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Efficient Transform Algorithms for Parallel
Ultra-Low-Power IoT End Nodes

Benedetta Mazzoni, Simone Benatti, Luca Benini, Fellow, IEEE, Giuseppe Tagliavini, Member, IEEE

Abstract—Modern IoT end nodes must support computational
intensive workloads at a limited power-budget. Parallel ultra-low-
power architectures are a promising target for this scenario, and
the availability of highly optimized software libraries is crucial
to exploit parallelism and reduce software development costs.
This letter proposes an efficient parallel design of the widely
used STFT and DWT transforms targeting ultra-low-power IoT
devices. We address key performance challenges related to fine-
grained synchronization and banking conflicts in shared memory.
We achieve high throughput (50.95 samples/µs, on average), good
parallel speedup (up to 6.79×), and high energy efficiency (up to
172.55 GOp/s/W) on a cluster of 8 RISC-V cores optimized for
parallel ultra-low-power (PULP) operation.

Index Terms—STFT, DWT, IoT, parallel programming

I. INTRODUCTION AND RELATED WORK

IN recent years, ultra-low-power (ULP) parallel computing
platforms based on the RISC-V instruction set architecture

(ISA) have proved to be an effective solution for Internet of
Things (IoT) end nodes, as an open alternative to proprietary-
ISA microcontroller units (MCUs) (e.g., ARM Cortex-M4)
[1] [2]. The parallel ultra-low-power platform (PULP) [3] is
an open-source hardware project aiming to provide a RISC-
V programmable architecture with the primary goal to meet
the computational requirements of IoT applications within a
power envelope of 10 mW. The recent embodiments of this
architecture include a control core dedicated to I/O and system
management, coupled with a cluster of cores sharing a tightly-
coupled data memory (TCDM). The PULP approach enables
operating the cluster at the energy-optimal operating voltage
(i.e., near-threshold [4]) while achieving high computational
throughput thanks to parallel execution [5].

The availability of efficient shared-memory parallel software
libraries for fundamental algorithmic kernels is a key enabler
to fully exploit ULP platforms and reduce software costs.
For traditional single-core MCUs, CMSIS-DSP [6] is a hard-
ware abstraction layer (HAL) targeting ARM Cortex-M cores,
which provides a set of optimized digital signal processing
(DSP) kernels. A key challenge in developing similar libraries
for PULP is to achieve a good parallel speed-up, which is
essential for obtaining high energy efficiency.

In this letter, we discuss the parallel design of two DSP
algorithms: short-time Fourier transform (STFT) and discrete
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wavelet transform (DWT). DSP applications make pervasive
use of the 1-D floating-point variants of these algorithms:
They enable the extraction of relevant features on time and
frequency domains serving as pre-processing stages for ma-
chine learning methods. In real-life use cases, DWT is used
in [7] to extract features from physiological data in a pattern
recognition application that relies on an embeddable support
vector machine (SVM). STFT is used in [8] for structural
anomaly detection, providing the time-frequency analysis of
current consumption, voltage, and vibrations of industrial
equipment. Since machine learning models adopted for near-
sensor processing, such as multi-layer perceptron (MLP) [9]
and SVM [10], are amenable to lightweight designs executing
in a few thousand cycles, optimizing the pre-processing stages
based on DWT and STFT is crucial to improve performance
and energy efficiency.

The main block of STFT is the fast Fourier transform
(FFT) algorithm. FFTW [11] is the most widespread FFT
implementation, and it is widely used in scientific computing.
However, this library has a complex design, and embedded
system designers do not commonly adopt it for performance
reasons. In most cases, lightweight FFT libraries are not
portable and do not provide optimized parallel support. For
instance, Kiss FFT [12] is parallelized using OpenMP di-
rectives, but it is not optimized. The GNU scientific library
(GSL) [13] provides a parametric implementation of the DWT
algorithm even though it does not provide any support for code
parallelization. Moreover, to the best of our knowledge, there
is no DWT implementation specific to the embedded domain.

