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1 Introduction

Slow-roll inflation requires a scalar potential with a sufficiently flat region, as quantified
by the smallness of the slow-roll parameters. While it is not hard to find potentials with
this feature in effective quantum field theory [1–4], realizing them in the 4d effective field
theory (EFT) derived from string theory is challenging [5–10]. This may be related to the
well-known difficulties of realizing de Sitter space in string theory.

However, as pointed out in [8–12], flat potentials arise rather naturally in the Kähler
moduli sector of type IIb flux compactifications, due to the existence of approximate rescaling
shift symmetries for all moduli orthogonal to the overall volume. In this framework, the
volume can be stabilized at a sufficiently large value and an appropriate uplift to an almost-
Minkowski vacuum can be realized. Assuming that the challenge of a realistic large volume
compactification has been met, a suitable inflationary plateau can appear in many cases [13–
23].1 In this paper we derive a new and particularly simple model within this general class of
constructions: our inflaton is a blow-up mode whose potential is generated by string loop
corrections to the Kähler potential.

1For constructions of inflection point inflation relying on the volume modulus as the inflaton see e.g. [24–29].
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We recall that, due to the no-scale structure of type IIb flux compactifications, the
naively dominant 1/V2 terms in the scalar potential cancel [30]. As a result, the leading-order
Kähler moduli scalar potential is generated by O(α′3) effects and scales like [31]

V ∼ |W0|2

V3 , (1.1)

where W0 is the constant superpotential generated by fluxes and V is the volume modulus.
More specifically, we assume that we are in the regime of validity of the Large Volume
Scenario (LVS) [32, 33]. This implies that the total Calabi-Yau volume takes the form
V = Ṽ(τI)− τ

3/2
s , with 4-cycle Kähler moduli {τI} = {τ0, . . . , τn} and τs. We may eliminate

one of the 4-cycle variables in favor of the total volume V such that the scalar potential
takes the form V = V (V, τi, τs), where now {τi} = {τ1, . . . , τn}. We will always be in the
regime τ

3/2
s ≪ V, referring to V as the volume, to τs as the small-cycle modulus, and to the

{τi} as the ‘additional Kähler moduli.’ A key-result of the LVS proposal [34] is that, under
rather general assumptions, τs and V get stabilized while, in the region τ

3/2
s ≪ τ

3/2
i ≲ V , the

potential for the τi, i = 1, . . . , n, remains flat at leading order: V (V, τi, τs) = V (V, τs).
At subleading order, perturbative and non-perturbative τi-dependent corrections do in

general arise. When the τi take large values, non-perturbative effects of the form e−2πτi/Ni

are suppressed by τi ≫ 1. Another source for the potential of the τi moduli are perturbative
corrections to the Kähler potential. However, as studied in [34–40], string loops enjoy an
extended no-scale structure which makes them in general subleading with respect to (1.1).
Additional perturbative corrections arise from higher F-term O(α′3) corrections but these
come along with a larger suppression power of V [41].

The leading-order flatness described above has allowed for the construction of several
inflationary scenarios for the simplest situation with a single flat direction: the original
model of [13, 14] where inflation is driven by a blow-up mode lifted by non-perturbative
corrections, fibre inflation models [15–20] where the inflaton is a bulk fibre modulus with a
potential generated by string loops or higher α′3 effects, and the models of [21–23] where
the inflationary potential is generated by poly-instanton effects and the inflaton is either a
bulk fibre divisor or a rigid 4-cycle with Wilson lines.

As noted in [15], loop corrections represent a potential problem for the original
model [13] since they would destroy slow-roll. We will estimate that this is indeed the
case if the coefficient of these loop corrections is at least of order 10−6. Note that inflaton-
dependent open string loops could be absent by brane construction but, as pointed out in [40],
inflaton-dependent closed string loops are unavoidable, unless the effective field theory in
the region close to the inflaton 4-cycle is effectively N = 2 (a situation which is hard to
envisage without eliminating the non-perturbative superpotential term). In this paper we
will however show that, going to larger field values which are still well within the Kähler
cone, string loops become sufficiently suppressed and can naturally lead to slow-roll. We
note that such a possibility was pointed out in [8], but has not been analyzed.

Our present proposal builds on the following key observation: consider the situation
with a single leading-order flat direction τϕ which we assume to be a blow-up mode. Then,
very generically and without any particular assumption about the functional form of loop
corrections, the LVS setting allows for inflation in a regime where τϕ ≲ V2/3. To see this,
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let us disregard the stabilized modulus τs, treat the volume as a fixed parameter, V ≫ 1,
and write the loop-corrected potential as:

V ∼ |W0|2

V3

[
O(1)− cloop

V1/3 f

(
V2/3

τϕ

)]
. (1.2)

Here f is a generic function of the variable V2/3/τϕ and cloop is a numerical factor to be
discussed in more detail below.

Crucially, the τϕ-independent term |W0|2/V3 ×O(1) in (1.2) arises because we assume
that, at the end of inflation, the additional Kähler modulus τϕ settles in a stable minimum.
For a blow-up cycle τϕ, such a minimum is generically induced by non-perturbative effects,
in analogy to the minimum for τs. Alternatively, a stabilization by perturbative effects is
also possible [34, 42, 43]. The depth of this minimum is ∼ |W0|2/V3, which is larger than
the loop-induced potential that in the inflationary region scales as ∼ |W0|2/V10/3. We are
thus dealing with a relatively flat inflationary plateau. Its profile is determined by string
loops and the relation between τϕ and the canonically normalized inflaton ϕ. Together this
suggests the name ‘Loop Blow-up Inflation’, characterizing the main features of our model.

Recalling that the metric ∂2K/(∂τI∂τJ) on Kähler moduli space is homogeneous of
degree −2 in the τI , one easily shows that:

ϵ ≡ 1
2

( 1
V (ϕ)

dV (ϕ)
dϕ

)2
∼
(

cloop
V1/3

df

dϕ

)2
, η ≡ 1

V (ϕ)
d2V (ϕ)

dϕ2 ∼ cloop
V1/3

d2f

dϕ2 . (1.3)

In the region in moduli space where τϕ ≲ V2/3, we have f ′′ ∼ f ′ ∼ O(1). Slow-roll inflation
is hence parametrically guaranteed by V ≫ 1.

Note that all of the above goes through if, on top of the blow-up mode τϕ, there are
(n − 1) additional Kähler moduli. The inflationary plateau is still sufficiently flat, being
described by (1.2) where now f is a generic function of the n variables V2/3/τi by performing
the replacement f

(
V2/3/τϕ

)
→ f

(
V2/3/τi

)
. The crucial O(1) term in (1.2) arises when, after

the end of inflation, all the τi eventually settle in a deep minimum. We emphasize that the key
result of (1.3) continues to hold, with f that now has to be interpreted as the single-variable
function obtained from f(V2/3/τi) by restriction to the canonical field ϕ parameterizing
the inflationary trajectory on the n-dimensional plateau. Of course, all moduli need to
be stabilized which, while it will in general happen due to either loop or non-perturbative
effects, does not allow us to be as explicit as in the case of a single field τϕ. Moreover,
a multi-field analysis would require to study the evolution of isocurvature perturbations,
which is beyond the scope of our paper.

We therefore focus on the case of just one blow-up modulus τϕ and demand that the
overall volume remains approximately fixed during inflation, i.e. that our inflationary model
is effectively single-field. This can be achieved if the effects that stabilize τϕ are subdominant
with respect to the leading order potential even when τϕ is close to the minimum. When τϕ

is fixed by non-perturbative effects, these can be subdominant due to 3 reasons: (i) leading
order instanton contributions could be absent due to too many fermionic zero modes or a
prefactor proportional to vanishing matter field VEVs (as in the presence of gauge fluxes);
(ii) the rank Nϕ of the condensing gauge group relevant for τϕ could be much smaller than
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the rank Ns relevant for τs: Nϕ ≪ Ns; (iii) the Calabi-Yau could feature ns ≫ 1 small-cycle
moduli τs, as in [13]. On the other hand, when τϕ is fixed by string loops,2 the extended
no-scale cancellation guarantees that these contributions are suppressed.

The rest of this paper is structured as follows. In section 2 we study the simple special
case with a single additional Kähler modulus, τi ≡ τϕ, which, as explained above, is of blow-up
type. In this setting the form of the dominant loop correction in the regime τs ≪ τϕ ≲ V2/3

is actually known from an explicit analysis in [40], consistently with the extrapolation from
the toroidal orientifold case by the conjecture proposed in [38]. Then, approaching the regime
of τϕ ≲ V2/3 from the side of small τϕ, we may hope to maintain control of the inflationary
potential while also achieving realistic phenomenology. This allows for a very explicit case
study where we derive the inflationary predictions for the simplest realization of Loop Blow-up
Inflation. The setting may be viewed as deriving from the original model [13] by taking the
(naively fatal) loop corrections into account and saving inflation at the price of moving to
much larger values of τϕ. Section 3 deals with questions of control over the EFT after finding
the values of the microscopic parameters which match CMB data. We continue in section 4 by
first exploring more general possibilities for the functional form of the loop corrections, and
then by quantifying how small loop corrections would have to become to make a transition to
the original model of [13] where the inflationary potential is generated by non-perturbative
effects. Finally, a detailed phenomenological analysis, including reheating, dark radiation
constraints and an estimate of the inflationary parameters is given in section 5.

2 Loop blow-up inflation

2.1 The simplest model

Our goal is to implement the central idea outlined in section 1 using a concrete and simple
example. For this, we choose the volume to have the form:

V = Ṽ(τb, τϕ)− λsτ3/2
s = τ

3/2
b − λϕτ

3/2
ϕ − λsτ3/2

s . (2.1)

In other words, we assume that in addition to the big and small cycles τb and τs of the
LVS [32, 33], there is just one further 4-cycle τϕ and that the latter is of blow-up type.

Let us discuss our setup and notation in more detail. In the above, τi are the real
parts of the Kähler moduli

Ti = τi + i ci , i ∈ {b, s, ϕ} , (2.2)

with ci their axionic partners and the constants λs and λϕ represent ratios of triple intersection
numbers. The Kähler potential K, including the leading α′3 correction [31, 32], reads

K = Kcs − 2 ln
(
V + ξ̂/2

)
, (2.3)

with Kcs depending only on complex structure moduli and axio-dilaton. Since these
are stabilized by fluxes [30], Kcs can be treated as a constant. Furthermore, we have

2As proposed in [34, 42, 43], τϕ might be fixed by string loops relative to τs which is stabilized non-
perturbatively.
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ξ̂ = −ζ(3)χ
/
[2 (2π)3 g

3/2
s ], where χ denotes the Calabi-Yau Euler number. The superpo-

tential is given by

W = W0 + As e−asTs + Aϕ e−aϕTϕ , (2.4)

where the constant contribution W0 is generated by fluxes and the non-perturbative corrections
arise from E3-branes (as, ϕ = 2π) or through gaugino condensation (as, ϕ = 2π/Nϕ). The
prefactors As and Aϕ are O(1) numbers which depend on the complex structure moduli.

