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Abstract. Reverse derivative categories (RDCs) have recently been
shown to be a suitable semantic framework for studying machine learn-
ing algorithms. Whereas emphasis has been put on training method-
ologies, less attention has been devoted to particular model classes: the
concrete categories whose morphisms represent machine learning mod-
els. In this paper we study presentations by generators and equations
of classes of RDCs. In particular, we propose polynomial circuits as a
suitable machine learning model. We give an axiomatisation for these
circuits and prove a functional completeness result. Finally, we discuss
the use of polynomial circuits over specific semirings to perform machine
learning with discrete values.

1 Introduction

Reverse Derivative Categories [10] have recently been introduced as a formal-
ism to study abstractly the concept of differentiable functions. As explored
in [11], it turns out that this framework is suitable to give a categorical seman-
tics for gradient-based learning. In this approach, models–as for instance neural
networks–correspond to morphisms in some RDC. We think of the particular
RDC as a ‘model class’–the space of all possible definable models.

However, much less attention has been directed to actually defining the RDCs
in which models are specified: existing approaches assume there is some chosen
RDC and morphism, treating both essentially as a black box. In this paper,
we focus on classes of RDCs which we call ‘polynomial circuits’, which may be
thought of as a more expressive version of the boolean circuits of Lafont [17],
with wires carrying values from an arbitrary semiring instead of Z2. Because we
ensure polynomial circuits have RDC structure, they are suitable as machine
learning models, as we discuss in the second part of the paper.

Our main contribution is to provide an algebraic description of polynomial
circuits and their reverse derivative structure. More specifically, we build a pre-
sentation of these categories by operation and equations. Our approach will
proceed in steps, by gradually enriching the algebraic structures considered, and
culminate in showing that a certain presentation is functionally complete for the
class of functions that these circuits are meant to represent.
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An important feature of our categories of circuits is that morphisms are spec-
ified in the graphical formalism of string diagrams. This approach has the benefit
of making the model specification reflect its combinatorial structure. Moreover,
at a computational level, the use of string diagrams makes available the princi-
pled mathematical toolbox of double-pushout rewriting, via an interpretation of
string diagrams as hypergraphs [6–8]. Finally, the string diagrammatic presenta-
tion suggests a way to encode polynomial circuits into datastructures: an impor-
tant requirement for being able to incorporate these models into tools analogous
to existing deep learning frameworks such as TensorFlow [1] and PyTorch [19].

Tool-building is not the only application of the model classes we define here.
Recent neural networks literature [4,9] proposes to improve model performance
(e.g. memory requirements, power consumption, and inference time) by ‘quan-
tizing’ network parameters. One categorical approach in this area is [23], in
which the authors define learning directly over boolean circuit models instead
of training with real-valued parameters and then quantizing. The categories in
our paper can be thought of as a generalisation of this approach to arbitrary
semirings.

This generalisation further yields another benefit: while neural networks lit-
erature focuses on finding particular ‘architectures’ (i.e. specific morphisms) that
work well for a given problem, our approach suggests a new avenue for model
design: changing the underlying semiring (and thus the corresponding notion of
arithmetic). To this end, we conclude our paper with some examples of finite
semirings which may yield new approaches to model design.

Synopsis. We recall the notion of RDC in Sect. 2, and then study presentations of
RDCs by operations and equations in Sect. 3. We define categories of polynomial
circuits in Sect. 4, before showing how they can be made functionally complete
in Sect. 5. Finally, we close by discussing some case studies of polynomial circuits
in machine learning, in Sect. 6.

2 Reverse Derivative Categories

We recall the notion of reverse derivative category [10] in two steps. First we
introduce the simpler structure of cartesian left-additive categories. We make
use of the graphical formalism of string diagrams [20] to represent morphisms in
our categories.

