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A B S T R A C T   

Addressing food safety and detecting food fraud while fulfilling greenness requisites for analysis is a challenging 
but necessary task. The use of sustainable techniques, with limited pretreatment, non-toxic chemicals, high 
throughput results, is recommended. A combination of Field Flow Fractionation (FFF), working in saline carrier 
and with minimal preprocessing, and chemometrics was for the first time applied to bovine milk grouping. A set 
of 47 bovine milk samples was analyzed: a single analysis yielded a characteristic multidimensional colloidal 
dataset, that once processed with multivariate tools allowed simultaneously for different discriminations: fat 
content, thermal treatment, brand and manufacturing plant. The analytical methodology is fast, green, simple, 
and inexpensive and could offer great help in the field of quality control and frauds identification. This work 
represents also the first attempt to identify milk sub-typologies based on colloidal profiles, and the most complete 
study concerning multivariate analysis of FFF fingerprint.   

1. Introduction 

Food authentication and origin discrimination are some of the most 
important tasks in the food industry. In the EU, clearly labelled 
geographical origin is required for the globalization of food trade and to 
fulfill transparency requirements from consumers (Law 2002). Howev-
er, regulations are unfortunately unable to prevent food fraud (Ballin 
2010) and consequently the availability of analytical methods suited to 
the task is of the outmost importance. Food analysis is crucial to ensure 
consumer safety, assess authenticity, and detect frauds. However, the 
high volume of analyses and the often-complex protocols, requiring 
sample extraction and organic solvents, open to the search of more 
sustainable techniques, that are nonetheless able to give satisfactory 
results, fast answers, and high-quality data. The main foods subjected to 
fraud are the ones of animal origin such as meat, honey, milk, dairy 
products, fish and seafood (Cubero-Leon, Peñalver, and Maquet 2014). 
In particular milk is one of the staples of Western diet and is a food 
product vastly commercialized as drink or processed as dairy product. 
According to Eurostat, raw milk production in the EU was 161 million 
tons in 2021, 96% of which was cows’ milk making its authentication a 
key topic in the food industry (Nascimento et al. 2017). 

From a chemical point of view, milk is a colloidal suspension whose 
main components can be divided into (1) lipids, (2) proteins, (3) car-
bohydrates (mainly lactose) and (4) microconstituents (vitamins, min-
eral salts), and whose relative composition is extremely variable, 
especially between different milk types (Fox, Mcsweeney, and Paul, 
1998). Milk proteins can be divided into two large groups: caseins and 
whey proteins. Whey proteins are a collection of various globular pro-
teins, in particular globulins and albumins. (Madureira et al. 2007). 
Caseins are complex protein aggregates forming micelles with diameters 
ranging between 50 and 600 nm (average diameter of 150 nm) (Hristov 
et al. 2016). These proteins are characterized by a not well-defined 
secondary structure (due to proline richness), and by the presence of 
phosphate groups residuals (mainly phospho-serine and phospho- 
threonine). Fat content can vary from below 3% to more than 6%, is 
composed mainly of triglycerides (>98% of the fat bulk) and it is present 
in the milk as milk fat globules (MFG) with diameters ranging from < 1 
to about 10 µm (average size is 1 µm) (Jensen 2002). The density of fat is 
lower than the surrounding aqueous serum leading to separation of 
unprocessed milk into a phase enriched in MFG (i.e., cream) and a phase 
largely depleted of such globules (i.e., skim milk) (Huppertz, Uniacke- 
Lowe, and Kelly 2020). This phenomenon, accelerated by the 

* Corresponding author at: Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy. 
E-mail address: valentina.marassi@unibo.it (V. Marassi).  