In this letter, we discuss three main contributions. First, we
describe an algorithm design for FFT and DWT focused on
performance optimization on ULP IoT end nodes. This goal
requires a fine-grain analysis to maximize the instructions per
cycle (IPC) for each processing thread. We provide specific
insight into this methodology. Second, we provide an experi-
mental assessment on an 8-core PULP cluster with 4 floating-
point units (FPUs), analyzing the impact of the key design
optimizations. Finally, we provide a comparison with a Cortex-
M4 platform and alternative libraries (GSL and Kiss FFT).

II. METHODOLOGY AND DESIGN

A. Parallel programming methodology

Since the cluster cores are independent and execute separate
instruction flows, the programming interface supports the
single-program multiple-data (SPMD) paradigm. The PULP
HAL [14] provides two main concepts: core identifiers and
barriers. The core identifier is a fundamental mechanism to
split the workload among multiple execution flows (parallel
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Fig. 1. Structural and working flow diagrams of STFT and DWT.

orchestration). For instance, programmers can employ loop-
level parallelism using core identifiers into the control expres-
sions (i.e., initialization, condition check, and increment). A
barrier is a HAL function that stops a core until all other cores
arrive at the same execution point. Barriers are synchronization
points that guarantee data consistency between adjacent code
regions (before and after the barrier). The event unit [15]
is a dedicated hardware component providing low-overhead
support for barriers and enabling the adoption of power-saving
policies when cores are waiting. Thanks to this specialized
component, the experimental evaluation in Section III reports
small overheads related to synchronization points.

Fig. 1 depicts the adoption of loop-level parallelism
(parfor) and barriers (barrier) in the design of the
algorithms, further described in the next subsection.

B. STFT and DWT Algorithm Design

Our design of STFT is illustrated in Fig. 1. Input buffer
size, number of data samples, and overlap size are configurable
parameters. The most relevant kernel of the STFT is FFT cal-
culation, based on the mixed-radix variant of the decimation-
in-frequency Cooley–Tukey algorithm, a solution also used
by Kiss FFT and CMSIS. This class of algorithms recursively
breaks down a transform on input with size N = r ×m into
r smaller transforms of size m. Each recursive call is called
a stage, and transforms of size r are generally referred as
butterflies. Our design adopts a mixed-2-8 variant that applies
a radix-8 FFT when the size of the input is a power of eight;
otherwise, it performs one or two preliminary radix-2 stages.

The first FFT stage (N/2 butterflies) can be equally split
among the available cores. Each of the following stages
includes 2s × m transform step, where s is the zero-based
stage index. The butterflies inside a transform step are equally
split among the cores if they are enough to guarantee workload
balancing – i.e., m/r must be greater or equal to the number
of available cores. Otherwise, transform steps are partitioned
in disjoint sets that are distributed among the cores. This
approach guarantees workload balancing in all cases, and it
also minimizes the overhead of the parallel orchestration since
workload distribution is always associated with a single loop.
Each stage requires a single barrier at the end to guarantee
data consistency for the next one.

Decimation-in-frequency algorithms require output reorder-
ing as a final stage. Index remapping is provided by a pre-
computed look-up table so that this task can be equally split
among the cores. However, access to the look-up table and
subsequent swap operations are highly memory-bound and
cause TCDM stalls. To hide this latency, we applied loop
unrolling to the reordering outer loop.

DWT is a time-frequency analysis technique relying on a
pair of recursive convolutions, which decompose the original
signals extracting its low and high frequency contents, referred
to the time domain [16]. As depicted in Fig. 1, for a given
input signal of length N , DWT applies the two convolutions
followed by dyadic downsampling, producing two output
vectors that contain namely approximation (i.e., cA) and detail
(i.e., cD) coefficients. The first convolution applies a low-pass
filter g, the second one a high-pass filter h related to g in a
quadrature relationship as they derive from the same mother
wavelet. The filter coefficients are pre-computed and passed
to the algorithm as input parameters. Initial input data are also
provided for the first level, while approximation coefficients
represent the input of the next level. The filter size (FS) is an
even number equal or greater to two, and the case of FS=2 is
also referred to as Haar wavelet.