The super- and Kähler potential give rise to the F -term scalar potential for the Käh-
ler moduli

V (V, τs, τϕ) = VLVS(V, τs) + V̂

[
Aϕ

√
τϕ e−2aϕτϕ

V
− Bϕ

τϕ e−aϕτϕ

V2

]
, (2.5)

where VLVS is the scalar potential of the underlying 2-moduli LVS model

VLVS(V, τs) = V̂

[
As

√
τs e−2asτs

V
− Bs

τs e−asτs

V2 + 3ξ̂

4V3

]
, (2.6)

and
V̂ ≡

(
gseKcs

8π

)
W 2

0 , Ai ≡
8(aiAi)2

3W 2
0 λi

, Bi ≡ 4ai|Ai|
W0

, (2.7)

with i = s, ϕ labelling the blow-up cycles. Famously, the potential (2.6) has an AdS minimum
at τs ∼ (ξ̂/2λs)2/3 and V ∼ exp(asτs). In the full potential (2.5), the additional τϕ-dependent
terms stabilize τϕ such that aϕτϕ ∼ lnV, analogously to τs. Moreover, if we assume [13, 44]

λϕa
−3/2
ϕ ≪ λsa−3/2

s , (2.8)

then the presence of τϕ and its stabilization do not affect the values of V and τs derived
from (2.6). This remains true even during inflation, when τϕ is displaced from its late-time
AdS minimum. The AdS minimum may be uplifted to a Minkowski minimum by adding
to the potential in (2.5) a positive term which can be parametrized as:

Vup(V) =
V̂ D
V2 . (2.9)

This term is such that (V + Vup)
∣∣
minimum = 0.3 We note that, while the feasibility of the

famous anti-D3-brane uplift [45, 46] has been challenged in this context [47–52], we are here
simply assuming that some form of viable uplift for the LVS can be realized, as in [53–61]
which proposed alternative uplifting mechanisms.

Note that we have arranged the expression for the potential in (2.5) so that one can
clearly distinguish the standard LVS scalar potential VLVS, independent of the additional
modulus τϕ, and the non-perturbative corrections giving τϕ a non-trivial potential. If no
further terms were added, τϕ could be the inflaton of the original model [13]. In this case,
an inflationary plateau appears in the region where τϕ is large enough for the exponential
terms to become sufficiently small. Our proposal is different: we will include loop corrections,

3For a precise determination of the constant D see eq. (4.7) of [44].
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making the potential for τϕ less flat but, in the regime where τϕ comes close to V2/3, still
suitable for slow-roll inflation. In fact, we will argue that this is an unavoidable outcome.
In other words, ‘blow-up inflation’ [13] necessarily turns into a variant of what we would
like to call ‘Loop Blow-up Inflation’.

Let us be more explicit by specifying the leading loop correction to the potential, as it
arises from a loop effect in the Kähler potential K:

δVloop ≃ − V̂

V3
cloop
V1/3 f

(
V2/3

τϕ

)
. (2.10)

Here f is a generic function of V2/3/τϕ. The full potential V hence reads:

V (V, τs, τϕ) = VLVS(V, τs) + Vup(V) + V̂

[
Aϕ

√
τϕ e−2aϕτϕ

V
− Bϕ

τϕ e−aϕτϕ

V2

]
+ δVloop . (2.11)

Two key points have to be made concerning this potential: one concerning our claim that a
τϕ-dependent correction δVloop is unavoidable, and another, closely related point concerning
the form of this correction as well as the form of the function f in (2.10).

We start with the claim that such a correction is unavoidable. Indeed, to realize the
minimum which stabilizes τϕ after inflation, we require that W receives a non-perturbative
correction ∼ exp(−aϕTϕ), cf. (2.4).4 Requiring this non-perturbative correction implies the
presence of an O-plane in the vicinity of the blow-up cycle τϕ in order to break SUSY locally
to N = 1.5 As has been discussed in detail in [40], this locally reduced SUSY then also
implies the presence of the claimed loop effect.

Since this last point is crucial, we want to provide more details. Recall first that it has
been argued in EFT language that corrections suppressed by V10/3 arise from 10d field-theory
loops in N = 1 CY orientifold models [35, 34]. At the same time, this has been derived in a
very impressive, explicit string-loop calculation, which is however necessarily restricted to
torus-based geometries [36]. A generalization to the CY case was conjectured in [38], and [39]
provided a low-energy interpretation of one-loop open string corrections by matching them
with the one-loop Coleman-Weinberg potential. This was developed and partially debated
in [40]. We provide more details on this and on the effect of fluxes on the loop corrections in
appendix A. Not to lose focus, we state here only that, even in the absence of open string
loops as in the case when the relevant cycle is not wrapped by any D7-brane, one-loop closed
string effects unavoidably induce a correction of the type given in (2.10) as soon as the
relevant geometry breaks SUSY to N = 1.

4If the non-perturbative corrections to W are very suppressed (as in the case where leading order instantons
vanish), another possibility to generate the minimum for τϕ would be to use additional loop corrections —
cf. footnote 2 in the Introduction.

5Note that fluxes can break SUSY to N = 1 as well. However, this does not introduce non-perturbative
corrections to W . The reason is that fluxes become diluted as the volume V = Re Tb grows. Hence the
corrections would have to be of the form A(V) exp(−aϕτϕ). This is ruled out by the holomorphy of W in Tb.
We thank T. Weigand for pointing this out. A related argument can be found in section 3.2 of [13].

It is conceivable that, even in the absence of a local O-plane, a non-perturbative minimum stabilizing τb

arises due to Beasely-Witten F -terms [62, 63]. We expect that in this case both the height of the inflationary
plateau and the size of loop corrections on the plateau are reduced. Whether this can lead to a realistic model
of inflation remains to be seen.
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Moreover, the precise functional form of f in (2.10) in an explicit Calabi-Yau setting
is unknown. Yet, in the regime where a blow-up cycle τϕ is smaller than any other nearby
cycle, one can argue in effective field theory for a loop correction depending on τϕ only and,
through Weyl rescaling of the 4d metric, on V. As estimated in [39] for open string loops
and as derived in [40] for closed string loops, this leads to:

f ≃ V1/3
√

τϕ
and hence δVloop ≃ − V̂

V3
cloop√

τϕ
. (2.12)

Here any unknown O(1) factors in f have been absorbed in cloop. We also note that this
numerical factor, which does not involve gs, is expected to be small in (higher-dimensional)
analogy to the familiar loop suppression factor 1/(16π2) of 4d field theory. Reference [40]
derives the value 1/(2π)4 from the explicit torus orbifold results of [36]. Alternatively, an
identification of the relevant cutoff with the Kaluza-Klein scale naively given by Mp/(τ1/4

ϕ

√
V),

allows one to use the 4d value 1/(16π2). We will use the latter, more conservative value.
As explained above in relation to (2.8), we may choose CY data such that our potential

inflaton τϕ can roll while V and τs remain stabilized (up to small shifts) [13, 44]. We may
then work with a potential depending on τϕ only:

V (τϕ) = V0

[
1 +Aϕ

V2

β

√
τϕ e−2aϕτϕ − Bϕ

V
β

τϕ e−aϕτϕ − cloop
β
√

τϕ

]
. (2.13)

Here we defined

V0 ≡ [VLVS(V, τs) + Vup(V)]
∣∣∣
minimum

= V̂ β

V3 , (2.14)

with β given by [44]:

β ≃ 3
2a

−3/2
ϕ λϕ (lnV)3/2 . (2.15)

The constant β encodes the proper adjustment of the uplifting term (2.9), ensuring that V0
precisely compensates the negative value arising from the two exponential terms in (2.13)
after minimization in τϕ. Obviously, the resulting value of β is corrected due to the presence
of the cloop term, but this is not important at our level of precision.

We identify the inflaton ϕ with the canonically normalized field corresponding to τϕ:

ϕ =
√

4λϕ

3V τ
3/4
ϕ . (2.16)

In terms of ϕ, the full inflationary potential (2.13) has several regimes which allow to realize
slow-roll inflation. To begin this discussion, we present in figure 1 a plot of our potential (2.13)
for different values of cloop. The orange curve corresponds to cloop = 0 and is adjusted such
that the minimum is at zero energy. The blue and green curves have positive and negative
cloop respectively. Obviously, when applying either of them to cosmology, the constant term
must be adjusted such that its minimum (rather than that of the orange curve) is Minkowski.
Note that we used extreme values for cloop in figure 1 to make the loop effect more visible.
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Figure 1. Plot of the potential (2.13) for cloop = ±10 and cloop = 0.

As is well-known and also visible in the plot, the pure blow-up case with cloop = 0 has a
slow-roll region which starts relatively close to the minimum. The reason is that the potential
approaches a constant exponentially fast. As we argued above and will quantify later in
section 4.2, the loop correction destroys this slow-roll region if cloop ≳ 10−6. In case cloop > 0,
slow-roll can then be regained at much larger ϕ. For cloop < 0, this is impossible.

For the case cloop ≳ 10−6, if τϕ is displaced within the regime τs ≪ τϕ < τb so that the
two exponential terms in (2.13) can be neglected, the potential in terms of ϕ takes the form:

V (ϕ) = V0

(
1− b cloop

ϕ2/3

)
where b ≡ 1

β

(4λϕ

3V

)1/3
≡ σϕ

βV1/3 . (2.17)

This characterizes the slow-roll regime in our simplest scenario which relies on loop corrections
to drive inflation.

In the rest of this section and section 3, we assume that the approximate potential
of (2.17) can be used in the inflationary regime. This implies in particular that τϕ is small
enough such that the leading-order term in the expansion of f in τϕ in (2.12) is sufficient.
Yet, we want to emphasize that this is merely one regime in which slow-roll can be realized.
In section 4, we study two additional slow-roll regimes: the regime where subleading terms
in the small-τϕ expansion of f are relevant, and the regime where loop corrections become
negligible due to a small value of cloop.

2.2 Inflationary dynamics

In this subsection we assume that the approximate potential (2.17) is sufficient to describe
the observable part of slow-roll inflation. This implies that the exponentially suppressed
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terms are negligible, which will always hold as long as cloop is not too small. It also relies
on the requirement:

τϕ ≲ V2/3 or equivalently ϕ ≲ 1 , (2.18)

in order to realize inflation within the Kähler cone. The requirement that τϕ is far away
from the walls of the Kähler cone during the observable ∼ 52 efoldings of inflation constrains
cloop from above.

The slow-roll parameters following from the potential (2.17) read:

ϵ = 1
2

(
Vϕ

V

)2
≃ 2

9
(b cloop)2

ϕ10/3 , (2.19)

η = Vϕϕ

V
≃ −10

9
b cloop
ϕ8/3 . (2.20)

We can see that for small values of (b cloop) a slow-roll regime can be realized. With the
parameters ϵ and η at hand, we can determine the spectral index ns, the tensor-to-scalar
ratio r and the number of efoldings Ne:

ns = 1 + 2 η − 6 ϵ ≃ 1− 20
9

b cloop

ϕ
8/3
∗

, (2.21)

r = 16 ϵ ≃ 32
9

(b cloop)2

ϕ
10/3
∗

, (2.22)

Ne =
∫ ϕ∗

ϕend

V

Vϕ
dϕ ≃ 9

16
ϕ

8/3
∗

b cloop
, (2.23)

where ϕend and ϕ∗ denote respectively the values of the inflaton field at the end of inflation
(where ϵ ≃ 1) and at the scale of horizon exit. In (2.23) we used ϕend ≪ ϕ∗.

Based on the formulae above, we will aim to match cosmological constraints in the
next section. Specifically, we need to ensure the right number of efoldings Ne and the right
amplitude of primordial density fluctuations Ãs. These requirements will fix ϕ∗ and V in
terms of Ne and Ãs. The hope is now that the large parameters Ne and the inverse spectrum
normalization Ã−1

s are sufficient to make the volume V large enough to realize a controlled
LVS model. At the same time, the condition ϕ∗ ≲ 1 has to be maintained.

