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Introduction: In several fields, the process of fusing multiple two-dimensional
(2D) closed lines is an important step. For instance, this is fundamental in histology
and oncology in general. The treatment of a tumor consists of numerous steps
and activities. Among them, segmenting the cancer area, that is, the correct
identification of its spatial location by the segmentation technique, is one of the
most important and at the same time complex and delicate steps. The difficulty in
deriving reliable segmentations stems from the lack of a standard for identifying
the edges and surrounding tissues of the tumor area. For this reason, the entire
process is affected by considerable subjectivity. Given a tumor image, different
practitioners can associate different segmentations with it, and the diagnoses
produced may differ. Moreover, experimental data show that the analysis of the
same area by the same physician at two separate timepoints may result in
different lines being produced. Accordingly, it is challenging to establish which
contour line is the ground truth.

Methods: Starting from multiple segmentations related to the same tumor,
statistical metrics and computational procedures could be exploited to
combine them for determining the most reliable contour line. In particular,
numerous algorithms have been developed over time for this procedure, but
none of them is validated yet. Accordingly, in this field, there is no ground truth,
and research is still active.

Results: In this work, we developed the Two-Dimensional Segmentation Fusion
Tool (TDSFT), a user-friendly tool distributed as a free-to-use standalone
application for MAC, Linux, and Windows, which offers a simple and
extensible interface where numerous algorithms are proposed to “compute
the mean” (i.e., the process to fuse, combine, and “average”) multiple 2D lines.

OPEN ACCESS

EDITED BY

Ilaria Cacciotti,
University Niccolò Cusano, Italy

REVIEWED BY

Clarence Yapp,
Vector Test Systems, United States
Jakub Nalepa,
Silesian University of Technology, Poland

*CORRESPONDENCE

Filippo Piccinini,
f.piccinini@unibo.it,
filippo.piccinini@irst.emr.it

RECEIVED 16 November 2023
ACCEPTED 11 January 2024
PUBLISHED 31 January 2024

CITATION

Piccinini F, Drudi L, Pyun J-C, Lee M, Kwak B,
Ku B, Carbonaro A, Martinelli G and Castellani G
(2024), Two-dimensional segmentation fusion
tool: an extensible, free-to-use, user-friendly
tool for combining different
bidimensional segmentations.
Front. Bioeng. Biotechnol. 12:1339723.
doi: 10.3389/fbioe.2024.1339723

COPYRIGHT

© 2024 Piccinini, Drudi, Pyun, Lee, Kwak, Ku,
Carbonaro, Martinelli and Castellani. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Technology and Code
PUBLISHED 31 January 2024
DOI 10.3389/fbioe.2024.1339723

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1339723/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1339723/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1339723/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1339723/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1339723/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1339723&domain=pdf&date_stamp=2024-01-31
mailto:f.piccinini@unibo.it
mailto:f.piccinini@unibo.it
mailto:filippo.piccinini@irst.emr.it
mailto:filippo.piccinini@irst.emr.it
https://doi.org/10.3389/fbioe.2024.1339723
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1339723


Conclusions: The TDSFT can support medical specialists, but it can also be used in
other fields where it is required to combine 2D close lines. In addition, the TDSFT is
designed to be easily extendedwith new algorithms thanks to a dedicated graphical
interface for configuring new parameters. The TDSFT can be downloaded from the
following link: https://sourceforge.net/p/tdsft.
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1 Introduction

