainment, the included samples were drawn 396 

mainly from Western Europe and the U.S., and participants completed their education in the 397 

late 20th and early 21st centuries. The phenotype of educational attainment reflects an 398 

interaction between an individual and the social system in which they are educated. 399 

Differences across social systems, including education policy, culture, and historical context, 400 

may result in different heritable traits influencing on educational attainment94. Results 401 

therefore may not generalize beyond the times and places GWAS samples were collected.  402 

Generalization of the NonCog factor is also limited by restriction of included GWAS 403 

to individuals of European ancestry. Lack of methods for integrating genome-scale genetic 404 

data across populations with different ancestries95,96 requires this restriction, but raises threats 405 

to external validity. GWAS of other ancestries and development of methods for trans-406 

ancestry analysis can enable analysis of (Non)Cog in non-European populations. 407 

Within the bounds of these limitations, results illustrate the application of Genomic-408 

SEM to conduct GWAS of a phenotype not directly measured in GWAS databases. This 409 
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application could have broad utility beyond the genetics of educational attainment. The 410 

GWAS-by-subtraction method allowed us to study a previously hard-to-interpret residual 411 

value. Our analysis provides a first view of the genetic architecture of non-cognitive skills 412 

influencing educational success. These skills are central to theories of human capital 413 

formation within the social and behavioral sciences and are increasingly the targets of social 414 

policy interventions. Our results establish that non-cognitive skills are central to the 415 

heritability of educational attainment and illuminate connections between genetic influences 416 

on these skills and social and behavioral science phenotypes.   417 
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Figure legends 723 

 724 

Figure 1 | GWAS-by-subtraction Genomic-SEM model.  Cholesky model as fitted in 725 

Genomic SEM, with path estimates for a single SNP included as illustration. SNP, cognitive 726 

performance (CP), and educational attainment (EA) are observed variables based on GWAS 727 

summary statistics. The genetic covariance between CP and EA is estimated based on GWAS 728 

summary statistics for CP and EA. The model is fitted to a 3 x 3 observed variance-729 

covariance matrix (i.e. SNP, CP, EA). Cog and NonCog are latent (unobserved) variables. 730 

The covariances between CP and EA and between Cog and NonCog are fixed to 0. The 731 

variance of the SNP is fixed to the value of 2pq (p = reference allele frequency, q = 732 

alternative allele frequency, based on 1000 Genomes phase 3). The residual variances of CP 733 

and EA are fixed to 0, so that all variance is explained by the latent factors. The variances of 734 

the latent factors are fixed to 1. The observed variables CP and EA were regressed on the 735 

latent variables resulting in the estimates for the path loadings: λCog-CP = 0.4465; λCog-EA 736 

= 0.2237; λNonCog-EA = 0.2565. The latent variables were then regressed on each SNP that 737 

met QC criteria. 738 

 739 

Figure 2 | Manhattan plot of SNP associations with NonCog. Plot of the -log10(P-value) 740 

associated with the Wald test (two-sided) of βNonCog for all SNPs, ordered by chromosome 741 

and base position. Purple triangles indicate genome-wide significant (P < 5 × 10-8) and 742 

independent (within a 250-kb window and r2 < 0.1) associations. The red dashed line marks 743 
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the threshold for genome-wide significance (P = 5 × 10−8), and the black dashed line the 744 

threshold for nominal significance (P = 1 × 10−5).  745 

 746 

Figure 3 | Polygenic prediction and genetic correlations with IQ and educational 747 

achievement. a, Genetic correlations of NonCog and Cog with educational attainment, 748 

highest math class taken, self-reported math ability, and childhood IQ. The dots represent 749 

genetic correlations estimated using Genomic SEM. Correlations with NonCog are in orange, 750 

and with Cog in blue. Error bars represent 95% CIs. Exact estimates and P-values are 751 

reported in Supplementary Table 14. For analysis of genetic correlations with educational 752 

attainment, we re-ran the Genomic-SEM model to compute NonCog and Cog using summary 753 

statistics that omitted the 23andMe sample from the educational attainment GWAS. We then 754 

used the 23andMe sample to run the GWAS of educational attainment. Thus, there is no 755 

sample overlap in this analysis. b, Effect-size distributions from meta-analysis of NonCog 756 

and Cog polygenic score associations with cognitive test performance and educational 757 

attainment. Outcomes were regressed simultaneously on NonCog and Cog polygenic scores. 758 