3 Control and constraints

In this section we implement phenomenological constraints on the microscopic parameters
of our loop blow-up inflation model, focusing on its simplest realization. The inflationary
parameters specific to this scenario have been obtained in section 2.2. Our primary objective
is to assess whether the modulus τϕ corresponding to the inflaton remains inside the Kähler
cone, which is equivalent to ϕ ≲ 1. In section 3.1, we derive formulas for ϕ∗ and V in terms of
the number of efoldings Ne and the amplitude of the density perturbations Âs. Following this,
section 3.2 will show, using the number of efoldings, Ne ≃ 52, and typical values of the volume,
V ∼ O(104), derived in section 5, that our model indeed remains in the controlled regime.
Moreover, in section 3.3 we argue that achieving a Minkowski vacuum via anti-D3-brane
uplift is challenging due to 10d curvature corrections.
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3.1 Matching cosmological data

First, we will discuss how V and ϕ∗ are constrained by cosmological observables. Our first
constraint arises from matching the amplitude of primordial density fluctuations Ãs. The
spectrum of scalar density perturbations ∆2

s is defined by (cf. eq. (1.58) in [7])

∆2
s = Ãs

(
k

k∗

)ns−1
, (3.1)

where the amplitude Ãs was measured by Planck [64]:

Ãs × 109 = 2.105± 0.030 . (3.2)

We also have (cf. eq. (2.42) in [7])

∆2
s = 1

24π2
V

ϵ

∣∣∣∣
ϕ=ϕ(k)

, (3.3)

where V is the scalar potential. Evaluating (3.3) at ϕ(k∗) = ϕ∗ is thus equivalent to:

V 3

V 2
ϕ

∣∣∣∣∣
ϕ=ϕ∗

= Âs ≡ 12π2Ãs ≃ 2.5× 10−7 . (3.4)

Using the potential (2.17) and the approximation 1− cloopbϕ
−2/3
∗ ≃ 1 in (3.4) yields:

9V0
4

ϕ
10/3
∗

(b cloop)2 = Âs . (3.5)

Recall that V0 and b contain the volume V , cf. (2.14) and (2.17). Thus, we interpret (3.5) as
a relation between the value of the inflaton at horizon exit ϕ∗ and the volume V.

In a second step, the required number of efoldings Ne is determined by the post-inflationary
history specific to the inflation model. We will perform this analysis for our particular model
in section 5, where we will find Ne ≃ 51.5-53 depending on the underlying brane setup. Thus,
we can essentially treat Ne as a fixed constant and interpret (2.23) as a second constraint
on ϕ∗ and V. The two relations (2.23) and (3.5) can be solved for ϕ∗ and V: first, we
solve (2.23) for V in terms of ϕ∗:

V = A

ϕ8
∗

, A ≡
(16Neσϕcloop

9β

)3
. (3.6)

Next, inserting this expression for V in (3.5) we find:

ϕ∗ =
(
BA7

) 1
66 , B ≡

(
4Âsσ2

ϕc2
loop

9β3V̂

)3

. (3.7)

Thus, ϕ∗ and V are expressed in terms of A and B. Using the definitions of A and B gives

ϕ∗ =
(
217π

38

) 1
11
[

Âs N7
e (σϕ cloop)9

NQ β10

] 1
22

, V =
[

1
144π8

N5
e N4

Q β7

Â4
s (σϕ cloop)3

] 1
11

, (3.8)
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where we introduced the convenient parameter

NQ ≡ 2πgseKcsW 2
0 , (3.9)

which contains all W0 and gs dependencies. Note that the quantity NQ is bounded by the
negative tadpole −Q3 of the orientifold [65]:

NQ < −Q3 ∼ O(100) . (3.10)

Hence our ability to raise V and lower ϕ∗ by using large NQ is limited. In type IIb models
with local D7-tadpole cancellation, an upper bound on −Q3 follows from the Lefschetz fixed
point theorem [66–68], relying solely on the Hodge numbers of the CY. The largest numbers
from the Kreuzer-Skarke database [69] imply a maximum at −Q3 = 252, which was also
explicitly realized in orientifold models in [70].

Parametrically, a small value for ϕ∗ and a large volume V can be achieved due to the
small amplitude Âs and the small factor cloop. In addition, NQ ∼ O(100) can provide further
but limited improvement. For illustrative purposes, let us adopt the following natural choice
of microscopic parameters:6

λϕ = 1 , cloop = 1/(16π2) , β = W0 = gs eKcs = 2 ⇒ NQ = 16π . (3.11)

For this parameter choice and Ne ≃ 51.5-53, (3.8) reduces to:

ϕ∗ = 0.06N7/22
e ∼ O(0.2) and V = 1743N5/11

e ∼ O(104) . (3.12)

Thus, one may say that Loop Blow-up Inflation is typically characterised by ϕ∗ ∼ O(0.2) and
V ∼ O(104). Compared with the original model based on non-perturbative corrections [13],
ϕ∗ is much larger while V is slightly smaller.

3.2 Kähler cone constraints

We now want to estimate whether we can realize slow-roll, remain inside the Kähler cone and
simultaneously match the constraints discussed in section 3.1. As an illustrative example
and without loss of generality, we take the explicit construction of [71] which features a CY
volume of the form (setting one exceptional divisor to zero size)

V = 1
9

√
2
3
(
τ

3/2
b −

√
3 τ3/2

s −
√
3 τ

3/2
ϕ

)
, (3.13)

with the following relations between 4-cycle and 2-cycle volumes

τb =
27
2 t2

b , τs = 9
2 t2

s τϕ = 9
2 t2

ϕ , (3.14)

and Kähler cone conditions

tb + ts > 0 , tb + tϕ > 0 , ts < 0 , tϕ < 0 . (3.15)
6Imposing perturbative control by requiring gs ≲ 0.2 implies, for our parameter choice, eKcs ≳ 10.
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The canonical normalization (2.16) therefore becomes

τϕ =
(√

3
4

)2/3

V2/3ϕ4/3 ≃
( 1
18
√
2

)2/3
τb ϕ4/3 , (3.16)

where in the second equality we have approximated V ≃ 1
9

√
2
3 τ

3/2
b . We can then rewrite (3.16)

in terms of the 2-cycles as

|tϕ|
tb

=
( 1
2
√
6

)1/3
ϕ2/3 ≃ 0.6ϕ2/3 . (3.17)

Evaluating this ratio at horizon exit we find

|tϕ∗ |
tb

≃ 0.6ϕ
2/3
∗ ≃ 0.2 for ϕ∗ ≃ 0.2 , (3.18)

which implies that the whole inflationary dynamics takes place well inside the Kähler cone
with |tϕ| ≪ tb. For V ∼ O(104), one has |tϕ∗ | ∼ O(2.5) < tb ∼ O(13).

3.3 10d curvature corrections

Furthermore, we face another consistency constraint on the volume V if the uplift mechanism
relies on warped throats. In the case of anti-D3-uplift, warped throats are present and we have
to take a correction into account which arises as a combination of the leading α′3-correction
and a non-constant warp factor [47, 48]. Control over these corrections can be assured if the
parameter cN , as defined in (3.9) of [48], satisfies cN ≫ 1. The parameter cN is given by

cN = V2/3

N

(2λs)2/3

10 as ξ̂2/3
, (3.19)

where N denotes the D3-tadpole contribution from the fluxes in the throat.7 We can
rewrite (3.19) purely in terms of the volume V

cN = V2/3

N

1
10

1
lnV , (3.20)

since τs stabilizes V at V ∼ exp(asτs) where in addition τs ∼ ξ̂2/3/(2λs)2/3. Solving the above
equation approximately by neglecting the lnV contribution yields:

V = (10NcN )3/2 . (3.21)

The requirement of control, i.e. cN ≫ 1, hence constrains V to satisfy

V ≫ (10N)3/2 . (3.22)

The minimal value for N which allows for an anti-D3-brane uplift can be obtained from
the parametric tadpole constraint (PTC) [48]. To obtain Nmin we use the minimal value

7The relation (3.19) was derived using the volume in the global LVS minimum. However, as we already
discussed in section 1, this is sufficiently similar to the volume V during inflation.
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for gsM2 = 144 from [50, 51] and apply the PTC [48] which gives Nmin ≈ 240 such that
we find the following lower bound on V:

V ≫ 105
(

N

240

)3/2
. (3.23)

Note that in the derivation of (3.22) we neglected the logarithmic volume contribution and
in the determination of Nmin we further omitted the subleading terms of the PTC. Including
any of these corrections will substantially worsen the bound (3.23) on V for our application.
Therefore, if we insist on using anti-D3-brane uplift, our inflation model may run into trouble
as our volume will not be large enough, cf. (3.12). However, this constraint does not apply to
alternative uplift mechanisms, like D-term effects [56], dilaton-dependent non-perturbative
contributions [55, 57], T-branes [58] or non-zero F-terms of the complex structure moduli [59–
61]. In addition, this constraint might not apply to another scenario which we will discuss in
section 4.1 where we will go to the regime ϕ ∼ O(1) including subleading corrections.

4 Further inflationary regimes

The specific expression (2.17) represents only one of the possible regimes in which the general
potential (2.10) (with the loop correction defined in (2.11)) can realize slow-roll inflation. So
far, we assumed that this loop correction dominates over the exponential terms and thus
represents the leading effect breaking the flatness of the potential. At the same time, we
have remained in the small blow-up regime to maintain control over the explicit form of the
function f , as specified in (2.12). There are two alternative regimes, which arise as follows:

First, we may leave the small blow-up regime by going to ϕ ∼ O(1). In doing so we lose
control over the explicit functional form of the loop correction. However, as we approach this
regime from small values of ϕ, we can expand f around the point τϕ/V2/3 = 0, introducing
subleading corrections and incorporating them into our analysis. In section 4.1 we will argue
that a whole class of inflationary models might arise in this regime. Second, it is possible
that the loop factor cloop is so small that we can disregard loop corrections completely. This
would bring us back to the original proposal of [13]. In section 4.2 we will determine the
critical value of cloop where this transition occurs.

4.1 Subleading corrections

In this section we consider the first alternative regime of the general potential (2.11), which
arises by moving to larger field values, ϕ ∼ O(1). This implies a departure from the specific
functional form (2.12) of the leading loop correction. We assume that the leading loop
correction can be interpreted as the first term of an expansion of f in (2.10) in terms of the
2-cycle volume √

τϕ. Symbolically, the function f then takes the form:

f ≃ V1/3
√

τϕ

(
1 +

√
τϕ

V1/3 + τϕ

V2/3 + . . .

)
. (4.1)

The additional terms in f modify the potential (2.17) as follows:

V = V0

(
1− cloop b

[ 1
ϕ2/3 + a+ b ϕ2/3 + . . .

])
. (4.2)
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Here we introduced constants a, b which generically should be O(1). The factor a only
influences the height of the inflationary plateau. This effect is negligible due to the smallness
of the coefficient (b cloop) and we will disregard a in what follows. Depending on sign and
value of b (as well as possibly of prefactors of higher terms in our expansion) we could find
whole classes of models of slow-roll inflation. However, for reasons that will become clear
shortly we will include only the first relevant correction ∼ bϕ2/3 for the following analysis.

