Supporting Information for

Synthesis of Benzothienofuranones and dihydrobenzothienopyranones by palladium iodidecatalyzed carbonylative double cyclization

Ida Ziccarelli,^a Raffaella Mancuso,^{a,*} Domenico Santandrea,^a Angela Altomare,^b Diego Olivieri,^c Carla Carfagna,^d and Bartolo Gabriele^{a,*}

- a Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
- b Institute of Crystallography, National Research Council, Via Amendola, 122/O, 70126 Bari, Italy

Pages S28–S107 Copies of ¹H NMR and ¹³CNMR spectra

- c Department of Biomolecular Sciences University of Urbino "Carlo Bo", Piazza Rinascimento 6, 61029 Urbino (PU), Italy.
- d Department of Industrial Chemistry "T. Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- * Corresponding authors *Email addresses:* raffaella.mancuso@unical.it (R. Mancuso), bartolo.gabriele@unical.it (B. Gabriele).

Table of Contents

Preparation and characterization of 3-(2-(methylthio)phenyl)prop-2-yn-1-ols 1a-k and 4-(2-(methylthio)phenyl)but-3-yn-1-ols 3a-3l				
References				
Copies of HRMS spectra				

Preparation and characterization of 3-(2-(methylthio)phenyl)prop-2-yn-1-ols 1a-k and 4-(2-(methylthio)phenyl)but-3-yn-1-ols 3a-3l

Synthesis of 3-(2-(methylthio)phenyl)prop-2-yn-1-ols 1a-k

3-(2-(methylthio)phenyl)prop-2-yn-1-ols **1a**, **1c**, **1f-h** and **1k** were prepared as we already reported [1]. 3-(2-(methylthio)phenyl)prop-2-yn-1-ols **1b**, **1d**, **1e**, **1i** and **1j** were prepared by Sonogashira coupling of 2iodothioanisole (commercially available), 2-bromo-4-fluorothioanisole (prepared by methylation of commercially available 2-bromo-4-fluorobenzenethiol, according to a literature procedure [2]) and 2-bromo-4-methylthioanisole (prepared by methylation of commercially available 2-bromo-4-methylbenzenethiol, according to a literature procedure [2]) with prop-2-yn-1-ols (commercially available), as described below.

General procedure for the synthesis of 3-(2-(methylthio)phenyl)prop-2-yn-1-ols 1b, 1i and 1j

A solution of 2-iodothioanisole (1.0 g, 4.0 mmol), $PdCl_2(PPh_3)_2$ (60 mg, 0.085 mmol), CuI (20 mg, 0.11 mmol), and the terminal alkyne (4.8 mmol; 4-methylpent-1-yn-3-ol, 470 mg; 2-phenylbut-3-yn-2-ol, 700 mg; 1,1-diphenylprop-2-yn-1-ol, 1.0 g) in anhydrous triethylamine (16 mL) was allowed to stir under nitrogen at 25 °C for 24 h. Water (50 mL) was then added, and the mixture extracted with diethyl ether (3 × 50 mL). The organic layer was washed with a saturated solution of NH₄Cl (100 mL) and water until neutral pH. After drying over Na₂SO₄, the solvent was evaporated, and the residue purified by column chromatography on silica gel using 99:1 to 9:1 hexane-AcOEt as eluent.

4-*Methyl*-1-(2-(*methylthio*)*phenyl*)*pent*-1-*yn*-3-*ol* (**1b**). Yield: 637 mg, starting from 1.0 g of 2-iodothioanisole (72%). Yellow oil. IR (film): v = 3406 (m, br), 2226 (vw), 1466 (m), 1435 (m), 1234 (w), 1072 (w), 1026 (m), 988 (w), 752 (s) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ = 7.38 (dd, *J* = 7.5, 1.0, 1H, H-6), 7.32-7.23 (m, 1H, H-4), 7.12 (dist d, *J* = 7.9, 1H, H-3), 7.09-7.02 (m, 1H, H-5), 4.47 (d, *J* = 5.5, 1H, *CH*OH), 2.46 (s, 3H, SMe), 2.10-1.92 (m, 1H, CH₃CHCH₃), 1.12 (d, *J* = 6.8, 3H, CH₃CHCH₃), 1.08 (d, *J* = 6.8, 3H, CH₃CHCH₃) (Note: the –OH signal was too broad to be detected); ¹³C-NMR (CDCl₃, 75 MHz): δ = 141.6, 132.5, 128.8, 124.1, 123.8, 120.7, 95.6, 82.9, 68.5, 34.6, 18.3, 17.5, 14.9; GC-MS (EI, 70 eV) *m/z* = 220 (M⁺, 5), 205 (19), 187 (8), 172 (20), 163 (60), 162 (38), 149 (59), 147 (68), 149 (59), 147 (68), 134 (100), 116 (100), 115 (45), 89 (20); HRMS-ESI (*m/z*): [(M-H₂O+H)⁺] cald for (C₁₃H₁₅S)⁺: 203.0888; found: 203.0906.

4-(2-(Methylthio)phenyl)-2-phenylbut-3-yn-2-ol (**1i**). Yield: 749 mg, starting from 1.0 g of 2-iodothioanisole (70%). Yellow solid, mp = 63-64 °C. IR (KBr): v = 3414 (m, br), 2226 (vw), 1493 (w), 1462 (m), 1435 (m), 1366 (w), 1142 (w), 1088 (w), 1069 (m), 937 (w), 895 (w), 752 (s), 698 (m) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ = 7.86-7.74 (m, 2H, aromatic), 7.49-7.25 (m, 5H, aromatic), 7.20-7.02 (m, 2H, aromatic), 2.79 (s, 1H, OH), 2.46 (s, 3H, SMe), 1.90 (s, 3H, CH₃COH); ¹³C-NMR (CDCl₃, 75 MHz): δ = 145.5, 141.9, 132.4, 129.0, 128.3, 127.7, 125.2, 124.2, 123.9, 120.5, 98.9, 82.5, 70.6, 33.4, 15.0; GC-MS (EI, 70 eV) m/z = 268 (M⁺, 3), 250 (29), 235 (100), 234 (60), 202 (22), 189 (7), 147 (14), 105 (21); HRMS-ESI (m/z): [(M-H₂O+H)⁺] cald for (C₁₇H₁₅S)⁺: 251.0889; found: 251.0906.