Definition 1. A Cartesian Left-Additive Category ([5,10]) is a cartesian
category in which each object A is equipped with a commutative monoid and zero
map:

A

A
A A (1)
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so that

= = =

A ⊗ B

A ⊗ B
A ⊗ B =

A

B

A

A

B

B

A ⊗ B =
A

B

(2)

Note that the category being cartesian means that: (I) it is symmetric
monoidal, namely for each object A and B there are symmetries B

A

A

B
and

identities A A satisfying the laws of symmetric monoidal categories [20]; (II)
each object A comes equipped with a copy and a discard map:

A

A
A A (3)

satisfying the axioms of commutative comonoids and natural with respect to the
other morphisms in the category:

= = =

f =
f

f
f =

(4)

Remark 1. Definition 1 is given differently than the standard definition of carte-
sian left-additive categories [10, Definition 1], which one may recover by let-

ting addition of morphisms be f + g :=
f

g
, and the zero morphism

be 0 := . Equations of cartesian left-additive categories as given in [10,
Definition 1]

x � (f + g) = (x � f) + (x � g) x � 0 = 0

are represented by string diagrams

f

g
x =

f

g

x

x
x =

and follow from Definition 1 thanks to the naturality of and , respec-
tively. We refer to [5, Proposition 1.2.2 (iv)] for more details on the equivalence
of the two definitions.

Now, Reverse Derivative Categories, originally defined in [10], are cartesian
left-additive categories equipped with an operator R of the following type, and
satisfying axioms RD.1–RD.7 detailed in [10, Definition 13].
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A
f−→ B

A × B −→
R[f ]

A

Intuitively, for a morphism f : A → B we think of its reverse derivative
R[f ] : A×B → A as approximately computing the change of input to f required
to achieve a given change in output. That is, if f is a function, we should have

f(x) + δy ≈ f(x + R[f ](x, δy))

The authors of [10] go on to show that any reverse derivative category also
admits a forward differential structure: i.e., it is also a Cartesian Differential
Category (CDC). This means the existence of a forward differential operator D
satisfying various axioms, and having the following type:

A
f−→ B

A × A −→
D[f ]

B

In an RDC, the forward differential operator is defined in terms of R as the
following string diagram, with R(n) denoting the n-fold application1 of R:

D[f ] := R(2)[f ]

In contrast to the R operator, we think of D as computing a change in output
from a given change in input, whence ‘forward’ and ‘reverse’ derivative:

f(x + δx) ≈ f(x) + D[f ](x, δx)

The final pieces we need to state our definition of RDCs are the (cartesian
differential) notions of partial derivative and linearity defined in [10]. Graphi-
cally, the partial derivative of g : A × B → C with respect to B is defined as
follows:

DB [g] := D[g]
A
B

B

C

Finally we say that g is linear in B when

DB [g] = g
A

B
CB

and more generally that f : A → B is linear when

D[f ] = fB B
A

1 For example, R(2)[f ] denotes the map R[R[f ]].
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We can now formulate the definition of RDCs. Note that in the following
definition and proofs we treat D purely as a syntactic shorthand for its definition
in terms of R. We avoid use of CDC axioms to prevent a circular definition,
although one can derive them as corollaries of the RDC axioms.

Definition 2. A Reverse Derivative Category is a cartesian left-additive
category equipped with a reverse differential combinator R:

A
f−→ B

A × B −→
R[f ]

A

satisfying the following axioms:
[ARD.1] (Structural axioms, equivalent to RD.1, RD.3–5 in [10])

R [ ] = R
[ ]

= R
[ ]

=

R
[ ]

= R [ ] = R [ ] =

R[f � g] = f
R[g]

R[f ] R[f × g] =
R[f ]

R[g]

[ARD.2] (Additivity of change, equivalent to RD.2 in [10])

R[f ] =
R[f ]

R[f ]
R[f ] =

[ARD.3] (Linearity of change, equivalent to RD.6 in [10])

DB [R[f ]] = R[f ]

[ARD.4] (Symmetry of partials, equivalent to RD.7 in [10])

D(2)[f ] = D(2)[f ]

Remark 2. Note that we may alternatively write axioms ARD.3 and ARD.4
directly in terms of the R operator by simply expanding the syntactic definition
of D.

Note that axioms ARD.1 and ARD.2 are quite different to that of [10], while
ARD.3 and ARD.4 are essentially direct restatements in graphical language of
RD.6 and RD.7 respectively.