The slow-roll parameters for the potential (4.2) read:

ϵ ≃ 1
2(b cloop)2

[
4
9

1
ϕ10/3 − 8

9
b

ϕ6/3 + 4
9

b2

ϕ2/3

]
, (4.3)

η ≃ −b cloop

[10
9

1
ϕ8/3 − 2

9
b

ϕ4/9

]
. (4.4)

We see that slow roll is possible due to the small prefactor (b cloop). Using these results
we find the number of efoldings:

Ne =
∫ ϕ∗

ϕend

3
2

ϕ5/3

bcloop
[
1− bϕ4/3] dϕ . (4.5)

Again, the exact number of Ne is determined by the post-inflationary history and we treat
Ne as a constant such that we can read (4.5) as a constraint which determines ϕ∗. The
integral (4.5) is dominated by the largest ϕ-values such that we may replace the lower
integration limit by zero. Assuming b > 0, we see that compared to the situation with b = 0 a
smaller value of ϕ∗ will be sufficient to give a predetermined value of Ne. This is encouraging
since it indicates that the presence of the b-correction actually leads to a more robust scenario
for inflation and we are not required to go to very large values of ϕ∗.

We now want to proceed with the following logic: first, we recall that our analysis
without subleading corrections gave ϕ∗ ≃ 0.2. The smallness of this value relative to unity
may be viewed as a result of the smallness of the power spectrum. We may think of ϕ∗ as
of the small parameter of our analysis. As we just argued, this value only becomes smaller
for non-zero b. Thus, we may treat bϕ4/3 in (4.5) as a small correction and evaluate the
integral perturbatively:

Ne ≃ 9
16

ϕ
8/3
∗

b cloop
(1 + 2bϕ

4/3
∗ ) . (4.6)

This confirms that the correction tends to make ϕ∗ smaller for given Ne. In addition, we
want to analyze the effects induced by the normalization of scalar perturbations,

Âs = 9V0
4(b cloop)2 ϕ

10/3
∗

(
1 + 2bϕ4/3

)
, (4.7)

where we used the approximation 1 − cloopb(ϕ−2/3
∗ + bϕ

2/3
∗ ) ≃ 1 and expanded to leading

order in bϕ
4/3
∗ . Recall that the measured value for Âs is given by (3.4).

Analogously to section 3.1, we now solve (4.6) and (4.7) for ϕ∗ and V where we have
to keep in mind that the volume V is contained in V0 and b, see (2.14) and (2.17). We can
use (4.6) and solve for V in terms of ϕ∗

V = A

ϕ8
∗

(
1 + 2bϕ

4/3
∗
)−3

. (4.8)
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Using this relation for V in (4.7) we obtain the following equation:(
BA7

)2/99
= ϕ

4/3
∗
(
1 + 2bϕ

4/3
∗
)48/99

. (4.9)

For b = 0, we find that (4.8) and (4.9) are equivalent to (3.6) and (3.7) respectively. To
leading order in bϕ

4/3
∗ , (4.9) is a quadratic equation for ϕ

4/3
∗ which is solved by

ϕ
4/3
∗ = 33

64b(−1± 1)±
(
BA7

)2/99
∓ 32

33b
(
BA7

)4/99
+O

(
b2
(
BA7

)6/99
)

. (4.10)

The physical solution corresponds to the upper sign choice in (4.10):

ϕ∗ =
(
BA7

)1/66
[
1− 8

11b
(
BA7

)2/99
]

. (4.11)

We can now clearly see that the correction with b > 0 will lower ϕ∗. Furthermore, we obtain
the solution for V by using (4.11) in (4.8) and again expanding to leading order:

V =
(

A5

B4

) 1
33 (

1− 2
9b
(
BA7

)2/99
)

. (4.12)

The results (4.11) and (4.12) reproduce (3.8) by setting b = 0. We see that not only ϕ∗ but
also V are lowered for b > 0, though the effect on the volume is weaker.

At this stage, it becomes clear that a variety of different models can arise when the
corrections in (4.1) are taken into account. We also see that, if the sign of the prefactor b

turns out right, the leading correction allows for more robust model thanks to the smaller
value of ϕ∗. It may be interesting to further investigate these scenarios, including higher
terms from (4.1). However, a posteriori the lower value of ϕ∗ can justify our neglect of such
sub-leading corrections. Moreover, it also lends support to the simplest version of our analysis
in section 2, where even the leading correction ∼ b was disregarded.

4.2 Original blow-up regime

In this section we determine the critical value of cloop for which the original blow-up model [13]
transitions to Loop Blow-up inflation. A parametric estimate demonstrating that loop
corrections tend to destroy slow roll in blow-up inflation appears in [15, 7]. Yet, the critical
value of the prefactor cloop has not been derived. Note also that the effect of higher derivative
α′3 effects has been studied in [72]. The result is that, for the expected value of their
prefactor, they do not spoil the flatness of the inflationary plateau and can instead improve
the agreement of the scalar spectral index with CMB data.

To determine a critical value for cloop, imagine we can treat cloop as a free parameter which
we set to zero initially. In this setting, we implement all our phenomenological constraints on
Ne, ns and the normalization of scalar perturbations, thereby fixing some of the parameters of
the blow-up inflation model. Now we increase cloop, insisting that the model is not significantly
affected. In particular, we demand that the relative corrections δη/η and δϵ/ϵ (and hence
the correction to Ne) remain small. This will determine a critical value for cloop. To obtain
δϵ/ϵ and δη/η, we first rewrite the potential (2.13) as:

V (ϕ) = V0 + Vnp(ϕ) + Vloop(ϕ) , (4.13)
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where we defined

Vnp(ϕ) = −V0Bϕ
V
β

τϕ(ϕ) e−aϕτϕ(ϕ) , Vloop(ϕ) = −V0
cloop

β
√

τϕ(ϕ)
, (4.14)

with Vnp(ϕ) corresponding to the non-perturbative potential which generates slow-roll inflation
in [13]. Assuming, as explained, V ′

loop ≪ V ′
np, we have:

ϵ ≃ 1
2

(
V ′

np(ϕ) + V ′
loop(ϕ)

V0

)2

= 1
2

(
V ′

np(ϕ)
V0

)2(
1 + 2

V ′
loop(ϕ)

V ′
np(ϕ)

+ . . .

)
, (4.15)

η ≃
V ′′

np(ϕ)
V0

(
1 +

V ′′
loop(ϕ)

V ′′
np(ϕ)

)
. (4.16)

Using (4.14), the relative corrections become

δϵ

ϵ
≃ 2

V ′
loop(ϕ)

V ′
np(ϕ)

=
cloopτ

−3/2
ϕ

BϕV(aϕτϕ − 1)e−aϕτϕ
, (4.17)

δη

η
≃

V ′′
loop(ϕ)

V ′′
np(ϕ)

= 5
8

cloopτ
−3/2
ϕ

BϕV aϕτϕ e−aϕτϕ

[
aϕτϕ − 9

4 + (4aϕτϕ)−1
]−1

. (4.18)

The ratio of these corrections at horizon crossing, τϕ = τϕ∗ , is:

δϵ/ϵ

δη/η
= 8

5aϕτϕ∗

aϕτϕ∗ − 9
4 + (4aϕτϕ∗)−1

aϕτϕ∗ − 1 ≫ 1 , (4.19)

since inflation takes place in a regime where aϕτϕ∗ > aϕ ⟨τϕ⟩ ≃ lnV ≫ 1. Thus, the main
correction we need to control is δϵ/ϵ. Recall that, while the spectral index is dominated by η,
the parameter ϵ is nevertheless essential since it governs the number of efoldings Ne.

To estimate whether the correction is significant we need to determine τϕ∗ and V . In the
original blow-up inflation model, the number of efoldings Ne is given by (cf. (4.35) in [44]):

Ne = κe

V2
eaϕτϕ∗

(aϕτϕ∗)3/2 , κe ≡ 3βW0λϕ

16a
3/2
ϕ Aϕ

, (4.20)

and the normalization of scalar perturbation reads (cf. (4.39) in [44]):

Âs = κs√
aϕτϕ∗(aϕτϕ∗ − 1)2

e2aϕτϕ∗

V6 , κs ≡
(

gseKcs

8π

)
3λϕβ3W 2

0

64a
3/2
ϕ

(
W0
Aϕ

)2

. (4.21)

Recall that the measured value for Âs is given by (3.4). We can use (4.20) and (4.21) to
solve for τϕ∗ and V. In a first step we use (4.20) to solve for V in terms of τϕ∗

V =
(

κe

Ne

eaϕτϕ∗

(aϕτϕ∗)3/2

)1/2

, (4.22)

such that we can eliminate V in (4.21). Suitably rewriting (4.21) in the limit aϕτϕ∗ ≫ 1
one finds

(aϕτϕ∗)−2eaϕτϕ∗ =
(

Ne

κe

)3 κs

Âs

, (4.23)
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which is approximately solved by

aϕτϕ∗ ≃ ln
[(

Ne

κe

)3 κs

Âs

]
+O(1) . (4.24)

Then, using (4.22) and (4.24) in (4.17) and reinstating the factors in κe and κs gives:

δϵ

ϵ
≃ cloop

√
8

27π

eKcsgs

Âsβ

N2
e W0a

5/4
ϕ

λ
3/2
ϕ

(
ln
[
8a3

ϕAϕeKcsgsN3
e W0

9πÂsλ2
ϕ

])−3/4

. (4.25)

We can evaluate (4.25) for the typical parameter choice (3.11) together with aϕ = 2π, Aϕ = 1
and Ne = 52 which yields

δϵ/ϵ ≃ 2.4× 106 cloop . (4.26)

Thus, in order to avoid considerable deviations from the predictions for the main cosmological
observables, we have to demand:

δϵ/ϵ ≪ 1 ⇔ cloop ≪ 0.4× 10−6 . (4.27)

This result has been checked via a detailed numerical analysis by computing the values
of ϕ∗ and V yielding Ne ≃ 52 (in agreement with the values of Ne that we will obtain in
section 5) while ensuring the correct normalization of scalar perturbations based on (4.21).
We then turn on loop corrections and increase the value of cloop until their contribution
spoils the predictions of the original model. Generically, the coefficient cloop is expected
to be small due to a suppression by factors of 2π. A careful analysis in [40] estimates
cloop ∼ (2π)−4 ∼ 10−4. Indeed, this value could suffice to neglect loop corrections if gs

and W0 are tuned appropriately small in (4.25). However, the smallness of gs is limited by
the fact the volume is exponentially large in 1/gs. Moreover, tuning W0 to a small value
goes together with making the volume small. This is, in turn, highly problematic because
of warping corrections, as discussed in detail in [47, 48] and also in section 3.3. Thus, we
conclude that loop corrections tend in general to spoil the original model of blow-up inflation
based purely on non-perturbative effects.

5 Phenomenological analysis

In this section we want to derive precise predictions for the cosmological parameters of our
model. To accomplish this, we have to study the post-inflationary evolution. Following
the analysis in [72], we will obtain the number of efoldings of inflation Ne, from which all
the other parameters follow.