3-(2-(Methylthio)phenyl)-1,1-diphenylprop-2-yn-1-ol (**1j**). Yield: 864 mg, starting from 1.0 g of 2iodothioanisole (65%). Yellow solid, mp = 109-110 °C. IR (KBr): v = 3426 (m, br), 2214 (vw), 1489 (w), 1462 (m), 1450 (m), 1435 (w), 1165 (m), 1072 (w), 1022 (m), 992 (m), 918 (w), 883 (w), 752 (s), 702 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.81-7.65 (m, 4H, aromatic), 7.46-7.37 (m, 1H, aromatic), 7.37-7.20 (m, 7H, aromatic), 7.20-7.11 (m, 1H, aromatic), 7.10-7.01 (m, 1H, aromatic), 3.02 (s, 1H, OH), 2.42 (s, 3H, SMe); ¹³C-NMR (CDCl₃, 125 MHz): δ = 145.1, 142.1, 132.7, 129.1, 128.3, 127.7, 126.3, 124.7, 124.4, 121.1, 98.1, 82.0, 15.3; GC-MS (EI, 70 eV) m/z = 330 (M⁺, 10), 329 (23), 315 (12), 283 (8), 237 (19), 225 (9), 210 (11), 165 (8), 105 (100), 77 (53); HRMS-ESI (m/z): [(M-H₂O+H)⁺] cald for (C₂₂H₁₇S)⁺: 313.1045; found: 313.1070.

General procedure for the synthesis of 3-(2-(methylthio)phenyl)prop-2-yn-1-ols 1d and 1e

A solution of the substituted 2-iodothioanisole (2.0 mmol; 2-bromo-4-fluorothioanisole, 450 mg; 2-bromo-4methylthioanisole, 440 mg), $PdCl_2(PPh_3)_2$ (140 mg, 0.2 mmol), CuI (57 mg, 0.3 mmol), and 2-methylbut-3-yn-2-ol (340 mg, 4.0 mmol) in anhydrous diisopropylamine (20 mL) was allowed to stir under nitrogen at 80 °C for 24 h. Water (50 mL) was then added, and the mixture extracted with diethyl ether (3 × 50 mL). The organic layer was washed with a saturated solution of NH₄Cl (100 mL) and water until neutral pH. After drying over Na₂SO₄, the solvent was evaporated, and the residue purified by column chromatography on silica gel using hexane to 8:2 hexane–AcOEt as eluent.

4-(5-Fluoro-2-(methylthio)phenyl)-2-methylbut-3-yn-2-ol (**1d**). Yield: 410 mg, starting from 450 mg of 2bromo-4-fluorothioanisole (90%). Yellow oil. IR (film): v = 3397 (m, br), 2230 (w), 1593 (m), 1572 (m), 1460 (s), 1437 (m), 1408 (w), 1364 (w), 1207 (m), 1167 (m), 1153 (m), 1121 (m), 1067 (w), 986 (w), 966 (s), 874 (m), 806 (m), 633 (m) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.12-7.07 (m, 2H, H-6 + H-3), 6.99 (td, *J* = 8.5, 2.9, 1H, H-5), 2.45 (s, 3H, SMe), 1.65 (s, 6 H., MeCMe) (Note: the –OH signal was too broad to be detected); ¹³C-NMR (CDCl₃, 125 MHz): δ = 160.1 (d, *J* = 244.5), 136.8, 127.5-126.0 (m), 122.8 (d, *J* = 9.1), 119.5-118.5 (m), 117.0-115.5 (m), 101.3, 78.8, 31.3, 15.8; GC-MS (EI, 70 eV) *m/z* = 234 (M⁺, 100), 209 (26), 191 (16), 181 (18), 165 (30), 133 (27); HRMS-ESI (*m/z*): [(M-H₂O+H)⁺] cald for (C₁₁H₁₂FS)⁺: 207.0683; found: 207.0643.

2-Methyl-4-(5-methyl-2-(methylthio)phenyl)but-3-yn-2-ol (**1e**). Yield: 325 mg, starting from 440 mg of 2-bromo-4-methylthioanisole (73%). Yellow oil. IR (film): v = 3397 (m, br), 1462 (m), 1435 (m), 1362 (w), 1292 (w), 1211 (m), 1161 (s), 1065 (m), 962 (w), 939 (m), 868 (w), 806 (m) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.21 (d, *J* = 1.6, 1H, H-6), 7.08 (dist dd, *J* = 8.3, 1.6, 1H, H-4), 7.04 (dist d, *J* = 8.3, 1H, H-3), 2.45 (s, 3H, SMe), 2.27 (s, 3H, Me at C-5), 1.65 (s, 6H, MeCMe) (Note: the –OH signal was too broad to be detected); ¹³C-NMR (CDCl₃, 125 MHz): δ = 137.9, 134.2, 133.0, 129.8, 124.7, 121.0, 99.9, 79.9, 65.8, 31.4, 20.6, 15.3; GC-MS (EI, 70 eV): *m*/*z* = 203 (M⁺, 100), 210 (25), 189 (20), 173 (21), 163 (46), 148 (46), 130 (58), 115 (25), 103 (12); HRMS-ESI (*m*/*z*): [(M-H₂O+H)⁺] cald for (C₁₃H₁₅S)⁺: 203.0889; found: 203.0903.

Synthesis of 4-(2-(methylthio)phenyl)but-3-yn-1-ols 3a-3l

4-(2-(Methylthio)phenyl)but-3-yn-1-ols **3a-3I** were prepared by Sonogashira coupling of 2-iodothioanisole (commercially available), 2-bromo-5-fluorothioanisole (prepared by methylation of commercially available 2-bromo-5-fluorobenzenethiol, according to a literature procedure [2]) with but-3-yn-1-ols, as described below. But-3-yn-1-ol, pent-4-yn-2-ol and hex-5-yn-3-ol are commercially available; 1-phenylbut-3-yn-1-ol, 1-mesitylbut-3-yn-1-ol, 1-(4-methoxyphenyl)but-3-yn-1-ol, 4-(1-hydroxybut-3-yn-1-yl)benzonitrile, 1-(furan-2-yl)but-3-yn-1-ol, 2-phenylpent-4-yn-2-ol and 1-(prop-2-yn-1-yl)cyclohexan-1-ol were prepared by Barbier reaction between an alkynyl bromide and an aldehyde or a ketone in the presence of activated zinc [3]. *trans*-2-Ethynylcyclohexan-1-ol and *trans*-2-ethynylcyclopentan-1-ol were synthesized as reported in the literature [4].