In our design, we applied three main optimizations. First,
we implemented a strided convolution routine that performs
convolution and downsampling of both filters in a single step,
reducing the total number of instructions required to compute
cA and cD. Second, we provided a coding variant for the
Haar wavelet, which does not require border paddings and
fully unrolls the last loop to compensate for the small filter
size that induces memory access stalls. Third, the algorithm
copies cA values into the input data structure at the end of
the second loop, reducing the total memory footprint for data
allocation (e.g., GSL requires an additional memory buffer).

We applied loop-level parallelization on the second level.
In the general code variant, this level is further split into three
parts, corresponding to the border and inner data. The size
of the iteration space for the border computation is equal to
FS−1; consequently, an ideal workload balancing of this code
is impracticable when there are more numerous cores than
iterations. Synchronization barriers are required after applying
the filters and after preparing input data for the next level.



IEEE EMBEDDED SYSTEMS LETTERS, VOL. XXX, NO. XX, MONTH XXXX 3

1
.8

4

1
.9

0

1
.9

1

1
.8

9

1
.9

3

2
.4

0 3
.2

9

3
.6

1

3
.3

9

3
.5

5

3
.8

2

5
.0

1

6
.6

7

6
.3

0

6
.7

9

0.00

2.00

4.00

6.00

8.00

128 256 512 1024 2048

S
p

ee
d

-u
p

Data samples

2 cores 4 cores 8 cores

Fig. 2. Speed-up of STFT varying the number of cores and the input size.
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Fig. 3. Speed-up of DWT varying the number of cores, the input size, and
the filter size (FS).

III. EVALUATION

We performed an experimental evaluation using a cycle-
accurate PULP emulator implemented on a Xilinx UltraScale+
VCU118 FPGA board1. We used a configuration with 8 cores
and 4 FPUs, which is the most energy-efficient for near-sensor
applications [17]. We measured execution cycles, instructions,
and stalls for each code region employing hardware perfor-
mance counters. In addition, we performed a power analysis
with Synopsys PrimeTime 2019.12, considering a nominal
voltage of 0.65 V and a frequency of 250 MHz. The metrics
of interest for our analysis are parallel speed-up (sequential
execution time over parallel execution time), throughput (num-
ber of input data samples over total execution cycles) and
energy efficiency (operations performed in a second over power
consumption).

A. Overheads and parallel speed-up

Parallel performance is limited by overheads deriving from
two main sources: stalls in the core pipeline during the
execution of instructions and time spent in synchronization.
Table I reports stalls and synchronization occurrences consid-
ering 8 cores and 2048 data samples. This table also reports
the throughput of the algorithms as an absolute performance
metric. On PULP, pipeline stalls derive from memory latency
(load-use stalls), concurrent accesses to the TCDM banks
(memory contention arbitration stalls), concurrent requests to a
shared FPU (FPU contention arbitration stalls), and instruction
cache misses. Analyzing the cause of stalls provided guidance
for fine-grain tuning of the optimization techniques described
in the previous section. Synchronization happens on barriers
required by the algorithms. As reported in [15], the barrier

1https://github.com/pulp-platform/pulp/tree/master/fpga/pulpissimo-zcu104

TABLE I
INSTRUCTIONS, HARDWARE STALLS, SYNCHRONIZATIONS OCCURRENCES,

AND THROUGHPUT (EXECUTION ON 8 CORES, 2048 DATA SAMPLES).

STFT DWT
FS=2 FS=8 FS=16

Instructions (per core) 20677 3090 12629 23848
TCDM stalls [cycles] 1034 58 610 1539
I-cache stalls [cycles] 504 127 76 189
FPU stalls [cycles] 4992 517 2285 3022
Synchronization occurrences 11 20 20 20
Throughput [samples/µs] 18.81 134.35 32.78 17.86
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Fig. 4. Energy efficiency of STFT varying number of cores and input size.

cost with the event unit is 6 cycles, which implies an average
synchronization overhead of around 1.41%. Without the event
unit, the barrier overhead is 176 cycles (on 8 cores), and the
average synchronization overhead rises to 41.48%.

Fig. 2 reports the parallel speed-up of STFT. Each value
on the x-axis corresponds to a fixed number of input data
samples, while the window overlap does not affect speed-up.
In general, the speed-up increases with data samples since this
trend amortizes the overheads due to loop-level parallelism.
The case of 512 data samples is out of trend because a
preliminary radix-2 stage is not required since 512 is a power
of eight. Table I shows that the 8-cores configuration is mainly
limited by the FPU sharing since the contribution of FPU stalls
(4992) over the total instructions (20677) is around 25%.