Contouring refers to the outlining of specific structures or areas in a
target image. It entails defining the border of the foreground region
(i.e., object of interest) and highlighting this border as a closed line of 1-
pixel size in a 2Dbinarymask (i.e., black andwhite images). On the other
hand, segmentation involves the definition of the foreground followed by
the highlighting of this region with a dense surface, allowing the precise
identification of a group of specific pixels (Hemalatha et al., 2018). This is
a common image preprocessing step in several fields, ranging from
autonomous driving, where vehicles, pedestrians, and roadmarkings are
segmented for detection and tracking purposes (Xiao et al., 2023), to
agriculture/geology, where it is used to identify and classify different
crops (Shoaib et al., 2022) or analyze soil conditions (Rippner et al.,
2022). In themedical field, segmenting objects of interest is a widespread
step, particularly in several fields of oncology (Jiménez and Racoceanu,
2019). For instance, in the context of radiotherapy, this involves
delineating tumor volumes or areas at risk of microscopic disease, as
well as normal anatomical structures, such as organs at risk. The goal of
segmenting is to accurately define these structures to guide the radiation
treatment process and ensure optimal patient outcomes (Lin et al., 2020).
Similarly, segmenting objects is a very popular task in histology where
the target is different, typically a microscopy image, but the main goal is
to always spatially define the pixels belonging to different tissue regions
for proceeding with further analysis (Bocchini et al., 2023).

Segmenting a cancer area is a time-consuming and labor-
intensive task. It requires significant effort from practitioners,
mainly medical doctors and physicians involved in cancer
treatment planning (Hu et al., 2012), spending every day several
hours of their working time in segmenting images. Typically, they
use manual annotation tools [e.g., ImageJ; ROI Manager (Schneider
et al., 2012) and AnaSP (Piccinini, 2015)] and computer-aided
design (CAD) systems [e.g., MITK (Tasnadi et al., 2020a) and
QuPath (Bankhead et al., 2017)]. However, in general, there are
inter- (i.e., differences between segmentations created by different
practitioners, also known as reproducibility) and intra-rater
reliability (i.e., differences between segmentations created by the
same practitioner but at different times, also known as repeatability)
issues (Piccinini et al., 2017), and defining the correct segmentation
(i.e., ground truth) is challenging. Accordingly, several statistical
metrics and computational procedures are typically involved to
determine the border of the object/area of interest in the image
(Ramesh et al., 2021). These range from threshold-based
segmentation approaches (Bai and Zhou, 2023) to deep-learning
ones (Piccinini et al., 2023), never excluding the manual
segmentation, which is still the gold standard for several
applications (Veta et al., 2013). However, more 2D segmentation

masks (typically represented as binary masks of the same size of the
input image, with the object of interest identified by a white region
on a black background) are available because they are (a) obtained in
different ways, (b) or by different practitioners, (c) or by the same
practitioner but at different times. Figure 1 shows the example of
segmentations obtained by two different annotators, analyzing a
slide scanner histological image, a microscopy cancer spheroid
image, a magnetic resonance slide, a textile photograph, and an
agricultural picture. In these cases, fusion algorithms are typically
used for “fusing” (i.e., a process for combining, averaging, and
“computing the mean”) multiple 2D segmentations. Nevertheless,
nowadays, there is no standard for this procedure, and different
fusing solutions have been proposed in the literature (James and
Dasarathy, 2014).

In this work, in addition to reviewing all the fusion algorithms
proposed in the literature for averaging different 2D segmentations, we
developed theTwo-Dimensional Segmentation Fusion Tool (TDSFT), an
extensible, user-friendly MATLAB (i.e., Matrix Laboratory) tool
collecting more fusion algorithms. Free-to-use standalone versions
have been provided for MAC, Linux, and Windows, and the
MATLAB source code can be openly read. A commercial license of
MATLAB is needed just in case the user wants to modify the code. The
TDSFT simply requires a series of 2D binary segmentations as input
(i.e., binary masks of the same size of the input image, with the object of
interest identified by a dense white region on a black background) and
provides a new binarymaskwith a white one-size pixel closed line of the
foreground’s contour as output, computed according to the fusion
algorithm and closing method selected. Therefore, the TDSFT can
support medical specialists, but it can also be used in other fields where
it is required to combine 2D closed lines.