General procedure for the synthesis of 4-(2-(methylthio)phenyl)but-3-yn-1-ols 3a and 3c-3l

A solution of 2-iodothioanisole (500 mg, 2.0 mmol), $PdCl_2(PPh_3)_2$ (28 mg, 0.04 mmol), Cul (11.4 mg, 0.06 mmol), and the terminal alkyne (2.4 mmol; but-3-yn-1-ol, 168 mg; pent-4-yn-2-ol, 202 mg; hex-5-yn-3-ol, 235 mg; 1-phenylbut-3-yn-1-ol, 350 mg; 1-mesitylbut-3-yn-1-ol, 452 mg; 1-(4-methoxyphenyl)but-3-yn-1-ol, 422 mg; 1-(furan-2-yl)but-3-yn-1-ol, 327 mg; 2-phenylpent-4-yn-2-ol, 385 mg; 1-(prop-2-yn-1-yl)cyclohexan-1-ol,

332 mg; *trans*-2-ethynylcyclohexan-1-ol, 300 mg; *trans*-2-ethynylcyclopentan-1-ol, 265 mg) in anhydrous triethylamine (8 mL) was allowed to stir under nitrogen at 25 °C for 15 h. The mixture was washed with a saturated solution of NH₄Cl (3 x 20 mL); the aqueous layer was extracted with ethyl acetate (3 x 20 mL), and the combined organic layers was washed with a saturated solution of NH₄Cl until pH was neutral, then dried with Na₂SO₄, and concentrated in vacuo. The resulting crude product was purified via chromatography on silica gel using 9:1 hexane–AcOEt to 6:4 hexane–AcOEt as eluent.

4-(2-(Methylthio)phenyl)but-3-yn-1-ol (**3a**). Yield: 370 mg, starting from 500 mg of 2-iodothioanisole (96%). Yellow oil. IR (film): v = 3410 (s, br), 2230 (w), 1466 (m), 1435 (m), 1327 (w), 1041 (s), 957 (w), 849 (w), 756 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.38-7.35 (m, 1H, H-6), 7.29-7.24 (m, 1H, H-4), 7.14 (dist d, *J* = 7.9, 1H, H-3), 7.06 (td, *J* = 7.5, 0.8, 1H, H-5), 3.84 (q, *J* = 6.2, 2H, CH₂OH), 2.75 (t, *J* = 6.2, 2H, CH₂CH₂OH), 2.47 (s, 3H, SMe), 2.38 (t, *J* = 6.2, 1H, OH); ¹³C-NMR (CDCl₃, 125 MHz): δ = 141.3, 132.0, 128.5, 124.3, 124.1, 121.5, 93.5, 80.3, 61.1, 24.2, 15.0; GC-MS (EI, 70 eV) m/z = 192 (M⁺, 62), 147 (100), 128 (60), 115 (29); HRMS-ESI (m/z): [(M+H)⁺] cald for (C₁₁H₁₃OS)⁺: 193.0681; found: 193.0684. The spectroscopic data agreed with those reported [5].

5-(2-(Methylthio)phenyl)pent-4-yn-2-ol (**3c**). Yield: 406 mg, starting from 500 mg of 2-iodothioanisole (98%). Yellow oil. IR (film): v = 3395 (m, br), 2230 (w), 1582 (w), 1466 (m), 1435 (s), 1273 (w), 1111 (m), 1080 (m), 934 (m), 748 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.36 (dist dd, *J* = 7.6, 1.2, 1H, H-6), 7.30-7.25 (m, 1H, H-4), 7.14 (dist d, *J* = 8.0, 1H, H-3), 7.10-7.04 (m, 1H, H-5), 4.13-4.04 (m, 1H, CHOH), 2.71 (dist dd, *J* = 16.7, 5.1, 1H, \equiv CCHH), 2.60 (dist dd, *J* = 16.7, 6.8, 1H, \equiv CCHH), 2.52-2.47 (m, 1H, OH), 2.48 (s, 3H, SMe), 1.35 (d, *J* = 6.2, CH₃CHOH); ¹³C-NMR (CDCl₃, 125 MHz): δ = 141.3, 132.0, 128.5, 124.3, 124.0, 121.4, 93.2, 80.8, 66.6, 30.3, 22.3, 15.1; GC-MS (EI, 70 eV) *m/z* = 206 (M⁺, 22), 162 (19), 147 (100), 128 (17), 115 (25); HRMS-ESI (*m/z*): [(M+H)⁺] cald for (C₁₂H₁₅OS)⁺: 207.0838; found, 207.0840.

G-(*2*-(*Methylthio*)*phenyl*)*hex-5-yn-3-ol* (**3d**). Yield: 430 mg, starting from 500 mg of 2-iodothioanisole (98%). Yellow oil. IR (film): v = 3410 (m, br), 2222 (w), 1582 (w), 1466 (m), 1435 (s), 1111 (m), 1072 (w), 1081 (w), 980 (m), 748 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 7.36$ (dist dd, *J* = 7.6, 1.3, 1H, H-6), 7.27 (dist dd, *J* = 7.6, 1.3, 1H, H-4), 7.14 (dist d, *J* = 7.9, 1H, H-3), 7.06 (td, *J* = 7.6, 0.9, 1H, H-5), 3.84-3.76 (m, 1H, CHOH), 2.72 (dist dd, *J* = 16.7, 4.5, 1H, ≡CCHH), 2.60 (dist dd, *J* = 16.7, 7.0, 1H, ≡CCHH), 2.47 (s, 3H, SMe), 2.48-2.44 (m, 1H, OH), 1.71 - 1.62 (m, 2H, CH₂CH₃), 1.00 (t, *J* = 7.4, 3H, CH₂CH₃); ¹³C-NMR (CDCl₃, 125 MHz): $\delta = 141.3$, 132.0, 128.5, 124.3, 124.1, 121.6, 93.3, 80.8, 71.6, 29.2, 28.3, 15.1, 10.1; GC-MS (EI, 70 eV) *m/z* = 220 (M⁺, 8), 187 (7), 162 (26), 147 (100), 128 (14), 115 (23); HRMS-ESI (*m/z*): [(M+H)⁺] cald for (C₁₃H₁₇OS)⁺: 221.0994; found, 221.1004.