Contents lists available at ScienceDirect 

Food Chemistry 

journal homepage: www.elsevier.com/locate/foodchem 

https://doi.org/10.1016/j.foodchem.2023.138206 
Received 30 September 2023; Received in revised form 20 November 2023; Accepted 11 December 2023   

mailto:valentina.marassi@unibo.it
www.sciencedirect.com/science/journal/03088146
https://www.elsevier.com/locate/foodchem
https://doi.org/10.1016/j.foodchem.2023.138206
https://doi.org/10.1016/j.foodchem.2023.138206
https://doi.org/10.1016/j.foodchem.2023.138206
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foodchem.2023.138206&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Food Chemistry 440 (2024) 138206

2

application of a centrifugal force, is exploited to obtain skimmed 
(<0.5% fat) and semi skimmed milk (1.7%-2.0% fat). Bovine milk un-
dergoes various types of heat treatment to eliminate the content of 
pathogenic microorganisms for humans and to reduce the endogenous 
microflora, in order to increase the shelf life of the product. Treatments 
such as pasteurization are essentially carried out on all types of milk and 
are mild treatments. Others, such as Ultra High Temperature (UHT), are 
defined as strong treatments as they cause denaturation and aggregation 
of the whey proteins. Caseins, having a greater resistance to temperature 
(De Kruif and Holt 2003), are less affected. Treatment can cause a 
variation in the global shape of the micelle and or the formation of 
serum proteins-casein aggregates (Hennetier et al. 2020; Krishna et al. 
2021). A mild alternative to UHT treatment to increase milk shelf life is 
microfiltration (Lie-Piang et al. 2021). The latter reduces the content of 
pathogenic microorganisms by filtrating milk trough membranes of 
micro-sed pores able to retain bacteria. However, to guarantee the total 
absence of pathogenic bacteria the MF has to be combined with a heat 
treatment (at least a pasteurization step). Milk adulteration and 
authentication studies usually exploit single target testing approaches 
which have the drawback of providing limited and specific information 
on the sample’s status (Azad and Ahmed 2016). As highlighted in a 
recent work, improvement in this field are being made through multi-
targeted and fingerprinting approaches which, by exploiting chemo-
metric tools, provide more information while reducing the tediousness 
of the workflow (Zappi et al. 2023). NMR, GC, HPLC and genomics/ 
transcriptomics are the most exploited techniques to the untargeted 
authentication of milk and dairy products (Qin et al. 2022; Esteki, 
Shahsavari, and Simal-Gandara 2020). However, these approaches 
require expensive instrumentation (NMR, transcriptomics), suffer from 
interferences (genomics), require intensive sample pretreatment (GC, 
HPLC) and overall can be extremely complex in terms of data treatment 
(e.g., identification of certain markers from MS analysis) (Qin et al. 
2022). 

In physical terms, milk is a colloid. Origin, treatment, milk type, all 
contribute to a different colloidal composition. Colloidal nano systems 
can be successfully separated and analyzed by Field Flow Fractionation 
(FFF) multidetection, an analytical platform that can be customized by 
means of different online detection. Asymmetrical Flow Field Flow 
Fractionation (AF4), along with its miniaturized version Hollow Fiber 
Flow FFF (HF5), is the most common and exploited FFF variant (Plav-
chak et al. 2021; Wang et al. 2022). Sample components, differing by 
hydrodynamic size and/or other physical properties, are differentially 
eluted. The coupling with diode array (DAD), differential refractive 
index (dRI), fluorescence (FLD) and multi angle light scattering (MALS) 
detectors allows a size, morphological, and spectroscopical character-
ization of the separated species. Compared to other separation devices, 
AF4 platforms are characterized by a wide operating range, provide an 
extremely gentle separation, and are characterized by high flexibility of 
mobile phase and sample injectable (often requiring little to no pre-
treatment). These features allowed AF4 techniques to be exploited to 
separate and characterize (mass, size and spectroscopic properties) 
several samples such as nanoparticles (Caputo et al. 2021), bioparticles 
(Marassi et al. 2022; Nilsson 2013; Ventouri et al. 2022) and highly 
complex matrices such as biological fluids (Zhang and Lyden 2019; 
Mangal et al. 2018; Giordani et al. 2023) and food (Correia and 
Loeschner 2018; Krebs et al. 2019; Marassi et al. 2021). 

Applying multivariate analysis on the information-rich outputs pro-
vided by separative-multidetection platforms is still widely unexplored 
on FFF data since, when FFF is involved, most of the times multivariate 
analysis is not directly performed on FFF results but rather on down-
stream dataset obtained applying other analytical techniques to the 
analytes firstly separated by FFF (Austin et al. 2000; Kim et al. 2018). 
Such methodologies, although very powerful, are extremely time 
consuming and complex, since most of the times more than one addi-
tional analytical technique (e.g., uHPLC, SDS-page) is required. The 
need of using multiple analytical techniques to obtain the dataset 

necessary to the multivariate elaboration implies also higher costs and 
reduces the greenness of the study, especially when approaches based on 
organic solvents (e.g., HPLC) are required. 