The definition we provide best suits our purposes, although it is different
than the standard one provided in [10, Definition 13]. We can readily verify that
they are equivalent.
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Theorem 1. Definition 2 is equivalent to [10, Definition 13].

Proof. Axioms ARD.3–4 are direct statements of axioms RD.6–7, so it suffices
to show that we can derive axioms ARD.1–2 from RD.1.5 and vice-versa. The
structural axioms ARD.1 follow directly from RD.1 and RD.3–5.

– For R [ ] use RD.3 directly.
– For R

[ ]
, apply RD.4 to 〈π1, π0〉

– For R
[ ]

, apply RD.1 to π0 + π1

– For R [ ], apply RD.1 directly.
– For R

[ ]
, apply RD.4 to 〈id, id〉

– For R [ ], apply RD.4 directly.
– For composition f � g, apply RD.5 directly
– For tensor f × g, apply RD.4 to 〈π0 � f, π1 � g〉
In the reverse direction, we can obtain RD.1 and RD.3–5 by simply constructing
each equation and showing it holds given the structural equations. For example,
RD.1 says that R[f +g] = R[f ]+R[g] and R[0] = 0, which we can write graphically
as:

R

⎡
⎣ f

g

⎤
⎦ = R [f ] + R [g]

and

R [ ] =

ARD.2 can be derived from RD.2 by setting a, b, c to appropriate projections,
and in the reverse direction we can obtain RD.2 simply by applying ARD.2 to
its left-hand-side and using naturality of .

A main reason to give an alternative formulation of cartesian left-additive
and reverse derivative categories is being able to work with a more ‘algebraic’
definition, which revolves around the interplay of operations , , , and

. This perspective is particularly useful when one wants to show that the free
category on certain generators and equations has RDC structure. We thus recall
such free construction, referring to [24, Chapter 2] and [3, Sect. 5] for a more
thorough exposition.

Definition 3. Given a set Obj of generating objects, we may consider a set
Σ of generating morphisms f : w → v, where the arity w ∈ Obj � and the
coarity v ∈ Obj � of f are Obj -words. Cartesian left-additive Σ-terms are defined
inductively:

– Each f : w → v is a Σ-term.
– For each A ∈ Obj , the generators (1) and (3) of the cartesian left-additive

structure are Σ-terms.
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– If f : w → v, g : v → u, and h : w′ → v′ are Σ-terms, then f � g : w → u and
f ⊗ h : ww′ → vv′ are Σ-terms, represented as string diagrams

fw v g u
fw v

hw′ v′

Let us fix Obj , Σ and a set E of equations between Σ-terms. The cartesian
left-additive category C freely generated by (Obj , Σ,E) is the monoidal category
with set of objects Obj � and morphisms the Σ-terms quotiented by the axioms of
cartesian left-additive categories and the equations in E. The monoidal product
in C is given on objects by word concatenation. Identities, monoidal product and
sequential composition of morphisms are given by the corresponding Σ-terms and
their constructors f ⊗ h and f � g.

One may readily see that C defined in this way is indeed cartesian left-
additive. We say that C is presented by generators (Obj , Σ) and equations E.

3 Reverse Derivatives and Algebraic Presentations

As we will see in Sect. 5, our argument for functional completeness relies on
augmenting the algebraic presentation of polynomial circuits with an additional
operation. To formulate such result, we first need to better understand how
reverse differential combinators may be defined compatibly with the generators
and equations presenting a category.

Theorem 2. Let C be the cartesian left-additive category presented by gener-
ators (Obj , Σ) and equations E. If for each s ∈ Σ there is some R[s] which
is well-defined (see Remark 3) with respect to E, and which satisfies axioms
ARD.1–4, then C is a reverse derivative category.

Proof. Observe that axioms ARD.1 fix the definition of R on composition, tensor
product and the cartesian and left-additive structures. It therefore suffices to
show that axioms ARD.2–4 are preserved by composition and tensor product.
That is, for morphisms f, g of appropriate types, both f � g and f ⊗ g preserve
axioms ARD.2–4. Thus, any morphism constructed from generators must also
satisfy the axioms ARD.1–4, and C must be an RDC. Showing that ARD.2–4
are preserved by composition and tensor product can be done graphically, but
we omit the proofs here.