4-(2-(*Methylthio*)*phenyl*)-1-*phenylbut*-3-*yn*-1-*ol* (**3e**). Yield: 375 mg, starting from 500 mg of 2-iodothioanisole (70%). Yellow oil. IR (film): v = 3418 (m, br), 2230 (vw), 1582 (m), 1458 (m), 1435 (m), 1196 (w), 1042 (m), 748 (s), 702 (m) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.48-7.42 (m, 2H, aromatic), 7.39-7.32 (m, 3H, aromatic), 7.32-7.23 (m, 2H, aromatic), 7.14 (dist d, *J* = 7.9, 1H, H-3), 7.06 (td, *J* = 7.5, 0.9, 1H, H-5), 5.02-4.92 (m, 1H, CHOH), 2.99-2.91 (m, 2H, ≡CCHH + OH), 2.89 (dist dd, *J* = 16.7, 7.8, 1H, ≡CCHH), 2.46 (s, 3H, SMe); ¹³C-NMR (CDCl₃, 125 MHz): δ = 142.6, 141.4, 132.1, 128.6, 128.5, 127.8, 125.8, 124.4, 124.3, 121.5, 93.0, 88.1, 72.5, 31.1, 15.2; GC-MS (EI, 70 eV): *m/z* = 268 (M⁺, 5), 267 (13), 235 (7), 162 (20), 147 (100), 128 (11), 115 (12), 107 (22), 79 (41); HRMS-ESI (*m/z*): [(M-H₂O+H)⁺] calcd for (C₁₇H₁₅S)⁺: 251.0889; found, 251.0880.

1-Mesityl-4-(2-(methylthio)phenyl)but-3-yn-1-ol (**3f**). Yield: 550 mg, starting from 500 mg of 2-iodothioanisole (89%). Yellow solid, mp = 73-74 °C. IR (KBr): v = 3426 (m, br), 2222 (vw), 1612 (w), 1582 (w), 1466 (m), 1435 (m), 1381 (m), 1034 (s), 849 (m), 748 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.35 (d, *J* = 7.6, 1H, H-6), 7.27 (t, *J* = 7.7, 1H, H-4), 7.14 (dist d, *J* = 8.0, 1H, H-3), 7.08-7.04 (m, 1H, H-5), 6.83 (s, 2H, mesityl ring), 5.45-5.40 (m, 1H, CHOH), 3.14 (dist dd, *J* = 17.0, 9.9, 1H, ECCHH), 2.80 (dist dd, *J* = 17.0, 4.4, 1H, ECCHH), 2.76-2.72 (m, 1H,

OH), 2.47 (s, 3H, SMe), 2.45 (s, 6H, 2 *o*-Me on mesityl ring), 2.25 (s, 3H, *p*-Me on mesityl ring); ¹³C-NMR (CDCl₃, 125 MHz): δ = 141.3, 136.9, 136.2, 134.6, 132.1, 130.2, 128.5, 124.3, 124.2, 121.5, 93.8, 80.5, 70.1, 27.6, 20.8, 15.1; GC-MS (EI, 70 eV): *m/z* = 310 (M⁺, <0.5), 262 (6), 162 (55), 149 (100), 147 (33), 121 (43); HRMS-ESI (*m/z*): [(M-H₂O+H)⁺] calcd for (C₂₀H₂₁S)⁺: 293.1358; found, 293.1370.

1-(4-Methoxyphenyl)-4-(2-(methylthio)phenyl)but-3-yn-1-ol (**3g**). Yield: 508 mg, starting from 500 mg of 2iodothioanisole (85%). Yellow oil. IR (film): v = 3433 (m, br), 2230 (vw), 1612 (m), 1512 (m), 1466 (m), 1435 (m), 1304 (w), 1250 (s), 1173 (m), 1034 (s), 833 (m), 756 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.41-7.32 (m, 3H, aromatic), 7.28-7.24 (m, 1H, H-4), 7.14 (dist d, *J* = 7.7, 1H, H-3), 7.06 (td, *J* = 7.5, 0.8, 1H, H-5), 6.92-6.87 (m, 2H, aromatic), 4.98-4.92 (m, 1H, CHOH), 3.80 (s, 3H, OMe), 2.91-2.88 (m, 3H, \equiv CCH₂ + OH), 2.47 (s, 3H, SMe); ¹³C-NMR (CDCl₃, 125 MHz): δ = 159.3, 141.3, 134.8, 132.1, 128.6, 127.1, 124.4, 124.3, 121.5, 113.8, 93.2, 81.0, 72.1, 55.5, 31.1, 15.2; GC-MS (EI, 70 eV): *m/z* = 298 (M⁺, 0.6), 280 (46), 264 (39), 250 (28), 234 (27), 221 (43), 189 (21), 162 (32), 137 (100), 109 (36); HRMS-ESI (*m/z*): [(M-H₂O+H)⁺] calcd for (C₁₈H₁₇OS)⁺: 281.0994; found, 281.0995.

1-(*Furan-2-yl*)-4-(2-(*methylthio*)*phenyl*)*but-3-yn-1-ol* (**3h**). Yield: 488 mg, starting from 500 mg of 2iodothioanisole (94%). Yellow oil. IR (film): v = 3418 (m, br), 2230 (vw), 1582 (w), 1504 (w), 1466 (w), 1435 (m), 1227 (w), 1142 (w), 1042 (m), 1011 (m), 748 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.41-7.38 (m, 1H, furyl ring), 7.35 (dd, *J* = 7.6, 1.2, 1H, H-6), 7.29-7.24 (m, 1H, H-4), 7.14 (dist d, *J* = 8.0, 1H, H-3), 7.06 (td, *J* = 7.6, 1.0, 1H, H-5), 64.1-6.39 (m, 1H, furyl ring), 6.36-6.33 (m, 1H, furyl ring), 5.00 (q, *J* = 5.9, 1H, CHOH), 3.06 (dist d, *J* = 5.9, 2H, ≡CCH₂), 2.92 (d, *J* = 5.9, 1H, OH), 2.46 (s, 3H, SMe); ¹³C-NMR (CDCl₃, 125 MHz): δ = 154.8, 142.2, 141.4, 132.1, 128.6, 124.39, 124.38, 121.5, 110.3, 106.8, 92.1, 81.3, 66.4, 27.6, 15.3; GC-MS (EI, 70 eV): *m*/*z* = 258 (M⁺, 2), 243 (33), 197 (5), 162 (32), 147 (100), 115 (13), 97 (84); HRMS-ESI (*m*/*z*): [(M-H₂O+H)⁺] calcd for (C₁₅H₁₃OS)⁺: 241.0681; found, 241.0690.