A simpler, faster, cheaper, and more environmentally friendly 
alternative, still widely unexplored in FFF, involves the direct use of the 
signals over time collected by the detectors during the analysis as fin-
gerprints to distinguish different species. Down this line, an approach 
exploiting Principal Components Analysis (PCA), Partial Least Squares 
Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA) 
on FFF-derived datasets only, allowed to gather information of regional 
provenience of tomato sauces (Zappi et al. 2022) and distinguish be-
tween viable and non-viable cells of the same strain. 

Due to its colloidal nature, milk and its derivates have been studied 
with AF4 (Lie-Piang et al. 2021; Guyomarc’h et al. 2010; Hennetier et al. 
2020). The works in the literature have only focused on the dimensional 
and morphological characterization of whey and caseins proteins 
(Velazquez-Dominguez et al. 2023; Nogueira et al. 2023) and none of 
them focused on FFF colloidal fingerprint. 

In the framework of researching for analytical methods able to both 
fulfill greenness requirements and address the most challenging health 
concerns in the food industry, we explored the use of FFF colloidal 
fingerprinting-chemometrics towards food classification and grouping. 
As a case study, a set of bovine milks differing based on fat content 
(Whole, Semi Skimmed, Skimmed), thermal treatment (UHT, NON- 
UHT), brand and manufacturing plant have been analyzed with an 
AF4-UV-FLD-MALS platform after a limited sample preparation. The 
developed method did not require organic solvents, working in a saline 
solution mimicking milk ionic strength, pH, and calcium concentration. 
Statistical elaboration performed on datasets constituted by selected 
portions of the whole signals, acting as fingerprint, gathered an un-
precedented series of results extremely important in the field of quality 
control. In particular, it was possible to discriminate samples according 
to thermal treatment, fat content, and manufacturing plant. The results 
also highlight the importance of associating multivariate analysis to data 
directly provided by FFF platforms as an additional detection tool. This 
represents a major breakthrough in the field of milk analysis since fat 
content and processing method are the two major aspects of milk subject 
to fraud, and literature is lacking simple and inexpensive untargeted 
methods especially to investigate the latter (Qin et al. 2022). Our semi- 
automatic method (sample pretreatment needed, but automated ana-
lyses) allowed to distinguish a milk sample basing on fat and thermal 
treatment with a single, short (<1h) untargeted analysis requiring very 
minimal pre-treatment. On the contrary, at present, milk fat determi-
nation is evaluated with a non-automatic low throughput method 
(Gerber Method). Additionally, to the best of our knowledge no method 
exists to rapidly and simply discriminate UHT and non-UHT milk sam-
ples. Last, this methodology can be promptly translated to different food 
matrices to enable both performing and sustainable food analysis. 

2. Materials and methods 

2.1. Samples and chemicals 

Sodium Chloride (NaCl, Cat. No. S9888, ACS reagent, ≥99.0%), 
Calcium Chloride (CaCl2, Cat. No. 223506, ACS reagent, ≥99%), Bovine 
Serum Albumin (A7030, ≥98%), β-Lactoglobulin from bovine milk (No. 
L3908, ≥90%) β-Casein from bovine milk (No. C6905, ≥98%), Casein 
from bovine milk (No. C7078), Ethylendiaminetetraacetic acid disodium 
salt dihydrate (No. E4884, ACS reagent, 99.0–101.0%) were obtained by 
Sigma Aldrich. Sodium Azide (NaN3, No. 71289, ≥99.5%) was obtained 
by Fluka. 

Forty-seven bovine milk samples were purchased after their distri-
bution in supermarket chains for this study. Samples differ from each 
other based on fat content (whole, semi skimmed, skimmed), thermal 
treatment (UHT, NON-UHT), brand and manufacturing plant. We would 
like to stress out the difference between brand and manufacturing plant 
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since it is common for manufacturers (i.e. companies processing milk) to 
produce milk for more than one brand which then retails it under their 
own name. For detailed information on each milk sample see the Sup-
porting Information (SI) section, Table S1. 