Effect-sizes entered into the meta-analysis were standardized regression coefficients 759 

interpretable as Pearson r. Exact estimates and P-values are reported in Supplementary 760 

Table 12. Samples and measures are detailed in Supplementary Tables 9 and 10. Traits 761 

were measured in different samples: educational attainment was measured in the AddHealth, 762 

Dunedin, E-Risk, NTR and WLS samples (n = 24,056); reading achievement and 763 

mathematics achievement were measured in the AddHealth, NTR, and Texas-Twin samples 764 

(n = 9,274 for reading achievement; n = 10,747 for mathematics achievement); cognitive test 765 

performance (IQ) was measured in the Dunedin, E-Risk, NTR, Texas Twins and WLS 766 

samples (n = 11,351). The densities were obtained by randomly generating normal 767 
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distributions where the meta-analytic estimate was included as the mean and the meta-768 

analytic standard error as the standard deviation.  769 

 770 

Figure 4 | Estimates of genetic correlations with NonCog, Cog, and educational 771 

attainment. Genetic correlations of NonCog, Cog, and educational attainment with selected 772 

phenotypes. The dots represent genetic correlations estimated in Genomic SEM. Correlations 773 

with NonCog are in orange, with Cog in blue, and with educational attainment in gray. Error 774 

bars represent 95% CIs. Red stars indicate a statistically significant (FDR corrected P < 0.05, 775 

two-tailed test) difference in the magnitude of the correlation with NonCog versus Cog. Exact 776 

P-values for all associations are reported in Supplementary Table 14. The FDR correction 777 

was applied based on all genetic correlations tested (including in Supplementary Fig. 11). 778 

The difference test is based on a chi-squared test associated with a comparison between a 779 

model constraining these two correlations to be identical versus a model where the 780 

correlations are freely estimated. Source GWAS are listed in Supplementary Table 13. 781 

 782 

Figure 5 | Genetic correlations with regional gray matter volumes and white matter 783 

tracts. a, Cortical patterning of FDR-corrected significant genetic correlations with regional 784 

gray matter volumes for Cog versus NonCog, after correction for total brain volume. Regions 785 

of interest are plotted according to the Desikan-Killiany-Tourville atlas102, shown on a single 786 

manually-edited surface (http://mindboggle.info103). Exact estimates and P-values are 787 

reported in Supplementary Table 21. Cog showed significant associations with gray matter 788 

volume for the bilateral fusiform, insula and posterior cingulate, the left superior temporal 789 

and left pericalcarine and right superior parietal volumes. NonCog was not associated with 790 

any of the regional brain volumes. b, White matter tract patterning of FDR-corrected 791 

significant genetic correlations with regional mode of anisotropy (MO) for Cog versus 792 
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NonCog. White matter tract probability maps are plotted according to the Johns Hopkins 793 

University DTI atlas (https://identifiers.org/neurovault.image:1401)104. Exact estimates and 794 

P-values are reported in Supplementary Table 21. Cog was not associated with regional 795 

MO. NonCog showed significant associations with MO in the corticospinal tract, the 796 

retrolenticular limb of the internal capsule and the splenium of the corpus callosum. 797 

 798 

 799 

 800 

  801 

https://identifiers.org/neurovault.image:1401
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Methods 802 

Meta-analysis of educational attainment GWAS. We reproduced the Social Science 803 

Genetic Association Consortium (SSGAC) 2018 GWAS of educational attainment25 by meta-804 

analyzing published summary statistics for n = 766,345 (www.thessgac.org/data) with 805 

summary statistics obtained from 23andMe, Inc. (n = 365,538). We included SNPs with 806 

sample size > 500,000 and MAF > 0.005 in the 1000 Genomes reference set (10,101,243 807 

SNPs). We did not apply genomic control, as standard errors of publicly available and 808 

23andMe summary statistics were already corrected25. Meta-analysis was performed using 809 

METAL97.  810 

 811 

GWAS-by-subtraction. The objective of our GWAS-by-subtraction analysis was to 812 

estimate, for each SNP, the association with educational attainment that was independent of 813 

that SNP’s association with cognition (hereafter, the NonCog SNP effect). We used 814 