5-(2-(Methylthio)phenyl)-2-phenylpent-4-yn-2-ol (**3i**). Yield: 453 mg, starting from 500 mg of 2iodothioanisole (80%). Yellow oil. IR (film): v = 3443 (m, br), 2232 (vw), 1582 (w), 1493 (m), 1464 (m), 1435 (w), 1180 (w), 1099 (m), 1028 (m), 912 (m), 766 (m), 719 (s), 700 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.57-7.52 (m, 2H, aromatic), 7.37-7.32 (m, 2H, aromatic), 7.31 (dd, *J* = 7.6, 1.3, 1H, aromatic), 7.28-7.22 (m, 2H, aromatic), 7.13 (dist d, *J* = 8.6, 1H, H-3), 7.04 (dist td, *J* = 7.5, 1.0, 1H, H-5), 3.04 (dist d, *J* = 16.7, 1H, \equiv CCHH), 2.97 (dist d, *J* = 16.7, 1H, \equiv CCHH), 2.93 (s, 1H, OH), 2.43 (s, 3H, SMe), 1.73 (s, 3H, Me); ¹³C-NMR (CDCl₃, 125 MHz): δ = 146.6, 141.4, 132.1, 128.5, 128.2, 127.0, 124.8, 124.4, 121.6, 92.7, 81.7, 73.6, 36.0, 29.5, 15.3; GC-MS (EI, 70 eV): *m/z* = 282 (M⁺, 2), 263 (54), 248 (44), 234 (72), 215 (26), 202 (16), 162 (60), 147 (100), 121 (8), 115 (47), 105 (41); HRMS-ESI (*m/z*): [(M-H₂O+H)⁺] calcd for (C₁₈H₁₇S)⁺: 265.1045; found, 265.1053.

1-(3-(2-(Methylthio)phenyl)prop-2-yn-1-yl)cyclohexan-1-ol (**3**j). Yield: 495 mg, starting from 500 mg of 2iodothioanisole (95%). Yellow oil. IR (film): v = 3451 (m, br), 2228 (w), 1582 (w), 1464 (m), 1435 (m), 1265 (w), 1151 (m), 1074 (m), 980 (m), 955 (m), 750 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.37 (dist d, *J* = 7.4, 1H, H-6), 7.27 (dist t, *J* = 7.4, 1H, H-4), 7.14 (dist d, *J* = 7.8, 1H, H-3), 7.07 (t, *J* = 7.4, 1H, H-5), 2.65 (s, 2H, ECCH₂), 2.47 (s, 3H, SMe), 2.23 (s, 1H, OH), 1.82-1.44 (m, 9H, aliphatic), 1.36-1.24 (m, 1H, aliphatic); ¹³C-NMR (CDCl₃, 125 MHz): δ = 141.4, 132.1, 128.4, 124.3, 124.1, 121.6, 93.1, 81.4, 70.9, 37.0, 34.1, 25.7, 22.3, 15.2; GC-MS (EI, 70 eV) *m/z* = 260 (M⁺, 3), 227 (29), 185 (8), 162 (30), 147 (100), 99 (18), 81 (28); HRMS-ESI (*m/z*): [(M-H₂O+H)⁺] calcd for (C₁₆H₁₉S)⁺: 243.1202; found, 243.1216.

trans-2-((2-(Methylthio)phenyl)ethynyl)cyclohexan-1-ol (**3k**). Yield: 443 mg, starting from 500 mg of 2-iodothioanisole (90%). Yellow oil. IR (film): v = 3426 (m, br), 2222 (w), 1582 (w), 1435 (m), 1273 (w), 1111 (m), 1042 (w), 856 (w), 748 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): $\delta = 7.37$ (dist dd, J = 7.6, 1.0, 1H, H-6), 7.27 (dist td, J = 7.7, 1.2, 1H, H-4), 7.14 (dist d, J = 8.0, 1H, H-3), 7.09-7.04 (m, 1H, H-5), 3.63-3.54 (m, 1H, CHOH),

2.89 (s, 1H, OH), 2.55-2.40 (m, 1H, aliphatic), 2.47 (s, 3H, SMe), 2.15-2.01 (m, 2H, aliphatic), 1.85-1.66 (m, 2H, aliphatic), 1.55-1.45 (m, 1H, aliphatic), 1.37-1.17 (m, 3H, aliphatic); ¹³C-NMR (CDCl₃, 125 MHz): δ = 141.3, 131.9, 128.5, 124.3, 124.0, 121.5, 98.0, 80.3, 73.8, 40.0, 32.9, 30.8, 24.9, 24.3, 15.1; GC-MS (EI, 70 eV) *m/z* = 246 (M⁺, 15), 203 (18), 147 (100), 135 (23), 115 (14); HRMS-ESI (*m/z*): [(M+H)⁺] calcd for (C₁₅H₁₉OS)⁺: 247.1151; found, 247.1158.

trans-2-((2-(Methylthio)phenyl)ethynyl)cyclopentan-1-ol (**3**). Yield: 350 mg, starting from 500 mg of 2iodothioanisole (75%). Yellow oil. IR (film): v = 3379 (m, br), 2220 (w), 1582 (w), 1463 (m), 1435 (m), 1317 (w), 1300 (w), 1236 (w), 1165 (m), 1001 (m), 750 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.33 (dist d, *J* = 7.5, 1H, H-6), 7.27-7.21 (m, 1H, H-4), 7.11 (dist d, *J* = 8.0, 1H, H-3), 7.05 (dist t, *J* = 7.5, 1H, H-5), 4.34 (q, *J* = 5.6, 1H, *CHOH*), 2.89-2.82 (m, 1H, aliphatic), 2.46 (s, 3H, SMe), 2.27 (s, 1H, OH), 2.21-2.05 (m, 2H, aliphatic), 1.87-1.75 (m, 3H, aliphatic), 1.68-1.57 (m, 1H, aliphatic), 1.37-1.17 (m, 1H, aliphatic); ¹³C-NMR (CDCl₃, 125 MHz): δ = 141.4, 132.0, 128.3, 124.1, 123.8, 121.6, 98.7, 79.5, 79.4, 40.5, 33.3, 30.8, 21.8, 14.9; GC-MS (EI, 70 eV) *m/z* = 232 (M⁺, 24), 217 (11), 189 (45), 173 (58), 147 (100), 115 (27); HRMS-ESI (*m/z*): [(M+H)⁺] calcd for (C₁₄H₁₇OS)⁺: 233.0995; found, 233.1003.