2.2. AF4 analysis 

The AF4-UV-FLD-MALS analyses were performed by using a 1100 
Series HPLC system (Agilent Technologies, Palo Alto, CA), connected to 
a module to control AF4 flow rates and operations (Eclipse 3, Wyatt 
Technology Europe, Dernbach, Germany). The ChemStation version 
B.04.02 (Agilent Technologies, Santa Clara, CA, USA) data system for 
Agilent instrumentation was used to set and control the instrumentation 
and method parameters. 

The AF4 channel was 152 mm long, 16 mm wide, and 350 µm thick. 
The membrane was made by regenerated cellulose with 5 kDa cut-off 
(Microdyn-Nadir, Wiesbaden, Germany). Carrier solutions were 
degassed using an online vacuum degasser (Agilent, 1100 series, Agilent 
Technologies). Online detection of the eluted species was performed 
with a series of detectors here reported based on their order of coupling: 
an Agilent 1100 DAD UV/Vis spectrophotometer, a MALS detector 
operating at 658 nm wavelength model DAWN HELEOS (Wyatt Tech-
nology Corporation, Santa Barbara, CA, USA), a differential refractom-
eter model Optilab rEX (Wyatt Technology Corporation, Santa Barbara, 
CA, USA), and an Agilent 1200 spectrofluorometer working using a 280 
nm absorption wavelength and a 340 nm emission wavelength. Data 
collection was performed by the software ChemStation version B.04.02 
and ASTRA® software version 6.1.7 (Wyatt Technology Corporation, 
Santa Barbara, CA, USA). 

The aqueous carrier composition used (45 mM NaCl, 10 mM CaCl2, 
0.02%NaN3, pH = 6.7) was chosen to have an ionic strength, pH, and 
calcium concentration similar to that of milk serum to avoid any changes 
in the size distribution during the analysis (Gaucheron 2005). The fat 
content of the milk samples was partially reduced, following a procedure 
already reported in literature (Lie-Piang et al. 2021), by sample centri-
fugation at 2000 g for 20 min at room temperature in a Beckman Coulter 
Avanti J-E-centrifuge (Brea, California, U.S.A) using a J-17 rotor to 
avoid blocking the capillary tubes of the AF4 system. To reduce sample 
viscosity, the centrifugated sample was diluted 100 folds with mobile 
phase immediately before AF4 analysis. Compared to analysis of undi-
luted sample, separation profiles resulted identical while reproducibility 
improved due to the use of an injection volume farther from the injector 
lower limit. The detector flow rate was 0.60 mL min− 1, the injection 
flow rate was 0.20 mL min− 1 and the Focus-injection step was 5 min long 
with a 1.0 mL min− 1 crossflow rate. During the elution step of the sep-
aration method, the crossflow decayed exponentially from 1.0 mL min− 1 

to 0.12 mL min− 1 over 12 min (Slope = 3) and remained constant for 35 
min before field release. For each analysis the injection volume was 50 
µL. Each analysis was repeated in triplicate. Gyration radius (RG) was 
calculated using 0.1850 mL g-1 as dn/dc. Theorical Rh calculations were 
performed with the ISIS simulation software version 1.2.0 (Superon). 

The greenness of the developed method was evaluated based on the 
AGREE software (Pena-Pereira, Wojnowski, and Tobiszewski 2020) 
which calculates a coefficient ranging from 0.00 to 1.00 based on 
increasing greenness. 

2.3. Chemometric analyses 

Principal components analysis (PCA) was used as explorative anal-
ysis for multivariate data, to understand potential in grouping and find 
outliers (Bro and Smilde 2014). Through a linear combination of the 
original variables, PCA converts them into new variables, called prin-
cipal components (PCs), orthogonal to each other (Arrizabalaga-Larra-
ñaga et al. 2021). The output yielded two plots: loadings plot, to 
evaluate variables role in objects discrimination, and scores plot, to 
evaluate samples clustering based on PCs. 