Genomic-SEM24 in R 3.4.3 to analyze GWAS summary statistics for the educational 815 

attainment and cognitive performance phenotypes in the SSGAC’s 2018 GWAS25. The 816 

model regressed the educational-attainment and cognitive-performance summary statistics on 817 

two latent variables, Cog and NonCog (Fig. 1). Cog and NonCog were then regressed on each 818 

SNP in the genome. This analysis allowed for two paths of association with educational 819 

attainment for each SNP. One path was fully mediated by Cog. The other path was 820 

independent of Cog and measured the non-cognitive SNP effect, NonCog. To identify 821 

independent hits with P < 5 × 10-8 (the customary P-value threshold to approximate an alpha 822 

value of 0.05 in GWAS), we pruned the results using a radius of 250 kb and an LD threshold 823 

of r2 < 0.1 (Supplementary Tables 1-3). We explore alternative lead SNPs and loci 824 

definition in Supplementary Table 4. The parameters estimated in a GWAS-by-subtraction 825 

and their derivation in terms of the genetic covariance are described in the Supplementary 826 
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Note (model specification), and practical analysis steps are further described in the 827 

Supplementary Note (SNP filtering). The effective sample size of the NonCog and Cog 828 

GWAS was estimated to 510,795 and 257,700, respectively (see Supplementary Note). We 829 

investigated biases from unaccounted-for heterogeneity in overlap across SNPs in the 830 

educational attainment and cognitive performace GWAS and describe possible strategy to 831 

deal with it (Supplementary Note). We investigated potential biases due to cohort 832 

differences in SNP heritability in the Supplementary Note. We evaluated the consequences 833 

of modifying rg (NonCog, Cog) = 0 by evaluating rg = 0.1, 0.2 or 0.3, and we investigated the 834 

consequences of a violation of the assumed causation between cognitive performance and 835 

educational attainment in the Supplementary Note.  836 

 837 

Genetic correlations. We used Genomic-SEM to compute genetic correlations of Cog and 838 

NonCog with other education-linked traits for which well-powered GWAS data were 839 

available (SNP-h2 z-statistics > 2; Supplementary Table 13) and to test whether genetic 840 

correlations with these traits differed between Cog and NonCog. Specifically, models tested 841 

the null hypothesis that trait genetic correlations with Cog and NonCog could be constrained 842 

to be equal using a chi-squared test with FDR adjustment to correct for multiple testing. The 843 

FDR adjustment was conducted across all genetic correlation analyses reported in the article, 844 

excluding the analyses of brain volumes described below. Finally, we used Genomic-SEM 845 

analysis of genetic correlations to estimate the percentage of the genetic covariance between 846 

educational attainment and the target traits that was explained by Cog and NonCog using the 847 

model illustrated in Supplementary Figure 17. 848 

 849 

Polygenic score analysis. Polygenic score analyses were conducted in data drawn from six 850 

population-based cohorts from the Netherlands, the U.K., the U.S., and New Zealand: (1) the 851 
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Netherlands Twin Register (NTR)29,98, (2) E-Risk32, (3) the Texas Twin Project34, (4) the 852 

National Longitudinal Study of Adolescent to Adult Health (AddHealth)30,99, dbGaP 853 

accession phs001367.v1.p1; (5) Wisconsin Longitudinal Study on Aging (WLS)33, dbGaP 854 

accession phs001157.v1.p1; and (6) the Dunedin Multidisciplinary Health and Development 855 

Study31. Supplementary Tables 9 and 10 describe cohort-specific metrics, and we include a 856 

short description of the cohorts’ populations and recruitment in Supplementary Note. Only 857 

participants with European ancestry were included in the analysis, due to the low portability 858 

of PGS between different ancestry populations. Polygenic scores were computed with PLINK 859 

based on weights derived using the LD-pred100 software with an infinitesimal prior and the 860 

1000 Genomes phase 3 sample as a reference for the LD structure. LD-pred weights were 861 

computed in a shared pipeline to ensure comparability between cohorts. Each outcome (e.g., 862 

IQ score) was regressed on the Cog and NonCog polygenic scores and a set of control 863 

variables (sex, 10 principal components derived from the genetic data and, for cohorts in 864 

which these quantities varied, genotyping chip and age), using Stata 14 for WLS, Stata 15 for 865 