5.1 Moduli decay rates and dark radiation

Reheating is the process through which the inflationary energy is transferred into the Standard
Model (SM). To understand this process, it is therefore crucial to first identify the location
of the SM in the extra-dimensions, and subsequently to compute all the moduli couplings
and decay rates to the SM as well as hidden degrees of freedom.
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Standard Model realization. As pointed out in [73], it is very hard to stabilize the SM
cycle via non-perturbative effects since chiral intersections between instantons and SM matter
fields tend to give a vanishing prefactor of the non-perturbative contributions to W . Since
we require non-perturbative effects to generate a minimum at the end of inflation, we will
not realize the SM on D7-branes wrapped around τϕ.8 Instead, we will include an additional
blow-up cycle, denoted as τSM . If τSM is in the geometric regime, the SM can live on D7-branes
wrapped around this divisor. If, by contrast, τSM collapses to zero size, the SM is realized
on fractional D3-branes. The total internal volume therefore takes the form:

V = τ
3/2
b − λsτ3/2

s − λϕτ
3/2
ϕ − λSMτ

3/2
SM − λint (τint − λτSM)3/2 , (5.1)

where, on top of τSM , we included another divisor τint which intersects with τSM . Let us
describe the stabilization of τSM following the discussion in [43]. Non-zero gauge fluxes on the
D7-stack wrapped around τSM generate chiral matter and a moduli-dependent Fayet-Iliopoulos
term. For zero VEVs of the charged matter fields, D-term stabilization yields a vanishing
Fayet-Iliopoulos term which, for an appropriate choice of gauge fluxes, corresponds to [43]:

τSM =
(

λintλ

λSM

)2
(τint − λτSM) . (5.2)

For geometries without an intersecting divisor, i.e. with λint = 0, (5.2) leads to τSM → 0,
forcing this 4-cycle to shrink down to zero size. In this case the SM would live on D3-branes
at a CY singularity. When instead λint ̸= 0, (5.2) leaves a flat direction without forcing the
collapse of any divisor. This direction can be parameterized by τSM and can be fixed by
string loops. Inspired by the explicit CY construction of [42], the relevant loop potential
might take the form:

V (τSM) =
(

dloop√
τSM

− gloop√
τSM −√

τs

)
W 2

0
V3 . (5.3)

It is easy to see that this potential admits a minimum at:

τs =
(
1 +

√
gloop
dloop

)2

τSM ∼ τSM , (5.4)

showing that loops can fix the SM modulus τSM in terms of τs which, in turn, is stabilized
by non-perturbative effects. This allows to reproduce the correct SM gauge coupling g−2

SM ≃
τSM ∼ τs ∼ O(10) for SM fields living on a D7-stack wrapped around τSM .

Moduli decay rates. The post-inflationary evolution is determined by the moduli decay
rates. The only relevant moduli are the inflaton and the volume mode since τs and τSM never
come to dominate the energy density. The masses of the canonically normalized inflaton
ϕ and volume χ read:

mϕ ≃ W0 lnV
V

Mp and mχ ≃ W0

V3/2
√
lnV

Mp , (5.5)

where we introduced the reduced Planck mass Mp ≃ 2.4 × 1018 GeV. Let us list the main
decay rates for each modulus separately.

8Even a loop stabilization of τϕ would not work since non-zero gauge fluxes needed for chiral matter would
generate a τϕ-dependent Fayet-Iliopoulos term that would spoil the flatness of the inflationary plateau.
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• Volume χ: one of the leading decay channels of the volume mode is into its corre-
sponding closed string axions ab with decay width [74, 75]:

Γχ→abab
= 1

48π

m3
χ

M2
p

≃
(

W 3
0

48π (lnV)3/2

)
Mp

V9/2 . (5.6)

Moreover, logarithmic loop corrections to the Higgs mass induce a coupling between χ

and SM Higgs scalars h with decay rate [76]:

Γχ→hh =
c̃2

loop
32π

(
m0
mχ

)4
m3

χ

M2
p

, (5.7)

where c̃loop ≃ 1/(16π2) ∼ O(10−2) is a 1-loop factor and m0 the soft SUSY breaking
scalar mass. These two parameters determine the ratio between (5.6) and (5.7):

Γχ→hh

Γχ→abab

≃ c̃2
loop

(
m0
mχ

)4

. (5.8)

When the SM lives on D7-branes, m0 ≃ m3/2 ≃ W0Mp/V ≫ mχ [77], while when the
SM is sequestered on D3-branes, m0 ≲ mχ [78, 79], implying for V ∼ 104:

Γχ→hh

Γχ→abab

≃ (c̃loopV)2 ≫ 1 for SM on D7 (5.9)

Γχ→hh

Γχ→abab

≲ c̃loop ≪ 1 for SM on D3 (5.10)

Hence, when the SM is on D7-branes, (5.7) dominates over (5.6). Plugging (5.5)
into (5.7) we get an expression of the decay rate of the volume mode in terms of V only:

Γχ→hh ≃
(

c̃2
loop W 3

0
√
lnV

32π

)
Mp

V5/2 . (5.11)

On the other hand, when the SM in on D3-branes, the decay rate (5.7) can be safely
ignored. In this case, the main volume decay channel into SM degrees of freedom is
induced by a Giudice-Masiero interaction in the Kähler potential between the volume
mode and Higgs bosons Hu and Hd with coefficient Z. The corresponding decay rate is
given by [74]:

Γχ→HuHd
= Z2

24π

m3
χ

M2
p

≃
(

Z2 W 3
0

24π (lnV)3/2

)
Mp

V9/2 . (5.12)

• Inflaton ϕ: when the inflaton 4-cycle is wrapped by a hidden D7-stack, the main decay
rate of ϕ is into light hidden sector gauge bosons γh and looks like [80]:

Γϕ→γhγh
≃ V

64π

m3
ϕ

M2
p

≃
(
(W0 lnV)3

64π

)
Mp

V2 . (5.13)

On the other hand, the situation when the inflaton divisor is not wrapped by any
D7-brane has been studied in [76]. The main two-body inflaton decay channels are into
volume moduli χ and volume axions ab and scale as:

Γϕ→χχ ≃ Γϕ→abab
≃ (lnV)3/2

64π V
m3

ϕ

M2
p

≃
(

W 3
0 (lnV)9/2

64π

)
Mp

V4 . (5.14)
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After being produced from the inflaton decay, the volume moduli behave as
explained above, depending on the realization of the SM. When the SM is on
D7-branes, χ decays almost instantaneously into SM Higgses h since from (5.11)
Γχ→hh ∼ c̃2

loopMp/V5/2 ≫ Γϕ→χχ for V ≫ 1. When instead the SM is on D3-branes,
comparing (5.12) with (5.14) for large V , we realize that Γχ→HuHd

≪ Γϕ→χχ, implying
that χ decays after ϕ diluting all the inflaton decay products.

Moreover, when the SM lives on D7-branes, there are additional inflaton decay channels
which scale as (5.14). These are ϕ-decays into pairs of SM gauge bosons γ, SM
axions aSM (which play the role of QCD axions) and SM moduli τSM . Given that
ΓτSM→γγ ≃ ΓτSM→aSM aSM ∼ Mp/V2 is much larger than (5.14) for V ≫ 1, after being
produced from the inflaton decay, τSM decays almost instantaneously in γγ and aSMaSM

with [76]:
ΓτSM→γγ

ΓτSM→aSM aSM

= 8Ng ≥ 96 ≫ 1 , (5.15)

where we have considered a number of gauge bosons Ng ≥ 12 which is at least as big as
in the SM.

Dark radiation. As we have just seen, the decays of ϕ and χ, besides producing SM
particles, yield very light axions, like ab and aSM , which are relativistic and can contribute to
extra dark radiation [74–76, 81–87]. This is parameterized by ∆Neff , the effective number of
additional neutrino-like species with respect to the SM case. It may happen that the axions
produced in the decay of the heaviest modulus do not contribute to dark radiation because
they are diluted by the decay of the lightest modulus. This situation arises if the latter comes
to dominate the energy density before decaying. In this case, the axionic contribution to
∆Neff is determined by the decay of the lightest modulus which we denote as σ. Writing the
decay of σ into SM particles as Γσ→SM , and as Γσ→hid the σ-decay into hidden degrees of
freedom which we assume to be just closed string axions, the axionic contribution to extra
dark radiation can be computed as [74, 75]:

∆Neff = 43
7
Γσ→hid
Γσ→SM

( 10.75
g∗(Trh)

)1/3
, (5.16)

where g∗(Trh) is the number of relativistic degrees of freedom at the reheating temperature Trh.
This prediction has to be confronted with constraints from CMB observations which set a
tight upper bound on ∆Neff (depending on the specific dataset used) [64]:

∆Neff ≲ 0.2− 0.5 at 95% CL . (5.17)

Let us now use the moduli decay rates computed above to evaluate ∆Neff for the following
different scenarios:

I) SM on D7s and inflaton wrapped by D7s: in this case σ ≡ χ, and so Γσ→hid is given
by (5.6), while Γσ→SM is given by (5.7). Plugging (5.9) into (5.16), it turns out that
∆Neff ≃ 0 since the volume mode decays predominantly into SM Higgses.
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II) SM on D7s and inflaton not wrapped by any D7: in this case σ ≡ ϕ, Γσ→SM =
Γϕ→χχ→hhhh + Γϕ→γγ + Γϕ→τSM τSM→γγγγ , while Γσ→hid = Γϕ→abab

+ Γϕ→aSM aSM
+

Γϕ→τSM τSM→aSM aSM aSM aSM
. This case has been analyzed in detail in [76] which found

∆Neff ≃ 0.14 setting Ng = 12 and g∗(Trh) = 106.75.

III) SM on D3s: when the SM is on D3s, the last modulus to decay is always χ regardless
of the fact that the inflaton is wrapped or not by a D7-stack. Hence σ ≡ χ and Γσ→hid
is given by (5.6), but now Γσ→SM is given by (5.12). Plugging these results into (5.16),
we find ∆Neff ≃ 1.43/Z2 for g∗(Trh) = 106.75 since we shall see that Trh is well above
the EW scale where all SM degrees of freedom are relativistic. Imposing ∆Neff ≲ 0.5
requires Z ≳ 1.7.

5.2 Post-inflationary dynamics

We will analyze three different scenarios of post-inflationary evolution. In scenario I the SM
lives on D7-branes and the inflaton 4-cycle is wrapped by a stack of hidden-sector D7-branes,
as considered in [88–90]. On the other hand, scenario II corresponds to the case envisaged
in [76] where the SM is realized again via D7-branes but the inflaton 4-cycle is not wrapped
by any D7-branes . Finally, in scenario III we will analyze the case where the SM is on
D3-branes at singularities, regardless of the presence of a D7-stack on the inflaton 4-cycle
(for reheating from moduli decay in D3-models see [74, 75, 84–86]).

Scenario I: reheating from volume mode decay. As already explained, in the case when
the inflaton is wrapped by a hidden D7-stack and the SM is on D7-branes, the inflaton decays
promptly into hidden sector degrees of freedom via (5.13).9 These hidden particles are then
diluted by the subsequent decay of the volume mode that leads to the final reheating via (5.7).