Classification analyses were carried out by linear discriminant 
analysis (LDA) and partial-least squares discriminant analysis (PLS-DA). 
LDA allows the maximization of class separability in the model. A new 
object projected onto the model can be assigned to one of the known 
classes. The plot showing the result of the object’s projection is called 
discriminant plot. PLS-DA, instead, is based on PLS regression. In PLS- 
DA, the response variable is not a numeric one, as in PLS, but, by 
splitting a category variable, two or more dummy variables (based on 
the number of classes) are obtained, whose values are 1 when an object 
pertains to the corresponding class or 0 otherwise. Therefore, the 
response for each object is a vector of 0 and 1 indicating the pertaining 
class. 

For both classification analyses, a cross-validation (CV) method was 
applied to evaluate the performances of the models. 

For all computations, the R software v.4.1.0 (R Core Team, Vienna, 
Austria) was used. The AF4 data used as starting variables to generate 
the PCs consisted in specifically selected portions of the full profiles 
obtained by the DAD and FLD detector and the peak areas calculated 
from said profiles. Before analysis, the AF4 profiles have been mean 
centered. This process consists of subtracting the mean value from each 
variable data; the resulting values are adjusted to offset the gap between 
low and high values originated by different separative injections. In the 
elaborations performed the profiles obtained by different injections of 
the sample have been considered as different objects in the PCA/LDA 
matrices. 

3. Results and discussion 

3.1. Fractograms interpretation 

All FFF analyses were conducted with an optimized separation 
method described in the Experimental Section. Recovery was ≥ 94% for 
all samples and standards. Repeatability and reproducibility were 
assessed both on retention times and on signal intensity by performing 
three independent replicates (both intra- and inter-day) for each milk 
sample and protein standard (BSA, β-Lactoglobulin) used to develop the 
methods. The profiles exhibited a maximum of 0.5% and 1% deviation 
in terms of retention time and signal intensity, respectively. LOD (three- 
sigma) and LOQ (ten-sigma) for both whey proteins and caseins were 
assessed. For BSA, this was done via injection of standard solutions.. 
Injections of standard caseins solutions were also performed, but they 
exhibited bad recovery due to difficulties in their solubilization in the 
carrier solution without the presence of the other milk components. The 
corresponding LoD and LoQ values ere then extrapolated from signal/ 
noise ratios of casein peak from a non-UHT milk profile of known casein 
content. The quantitation signals chosen correspond to the 280 nm ab-
sorption and the intrinsic fluorescence of proteins. Whey protein quan-
titation had a LOD and LOQ of 0.3/0.6 µg and 0.1/0.2 µg from 
absorption and fluorescence signals, respectively. Casein’s LOD and 
LOQ resulted to be slightly higher with both detectors, and were 
calculated as 0.7/0.14 and 0.4/0.8 µg respectively for absorption and 
fluorescence. Overall, the developed method adhered to the standards 
that a validated method must satisfy according to the harmonized 
guideline ICHQ2R1 and ISO/TS 21,362 (Mildner et al. 2021; ISO 2018) 
and can be considered as a standardized method. Furthermore, the 
calculated coefficient obtained from the AGREE software for greenness 
assessment of analytical methods was 0.67, a positive value: for 
example, an HPLC-UV analysis with simple pretreatment would carry a 
coefficient of about 0.4. Inputs and outputs of the calculation are re-
ported in Fig. S1. 

To optimize the statistical results, it is important to pay attention 
when defining the appropriate set of variables to discriminate the ob-
jects of interest. This aspect becomes extremely important while work-
ing with sets of data such as fractograms since they may contain a lot of 
non-informative variables. In this case study, all the fractogram points 
associated to the Focus-Inject experimental phase are not informative 
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since they, by default, are associated to flat signals for all the samples 
(no analyte is reaching the detectors). Within this context, at least an 
approximate identification of the fractogram peaks is helpful to find the 
most informative fractogram regions to subject to multivariate analysis. 