E-Risk and the Dunedin Study, and R (versions 3.4.3 and newer) for NTR, AddHealth, and 866 

the Texas Twin Project. In cohorts containing related individuals, non-independence of 867 

observations from relatives was accounted for using generalized estimation equations (GEE) 868 

or by clustering of standard errors at the family level. We used a random effects meta-869 

analysis to aggregate the results across the cohorts. This analysis allows a cohort-specific 870 

random intercept. Individual cohort results are in Supplementary Table 11 and meta-871 

analytic estimates in Supplementary Table 12.  872 

 873 

Biological annotation. Enrichment of tissue-specific gene expression. We used gene-sets 874 

defined in Finucane et al.101 to test for the enrichment of genes specifically expressed in one 875 

of 53 GTEx tissues70, or 152 tissues captured by the Franke et al. aggregation of RNA-seq 876 
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studies71,72. This analysis seeks to confirm the role of brain tissues in mediating Cog and 877 

NonCog influences on educational attainment. The exact analysis pipeline used is available 878 

online (https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses). 879 

Enrichment of cell-type specific expression. We leveraged single cell RNA 880 

sequencing (scRNA-seq) data of cells sampled from the mouse nervous system75 to identify 881 

cell-type specific RNA expression. Zeisel et al.75 sequenced cells obtained from 19 regions in 882 

the contiguous anatomical regions in the peripheral sensory, enteric, and sympathetic nervous 883 

system. After initial QC, they retained 492,949 cells, which were sampled down to 160,796 884 

high quality cells. These cells were further grouped into clusters representing 265 broad cell-885 

types. We analyzed the dataset published by Zeisel et al. containing mean transcript counts 886 

for all genes with count >1 for each of the 265 clusters (Supplementary Table 17). We 887 

restricted analysis to genes with expression levels above the 25th percentile. For each gene in 888 

each cell-type, we computed the cell-type specific proportion of reads for the gene 889 

(normalizing the expression within cell-type). We then computed the proportion of 890 

proportions over the 265 cell-types (computing the specificity of the gene to a specific cell-891 

type). We ranked the 12,119 genes retained in terms of specificity to each cell-type and then 892 

retained the 10% of genes most specific to a cell-type as the “cell-type specific” gene-set. We 893 

then tested whether any of the 265 cell-type specific gene-sets were enriched in the Cog or 894 

NonCog GWAS. This analysis sought to identify specific cell-types and specific regions in 895 

the brain involved in the etiology of Cog and NonCog. We further computed the difference in 896 

enrichment for Cog and NonCog to test whether any cell types were specific to either trait. 897 

For these analyses, we leveraged two widely used enrichment analysis tools: MAGMA73 and 898 

stratified LD score regression74 with the European reference panel from 1000 Genomes 899 

Project Phase 3 as SNP location and LD structure reference, Gencode release 19 as gene 900 

https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
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location reference and the human-mouse homology reference from MGI 901 

(http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt). 902 

MAGMA. We used MAGMA (v1.07b73), a program for gene-set analysis based on 903 

GWAS summary statistics. We computed gene-level association statistics using a window of 904 

10 kb around the gene for both Cog and NonCog. We then used MAGMA to run a 905 

competitive gene-set analysis, using the gene P-values and gene correlation matrix (reflecting 906 

LD structure) produced in the gene-level analysis. The competitive gene-set analysis tests 907 

whether the genes within the cell-type-specific gene-set described above are more strongly 908 

associated with Cog/NonCog than other genes.  909 

Stratified LD-score regression. We used LD-score regression to compute LD scores 910 

for the SNPs in each of our “cell-type specific” gene-sets. Parallel to MAGMA analysis, we 911 

added a 10-kb window around each gene. We ran partitioned LD-score regression to compute 912 

the contribution of each gene-set to the heritability of Cog and NonCog. To guard against 913 

inflation, we used LD score best practices, and included the LD score baseline model 914 

(baselineLD.v2.2) in the analysis. We judged the statistical significance of the enrichment 915 

based on the P-value associated with the tau coefficient.  916 

Difference in enrichment between Cog and NonCog. To compute differences in 917 

enrichment, we compute a standardized difference between the per-annotation enrichment for 918 