Let us now analyze in detail the post-inflationary evolution of this scenario. At the end of
inflation, both the inflaton and the volume modulus are displaced from their post-inflationary
minima and start oscillating. These oscillations redshift as matter, and the energy density
stored in the inflaton is larger than that in the volume mode. In fact, at the end of inflation,
at time tend, the energy density of the inflaton can be approximated as the inflation scale:

ρϕ(tend) ≃ 3H2
infM

2
p ≃ βW 2

0
V3 M4

p . (5.18)

On the other hand, the energy density stored in the volume modulus is:

ρχ(tend) ≃ m2
χχ2

0 ≃ W 2
0 Y 2

V3 lnV M4
p , (5.19)

where Y is the displacement in Planck units of the minimum of χ during inflation, i.e.
χ0 = Y Mp, which can be written as [44]:

Y ≃
√

2
3R (lnV)3/2 , (5.20)

9Here we are assuming that the hidden sector D7-stack on τϕ is not a pure SYM theory that develops a
mass gap above mϕ, as considered in [88]. In fact, in this case the decay of ϕ into hidden sector gauge bosons
would be kinematically forbidden and the post-inflationary evolution would be the same as in the situation
where τϕ is not wrapped by any D7.
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with:

R ≡
λϕa

−3/2
ϕ

λsa
−3/2
s + λϕa

−3/2
ϕ

≪ 1 . (5.21)

In [44], using R ∼ 0.1− 0.01, Y was estimated to be of order Y ∼ 0.1. Therefore, the ratio
of the energy densities at the end of inflation is:

θ ≡ ρχ(tend)
ρϕ(tend)

≃ Y 2

β lnV ≪ 1 . (5.22)

Immediately after inflation, an era of matter domination starts, driven by the coherent
oscillations of the inflaton field. This lasts until the inflaton decays at the time tdec,ϕ. We
will indicate the number of efoldings of inflaton domination as Nϕ which is given by:

Nϕ = ln
(

a(tdec,ϕ)
a(tend)

)
= 1

3 ln
(

ρϕ(tend)
ρϕ(tdec,ϕ)

)
≃ 2

3 ln
(

Hinf
Γϕ→γhγh

)
≃ 2

3 ln

 64π

W 2
0 (lnV)3

√
βV
3

 ,

(5.23)
where in the last equality we have substituted (5.13) and (5.18). At this point, the radiation
produced by the inflaton decay comes to dominate the energy density. Since the volume
oscillations continue to redshift as matter, there will be a time of volume-radiation equality
denoted as teq. The energy density and the Hubble scale at volume-radiation equality can
be obtained by imposing:

ρχ(teq) = ρrad(teq) , (5.24)

which yields:

ρχ(tdec,ϕ)
(

a(tdec,ϕ)
a(teq)

)3

= ρrad(tdec,ϕ)
(

a(tdec,ϕ)
a(teq)

)4

. (5.25)

Until the inflaton decays at tdec,ϕ, the ratio of the energy densities of the volume modulus
and the inflaton is constant and equal to (5.22), since both of them redshift as matter. Later
on, when the inflaton decays at tdec,ϕ, it suddenly transfers its energy into radiation so that
we have ρrad(tdec,ϕ) = ρϕ(tdec,ϕ). Using this relation, we find a(tdec,ϕ)/a(teq) = θ. Hence,
ρrad(teq) ≃ ρrad(tdec,ϕ) θ4 and:

H(teq) ≃ H(tdec,ϕ) θ2 ≃ Γϕ→γhγh
θ2 . (5.26)

Therefore, inserting (5.13) in (5.26), we obtain:

H(teq) ≃
(
(W0 lnV)3 θ2

64π

)
Mp

V2 . (5.27)

Starting at teq, ρχ becomes dominant and a second era of matter domination starts. Again,
this epoch lasts until the decay of the volume modulus at the time tdec,χ. We can determine
the number of efoldings Nχ of volume domination as:

Nχ ≃ 2
3 ln

(
H(teq)
Γχ→hh

)
≃ 2

3 ln
(

Y 4 √V lnV
2 (β c̃loop)2

)
, (5.28)
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where we have used (5.11), (5.22) and (5.27). The volume mode decays at tdec,χ, giving
rise to a second epoch of radiation domination with reheating temperature Trh that can
be estimated as:

Trh =
( 90

π2g∗(Trh)

)1/4√
Mp Γχ→hh . (5.29)

Scenario II: reheating from inflaton decay. As already mentioned, in the case where
the inflaton divisor is not wrapped by any D7-brane and the SM lives on a D7-stack, the
final reheating is driven by the decay of the inflaton. In fact, in this case ϕ decays mainly
into SM gauge bosons with decay width [76]:

Γϕ→γγ ≃ 8Ng Γϕ→χχ , (5.30)

where Γϕ→χχ is given by (5.14). On the other hand, χ decays into SM Higgses with decay
rate Γχ→hh given by (5.11). Hence the ratio between the two widths scales as:

Γϕ→γγ

Γχ→hh
≃ 4Ng (lnV)4

c̃2
loopV3/2 ≃ 103 , (5.31)

for V ≃ 104, c̃loop ≃ 1/(16π2) and Ng = 12. Thus, the volume would decay after the inflaton
but, as we shall show below, when χ is not dominating the energy density. Therefore this
scenario does not feature any epoch of volume domination. Let us see this more in detail.

The number of efoldings of inflaton domination is:

Nϕ ≃ 2
3 ln

(
Hinf
Γϕ→γγ

)
≃ 2

3 ln

√β

3
8π V5/2

NgW 2
0 (lnV)9/2

 . (5.32)

Similarly, the relation between H(teq) and H(tdec,ϕ) is the same as (5.26) but now with
H(tdec,ϕ) ≃ Γϕ→γγ . Thus, H(teq) becomes:

H(teq) ≃ H(tdec,ϕ) θ2 ≃ Γϕ→γγ θ2 . (5.33)

Now, computing the ratio between (5.33) and H(tdec,χ) ≃ Γχ→hh, and using (5.22)
and (5.31), we find:

H(teq)
H(tdec,χ)

≃ Γϕ→γγ

Γχ→hh
θ2 ≃ 103 Y 4

(β lnV)2 ≃ 10−4 , (5.34)

for V ≃ 104, Y ≃ 0.1 and β ≃ 2. This result implies that the volume mode decays well before
reaching volume-radiation equality. Hence, the number of efoldings of volume domination
is exactly zero:

Nχ = 0 . (5.35)

Since the volume mode decays when it is a subdominant fraction of the energy density,
reheating is driven by the inflaton decay. The corresponding reheating temperature turns
out to be:

Trh =
( 90

π2g∗(Trh)

)1/4√
Mp Γϕ→γγ . (5.36)
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Scenario III: Standard Model on D3-branes. When the SM is realized on D3-branes at
the CY singularity at τSM → 0, we have seen that the final reheating is due to the decay of
the volume mode. Let us now analyze in detail the post-inflationary evolution of this scenario
depending on the presence or absence of a D7-stack wrapped on τϕ.

III a) Inflaton wrapped by D7s: in this case the inflaton behaves as in scenario I, and so after
the end of inflation decays very quickly into hidden sector gauge bosons via (5.13). The
number of efoldings of inflaton domination is therefore still given by (5.23). The Hubble
scale at volume-radiation equality is also unchanged and it is (5.27). The modulus χ

has instead a different behavior with respect to scenario I since it decays now later
via (5.12). Thus, the number of efoldings of volume domination becomes:

Nχ ≃ 2
3 ln

(
H(teq)

Γχ→HuHd

)
≃ 2

3 ln
(
3Y 4 (V lnV)5/2

8 (β Z)2

)
. (5.37)

The final reheating temperature associated to the decay of the volume mode looks like:

Trh =
( 90

π2g∗(Trh)

)1/4√
Mp Γχ→HuHd

. (5.38)

III b) Inflaton not wrapped by any D7: this time the dominant inflaton decay channels are
into a pair of χ moduli and into a pair of ab axions with decay rate given by (5.14),
while the relevant volume decay rate is again (5.12). Since Γϕ→abab

/Γχ→HuHd
≃(

3/(8Z2)
)
(lnV)6√V ≃ 107 for Z ≃ 2 and V ≃ 104, the inflaton decays before the

volume. The number of efoldings of inflaton domination is:

Nϕ ≃ 2
3 ln

(
Hinf

Γϕ→abab

)
≃ 2

3 ln

√β

3
64π V5/2

W 2
0 (lnV)9/2

 . (5.39)

The inflaton decay products are relativistic and redshift as radiation even if they do
not reach thermal equilibrium due to their feeble gravitational couplings. Their energy
density becomes comparable to the one of the non-relativistic χ particles produced from
the oscillations of the volume mode at:

H(teq) ≃ H(tdec,ϕ) θ2 ≃ Γϕ→abab
θ2 . (5.40)

For our choice of parameters, this is also the energy scale when the χ particles pro-
duced from the inflaton decay become non-relativistic, at time tnr, since (denoting the
momentum of χ particles as pχ):

pχ(tnr)=
mϕ

2

(
a(tdec,ϕ)
a(tnr)

)
≃mχ ⇒ a(teq)

a(tnr)
≃ 2

θ

mχ

mϕ
≃ 2β

Y 2
1√

V lnV
≃ 1 , (5.41)

for V ≃ 104, Y ≃ 0.1 and β ≃ 2. This ensures that the χ particles produced from the
inflaton decay indeed redshift as radiation until teq. Hence, the number of efoldings of
the volume dominated era can be estimated as:

Nχ ≃ 2
3 ln

(
Γϕ→abab

θ2

Γχ→HuHd

)
≃ 2

3 ln
(

3Y 4

8(β Z)2 (lnV)4√V
)

. (5.42)

Finally, the reheating temperature from the volume decay is again given by (5.38).
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We have therefore obtained that Nϕ and Nχ are different in each case but their sum,
(Nϕ + Nχ), is the same in both cases, and looks like:

Nϕ + Nχ ≃ 2
3 ln

(
Hinf θ2

Γχ→HuHd

)
. (5.43)

As we shall see in the next section, this implies that both scenarios lead to the same number
of e-foldings of inflation.

5.3 Inflationary parameters

In order to get a prediction for the inflationary parameters, we have first to compute
the number of efoldings of inflation Ne based on the post-inflationary study performed in
section 5.2. The relevant formula, which takes into account the possibility to have two epochs
of moduli domination with Nϕ and Nχ efoldings respectively, reads [91]:

Ne ≃ 57 + 1
4 ln r − 1

4 (Nϕ + Nχ) +
1
4 ln

(
ρ∗

ρ(tend)

)
, (5.44)

where ρ∗ is the energy density at horizon exit. Since we are considering the potential (2.17)
which is rather flat during inflation, we shall assume ρ∗ ≃ ρ(tend) and neglect the last term
in (5.44). The relation (5.44) for Ne has to be combined with (2.21), (2.22) and (3.12)
to obtain the predictions for ns and r together with the value of the inflaton at horizon
exit ϕ∗ and the value of V that allows to reproduce the observed amplitude of the density
perturbations. For our illustrative parameter choice (3.11), we find:

ϕ∗ ≃ 0.06N7/22
e V ≃ 1743N5/11

e ns ≃ 1− 1.25
Ne

r ≃ 0.004
N

15/11
e

. (5.45)

Solving for Ne in terms of ns and then substituting this result in the relation for r, we find
the characteristic prediction of Loop Blow-up Inflation in the (ns, r)-plane:

r ≃ 0.003 (1− ns)15/11 . (5.46)

Figure 2 shows this prediction for a number of efoldings in the range 49 ≲ Ne ≲ 53.
Using the analysis of section 5.2, we found numerically the values of Ne and the resulting

predictions for the main cosmological observables for all the scenarios studied above and
for the following parameter choice:

Z = 2 c̃loop = 1/(16π2) Y = 0.1 Ng = 12 g∗(Trh) = 106.75 . (5.47)

I) SM on D7s and inflaton wrapped by D7s:

Nϕ ≃ 1 Nχ ≃ 3 Ne ≃ 53 ϕ∗ ≃ 0.2 V ≃ 10616 , (5.48)

with predictions:

ns ≃ 0.9765 r ≃ 1.7× 10−5 Trh ≃ 4× 1010 GeV ∆Neff ≃ 0 . (5.49)
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Figure 2. Prediction of Loop Blow-up Inflation in the (ns, r)-plane for a number of efoldings in the
range 51.5 ≲ Ne ≲ 53.