The current version of TDSFT (i.e., version 1) offers eight
different fusion algorithms to average multiple 2D segmentations
and four fitting/interpolating methods for closing eventually
sparse 2D lines. In addition, the TDSFT is designed to be
easily extended with new fusion algorithms thanks to a
dedicated graphical user interface (GUI) for configuring new
parameters. A TDSFT source code, free-to-use standalone
applications for MAC, Linux, and Windows, video tutorial,
documentation, and sample datasets are available at the
following link: https://sourceforge.net/p/tdsft.

2 Methods

In the next sections, the TDSFT’s structure, the four available
fitting/interpolating methods, and the eight implemented fusion
algorithms are described in detail.
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2.1 Two-dimensional segmentation fusion
tool—Backbone

The TDSFT is an extensible, free-to-use, user-friendly tool that
offers several algorithms for the fusion of multiple bidimensional
segmentations (Figure 2A). The TDSFT is developed using
MATLAB R2022b as a modular and organized structure project
developed using the model-view-controller (MVC, Supplementary
File 1) pattern, strongly helping for extension. Accordingly, in case
of literature published on new reliable fusion algorithms, it will be
easy to include them in the tool. To be able to use the software
without a license, the TDSFT is also available as a standalone
application for Windows, Linux, and MAC.

The TDSFT’s input is composed of a series of binary
segmentations (several image formats are supported, including

the classical tif, bmp, and png), which is managed through the
main GUI with the “Upload,” “Open,” and “Remove” buttons
(Figure 2B). In particular, the single-uploaded segmentations can
be analyzed in a separate GUI that is automatically visualized by
clicking the “Open” button (Figure 2C). The users can then
choose the algorithm to be used for the fusion process from
the drop-down menu named “Algorithm.” Using the “Advanced
Features” link, it is also possible to open the advanced feature
window (Figure 2D) for deciding (a) how to compute the one-
pixel segmentations in case of original segmentations composed
by a line with a diameter of more than one pixel (the possible
solutions are an “internal,” “middle,” or “external” line,
Figure 2E); (b) the algorithm to be used just for closing
possibly unclosed 1-pixel size contour lines that can be
obtained as output from several fusion algorithms (Figure 3).

FIGURE 1
Example of segmentations obtained by two different practitioners. From top to bottom: histological image, cancer spheroid image, magnetic
resonance image, textile image, and agricultural image. From left to right: original image, contour obtained from the first annotator, contour obtained
from the second annotator, and overlaid contours.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Piccinini et al. 10.3389/fbioe.2024.1339723

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1339723


The closing methods offered can be divided into two groups:
(I) Active contour methods: These methods iteratively adjust a
contour’s position to align with object edges by minimizing an
energy function that combines image and shape information. Not
all the pixels of the original unclosed segmentation are preserved.
(II) Interpolation methods: All the pixels of the original unclosed
segmentation are preserved, and each pixel must be connected to
at least two other points for obtaining a final closed line. The
biggest issue, however, is to identify neighboring points for each
pixel. In many circumstances, it can be difficult to find them in
the Cartesian reference system. Because of this, the
implementation option is to convert them to the polar

reference point system and translate all coordinates around
the largest segmentation’s center point. This enables them to
order the points according to their angular position and use that
information to identify their neighbors. Finally, a closed
segmentation can be achieved by applying an interpolation
method, creating a line between the pixels.

The algorithms belonging to the active contour group are
implemented using built-in MATLAB functions as follows: (I1)
Chan–Vese (Chan and Vese, 2001): It is designed to segment
objects without clearly defined boundaries. This method relies on
iteratively evolving sets of levels to minimize a multi-term function
called energy. (I2) Geodesic (Caselles et al., 1997): It is based on

FIGURE 2
Fusion of 2D segmentations. (A) Example of bidimensional segmentation fusion using the algorithm named “Average Smallest and Largest.” (B)Main
graphical user interface for loading and managing the 2D segmentations and selecting the fusion algorithm to be used. (C) Preview GUI for analyzing the
single 2D segmentations. (D) Advanced feature GUI for optional parameters. (E) Examples of 1-pixel lines extracted by an original 2D segmentation larger
than one pixel. From left to right: internal 1-pixel line, middle skeletonized 1-pixel line, and external 1-pixel line.