Procedure for the synthesis of 4-(4-fluoro-2-(methylthio)phenyl)but-3-yn-1-ol 3b.

A solution of 2-bromo-5-fluorothioanisole (440 mg, 2.0 mmol), $PdCl_2(PPh_3)_2$ (140 mg, 0.2 mmol), Cul (57 mg, 0.3 mmol), and but-3-yn-1-ol (280.4 mg, 4.0 mmol) in anhydrous diisopropylamine (20 mL) was allowed to stir under nitrogen at 80 °C for 24 h. Water (50 mL) was then added, and the mixture extracted with diethyl ether (3 × 50 mL). The organic layer was washed with a saturated solution of NH₄Cl (100 mL) and water until neutral pH. After drying over Na₂SO₄, the solvent was evaporated, and the residue purified by column chromatography on silica gel using 9:1 hexane–AcOEt to 6:4 hexane–AcOEt as eluent.

4-(4-Fluoro-2-(methylthio)phenyl)but-3-yn-1-ol (**3b**). Yield: 307 mg, starting from 440 mg of 2-bromo-5-fluorothioanisole (73%). Yellow oil. IR (film): v = 3397 (m, br), 2230 (w), 1591 (m), 1568 (w), 1477 (s), 1435 (m), 1250 (m), 1202 (m), 1044 (s), 897 (w), 847 (m) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.32 (dd, *J* = 8.4, 5.9, 1H, H-6), 6.82 (dd, *J* = 9.7, 2.5, 1H, H-3), 6.75 (td, *J* = 8.4, 2.5, 1H, H-5), 3.84 (q, *J* = 6.1, 2H, CH₂OH), 2.74 (t, *J* = 6.1, 2H, CH₂CH₂OH), 2.46 (s, 3H, SMe), 2.27-2.21 (m, 1H, OH); ¹³C-NMR (CDCl₃, 125 MHz): δ = 162.7 (d, *J* = 250.2), 144.3 (d, *J* = 8.4), 133.5 (d, *J* = 8.9), 117.1 (d, *J* = 2.9), 113.3 (d, *J* = 22.2), 111.0 (d, *J* = 24.8), 93.2, 79.3, 61.1, 24.1, 14.9 (d, *J* = 3.1); GC-MS (EI, 70 eV) *m/z* = 210 (M⁺, 61), 179 (12), 165 (100), 146 (55), 133 (36), 115 (33); HRMS-ESI (*m/z*): [(M+H)⁺] cald for (C₁₁H₁₂FOS)⁺: 211.0587; found: 211.0595.

Figure S1. The asymmetric unit of the **2a** compound with the atom labelling scheme for non-H atoms. Color legend: carbon (light grey), hydrogen (white), oxygen (red), sulfur (yellow).

Figure S2. The asymmetric unit of the **4a** compound with the atom labelling scheme for non-H atoms. Color legend: carbon (light grey), hydrogen (white), oxygen (red), sulfur (yellow).

Figure S3. The asymmetric unit of the **4k** compound with the atom labelling scheme for non-H atoms. Color legend: carbon (light grey), hydrogen (white), oxygen (red), sulfur (yellow).

Figure S4. The asymmetric unit of the **4I** compound with the atom labelling scheme for non-H atoms. Color legend: carbon (light grey), hydrogen (white), oxygen (red), sulfur (yellow).

	2 a	4a	4k	41
Crystal data				
Chemical formula	$C_{11}H_8O_2S$	$C_{11}H_8O_2S$	$C_{15}H_{14}O_2S$	$C_{14}H_{12}O_2S$
Formula weight (g/mol)	204.25	204.25	258.34	244.31
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Orthorhombic
Space group	Pbca	P2 ₁ ab	<i>P</i> 2 ₁ /n	P212121
Temperature (K)	293	293	293	293
Cell parameters (Å,°)	a = 19.5159 (10) b = 10.1378 (5) c = 9.7013 (5)	A = 31.834 (4) b = 14.3017 (16) c = 3.9833 (3)	a = 12.4146 (4) b = 9.1475 (2) c = 11.7305 (4)	a = 9.1412 (3) b = 17.5180 (7) c = 7.1796 (2)

			β = 108.6794 (16)			
Volume (ų)	1919.39 (16)	1813.5 (3)	1261.98 (7)	1149.70 (7)		
z	8	8	4	4		
Z'	1	2	1	1		
Radiation type	Cu <i>Kα</i> radiation, λ = 1.540560 Å					
Data collection						
Diffractometer		Rigakı	u RINT2500			
Specimen mounting	special glass capillary					
Data collection mode	transmission					
2θ (°)	$2\theta_{min} = 8.00,$ $2\theta_{max} = 70.00$	$2\theta_{min} = 5.00,$ $2\theta_{max} = 80.00$	$2\theta_{min} = 8.00,$ $2\theta_{max} = 60.00$	$2\theta_{min} = 6.00,$ $2\theta_{max} = 100.00$		
Structure solution	on					
Methods	Direct space method, direct methods	Direct space method	Direct space method, direct methods	Direct space method, direct methods		
Parameters	6+1 DOF, 14 non- hydrogen atoms	6+5+0 DOF, 18 non-hydrogen atoms	6+0 DOF, 18 non- hydrogen atoms	6+0 DOF, 17 non-hydrogen atoms		
Cost function	$R_{wp} = 4.984$	$R_{wp} = 17.139$	$R_{wp} = 6.652$	$R_{wp} = 9.189$		
Refinement						
R _p	1.753	7.685	2.237	3.420		
R _{wp}	2.605	12.104	3.301	5.507		
R _{exp}	2.098	2.892	2.357	2.960		
R _{Bragg}	4.361	14.914	3.492	7.717		
χ ²	1.542	17.513	1.962	3.462		
No. of data points	3101	3751	2601	4701		
No. of reflections	417	573	355	714		
Profile function	Pearson VII	Pearson VII	Pearson VII	Pearson VII		
Refinement para	Refinement parameters					
Lattice	3	3	4	4		
Positional	42	83	54	51		
ADP	14	1	18	17		
Profile	10	10	10	10		
Background	20	19	20	20		