II) SM on D7s and inflaton not wrapped by any D7:

Nϕ ≃ 8 Nχ ≃ 0 Ne ≃ 52 ϕ∗ ≃ 0.2 V ≃ 10525 , (5.50)

with predictions:

ns ≃ 0.9761 r ≃ 1.7× 10−5 Trh ≃ 3× 1012 GeV ∆Neff ≃ 0.14 . (5.51)

III) SM on D3s:{
Nϕ ≃ 1 Nχ ≃ 10.5 inflaton wrapped by D7s
Nϕ ≃ 11 Nχ ≃ 0.5 inflaton not wrapped by D7s ⇒ Nϕ+Nχ ≃ 11.5 (5.52)

with:
Ne ≃ 51.5 ϕ∗ ≃ 0.2 V ≃ 10447 , (5.53)

and predictions:

ns ≃ 0.9757 r ≃ 1.8× 10−5 Trh ≃ 1× 108 GeV ∆Neff ≃ 0.36 . (5.54)

We see that the number of efoldings is around Ne ≃ 52-53, the reheating temperature is
always large enough to allow for successful BBN, 108 GeV ≲ Trh ≲ 1012 GeV, and extra dark
radiation can be compatible with present observational bounds.

Moreover, the scalar spectral index goes from ns ≃ 0.9757 to ns ≃ 0.9765. These values
have to be compared with CMB measurements which give [64]:

ns = 0.9665± 0.0038 at 68% CL for ∆Neff = 0 . (5.55)

Note that the value (5.55) of ns has been inferred assuming the base-ΛCDM model with no
extra dark radiation. Hence it should be compared only with the prediction (5.49), ns ≃ 0.9765
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and ∆Neff ≃ 0, which is compatible with observations at 2.5σ. This is already an acceptable
matching with data, even if a better agreement could be achieved by including subleading
perturbative corrections, as the ones discussed in section 4.1 or higher α′ effects studied in [72].

The other predictions involve instead a non-zero amount of extra dark radiation, and so
should be compared with CMB data fixing ∆Neff ≃ 0.14 as in (5.51), and ∆Neff ≃ 0.36 as
in (5.54). The Planck collaboration already performed the fit for ∆Neff = 0.39 finding [92]:

ns = 0.983± 0.006 at 68% CL for ∆Neff = 0.39 . (5.56)

Given that ∆Neff = 0.39 is very similar to the value of extra dark radiation, ∆Neff ≃ 0.36, of
prediction (5.54), we can compare the value of ns in (5.54) with the one in (5.56), finding
agreement within around 1.2σ. To confront instead the predictions in (5.51) with observations,
we should perform a fit similar to the one in [92] but fixing ∆Neff ≃ 0.14. While this is beyond
the scope of our paper, we can be very optimistic about this scenario. In fact, this case is
middle-ground between (5.49), where our results are slightly higher than the corresponding
value for ns resulting from CMB, and (5.54), where they fall slightly below. Moreover, we
can use existing results for the extension of the base-ΛCDM model which includes Neff as an
additional parameter to fit cosmological data, leading to (cf. tables 4 and 5 of [64]):

ns = 0.9589± 0.0168 with Neff = 2.89+0.36
−0.38 at 95% CL . (5.57)

It is then easy to see that the predictions for ns and ∆Neff in (5.51) agree with (5.57) within
around 2σ. Therefore, we conclude that the scalar spectral index predicted by Loop Blow-Up
Inflation is in good agreement with CMB observations.10

Finally, we stress that all scenarios lead to a similar value of r. Hence, Loop Blow-up
Inflation predicts a tensor-to-scalar ratio of order:

r ≃ 2× 10−5 , (5.58)

which is within present observational bounds, r < 0.032 at 98% CL [94], and it is much higher
than the prediction of the original blow-up inflation model, r ∼ 10−10, [13].

6 Discussion and conclusions

The standard paradigm of slow-roll inflation involves potentials with an almost constant
plateau. Interestingly, this picture can be reproduced in type IIb Calabi-Yau flux compactifica-
tions within the Kähler moduli sector, as mentioned and illustrated in different ways in [8–12].
Let us summarize this general mechanism, commenting on how our new Loop Blow-up
Inflation model compares with other models where inflation is driven by a Kähler modulus.

Given that V couples to all sources of energy due to the Weyl rescaling to go to 4d
Einstein frame, which amounts to an overall eK = V−2 multiplicative factor in front of the
scalar potential, the volume mode is not a good inflaton candidate due to the impossibility
to generate an inflaton-independent contribution to the scalar potential which is responsible

10Note that an even better agreement with cosmological data might be achieved in extensions of the ΛCDM
model, like New Early Dark Energy [93], which try to solve the H0 tension.
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for the inflationary plateau. Hence, the inflaton ϕ should be a direction orthogonal to V.
Moreover, since any contribution to the scalar potential is V-dependent, a constant term
requires the leading order dynamics to fix V while leaving ϕ unstabilized. This implies that ϕ

should be a leading order flat direction that enjoys an approximate shift symmetry. This
is the case for any modulus orthogonal to V in type IIb compactifications since the leading
no-scale breaking effects are O(α′3) corrections which indeed depend just on V. Balancing
these effects against non-perturbative corrections for a diagonal del Pezzo divisor and different
potential uplifting contributions (which also depend just on V), can yield a dS minimum
at exponentially large V with (h1,1 − 2) flat directions. All of them can drive inflation once
they are lifted at subleading order by additional quantum corrections.

Hence the structure of the whole potential schematically looks like:

Vtot(V, τϕ) = Vlead(V)− Vsub(V, τϕ) , (6.1)

where we ignored the V-stabilizing blow-up mode, and for simplicity we focused just on one
additional modulus τϕ that is a leading order flat direction since we assume the potential to
have a hierarchical structure with Vsub(V, τϕ) ≪ Vlead(V). Stabilizing the two fields gives:

∂Vlead
∂V

(⟨V⟩) = 0 and ∂Vsub
∂τϕ

(⟨V⟩, ⟨τϕ⟩) = 0 , (6.2)

with:11

Vlead(⟨V⟩) = Vsub(⟨V⟩, ⟨τϕ⟩) and Vtot(⟨V⟩, ⟨τϕ⟩) = 0 , (6.3)

where we neglected the τϕ-dependent shift of the volume minimum due to the large hierarchy
between the two contributions to V . Setting V = ⟨V⟩, the potential thus becomes:

Vtot(⟨V⟩, τϕ)=Vsub(⟨V⟩,⟨τϕ⟩)−Vsub(⟨V⟩, τϕ)=Vsub(⟨V⟩,⟨τϕ⟩)
[
1− Vsub(⟨V⟩, τϕ)

Vsub(⟨V⟩,⟨τϕ⟩)

]
. (6.4)

This potential takes a typical plateau-like form in terms of the canonically normalized
inflaton ϕ:

V = V0 [1− g(ϕ)] , (6.5)

with:
V0 ≡ Vsub(⟨V⟩, ⟨τϕ⟩) and g(ϕ) ≡ Vsub(⟨V⟩, τϕ(ϕ))

Vsub(⟨V⟩, ⟨τϕ⟩)
, (6.6)

where the dependence on ϕ arises after replacing τϕ with ϕ. Given that τϕ is a leading order
flat direction, generically Vsub(⟨V⟩, τϕ) → 0 for τϕ → ∞, or Vsub(⟨V⟩, τϕ) ≪ Vsub(⟨V⟩, ⟨τϕ⟩) for
τϕ > ⟨τϕ⟩, guaranteeing the presence of an inflationary plateau for large values of τϕ where
g(ϕ) ≪ 1 and V ≃ V0. The exact expression of g(ϕ) depends on two features:

11Note that Vsub ≪ Vlead refers to the inflationary regime, where τϕ is far away from its minimum value
⟨τϕ⟩. There is hence no contradiction with the first equality in (6.3), which merely reflects the fine tuning of
the cosmological constant in the post-inflationary vacuum.
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1. The origin (perturbative or non-perturbative) of the effects which generate Vsub(⟨V⟩, τϕ):

• Perturbative effects are typically power-law and scale as:

Vsub(⟨V⟩, τϕ) ∝
1
τp

ϕ

−→
τϕ→∞

0 for p > 0 , (6.7)

• Non-perturbative effects are exponentially suppressed and behave as:

Vsub(⟨V⟩, τϕ) ∝ e−kτϕ −→
τϕ→∞

0 for k > 0 . (6.8)

2. The topology of τϕ (a bulk or local cycle) which gives the relation between τϕ and ϕ:

• For a bulk modulus the canonical normalization introduces exponentials:

τϕ = eλϕ with λ ∼ O(1) . (6.9)

• For a local modulus the relation between τϕ and ϕ is power-law (see (2.16)):

τϕ = µV2/3 ϕ4/3 with µ ∼ O(1) . (6.10)

Together, these two features can give rise to different functional forms of g(ϕ). Assuming that
g(ϕ) is rich enough to give a minimum at small field values, we focus just on its approximated
expression in the inflationary region at large values of ϕ, finding four inflationary scenarios
which we name according to the features which determine g(ϕ):

• Non-perturbative Blow-up Inflation: if the potential arises from non-perturbative effects
of the form (6.8) for a local blow-up mode with canonical normalization given by (6.10),
g(ϕ) in the inflationary region becomes:

g(ϕ) ∝ e−kµV2/3 ϕ4/3 ≪ 1 for ϕ > 0 . (6.11)

An inflationary model of this kind has been studied in [13, 14], and subsequently in [23]
for the more involved case of a Wilson divisor (i.e. a rigid divisor with a Wilson line)
with potential generated by poly-instantons (in this case a more appropriate name
would therefore be Non-perturbative Wilson Inflation).

• Non-perturbative Fibre Inflation: if the potential is generated by non-perturbative
effects of the form (6.8) for a bulk fibration mode with canonical normalization given
by (6.9), g(ϕ) becomes extremely small very quickly and in the inflationary region
looks like:

g(ϕ) ∝ e−k eλϕ ≪ 1 for ϕ > 0 . (6.12)

This model has been developed in [21, 22] using poly-instanton effects for a fibre divisor.

• Loop Fibre Inflation: if the potential originates from perturbative corrections of the
form (6.7) for a bulk fibre divisor with canonical normalization given by (6.9), the
dominant contribution to g(ϕ) in the inflationary region takes the form:

g(ϕ) ∝ e−pλϕ ≪ 1 for ϕ > 0 . (6.13)
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This model has been realized in [15, 16] which used a fibre divisor with potential
generated by open string loops. The difference between the two models is just in the
way the minimum is obtained: in [15] by balancing different loop contributions, whereas
in [16] by balancing loops against higher α′ effects. A similar model has been derived
in [17] using a fibre divisor and a potential generated by higher α′ effects (and so a
more appropriate name for this model should be α′ Fibre Inflation).