FIGURE 3
2D fitting methods. (A) Example of an unclosed 2D segmentation. Example of results obtained using (B) Chan–Vese fitting method; (C) Geodesic
Active Contour fitting method; (D) linear-based interpolation method; (E) shape-preserving-based interpolation method.
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active contours evolving in time according to intrinsic geometric
measures of the image.

Instead, the interpolation methods are implemented by us, and
they can also be found as external specific functions officially
uploaded to the MathWorks file exchange website at the link:
https://it.mathworks.com/matlabcentral/fileexchange/134951-closing-
2d-line-with-interpolation. (II1) Linear interpolation: Each pair of
adjacent points is connected by a segment that can be calculated
independently of the others. If we denote (xi, yi) and (xi+1, yi+1) as the
pair of adjacent points, the interpolating function fi(x) is defined as
reported in Eq. 1:

fi x( ) � xi+1 − x

xi+1 − xi
yi + x − xi

xi+1 − xi
yi+1. (1)

(II2) Piecewise cubic Hermite interpolation (PCHIP, shape-
preserving) (Fritsch and Carlson, 1980): PCHIP interpolates
using a piecewise cubic polynomial with these properties: (a)
on each subinterval, the polynomial P(x) is a cubic Hermite
interpolating polynomial for the given data points with specified
derivatives at the interpolation points. (b) P(x) interpolates y,
that is, P(xj) = yj, and the first derivative is continuous. The
second derivative is probably not continuous, so jumps are
possible. (c) The cubic interpolant P(x) is shape-preserving.
The slopes at the xj are chosen in such a way that P(x)
preserves the shape of the data and respects monotonicity.

Furthermore, the TDSFT is extensible. Users can add and
execute their fusion algorithms and closing methods. The process
is supported by the documentation and the video tutorial.
Furthermore, the user can set up a dedicated GUI for runtime
parameters by just using a simple JSON file.

2.2 Implemented fusion
algorithms—description

The TDSFT offers eight different fusion algorithms. In the next
paragraphs, they are also described by exploiting the examples
reported in Figure 4, showing the different algorithms’ output
using the same input segmentation (Figure 4A). In addition,
Supplementary File 2 reports flowcharts describing all their steps.

The first algorithm to be presented is named as “Largest,” which
calculates the segmentation containing all the input segmentations.
Basically, it is the contour of the “Union” of the different
segmentations. The process consists of a few steps. As a first
step, all segmentations are overlapped, then the hole-filling
operation is performed, and finally, the perimeter of the resulting
area is calculated.

The opposite algorithm to the previous one is called “Smallest,”
which calculates the perimeter of the area shared by all
segmentations. Essentially, it is the contour of the “Intersection”

FIGURE 4
2D fusion algorithms. (A) Example of four different input segmentations, one each panel and then (B) overlapped. (C) Example of results obtained
using eight different fusion algorithms (the names are reported above the single panels) using the shape-preserving-based interpolation method
when needed.
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of the different segmentations. In this instance, the hole-filling
procedure is carried out on all segmentations prior to completing
the overlap. Then, appropriate matrices are then added to achieve
their overlap. The area whose pixel value is equal to the number of
segmentations is now referred to as the common area.

On the other hand, “Average Smallest And Largest” calculates the
1-pixel segmentation between the Smallest and the Largest
segmentation. The Smallest and Largest segmentation are first
calculated and are then overlapped. Finally, the skeletonization
operation is applied to obtain the 1-pixel middle line.