Cog and NonCog as: 919 

 920 

Zdiff =  
eCog- eNonCog

sqrt( seCog
2 +seNonCog

2 -2*CTI*seCog* seNonCog)
  (Equation 1) 921 

 922 

where eCog is the enrichment of a particular gene-set for Cog, eNonCog is the enrichment for 923 

the same gene-set for NonCog, seCog is the standard error of the enrichment for Cog, 924 
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seNonCog is the standard error of the enrichment for NonCog, and CTI is the LD score cross-925 

trait intercept, a metric of dependence between the GWASs of Cog and NonCog. 926 

We investigated the significance of the difference between Cog and NonCog tau 927 

coefficient with Equation 1 as well as by computing jackknifed standard errors. From the 928 

jackknifed estimates of the coefficient output by the LDSC software, we computed the 929 

jackknifed estimates and standard errors of the difference between Cog and NonCog tau 930 

coefficients, as well as a z-statistic for each annotation.  931 

Enrichment of gene expression in the brain. We performed a transcriptome-wide 932 

association study (TWAS) using FUSION76 (http://gusevlab.org/projects/fusion/). We used 933 

pre-computed brain-gene-expression weights available on the FUSION website, generated 934 

from 452 human individuals as part of the CommonMind Consortium. We then superimposed 935 

the bivariate distribution of the results of the TWAS for Cog and NonCog over the bivariate 936 

distribution expected given the sample overlap between educational attainment and cognitive 937 

performance (the GWAS on which our GWAS of Cog and NonCog are based, see 938 

Supplementary Note).  939 

 940 

Brain modalities. Brain volumes. We conducted genetic correlation analysis of brain 941 

volumes using GWAS results published by Zhao et al.79, who performed GWAS of total 942 

brain volume and 100 regional brain volumes, including 99 gray matter volumes and total 943 

white matter volume (Supplementary Table 21). Analyses included covariate adjustment for 944 

sex, age, their square interaction and 20 principle components. Analyses of regional brain 945 

volumes additionally included covariate adjustment for total brain volume. GWAS summary 946 

statistics for these 101 brain volumes were obtained from 947 

https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/. Summary statistics were 948 

filtered and pre-processed using Genomic-SEM’s “munge” function, retaining all HapMap3 949 

https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/)
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SNPs with allele frequency > 0.01 outside the MHC region. We used Genomic-SEM to 950 

compute the genetic correlations between Cog, NonCog and brain volumes. Analyses of 951 

regional volumes controlled for total brain volume. For each volume, we tested whether 952 

correlations differed between Cog and NonCog. Specifically, we used a chi-squared test to 953 

evaluate the null hypothesis that the two genetic correlations were equal. We used FDR 954 

adjustment to correct for multiple testing. The FDR adjustment is applied to the results for all 955 

gray matter volumes for Cog and NonCog separately.  956 

White matter structures. We conducted genetic-correlation analysis of white-matter 957 

structures using GWAS results published by Zhao et al.80, who performed GWAS of 958 

diffusion tensor imaging (DTI) measures of the integrity of white-matter tracts. DTI 959 

parameters were derived for fractional anisotropy (FA), mean diffusivity (MD), axial 960 

diffusivity (AD), radial diffusivity (RD), and mode of anisotropy (MO). Each of these 961 

parameters was measured for 22 white matter tracts of interests (Supplementary Table 22), 962 

resulting in 110 GWAS. GWAS summary statistics for these 110 GWAS were obtained from 963 

https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/. Summary statistics were 964 

filtered and processed using Genomic-SEM’s “munge” function, retaining all HapMap3 965 

SNPs with allele frequency > 0.01 outside the MHC region. For each white matter structure, 966 

we tested whether genetic correlations differed between Cog and NonCog. Specifically, we 967 

used a chi-squared test to evaluate the null hypothesis that the two genetic correlations were 968 

equal.  We used FDR adjustment to correct for multiple testing. As these different diffusion 969 

parameters are statistically and logically interdependent, having been derived from the same 970 

tensor, FDR adjustment was applied to the results for each type of white matter diffusion 971 

parameter separately. FDR correction was applied separately for Cog and NonCog. 972 

 973 

Additional Resources 974 
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A FAQ on why, how and what we studied is available here: 975 

https://medium.com/@kph3k/investigating-the-genetic-architecture-of-non-cognitive-skills-976 

using-gwas-by-subtraction-b8743773ce44  977 

A tutorial on how to perform GWAS-by-subtraction: http://rpubs.com/MichelNivard/565885  978 