• Loop Blow-up Inflation: this case corresponds to the new model developed in our paper
where the inflationary potential is generated by perturbative effects of the form (6.7)
for a diagonal blow-up mode with canonical normalization given by (6.10). Hence the
form of g(ϕ) away from the minimum becomes:

g(ϕ) ∝ 1
V2p/3 ϕ4p/3 ≪ 1 for ϕ ≲ 1 . (6.14)

In particular, in our model the potential is generated by string loops characterized by
p = 1/2. Substituting this value of p in the form of g(ϕ), the potential (6.5) in the
inflationary region reduces to:

V = V0

(
1− c

V1/3ϕ2/3

)
, (6.15)

which reproduces exactly the potential (2.17) of our model after identifying c =
cloop σϕ/β. This potential can naturally drive inflation since it can be approximated as
a constant plateau, V ≃ V0, for ϕ ≲ 1 thanks to the V−1/3 suppression factor.

The main concern regarding Loop Blow-up Inflation, as already pointed out in [8], is that,
in order to get accelerated expansion with ϵ < 1, ϕ might have to be pushed to O(1) values
which correspond to τϕ ∼ V2/3, as can be seen from (6.10). In this region of moduli space
the blow-up mode τϕ becomes as large as the overall volume, and so we are close to the walls
of the Kähler cone where the EFT could be out of control. However in this paper we have
performed a detailed analysis of the inflationary and post-inflationary dynamics showing
that phenomenologically viable slow-roll can be achieved far enough from the boundaries of
the Kähler cone since horizon exit occurs at ϕ∗ ≃ 0.2 where the EFT is still under control.
We stress that the smallness of the coefficient of the loop correction, which follows both in
analogy to the familiar 4d loop suppression factor 1/(16π2) and by considering explicit torus
orbifold results, is crucial to achieve this conclusion.

Let us also point out that all Kähler moduli inflation models built so far feature an
exponential potential in terms of the canonical inflaton ϕ, and so the potential of our
model (6.15) represents the first example in this class of constructions of a power-law
inflationary potential. A crucial ingredient to obtain such a potential is the presence of
string loop corrections to the Kähler potential which we argued to be inevitable. These
perturbative effects can be subdominant with respect to non-perturbative corrections close
to the minimum for τϕ but then quickly come to dominate the scalar potential when τϕ is
displaced away from the minimum. We estimated that, in order to reproduce the original
model of blow-up inflation driven by non-perturbative effects [13], the coefficient of the loop
corrections should be tiny, cloop ≪ 10−6. Hence, whenever cloop ≳ 10−6, loop effects are large
and they are the leading no-scale breaking effects along τϕ for large field values.
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Focusing on the natural regime where cloop ≳ 10−6, we studied in depth the simplest
realization of Loop Blow-up Inflation which involves just one additional blow-up mode τϕ

and the leading loop corrections. In particular, we derived the predictions for the main
cosmological observables in terms of the underlying parameters and the number of efoldings
Ne. In turn, we determined Ne from studying the rich post-inflationary evolution of our model
which features in general a non-standard thermal history with epochs of moduli domination.
Depending on the microscopic brane setup and realization of the SM, we found Ne in the
range 51.5 ≲ Ne ≲ 53 and a rather high reheating temperature, 108 GeV ≲ Trh ≲ 1012 GeV.
In order to reproduce the observed amplitude of primordial density perturbations, the CY
volume has to be of order V ≃ 104 and horizon exit occurs at ϕ∗ ≃ 0.2. Moreover, extra dark
radiation due to the production of ultra-light bulk axions from moduli decays can be within
observational bounds and the scalar spectral index is in agreement with CMB data. Finally,
Loop Blow-up Inflation predicts the relation r ≃ 0.003 (1− ns)15/11 between the spectral
index and the tensor-to-scalar ratio, implying the numerical value r ≃ 2 × 10−5.

Lastly, we also discussed the effect of loop corrections subleading in the parameter
τϕ/V2/3. These might become important as we get close to the boundaries of the Kähler
cone. We argued that these corrections could realize a whole class of inflationary models
at large values of the inflaton in a potentially controlled manner. In order to explore these
effects more concretely, it would however be necessary to perform explicit loop calculations
in a specific CY geometry, a task that is notably complex and challenging. Moreover, as a
future direction of work along the lines of [72], it would be interesting to include additional
perturbative corrections like higher F -term α′3 effects [41].

Finally, let us stress that we treated cloop as a phenomenological parameter since an
explicit top-down computation of the coefficient of the loop corrections to the Kähler potential
is a technically very challenging task. The sign and magnitude of cloop are crucial for the
realization of our inflationary scenario. In analogy with explicit toroidal computations, cloop
is in general expected to be a function of the complex structure moduli, and so it might
enjoy a certain degree of tuning freedom in the type IIb flux landscape. Moreover, we expect
that for the simplest blow-up geometries progress can be made by an explicit computation of
cloop in the regime of large volume and small blow-up cycle. In this regime, the geometry
near the blow-up can be approximated by a non-compact Calabi-Yau. For example, one
could analyse the blown up C3/Z3 where an explicit Ricci-flat metric is known [95–100].
While an explicit loop calculation appears feasible in such a relatively simple geometry, this
is beyond the scope of our paper.
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A Comment on loop corrections

The Kähler potential (2.3) is subject to loop corrections. These have been estimated using 10d
EFT arguments [35] and explicitly calculated for torus-based geometries in a string one-loop
analysis [36]. The torus-orbifold result is commonly written as a sum of Kaluza-Klein (KK)
and winding (W) corrections [38]:

δK(gs) = δKKK

(gs) + δKW

(gs) . (A.1)

Extrapolating the torus result, it was conjectured in [38] that the corrections on a generic
Calabi-Yau take the form

δKKK

(gs) ≃
∑

i

CKK
i

gsT i(ta)
V

, δKW

(gs) ≃
∑

i

CW
i

1
Ii(ta)V , (A.2)

where the coefficients CKK
i and CW

i are unknown functions of the complex structure moduli
and are expected to be suppressed by π factors (for estimates cf. the last paragraph on p. 41
of [40]). The functions T i and Ii were conjectured in [38] to be linear in the 2-cycle volumes
ti. Later on, it was argued in [40] that more general functional forms arise and that one
should only expect T i and Ii to be homogeneous functions of the 2-cycle volumes of degree 1.

Because δKKK

(gs) is of degree −2 in the 2-cycle volumes, the correction in the scalar
potential δV KK

(gs) has an ‘extended no-scale structure’ [35–39]. In the end, using the linearity
assumption for T i, Ii, the corrections to the scalar potential δV(gs) read [34, 39]:

δV(gs) =
W 2

0
V2

(
(gsCKK

i )2Ktree
ii − 2δKW

(gs)

)
, (A.3)

where the tree-level Kähler potential is Ktree = −2 lnV and we have omitted the prefactor V̂

defined in (2.7). Using a form of the volume V as in (2.1), we find to leading order

δV(gs) ≃
W 2

0
V3

cloop
V1/3

(
V1/3
√

τi
+O(1) +O

( √
τi

V1/3

))
, cloop ≃

CW
i

(gsCKK
i )2

, (A.4)

where we introduced the coefficient cloop to remain agnostic about the origin of the loop
corrections. Ref. [39] provided a field-theory interpretation of the result (A.4) matching it
with the one-loop Coleman-Weinberg potential which in supergravity reads

V CW
1−loop ≃ 1

16π2 Λ2 StrM2 , (A.5)

where the EFT cut-off Λ can be identified with the mass of Kaluza-Klein replicas of open
string modes living on D7-branes wrapped around different 4-cycles

Λ ≃

Λi ≃ 1
τ

1/4
i

√
V

for D7s on τi with i = ϕ, s

Λb ≃ 1
V2/3 for D7s on τb .

(A.6)

Using these cutoff scales in (A.5) together with the estimate StrM2 ≃ m2
3/2 ≃ W 2

0 /V2, one
can reproduce the scaling of the first two terms in (A.4), justifying the smallness of the
coefficient cloop which is expected to scale as cloop ≃ 1/(16π2).12

12Following [38], ref. [39] proposed to match also the third therm in (A.4) exploiting flux-dependent correction
to Λi.
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The comparison of field-theoretic and string one-loop logic has been perfected in [40].
One conclusion is that corrections with the parametric form of δKW

(gs) do not only arise from
fields on D7 brane intersections [38, 39] but also from closed strings or, equivalently, 10d
fields. From this perspective, even in the absence of D7-branes wrapping the τi cycle, the
cut-off scale Λi should be identified with the mass of Kaluza-Klein modes with wavelength
∼ τ

1/4
i , which are closed string states. This implies that cloop unavoidably includes a non-zero

piece without gs suppression. Moreover, for the case of a blow-up cycle, a derivation of the
leading term in (A.4) was provided in [40], in agreement with the leading term following from
the conjecture of [38]. Finally, note that one should really read (A.4) with the replacement(

V1/3
√

τi
+O(1) +O

( √
τi

V1/3

))
→ f

(
V1/3
√

τi

)
, (A.7)

where f encodes information from the unknown functions T i and Ii.
A key ingredient of LVS constructions is the presence of 3-form fluxes. Let us therefore

comment on their effect on the loop corrections that our inflationary model is based on. At
large volume, such terms are expected to be subleading for the following reason. First, the
superpotential is subject to the standard N = 1 non-renormalization theorem, and so it is
not corrected at perturbative level. Second, the loop corrections to the Kähler potential can
be understood as an infinite sum of one-loop corrections from all KK modes propagating in
the compact CY orientifold geometry. At leading order, this KK mode spectrum depends
only on the (flux-less) orientifold geometry. This geometry leads to a spectrum that displays
only N = 1 SUSY and hence produces a non-zero loop correction. Of course, fluxes disturb
this geometry through warping and also affect the KK mode spectrum directly since the
10d action involves vertices (3-point and higher) between B2/C2 and other fields. However,
both of these effects are proportional to the 3-form field strength, and so vanish as the fluxes
become more and more dilute at large volume. The resulting effect on the loop correction
is hence more strongly volume suppressed than the loop effect resulting merely from the
propagation of 10d fields in the unperturbed orientifold geometry.

We can be more quantitative by noting that, in the absence of fluxes, the KK mass-
squared scales as M2

KK,0 ∼ (Ms/ℓ)2, where Ms is the string scale and ℓ is a typical CY radius
in string units. This can be viewed as an energetic effect associated with the excitation of
a KK mode deformation of the geometry. If a 3-form flux with integer flux number N is
present, a competing effect of order δM2

KK ∼
(
N Ms/ℓ3)2 is expected to arise. After Weyl

rescaling to 4d Einstein frame, i.e. writing Ms ∼ Mp/
√
V where V is the CY volume in string

units, and considering N ∼ W0, we obtain:

M2
KK ∼

M2
p

V ℓ2

(
1 + W 2

0
ℓ4

)
(A.8)

which agrees with the estimate of appendix D of [38]. Note that the correction in (A.8)
is precisely the flux stabilization scale of the zero-modes of the complex structure moduli,
W 2

0 /V2, taking ℓ6 ∼ V . Given that 3-form fluxes are known to lift only the complex structure
moduli, it might be that the correction in (A.8) is absent for the KK modes of the Kähler
moduli or that, if present, it introduces a dependence just on the complex structure moduli, i.e.
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that ℓ is a 3-cycle radius. In this case these corrections would not induce any dependence on
the inflaton τϕ which, being a Kähler modulus, is a 4-cycle radius. However, even in the case
where ℓ4 = gs τϕ, such a correction would be harmless for the inflationary dynamics. In fact,
at the minimum τϕ is of order g−1

s , and so around the minimum ℓ ∼ O(1). However inflation
takes place in the region in moduli space far away from the minimum where τϕ ≫ g−1

s ,
resulting in ℓ ≫ 1 which makes the correction in (A.8) very suppressed for W0 ∼ O(1).

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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