Remark 3. In the statement of Theorem 2, strictly speaking s ∈ Σ is just a
representative of the equivalence class of Σ-terms (modulo E plus the laws of
left-additive cartesian categories) defining a morphism in C . Because of this, we
require R[s] to be ‘well-defined’, in the sense that if s and t are representatives
of the same morphisms of C , then the same should hold for R[s] and R[t]. In a
nutshell, we are allowed to define R directly on Σ-terms, provided our definition
is compatible with E and the laws of left-additive cartesian categories.
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An immediate consequence of Theorem 2 is that if we have a presentation of
an RDC C , we can ‘freely extend’ it with an additional operation s, a chosen
reverse derivative R[s], and equations E′, so long as R is well-defined with respect
to E′ and the axioms ARD.2–4 hold for R[s]. Essentially, this gives us a simple
recipe for adding new ‘gadgets’ to existing RDCs and ensuring they retain RDC
structure.

One particularly useful such ‘extension’ is the addition of a multiplication
morphism that distributes over the addition . We define categories with
such a morphism as an extension of cartesian left-additive categories as follows:

Definition 4. A Cartesian Distributive Category is a cartesian left-
additive category such that each object A is equipped with a commutative monoid

and unit which distributes over the addition . More completely, it is
a category having generators

satisfying the cartesianity equations (4), the left-additivity equations (2), the
multiplicativity equations

= = = (5)

and the distributivity and annihilation equations

= = (6)

Just as for cartesian left-additive categories, one may construct cartesian
distributive categories freely from a set of objects Obj , a signature Σ, and equa-
tions E, the difference being that Σ-term will be constructed using also and

, and quotiented also by (5)–(6). The main example of cartesian distributive
categories are Polynomial Circuits, which we define in Sect. 4 below.

Reverse derivative categories define a reverse differential combinator on a
left-additive cartesian structure. As cartesian distributive categories properly
extend left-additive ones, it is natural to ask how we may extend the definition
of the reverse differential combinator to cover the extra operations and .
The following theorem provide a recipe, which we will use in the next section to
study RDCs with a cartesian distributive structure. Note that the definition of
R∗ below is a string diagrammatic version of the reverse derivative combinator
defined on POLY in [10].

Theorem 3. Suppose C is a left-additive cartesian category presented by
(Obj , Σ,E), and assume C is also an RDC, say with reverse differential combi-
nator R. Then the cartesian distributive category C ∗ presented by (Obj , Σ,E),
with reverse differential combinator R∗ defined as R on the left-additive cartesian
structure, and as follows

R∗
[ ]

= R∗ [ ] = (7)
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on the extra distributive structure, is also an RDC.

Proof. It suffices to check that R is well-defined with respect to the additional
equations of cartesian distributive categories, and that the new generators
and satisfy axioms ARD.2–4.

4 Polynomial Circuits

Our motivating example of cartesian distributive categories is that of polynomial
circuits, whose morphisms can be thought of as representing polynomials over a
commutative semiring. We define them as follows:

Definition 5. Let S be a commutative semiring. We define PolyCircS as the
cartesian distributive category presented by (I) one generating object 1, (II) for
each s ∈ S, a generating morphism s : 0 → 1, (III) the ‘constant’ equations

0 =
s

t
= s + t 1 =

s

t
= s · t

(8)
for s, t ∈ S, intuitively saying that the generating morphisms respect addition
and multiplication of S.

Proposition 1. PolyCircS is an RDC with R
[

s
]

= .

Proof. The type of R
[

s
]

: 1 → 0 implies that there is only one choice of
reverse derivative, namely the unique discard map . Furthermore, R is well-
defined with respect to the constant equations (8) for the same reason. Finally,
observe that the axioms ARD.2–4 hold for R

[
s

]
, precisely in the same way

as for R [ ], and so PolyCircS is an RDC.

Although our Definition 5 of PolyCircS requires that we add an axiom for each
possible addition and multiplication of constants, for some significant choices of
S an equivalent smaller finite axiomatisation is possible. We demonstrate this
with some examples.