The algorithms “Average Target Largest,” “Average Target
Smallest,” and “Average Target From Input” are part of the same
family of algorithms, with the only difference in the choice of target
segmentation, the one from which the computation starts. In the
first two, Largest and Smallest are used, and in the third, the user can
choose the target between one of the input segmentations. After
choosing the target segmentation, the process is the same for all
these algorithms. Given a set of input segmentations and a target
segmentation, the algorithm iterates over each pixel of the latter and
for each of these computes the new pixel of the average
segmentation. The process of obtaining a new pixel can be
divided into two steps: (1) the closest pixel of any other
segmentation to the chosen target segmentation’s pixel is
calculated in order to create a group of points; (2) given the
points obtained in step 1, the new pixel is calculated as follows:
(a) if the points are two, the midpoint of the segment having these as
extremes is calculated; (b) if the points are more than two but belong
to the same line (collinear points), the two extremes are calculated,
and the midpoint of the segment is calculated; (c) in other cases, the
centroid of the polygon described by the set of points is calculated.

The next algorithm to be discussed is called “Middle,” which
calculates the segmentation in the center of all the input ones. The
first step is to overlap all the segmentations. Then, the algorithm
operates in successive steps, and at each iteration, the smallest and
the largest segmentation are removed. The total number of iterations
is defined as the lower bound (i.e., floor integer) of (N.Seg. −1)/2,
with N.Seg., and the number of available segmentations. At the end
of the iterations, there are two possible situations: (1) if the number
of input segmentations is odd, and then at the end of the iterations,
only one segmentation will remain, which will then be the central
segmentation; (2) if the number of input segmentations is even, on
the other hand, there are two remaining segmentations. To obtain
the result, the practitioner must specify the algorithm to be used to
fuse the last two segmentations. The algorithms offered for this
purpose are Average Smallest and Largest, Largest, and Smallest.

The last algorithm is “Simultaneous Truth and Performance
Level Estimation (STAPLE)” (Warfield et al., 2004). STAPLE is a
weighted voting algorithm that takes into account all segmentations
while computing the outcome. As an initial step, the algorithm will
combine all the segmentations into a test segmentation by simply
voting on each pixel. STAPLE will rate each annotator’s accuracy in
relation to this initial test segmentation. Then, it will redraw a new
segmentation by weighting the votes of the specialists according to
their accuracy. Because STAPLE is iterative, this cycle of estimating
the accuracy and redrawing the test segmentation will repeat until
the test segmentation stops changing or the maximum number of
iterations is reached. The final test segmentation will be the “ground
truth” that STAPLE returns. The implementation used in the TDSFT

can be found at the following link: https://www.mathworks.com/
matlabcentral/fileexchange/56789-staple-d.

3 Experiments

Comparing the different fusion algorithms and defining which is
the best one is really challenging because there is not a general best
one, and the better one depends on several factors (e.g., the presence
of outlier segmentations and availability of many similar
segmentations making the dataset unbalanced). This is the reason
why we provided the user of several algorithms and not just a
“winning” one. However, to provide a proof of concept on how the
algorithms perform, we selected a representative case of study, a
microscopy dataset that is publicly available, composed by different
segmentations, obtained using freely available tools, and a manual
ground truth. In the next sections, the experimental setup, the used
metric, and the results obtained are described in detail.

3.1 Experimental setup—description

To analyze the performances of the different fusion algorithms,
we used a dataset related to a cancer multicellular spheroid, imaged
with a light-sheet fluorescence microscope (LSFM) (Stelzer et al.,
2021). Tasnadi et al. (2020b) already used this dataset, testing several
segmentation algorithms and disclosing all their specifics (which are
not relevant to our research in this case). The spheroid is composed
of 52 cells, and for each cell, the dataset includes two manual
segmentations, one created by an expert microscopist operator
and one created by a microscopist researcher, with a limited
number of years of experience and five different segmentations
automatically obtained using different freely available tools,
precisely 3D-Cell-Annotator (3DCA) (Tasnadi et al., 2020b),
MINS (Lou et al., 2014), Pagita (Gul-Mohammed et al., 2014),
XPIWIT (Bartschat et al., 2016), and OpenSegSpim (Gole
et al., 2016).