Additional resources to Genomic SEM software:  979 

- A wiki including numerous tutorials: 980 

https://github.com/MichelNivard/GenomicSEM/wiki 981 

- A Genomic SEM user group for specific questions relating to models and 982 

software: https://groups.google.com/g/genomic-sem-users 983 

- A venue to report technical issues: 984 

https://github.com/MichelNivard/GenomicSEM/issues  985 

 986 

Code availability   987 

Code used to run the analyses is available at: https://github.com/PerlineDemange/non-988 

cognitive  989 

A tutorial on how to perform GWAS-by-subtraction: http://rpubs.com/MichelNivard/565885 990 

All additional software used to perform these analyses are available online. 991 

 992 

Data availability  993 

GWAS summary data for NonCog and Cog (excluding 23andMe) have been deposited in the 994 

GWAS Catalog with accession numbers GCST90011874 and GCST90011875, respectively 995 

(NonCog GWAS: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90011874, 996 

Cog GWAS: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90011875). 997 

 998 

For 23andMe dataset access, see https://research.23andme.com/dataset-access/. 999 

https://medium.com/@kph3k/investigating-the-genetic-architecture-of-non-cognitive-skills-using-gwas-by-subtraction-b8743773ce44
https://medium.com/@kph3k/investigating-the-genetic-architecture-of-non-cognitive-skills-using-gwas-by-subtraction-b8743773ce44
http://rpubs.com/MichelNivard/565885
https://github.com/MichelNivard/GenomicSEM/wiki
https://groups.google.com/g/genomic-sem-users
https://github.com/MichelNivard/GenomicSEM/issues
https://github.com/PerlineDemange/non-cognitive
https://github.com/PerlineDemange/non-cognitive
http://rpubs.com/MichelNivard/565885
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90011874
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90011875
https://research.23andme.com/dataset-access/
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Part of the National Longitudinal Study of Adolescent to Adult Health (Add Health) data is 1000 

publicly available and can be downloaded at the following link: 1001 

https://data.cpc.unc.edu/projects/2/view#public_li. For restricted access data, details of the 1002 

data sharing agreement and data access requirements can be found at the following link: 1003 

https://data.cpc.unc.edu/projects/2/view  1004 

The Dunedin study datasets reported in the current article are not publicly available due to 1005 

lack of informed consent and ethical approval, but are available on request by qualified 1006 

scientists. Requests require a concept paper describing the purpose of data access, ethical 1007 

approval at the applicant’s university, and provision for secure data access. We offer secure 1008 

access on the Duke, Otago and King's College campuses. All data analysis scripts and results 1009 

files are available for review (https://moffittcaspi.trinity.duke.edu/research-topics/dunedin). 1010 

The E-Risk Longitudinal Twin Study datasets reported in the current article are not publicly 1011 

available due to lack of informed consent and ethical approval, but are available on request 1012 

by qualified scientists. Requests require a concept paper describing the purpose of data 1013 

access, ethical approval at the applicant’s university, and provision for secure data access. 1014 

We offer secure access on the Duke and King's College campuses. All data analysis scripts 1015 

and results files are available for review (https://moffittcaspi.trinity.duke.edu/research-1016 

topics/erisk). 1017 

Netherlands Twin Register data may be accessed, upon approval of the data access 1018 

committee (email: ntr.datamanagement.fgb@vu.nl). 1019 

Researchers will be able to obtain Texas Twins data through managed access. Requests for 1020 

managed access should be sent to Dr. Elliot Tucker-Drob (tuckerdrob@utexas.edu) and Dr. 1021 

Paige Harden (harden@utexas.edu), joint principal investigators of the Texas Twin Project. 1022 

Wisconsin Longitudinal study data can be requested following this form: 1023 

https://www.ssc.wisc.edu/wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf  1024 

https://data.cpc.unc.edu/projects/2/view#public_li
https://data.cpc.unc.edu/projects/2/view
https://moffittcaspi.trinity.duke.edu/research-topics/dunedin
https://moffittcaspi.trinity.duke.edu/research-topics/erisk
https://moffittcaspi.trinity.duke.edu/research-topics/erisk
mailto:ntr.datamanagement.fgb@vu.nl
mailto:tuckerdrob@uexas.edu
mailto:harden@utexas.edu
https://www.ssc.wisc.edu/wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf
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