In the initial part of the work, the focus was mainly on FLD fracto-
grams since the signal provided is protein specific and less affected by 
pressure and flows fluctuations, which may alter PCA results. Fig. 1A 
reports two representative FLD signals of UHT and NON-UHT milk 
samples; the first shows three peaks (namely 1, 2, and 3), while the 
second just two (1, 2′). The overlap of the FLD and UV signals for the 
UHT sample (Fig. 1B) shows a different relative emission and absorption 
intensity between Peaks 2 and 3: if one considers the intensity ratio in 
UV absorption, peak 3 has an intensity that is four or five times higher 
than peak 2, where the two values are similar for what concerns in-
tensity of emission. This means that peak 2 and 3 have a different 
behavior, with peak 2 being richer in emitting species, and therefore 
they differ in composition. 

Peak 1 is the only one that can be found in both fractograms. By 
comparing its elution time with the ones of standard whey proteins 
resuspended in mobile phase (Fig. 1C), Peak 1 was identified as asso-
ciated to whey proteins. Calculated values of Rh and RG for Peak 2, 2′ 
and 3 were found coherent with the ones typical of caseins (Fig. 1D). 

Peak 2 is observed only for UHT milks: consequently, it is safe to 
assume that it is originated by the process itself. Based on its size (Rh ~ 
16 nm), a first identification hypothesis would be that of caseins smaller 
than the average value (Rh ~ 75 nm). However, Fig. 1B highlighted a 
difference in composition between Peak 2 and 3. Therefore it is likely 
that Peak 2 is at least partially composed of whey protein aggregates 
generated by the thermal treatment. This hypothesis is further supported 
by the fact that the area/intensity of Peak 1 (free whey protein) is always 
higher for no UHT milks compared to UHT ones (Fig. 1A). 

To further investigate on this topic, a series of other experiments 

were performed. 
Fig. 2 reports the result of the injection of the same volume of the 

UHT milk sample spiked with an amount of Casein from bovine milk 
corresponding to the 100% of its theoretical content. While we observed 
basically no rise in Peak 1, we observed a significant rise in Peak 2 and 3 
confirming that smaller caseins may elute in correspondence of Peak 2. 
Following what was reported in another work (Lie-Piang et al. 2021) we 
also spiked another aliquot of the same UHT sample with a 50 mM EDTA 
solution. Since caseins stability is affected by the presence of Ca2+, the 
chelating agent should cause precipitation of the caseins (thus disap-
pearance of the corresponding signal) by calcium sequestration. The 

Fig. 1. A). Representative FLD profiles of UHT and NON-UHT milk samples. B). Overlap between the UV (280 nm) and FLD fractograms of the same UHT milk 
sample. C) Comparison between the retention times of two standard proteins with the ones observed for a UHT milk sample. Inset: zoom of the fractograms overlay to 
better visualize the differences in retention times for the peaks eluting between 7 and 12 min. D) Representative UV (280 nm) profiles of UHT and NON-UHT milk 
samples overlapped with the corresponding RG values calculated from the LS signal (logarithmic scale). Rh values calculated trough separative theory are 
also reported. 

Fig. 2. Overlay of the FLD fractograms of a UHT milk sample and of the 
samples resulting from its corresponding spike with a 100% theorical amount of 
caseins or with an 50mM EDTA solution. 
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results of the experiment are still reported in Fig. 2; compared to the un- 
spiked signals a loss of 37% and of 82% (integration area) respectively 
for Peak 2 and 3 were observed from the EDTA-spiked sample fracto-
gram. This result is consistent with the simultaneous presence of caseins 
and protein aggregates in correspondence of Peak 2. 

Further experiments (not shown) were carried out spiking the same 
UHT milk sample with “β-Casein from bovine milk” (No. C6905, ≥98%, 
Sigma Aldrich) which however resulted in the precipitation of the 
colloidal content of the sample during the centrifugation phase. It ap-
pears that rising in β-casein content increases the system reticulation 
thus promoting precipitation. 

Based on these results we distinguished 3 main portions of the FLD 
fractograms namely X (7.75–10 min), Y (10–17 min), and Z (17–56 min) 
carrying different chemical information (Fig. 3A). In particular, X was 
associated to the whey protein content while Z to the casein content. 
Portion Y, instead, contains the information carried by the peak asso-
ciated solely to the UHT thermal treatment. Its content is associated both 
to whey protein aggregates and to smaller or broken casein micelles. As 
already mentioned, working with the highly stable and protein specific 
FLD signal possesses a series of advantages. However, it is not possible to 
discriminate the differences in composition of non-protein-based com-
ponents such as residuals fat micelles. Since our sample set is comprised 
of whole, semi skimmed, and skimmed milk samples a fat-based 
discrimination criterion may be helpful. 