The images of the multicellular spheroid are 3D, precisely a 3D
stack with each image representing a different z section of the
spheroid. However, the TDSFT accepts as input binary two-
dimensional (2D) segmentations. Accordingly, the procedure
applied to create the testbed for the experiments are as follows:
(a) 10 different sections from the 3D stack were randomly selected;
(b) for each section, a cell was randomly chosen; (c) for each selected
cell and selected section, the manual segmentation created by the
expert microscopist was considered the ground truth, and the six
other segmentations (i.e., second human annotator, 3DCA, MINS,
Pagita, XPIWIT, and OpenSegSpim) were used for testing the
different fusion algorithms. The configuration set for the
advanced features was the default one, basically with the
parameters “External one-pixel line” for pre-processing the input
binary 2D segmentations, and “Shape-preserving” as the closing
method in case of sparse pixels. Furthermore, specifically for the
algorithm “Average Target From Input,” the target segmentation
selected was the one obtained using 3DCA.

The dataset used in the experiments of this work is publicly
available for further analysis at the following link: https://
sourceforge.net/p/tdsft.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Piccinini et al. 10.3389/fbioe.2024.1339723

https://www.mathworks.com/matlabcentral/fileexchange/56789-staple-d
https://www.mathworks.com/matlabcentral/fileexchange/56789-staple-d
https://sourceforge.net/p/tdsft
https://sourceforge.net/p/tdsft
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1339723


3.2 Performance metric—description

The most appropriate way to carry out the comparison of
segmentations is so far unclear (Warfield et al., 2004). In the
literature, several metrics have been proposed to compare
segmentations. Simply measuring the volume of segmented
structures (Iosifescu et al., 1997; Warfield et al., 2000) or
assessing the limits of agreement (Bland and Altman, 2003) of
volume estimates derived from the segmentations is something
common. However, measures of spatial overlap are the metrics
most widely applied (Dice, 1945). Alternative metrics have been
sought (Everingham et al., 2002). For instance, in many applications,
assessment of boundary differences is useful, and the Hausdorff
measure and modifications have been used (Gerig et al., 2001). In
addition, agreement measures, such as the kappa statistic, have also
been explored (Zijdenbos et al., 1994). In conclusion, nowadays,
there is not a single globally used metric for this purpose.

In our case, to compare the different fusion algorithms and
evaluate the results obtained, we decided for the Jaccard index (JI),
also known as Intersection over Union (IoU) or the Jaccard
similarity coefficient (Piccinini et al., 2020). It is a well-known
metric used for evaluating the similarity of two sample sets (e.g.,
A and B). JI (A and B) is mathematically defined as the size of the
intersection (i.e., |A ∩ B|, the number of overlapping voxels) divided
by the size of the union (i.e., |A ∪ B|) of the sample sets, according to
Eq. 2:

JI A,B( )� A ∩ B| |/ A ∪ B| |� A ∩ B| |/ A| | + B| |− A ∩ B| |( ). (2)

3.3 Results

Table 1 reports the JI values obtained by analyzing the spheroid
dataset (composed by the 10 different sections of the cells randomly
selected, hereafter named Cell#, with # ranging from 1 to 10), and
comparing with the ground truth the result of the different versions
of the fusion algorithms. Precisely, the 10 different versions of the
fusion algorithms compared are

1. Average Smallest And Largest.
2. Average Target From Input (3DCA), with the segmentation

obtained using 3DCA as the target line.
3. Average Target Largest, with the segmentation obtained with

the “Largest” algorithm used as the target line.
4. Average Target Smallest, with the segmentation obtained with

the “Smallest” algorithm used as the target line.
5. Largest.
6. Middle—Average, with the final line computed using the

“Average” algorithm in case of an even number of input
segmentations.