Example 1. In the case of PolyCirc
Z2

, the equations of Definition 5 reduce to the
single equation

=

expressing that x + x = 0 for both elements of the field Z2.
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Example 2. In the case PolyCirc
N

of the semiring of natural numbers, with the
usual addition and multiplication, no extra generating morphisms or equations
are actually necessary: all those appearing in Definition 5 may be derived from
the cartesian distributive structure. To see why, notice that we may define each
constant s ∈ S as repeated addition:

s := s

where we define n inductively as

0 := n :=
n − 1

The equations expressing addition and multiplication in N are then a conse-
quence of those of cartesian distributive categories. In fact, from this observa-
tion we have that PolyCirc

N
is the free cartesian distributive category on one

generating object.

Example 3. In a straightforward generalization of PolyCirc
Z2

, we can define
PolyCirc

Zn
in the same way, but with the only additional equation as

n =

which says algebraically that (1 + n. . . + 1) · x = n · x = 0 · x = 0.

It is important to note that PolyCircS is isomorphic to the category POLYS ,
defined as follows:

Definition 6. POLYS is the symmetric monoidal category with objects the natu-
ral numbers and arrows m → n the n-tuples of polynomials in m indeterminates:

〈p1(�x), . . . , pn(�x)〉 : m → n

with each
pi ∈ S[x1, . . . , xm]

where S[x1, . . . xm] denotes the polynomial ring in m indeterminates over S.

The isomorphism PolyCircS
∼= POLYS is constructed by using that homsets

PolyCircS(m,n) and POLYS(m,n) have the structure of the free module over
the polynomial ring S[x1 . . . xm]n which yields a unique module isomorphism
between them. We do not prove this isomorphism here, other than to say that
it follows by the same argument as presented in [10, Appendix A].

Remark 4. Note in [10] POLYS is proven to be a reverse derivative category,
meaning that we could have derived Proposition 1 as a corollary of the iso-
morphism PolyCircS

∼= POLYS . We chose to provide a ‘native’ definition of the
reverse differential combinator of PolyCircS because–as we will see shortly–we
will need to extend it with an additional generator. The reason for this is to
gain the property of ‘functional completeness’, which will allow us to express
any function Sm → Sn. This new derived category will in general no longer
be isomorphic to POLYS , and so we must prove it too is an RDC: we do this
straightforwardly using Theorem 2.
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Remark 5. When S is a bonafide ring, we may account for its inverse by extend-
ing PolyCircS with a ‘negate’ generating morphism , together with the

additional equation = . Then Theorem 2 suggests us how
to extend the reverse differential combinator of PolyCircS to this new category:

R [ ] :=

5 Functional Completeness

We are now ready to consider the expressivity of the model class of polynomial
circuits. More concretely, for a given commutative semiring S, we would like to
be able to represent any function between sets Sm → Sn as a string diagram in
PolyCircS . This property, which we call ‘functional completeness’, is important
for a class of machine learning models to satisfy because it guarantees that we
may always construct an appropriate model for a given dataset. It has been
studied, for instance, in the context of the various ‘universal approximation’
theorems for neural networks (see e.g. [16,18]).

To formally define functional completeness, let us fix a finite set S. Recall the
cartesian monoidal category FinSetS , whose objects are natural numbers and a
morphism m → n is a function of type Sm → Sn.

Definition 7. We say a category C is functionally complete with respect to
a finite set S when there a full identity-on-objects functor F : C → FinSetS.

The intuition for Definition 7 is that we call a category C ‘functionally com-
plete’ when it suffices as a syntax for FinSetS—that is, by fullness of F we may
express any morphism in FinSetS . Note however that two distinct morphisms in
C may represent the same function—F is not necessarily faithful.

In general, PolyCircS is not functionally complete with respect to S. Take for
example the boolean semiring B with multiplication and addition as AND and
OR respectively. It is well known [21] that one cannot construct every function
of type B

m → B
n from only these operations.

Nonetheless, we claim that in order to make PolyCircS functionally complete
it suffices to add to its presentation just one missing ingredient: the ‘comparator’
operation, which represents the following function:

compare(x, y) =

{
1 if x = y

0 otherwise

The following result clarifies the special role played by the comparator.