Peak-shift	3	3	3	3		
Restraints	40	78	52	50		
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained		
Programs						
Indexing	N-TREOR09 [7], DICVOL04 [8]					
Space group determination	EXPO2014 [9]					
Structure solution and refinement	EXPO2014					
Model building	ChemSketch [10], MOPAC2016 [11]					
Structure validation	Quantum ESPRESSO [12]					
Structure visualization	Mercury [13]					

The *ab initio* solution and structure refinement process were automatically performed by EXPO software [9], a package capable of carrying out the following steps: a) determination of unit-cell parameters and identification of the space group; b) structure solution by direct methods and/or a real-space approach; d) structure model refinement by the Rietveld method [14]. The first low-angle well-defined peaks in the experimental diffraction pattern were selected and actively used for indexing *via* N-TREOR09 [7] and DICVOL04 [8] programs embedded in EXPO. The space group determination was determined on the evaluation of the systematic absences.

The structures were solved with a real-space method based on the simulated annealing algorithm implemented in EXPO. The starting model was assembled using the sketching facilities of ACD/ChemSketch [10] and the geometry optimization was achieved by the program MOPAC2016 [11]. The simulated annealing algorithm was run 100 times under Linux workstation in default mode and parallel calculation over 20 CPUs. The best solution with the lowest cost function value was selected. The criterion to accept the solution was also based on the soundness of the crystal packing. The solutions obtained by the direct-space method were also confirmed by direct methods for structures **2a**, **4k**, **4l**.

Density-functional theory (DFT) geometry optimization with Quantum ESPRESSO was only performed on hydrogen atoms to improve their positions [12]. The structures derived were refined by the Rietveld method. Restraints were applied to bond distances to stabilize the refinement of structures 2a, 4a, 4k, 4l. All H atoms bonded to C atoms were treated as riding under the constraint on atomic displacement parameters $U_{iso}(H) = 1.2U_{iso}(C)$. Peak shape was modelled using the Pearson VII function. The atomic displacement parameters were refined isotropically and, only for the structure 4a, only an overall atomic displacement parameter was refined. To validate the refined crystal structures, they were subjected to periodic, solid-state calculations performed by Quantum ESPRESSO, an *ab initio* quantum-mechanical program employing plane waves and density-functional theory to simulate the properties of solids. The following execution parameters were used: PBE potentials from the SSSP Efficiency PBE (version 1.1) library [15], an optional cut-off controlling the accuracy of the calculations set to 60 Ry, k-point spacing was 0.15 Å⁻¹, van der Waals interactions were corrected by means of a Grimme's D3 dispersion correction [16]. Atomic-coordinate-only optimization of the

structures were performed using the experimental cell parameters and atomic positions obtained from the Rietveld refinement. The root-mean-square (RMS) displacements of non-H atoms between the DFT-optimized and experimental crystal structures were 0.055 Å, 0.306 Å, 0.054 Å and 0.196 Å respectively, providing strong evidence that the experimental structures were correct [17].

Figure S5. View of the packing of 2a molecules along the c axis.

Figure S6. View of the packing of 4a molecules along the c axis.

Figure S7. View of the packing of **4k** molecules along the b axis. All hydrogen atoms have been removed for clarity.

Figure S8. View of the packing of 4I molecules along the c axis.

References

[1] R. Mancuso, M. Lettieri, R. Strangis, P. Russo, A. Palumbo Piccionello, S. De Angelis, B. Gabriele, Asian J. Org. Chem. 11 (2022) e202200353.

[2] J. Liu, G. Chen, J. Xing, J. Liao, Tetrahedron: Asymm. 22 (2011) 575-579.

[3] A.M. Sherwood, S.E. Williamson, S.N. Johnson, A.Ylmaz, V. W. Day, T. Prisinzano, J. Org. Chem. 83 (2018) 980-992.

[4] I. D. Jurberg, Y. Odabachian, F. Gagosz, J. Am. Chem. Soc. 132 (2010) 132 3543-3552.

[5] N. A. Danilkina, A. I. Govdi, A. F. Khlebnikov, A. F. Khlebnikov, A. O. Tikhomirov, V. V. Sharoyko, A. A. Shtyrov, M. I N. Ryazantsev, S. Bräse, I. A. Balova, J. Am. Chem. Soc. 143 (2021) 16519-16537.

[6] X-ray Crystallographic Information files 2a.cif, 4a.cif, 4k.cif, 4l.cif contain the supplementary crystallographic data for this paper, and are supplied as independent Supporting Information files for this article. These files can also be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (CCDC 2270114, 2278132, 2270145, 2270776, respectively).

[7] A. Altomare, G. Campi, C. Cuocci, L. Eriksson, C. Giacovazzo, A. Moliterni, R. Rizzi, J. Appl. Cryst. 42 (2009) 768-775.

[8] A. Boultif, D. Louër, J. Appl. Cryst. 37 (2004) 724–731.

[9] A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Cryst. 46 (2013) 1231–1235.

[10] ACD/ChemSketch, Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2003.

[11] MOPAC2016, Version 18.305L, in: J. J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net/.

[12] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys.: Condens. Matter 21 (2009) 395502.

[13] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, & J. van de Streek, J. Appl. Cryst. 9 (2006) 453-457.

[14] H. M. Rietveld, J. Appl. Cryst. 2 (1969), 65-71.

[15] G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet and N. Marzari, npj Comput Mater, 4 (2018) 72.

[16] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104-154119.

[17] J. van de Streek, M. A. Neumann, Acta Cryst. B 70 (2014) 1020–1032.