7. Middle—Largest, with the final line computed using the
“Largest” algorithm in case of an even number of input
segmentations.

8. Middle—Smallest, with the final line computed using the
“Smallest” algorithm in case of an even number of input
segmentations.

9. Smallest.
10. STAPLE.

TABLE 1 Jaccard indexes of the fused segmentations obtained with the different algorithms.

Algorithm Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10 Average

Average Smallest And Largest 0.8768 0.9448 0.8667 0.9064 0.8226 0.8775 0.9023 0.9586 0.9067 0.8456 0.8908

Average Target From Input
(3DCA)

0.8045 0.8792 0.8598 0.8475 0.8707 0.8719 0.8902 0.9231 0.7815 0.8406 0.8569

Average Target Largest 0.8318 0.9013 0.8571 0.8238 0.8547 0.8529 0.9146 0.8970 0.7852 0.8529 0.8571

Average Target Smallest 0.7972 0.8733 0.7152 0.9064 0.8211 0.8366 0.9064 0.8953 0.7933 0.7226 0.8268

Largest 0.8782 0.9045 0.8457 0.8240 0.6538 0.9120 0.8791 0.8859 0.8171 0.7485 0.8349

Middle—Average 0.8619 0.8690 0.8466 0.9067 0.8654 0.8081 0.8875 0.8650 0.6846 0.8692 0.8464

Middle—Largest 0.8619 0.8690 0.8466 0.9067 0.8846 0.8010 0.8875 0.8650 0.6846 0.8692 0.8466

Middle—Smallest 0.8190 0.7862 0.8037 0.8497 0.8333 0.7761 0.8688 0.8466 0.6309 0.7891 0.8003

Smallest 0.5238 0.7103 0.4969 0.6354 0.6765 0.6070 0.7813 0.7423 0.5101 0.5156 0.6199

STAPLE 0.8826 0.9178 0.8698 0.9124 0.8333 0.8458 0.9000 0.8841 0.6846 0.8846 0.8615

TABLE 2 Final rank’s positions of different fusion algorithms.

Rank’s position Algorithm Average

1/10 Average Smallest And Largest 0.8908

2/10 STAPLE 0.8615

3/10 Average Target Largest 0.8571

4/10 Average Target From Input (3DCA) 0.8569

5/10 Middle—Largest 0.8466

6/10 Middle—Average 0.8464

7/10 Largest 0.8349

8/10 Average Target Smallest 0.8268

9/10 Middle—Smallest 0.8003

10/10 Smallest 0.6199
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Table 2 reports the rank’s position of the 10 different versions of
the tested fusion algorithms, according to the average value of the JI
(i.e., Table 1, last column) computed by considering together the
10 different cells. Despite the absolute values being dataset-
dependent, it is possible to observe general results just by
considering the rank positions of the fusion algorithms.