Theorem 4. Let S be a finite commutative semiring. A category C is function-
ally complete with respect to S iff. there is a monoidal functor F : C → FinSetS
in whose image are the following functions:

– 〈〉 	→ s for each s ∈ S (constants)
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– 〈x, y〉 	→ x + y (addition)
– 〈x, y〉 	→ x · y (multiplication)
– compare

Proof. Suppose C is functionally complete with respect to S, where S is a finite
commutative semiring. Then by definition there is a functor F : C → FinSetS
with each of the required functions in its image.

Now in the reverse direction, we will show that any function can be con-
structed only from constants, addition, multiplication, and comparison. The idea
is that because S is finite, we can simply encode the function table of any func-
tion f : Sm → S as the following expression:

x 	→
∑

s∈Sm

compare(s, x) · f(s) (9)

Further, since C is cartesian, we may decompose any function f : Sm → Sn

into an n-tuple of functions of type Sm → S. More intuitively, for each of the
n outputs, we simply look up the appropriate output in the encoded function
table.

It follows immediately that PolyCircS is functionally complete with respect
to S if and only if one can construct the compare function in terms of constants,
additions, and multiplications. We illustrate one such case below.

Example 4. PolyCirc
Zp

is functionally complete for prime p. To see why, recall
Fermat’s Little Theorem [12], which states that

ap−1 ≡ 1(modp)

for all a > 0. Consequently, we have that

(p − 1) · ap−1 + 1 =

{
1 if a = 0
0 otherwise

We denote this function as δ(a) := (p−1) ·ap−1+1 to evoke the dirac delta ‘zero
indicator’ function. To construct the compare function is now straightforward:

compare(x1, x2) =
∑
s∈S

δ(x1 + s) · δ(x2 + s)

However, as we already observed, it is not possible in general to construct the
compare function in terms of multiplication and addition. Therefore, to guarantee
functional completeness we must extend the category of polynomial circuits with
an additional comparison operation.

Definition 8. We define by PolyCirc=S as the cartesian distributive category pre-
sented by the same objects, operations, and equations of PolyCircS, with the addi-
tion of a ‘comparator’ operation

= (10)
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and equations

=
s

s
= =

s

t
= (11)

for s, t ∈ S with s �= t.

To make PolyCirc=S a reverse derivative category, we can once again appeal
to Theorem 2. However, we must choose an apropriate definition of R[compare]
which is well-defined and satisfies axioms ARD.1–4.

A suggestion for this choice comes from the machine learning literature. In
particular, the use of the ‘straight-through’ estimator in quantized neural net-
works, as in e.g. [4]. Typically, these networks make use of the dirac delta function
in the forward pass, but this causes a catastrophic loss of gradient information
in the backwards pass since the gradient is zero almost everywhere. To fix this,
one uses the straight-through estimator, which instead passes through gradients
directly from deeper layers to shallower ones.

In terms of reverse derivatives, this amounts to setting R[δ] = R[id]. Of course,
we need to define R for the full comparator, not just the zero-indicator function
δ, and so we make the following choice:

Theorem 5. PolyCirc=S is an RDC with R as for PolyCircS, and

R
[

=
]

:=

Proof. R is well-defined with respect to the equations (11) since both sides of each
equation must equal the unique discard morphism . Further, R

[
=

]
sat-

isfies axioms ARD.2–4 in the same way that R
[ ]

does, and so by Theorem 2
PolyCirc=S is a reverse derivative category.

From Theorem 4, we may derive:

Corollary 1. PolyCirc=S is functionally complete with respect to S.

Finally, note that we recover the dirac delta function by ‘capping’ one of the
comparator’s inputs with the zero constant:

δ := =0

whose reverse derivative is equivalent to the ‘straight-through’ estimator:

R

[
=0

]
= = R [ ]
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6 Polynomial Circuits in Machine Learning: Case Studies

We now discuss the implications of some specific choices of semiring from a
machine learning perspective. Let us begin with two extremes: neural networks,
and the boolean circuit models of [23].