Within this context, a critical analysis of the less specific 280 nm UV 
profiles allowed to distinguish a fourth discriminatory area (Fig. 3B). 

3.2. Principal component analysis 

Our approach prior to every PCA analysis of the milk colloidal 
fingerprint can be summarized in 3 main points: (a) Definition of the set 
of samples to be discriminated; (b) definition of the best samples prop-
erty (also called filter) to discriminate the set of samples (i.e., Thermal 
Treatment) and the a priori classes on which the sample can be classified 
based on such property (i.e. UHT and NON-UHT). The a priori classes for 
each sample properties are reported in Table S2; (c) definition of an 
optimized dataset to be analyzed with PCA. The dataset definition aimed 
at selecting only the portion of the colloidal fingerprints (the starting 
variables) of the sample which have more discriminatory power based 
on the samples property of study. 

At first, all 47 samples have been analyzed to group according to 
thermal treatment. Since proteins are the milk components most 
affected by such treatments, the highly protein-specific FLD signal has 
been exploited for the study. Five different PCA have been computed 

using the full profile of different portions of the FLD fractograms based 
on the labelling reported in Fig. 2: X, Y, Z, X + Y, X + Y + Z. The best 
results were obtained by PCA-X + Y (Fig. 4). The results denote an 
excellent discrimination of samples on the basis of heat treatment 
(regardless of the other properties). Hotelling T2-based computation 
was applied to the scores plot to calculate the ellipses, representing the 
95% confidence intervals for each class. 

PC1 carrying 77.1% of the explained variance seems to be associated 
to the intensity of the thermal treatments since UHT samples are mainly 
characterized by positive PC1 values while NON-UHT samples are 
characterized by negative PC1 values. Moreover, considering the load-
ings (Fig. 4B), UHT samples are mainly characterized by the X peak, 
associated whey proteins, while the NON-UHT show a higher contri-
bution of the Y-peak species. The fact that the best PCA result was ob-
tained considering the X + Y FDL fingerprint is also coherent with the 
FFF results and literature: the X and Y portion of the fractograms are 
associated to whey proteins and their aggregates, the milk components 
most affected by thermal treatments. The PCA scores plot was also 
visualized based on the other category variables (not shown): fat con-
tent, manufacturing plant, and brand; none of these highlighted 
particular and clear clustering, indicating thermal treatment as the most 
discriminating variable for this dataset. 

Since a first clustering was obtained, the data analysis focused on the 
two separated milk sets (UHT and NON-UHT milk sets) obtained from 
the first PCA analysis. In this case, fat content was chosen as the second 
discriminating filter. 

The same approach (using the FLD signal) did not show any inter-
esting grouping for such datasets. This is justified since the FLD colloidal 
fingerprint should not carry information on the fat content. Based on 
what was already discussed, our elaboration then focused on section W 
of the UV 280-nm absorbance profile (Fig. 3B). For the UHT dataset two 
PCA were performed. The first one (PCA-W), similarly to the previous 
approaches, used as starting variables all the absorbance values of sec-
tion W of the fractograms for each sample (results not shown). The 
second one (PCA-W-A), which overall provided the best results, used as 
starting variables the areas of 8 segments obtained from the division of 
W in 4-min intervals. The first 7 areas carry information on the abun-
dance of colloidal subpopulations with Rh comprised between 65 and 
225 nm, while the last one is associated to the remaining species which 
are retained by the systems and elute during field release (see Fig. S2). 