First of all, it is worth considering that in a set of data, the outer and
the inner lines are most of the time noisy instances, called outliers.
Translating this general concept to the segmentations, the Smallest and
Largest algorithms, based on the definition of the outer and inner lines,
are outlier-dependent and, in fact, are characterized by some of the worst
performances (position 10/10 and 7/10 in the rank, respectively). All the
algorithms based on the Average of the different segmentations (defined
by considering a specific line as a target) obtained similar values, which
were all reported in the central part of the ranking (rank’s positions 8/10,
4/10, and 3/10). Similarly, all the algorithms based on the selection as
output of the line in the Middle obtained similar results with excellent
absolute JI values, except for the algorithm Middle—Smallest (rank’s
position 9/10) selecting the smallest line in themiddle, in case of an even
number of segmentations (like in this experiment where we used the
fusion algorithms as input of six different segmentations). However,
there is no reliable explanation for a so different result obtained by the
Middle—Smallest (i.e., 9/10) algorithm in comparison to the
Middle—Largest one (i.e., 5/10). Finally, the best results were
obtained using STAPLE (rank’s position 2/10) and Average Smallest
And Largest (rank’s position 1/10). However, STAPLE, considering the
contribution of all the input segmentations, for minimizing the
potentially large uncertainty on the values of the estimated
parameters, is suggested in case of a high number of input
segmentations to be fused (Commowick and Warfield, 2010), while
Average Smallest And Largest, being based just on the outer and inner
lines, is suggested in case of a limited number of segmentations to be
fused. For instance, in the practical case of just two input segmentations
(one of the most recurrent cases in real scenarios),Average Smallest And
Largest would be preferred to STAPLE (absolutely not recommended in
this scenario because it is not designed for working with just two
segmentations). Nevertheless, Average Smallest And Largest, being
based on the Largest and Smallest algorithms, is noise-sensitive.
Accordingly, for filtering the outliers and being more robust, our
general suggestion is the Middle—Average (i.e., 6/10) algorithm that
selects the line in the middle, without interpolating in the case of an odd
number of input segmentations and exploiting the Average algorithm in
the case of an even number of inputs. In addition, it is worth noting that
Average Smallest And Largest (i.e., 1/10), and Middle—Average (i.e., 6/
10) give precisely the same output in the case of just two input
segmentations.

4 Conclusion

Segmenting objects of interest, specifically the segmentation of
tumor areas in medical images, is a crucial and challenging step in
various fields, including oncology and histology. The accuracy of
segmentation is pivotal in guiding further decisions, but the lack of a
standard for identifying object boundaries introduces subjectivity and
variability into the process.

The subjective nature of the segmentation is evident as different
operators can produce varying segmentations for the same tumor

image. Moreover, even the same operator may produce different
segmentations when analyzing the same area at different times.

To solve the difficulty of fusing multiple 2D segmentations to
determine a reliable foreground’s contour line, many algorithms
have been developed. However, none of these algorithms has
achieved validation or standardization, leaving an ongoing
research gap in this field.

In this paper, we are interested in different fusion algorithms
(not segmentation ones). In particular, this study introduces the
TDSFT, a free-to-use, user-friendly tool developed to facilitate the
fusion of multiple 2D segmentations. Precisely, we implemented
different fusion algorithms and compared them using publicly
available datasets composed by different segmentations previously
obtained with segmentation tools already published and validated. It
is worth noting that the TDSFT is not limited to medical applications
but can be employed in any field requiring the combination of 2D
closed lines. It provides an interface for users to choose from
multiple fusion algorithms and offers flexibility for adding new
algorithms through a graphical interface.

To evaluate the performance of the fusion algorithms, experiments
were conducted using a dataset of multicellular spheroid images, JI as a
similarity metric, and 10 different fusion algorithms. The Average
Smallest And Largest and STAPLE algorithms showed promising
results, with their suitability depending on factors like the number
of input segmentations. However, the Middle—Average algorithm was
the one finally suggested because it is a robust choice for filtering outliers
and producing reliable fusion results.

In conclusion, this study contributes to the ongoing efforts to
address the subjectivity and variability in object segmentation by
describing various fusion algorithms and introducing the free-to-use,
user-friendly TDSFT tool. As future work, exploiting the extensibility of
theTDSFT, we would like to implement and test a new algorithm first by
discarding the Largest and Smallest lines for removing probable outliers
and then applying the Average Target From Input, by considering the
line obtained by previously applying theMiddle—Average algorithm as
the target input. This combination would balance the values from all the
input lines (except the outer and inner ones) and would be a good
solution for filtering noise when there are at least three input
segmentations. In addition, we would like to include an optimized
procedure for a parallel analysis of multiple objects.

The TDSFT source code, standalone application for MAC,
Linux, and Windows, video tutorial, documentation, and sample
datasets can be downloaded from the following link: https://
sourceforge.net/p/tdsft.
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