Neural Networks. We may think of a neural network as a circuit whose wires
carry values in R. Of course, in order to compute with such circuits we must
make a finite approximation of the reals–typically using floating-point numbers.
However, this approximation introduces two key issues. First, floating point
arithmetic is significantly slower than integer arithmetic. Second, the floating
point operations of addition and multiplication are not even associative, which
introduces problems of numerical instability. Although attempts exist to address
issues of floating point arithmetic (such as ‘posits’ [15]), these still do not sat-
isfy the ring axioms; to properly account for these approximations would require
additional work.

Boolean Circuits and Z2. One may note that since we must always eventually
deal with finite representations of values, we may as well attempt to define
our model class directly in terms of them. This is essentially the idea of [23]:
the authors use the category PolyCirc

Z2
(which they call simply PolyCirc) as

a model class since it is already functionally complete2 and admits a reverse
derivative operator. However, using a semiring of modular arithmetic in general
introduces a different problem: one must be careful to construct models so that
gradients do not ‘wrap around’. Consider for example the model below, which
can be thought of as two independent sub-models f1 and f2 using the same
parameters3 but applied to different parts of the input X1 and X2

f1

f2

P

X1

X2

Y

Since R
[ ]

= R

[ ]
, when we compute the gradient update for P we

will sum the gradients of f1 and f2. In the extreme case when the underlying
semiring is Z2, then when the gradients of f1 and f2 are both 1, the result will
‘wrap around’ to 0 and P will not be updated. This is clearly undesirable: here
we should prefer that 1 + 1 = 1 to 1 + 1 = 0.

Saturating Arithmetic. Another possible solution is to use the semiring Satn
as a model of saturating unsigned integer arithmetic for a given ‘precision’ n.
The underlying set is simply the finite set n̄, with addition and multiplication
defined as for the naturals, but ‘truncated’ to at most n − 1. We define Satn as

2 We discuss why in Example 4.
3 This approach is called ‘weight-tying’ in neural networks literature.
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follows, noting that it is equivalent to the semiring B(n, n − 1) first defined in
[2, Example 3] (see also [14]).

Definition 9. The semiring Satn has as addition and multiplication the opera-
tions

x1 + x2 := min(n − 1, x1 + x2) x1 · x2 := min(n − 1, x1 · x2)

over the set n̄ := {0 . . . n − 1}
Note that while Satn is a commutative semiring, it is certainly not a ring:

the introduction of inverses means that the associativity axiom of semirings is
violated.

Finally, note that for each of these choices of semiring S, in general PolyCircS

is not functionally complete. Thus, in order to obtain a model class which is
functionally complete and is a reverse derivative category, we must use PolyCirc=S .

7 Conclusions and Future Work

In this paper, we studied in terms of algebraic presentations categories of polyno-
mial circuits, whose reverse derivative structure makes them suitable for machine
learning. Further, we showed how this class of categories is functionally com-
plete for finite number representations, and therefore provides sufficient expres-
siveness. There remain however a number of opportunities for theoretical and
empirical work.

On the empirical side, we plan to use this work combined with data structures
and algorithms like that of [22] as the basis for practical machine learning tools.
Using these tools, we would like to experimentally verify that models built using
semirings like those presented in Sect. 6 can indeed be used to develop novel
model architectures for benchmark datasets.

There also remains a number of theoretical avenues for research. First, we
want to generalise our approach to functional completeness to the continuous
case, and then to more abstract cases such as polynomial circuits over the Burn-
side semiring. Second, we want to extend the developments of Sect. 3 in order to
provide a reverse derivative structure for circuits with notions of feedback and
delay, such as the stream functions described in [13].

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/

2. Alarcón, F., Anderson, D.: Commutative semirings and their lattices of ideals.
Houston J. Math. 20 (1994). https://www.math.uh.edu/∼hjm/vol20-4.html

3. Baez, J.C., Coya, B., Rebro, F.: Props in network theory (2017). http://www.tac.
mta.ca/tac/volumes/33/25/33-25abs.html

https://www.tensorflow.org/
https://www.math.uh.edu/~hjm/vol20-4.html
http://www.tac.mta.ca/tac/volumes/33/25/33-25abs.html
http://www.tac.mta.ca/tac/volumes/33/25/33-25abs.html


92 P. Wilson and F. Zanasi
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