Fig. 3 reports the parallel speed-up of DWT. Each bar
provides the values of the speed-up for a filter size (FS) equal
to 2 (light shade), 8 (intermediate shade), and 16 (dark shade).
In general, the speed-up increases with the filter size, but there
are some remarkable exceptions. Executing on 2 cores with a
workload of size 512 or 1024, the speed-up of FS=2 is higher
than FS=8 (label 1). This effect is even more evident when
executing a workload of 2048 data samples on 2 or 4 cores,
where the case of FS=2 becomes the highest speed-up (label
2). This trend is because the parallel orchestration of the Haar
wavelet is more lightweight, as explained in Section II-B.
The 8-core configuration implies additional overheads (i.e.,
TCDM contentions and FPU stalls in Table I) and workload
unbalancing (see Section II-B) hiding this beneficial effect.

B. Energy efficiency

Fig. 4 and Fig. 5 depict the energy efficiency of STFT and
DWT, respectively. This metric grows with the input size when
considering a fixed number of cores. Moreover, it increases by
fixing the input size and changing the number of cores from 1
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TABLE II
COMPARISON WITH GSL AND KISS FFT ON 8-CORE PULP (CYCLES).

Our FFT Kiss FFT Our DWT (FS=2) GSL DWT (FS=2)
27218 2293231 3881 67973
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Fig. 5. Energy efficiency of DWT varying number of cores and input size.

to 4, but it presents a trend inversion passing from 4 to 8 cores
in DWT. Again, this is due to the additional overheads implied
by the 8 cores configurations, together with the higher power
consumption. This effect can be amortized by computing a
bigger input set. For instance, the energy efficiency is almost
equivalent between the 4-core and 8-core configurations for
2048 samples.

C. Comparison with other libraries and architectures
Table II compares the execution time of our solution with

the ones of the libraries introduced in Section I, namely GSL
and Kiss FFT, executing on an 8-core PULP cluster with an
input size of 2048 samples. GSL only supports Haar wavelets
(FS=2). We applied minimal modifications to these algorithms
to use the PULP HAL. Overall, our design outperforms other
libraries, thanks to our domain-specific code optimizations and
parallel design. The design of Kiss FFT applies parallelization
only at the outer loop level (transform steps), which does
not guarantee a perfect workload balancing when the number
of cores is higher than four, with detrimental effects on
performance. Both algorithms do not employ the optimization
techniques (e.g., loop unrolling) described in Section II.

We also performed a comparison between PULP (8-core
configuration) and Cortex-M4, using an STM32F401C-DISCO
development board running at 1.7 V and 84 MHz, with
an average power consumption of 20 mW. The STFT im-
plementation for the Cortex-M4 platform makes use of the
arm_rfft_fast_f32 function from CMSIS-DSP, which
is partially written using inline assembly and is the most
efficient FFT implementation available for this platform. The
DWT implementation for Cortex-M4 uses our library since a
preliminary analysis highlighted that it is 60% faster than GSL.
Fig. 6 shows that parallel execution on the PULP platform
outperforms Cortex-M4 by one order of magnitude.

In terms of energy efficiency, PULP achieves 145.11 and
172.55 Gop/s/W for STFT and DWT, respectively, as reported
in Figs. 4 and 5. Considering the performance measured on
Cortex-M4 (71.4 and 75.6 Mop/s), it reaches 3.42 and 3.63
Gop/s/W, about two orders of magnitude worse than PULP.

IV. CONCLUSION

In this letter, we propose an optimized design for STFT
and DWT algorithms targeting parallel ULP IoT end nodes.
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Experimental results assess that both algorithms achieve high
parallel speed-ups, throughput, and energy efficiency on the
PULP platform, outperforming a conventional single-core
MCU in terms of performance and energy efficiency. These
algorithms are pervasive in many applications running on IoT
end nodes. For this reason, high optimization is crucial to
satisfy the ever-increasing requirements of future applications.
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