Copies of HRMS spectra

4-Methyl-1-(2-(methylthio)phenyl)pent-1-yn-3-ol (1b)

4-(2-(Methylthio)phenyl)-2-phenylbut-3-yn-2-ol (1i)

3-Methylbenzo[4,5]thieno[2,3-c]furan-1(3H)-one (2a)

3-Isopropylbenzo[4,5]thieno[2,3-c]furan-1(3H)-one (2b)

3,3-Dimethylbenzo[4,5]thieno[2,3-c]furan-1(3H)-one (2c) HRMS (ESI-TOF) *m/z*: [(M+H)⁺] calcd for (C₁₂H₁₁O₂S)⁺: 219.0474; found, 219.0462

3,3,7-Trimethylbenzo[4,5]thieno[2,3-c]furan-1(3H)-one (2e) MS (FSI-TOF) m/z^{1} [(M+H)⁺] caled for (C₁₂H₁₂O₂S)⁺: 233 0631: found 233 06

3-Ethyl-3-methylbenzo[4,5]thieno[2,3-*c***]furan-1(3***H***)-one (2f) HRMS (ESI-TOF)** *m/z***: [(M+H)⁺] calcd for (C₁₃H₁₃O₂S)⁺: 233.0631; found, 233.0633**

1H-Spiro[benzo[4,5]thieno[2,3-c]furan-3,1'-cyclopentan]-1-one (2h)

3-Methyl-3-phenylbenzo[4,5]thieno[2,3-c]furan-1(3H)-one (2i) HRMS (ESI-TOF) *m*/*z*: [(M+H)⁺] calcd for (C₁₇H₁₃O₂S)⁺: 281.0631; found, 281.0633

HRMS (ESI-TOF) *m/z*: [(M+H)⁺] calcd for (C₂₂H₁₅O₂S)⁺: 343.0787; found, 343.0784

Benzo[4,5]thieno[2,3-c]furan-1(3H)-one (2k) BENAS (ESU TOE) m/7: [(M+H)⁺] coled for (C, H-O,S)⁺: 101 0161: found 101 01

4-(2-(Methylthio)phenyl)but-3-yn-1-ol (3a)

4-(4-Fluoro-2-(methylthio)phenyl)but-3-yn-1-ol (3b)

5-(2-(Methylthio)phenyl)pent-4-yn-2-ol (3c)

S21

3,4-Dihydro-1*H*-benzo[4,5]thieno[3,2-*c*]pyran-1-one (4a)

HRMS (ESI-TOF) *m/z*: [(M+H)⁺] calcd for (C₁₁H₈FO₂S)⁺: 223.0224; found, 223.0234

3-Methyl-3,4-dihydro-1H-benzo[4,5]thieno[3,2-c]pyran-1-one (4c)

3-Ethyl-3,4-dihydro-1H-benzo[4,5]thieno[3,2-c]pyran-1-one (4d)

3-Phenyl-3,4-dihydro-1H-benzo[4,5]thieno[3,2-c]pyran-1-one (4e)

3-Mesityl-3,4-dihydro-1H-benzo[4,5]thieno[3,2-c]pyran-1-one (4f)

Spiro[benzo[4,5]thieno[3,2-*c*]pyran-3,1'-cyclohexan]-1(4*H*)-one (4j) HRMS (ESI-TOF) m/z: [(M+H)⁺] calcd for (C₁₆H₁₇O₂S)⁺: 273.0944; found, 273.0950

HRMS (ESI-TOF) m/z: [(M+H)⁺] calcd for (C₁₄H₁₃O₂S)⁺: 245.0631; found, 245.0643

S28

S30

S31

2-Methyl-4-(5-methyl-2-(methylthio)phenyl)but-3-yn-2-ol (1e) НÓ _Me `Me Me `SMe ¹H NMR (CDCl₃, 500 MHz) 7.26 7.21 7.20 7.09 7.09 7.09 7.03 7.05 7.05 -----0.00 --- 1.65 0.86<u>4</u> 1.91<u>–</u> 2.90H 3.12H 6.00H

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

2-Methyl-4-(5-methyl-2-(methylthio)phenyl)but-3-yn-2-ol (1e) HO _Me `Me Me `SMe ¹³C NMR (CDCl₃, 125 MHz) \[
\begin{aligned}
\begin{aligned}
\begin{aligned}
137.92
134.15
\begin{aligned}
134.15
132.97
129.75
\begin{aligned}
\begin{aligned}
134.68
\begin{aligned}
\begin{aligned}
124.68
\begin{aligne 79.88 77.30 77.04 76.79 --- 20.57 --- 15.32 ---- 65.75 -----0.00 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0 -10

S33

S35

S36

3,3-Dimethylbenzo[4,5]thieno[2,3-c]furan-1(3H)-one (2c)

S44

S53

3-Methyl-3-phenylbenzo[4,5]thieno[2,3-c]furan-1(3H)-one (2i)

S64

S69

S71

S75

3-Methyl-3,4-dihydro-1*H*-benzo[4,5]thieno[3,2-*c*]pyran-1-one (4c)

¹H NMR (CDCl₃, 500 MHz)

S91

3-Phenyl-3,4-dihydro-1*H*-benzo[4,5]thieno[3,2-*c*]pyran-1-one (**4e**)

S93

3-Mesityl-3,4-dihydro-1*H*-benzo[4,5]thieno[3,2-*c*]pyran-1-one (**4f**)

3-(4-Methoxyphenyl)-3,4-dihydro-1*H*-benzo[4,5]thieno[3,2-*c*]pyran-1-one (**4g**)

3-(4-Methoxyphenyl)-3,4-dihydro-1*H*-benzo[4,5]thieno[3,2-c]pyran-1-one (**4g**)

3-(Furan-2-yl)-3,4-dihydro-1*H*-benzo[4,5]thieno[3,2-*c*]pyran-1-one (**4h**)

3-(Furan-2-yl)-3,4-dihydro-1*H*-benzo[4,5]thieno[3,2-*c*]pyran-1-one (**4h**)

3-Methyl-3-phenyl-3,4-dihydro-1*H*-benzo[4,5]thieno[3,2-*c*]pyran-1-one (4i)

Spiro[benzo[4,5]thieno[3,2-c]pyran-3,1'-cyclohexan]-1(4H)-one (4j)

(4aRS, 11bRS)-1,2,3,4,4a,11b-Hexahydro-6*H*-benzo[4,5]thieno[3,2-c]chromen-6-one (**4k**)

(4aRS, 11bRS)-1,2,3,4,4a,11b-Hexahydro-6*H*-benzo[4,5]thieno[3,2-*c*]chromen-6-one (**4k**)

(3aRS, 10bRS)-2,3,3a,10b-Tetrahydrobenzo[4,5]thieno[3,2-d]cyclopenta[b]pyran-5(1H)-one (4I)

(3aRS, 10bRS)-2,3,3a,10b-Tetrahydrobenzo[4,5]thieno[3,2-d]cyclopenta[b]pyran-5(1H)-one (4I)