The results for the UHT set highlight a good discrimination of sam-
ples based on the fat content (Fig. 5A). Based on how the three sub-
classes of samples (Skimmed, Semi Skimmed and Whole milk) distribute 
themselves along the PC1 axis, it is possible to observe that PC1 has the 

Fig. 3. A) Overlay of FLD fractograms of different milk samples. The three portions (X, Y, Z) of the signals carrying different chemical information are highlighted as 
X, Y, Z. B) Overlay of UV (280 nm) fractograms representative of a whole, a semi skimmed, and a skimmed milk sample. The portion (W) which presumably carries 
information on the residual fat content of the samples is highlighted. In particular, after 24 min significant signal intensity differences between samples can be 
observed as well as the formation of an additional peak after 28 min. The intensity of the latter is increasingly higher for whole milk samples compared to semi 
skimmed ones, moreover it is mostly flat for the defatted samples. Based on what already discussed, we supposed that this portion of the UV signals, namely W 
(24–56 min), may carry information on the residual fat content represented by small micelles which remained/formed in the systems after the initial centrifugation of 
the samples. 
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same direction of the fat-content variable. Low values of PC1 are thus 
associated to high fat content while high values are associated to small 
or none fat content. 

The fact that better discrimination of the samples was obtained using 
areas as starting variables instead of an absorbance profile can also be 
explained: fat content is a property referred to an amount and integra-
tion areas intrinsically carry information of the amount of species. Based 
on the clustering provided by the PCA-W-A on the simplified UHT and 
NON-UHT datasets it was possible to further split the datasets in 6 small 
datasets differing for thermal treatment and/or fat content. 

On such datasets, a series of PCA analyses was performed to further 
improve the clustering of the samples according to the leftover 
discriminating variables still unexplored (Manufacturing plant and 
Brand). Overall, the best results were obtained using Manufacturing 
plant as filter and the X + Y portion of the FLD fractograms as starting 
variables. Since some of these final datasets contain a very small number 
of samples, the discussion will be focused on the two with the biggest 
number of samples: UHT semi skimmed (UHT-SS, 29 samples, 3 repli-
cates) and NON-UHT semi skimmed (NON-UHT-SS, 4 samples, 3 
replicates). 

Fig. 5 C,E represent the scores plot deriving from the PCA performed 
on the dataset of UHT-SS milk samples using as filters Manufacturing 
plant and Brand. The circled regions in both plots highlight how samples 
commercialized under different brands, but produced in the same 
manufacturing plans, are grouped together. 

This is particularly evident when looking at the samples produced in 
the plant P3 (circled in Fig. 5 C,E). In this case, all samples are located 
only in a single quadrant of the plot and clearly appear as a uniform 
group when labeled as Manufacturing plant instead of Brand. 

The same elaboration was applied to the NON-UHT dataset (Fig. 5B) 
stemming analogous results. A discrimination based on fat content could 
also be observed along PC1 (carrying 70% of explained variance); also in 
this case, higher values of PC1 are associated with low fat content. 

Moreover, it is possible to find macro groups of samples, not neces-
sarily uniform in terms of plant, but clearly distanced from each other. A 
possible interpretation to these results is based on the hypothesis that 
different plants carry out different UHT treatments (in terms of tem-
perature, process time and heat conduction system) which may have an 
impact on the protein profile. This hypothesis is also supported by the 
fact that the PCA providing the best grouping uses as initial dataset the 
X + Y FLD portion of the colloidal fingerprint which is the most affected 
by thermal treatments. Based on this interpretation, it is possible to 
hypothesize that plants whose objects are near each other may use 
similar UHT treatment. To obtain confirmation of such results the details 
of the UHT procedure of each plant should be known; unfortunately, it 
was not possible to obtain this information. 

The same statistical analysis on the NON-UHT-SS subset provided 
results similar to UHT-SS. A good clustering based on manufacturing 
plant can be observed (Fig. 5D), that is lost using the Brand filter 
(Fig. 5F). Since no UHT treatment was performed for such samples, the 
rationale of the grouping can be explained with differences in pasteur-
ization treatment. Overall, these promising results suggest the possibil-
ity to develop models able to also distinguish the manufacturing plant in 
which commercial bovine milk is produced. 

3.3. Classification analysis 

After exploring the datasets using PCA, classifications (Fig. 6) were 
also performed on the two biggest datasets previously analyzed, in order 
to confirm the hypotheses formulated and evaluate the possible appli-
cability of the models. PLS-DA was applied to the full dataset and the X 
+ Y peaks (as in Fig. 4) using the thermal-treatment class as independent 
variable. LDA was instead used on the UHT-milk dataset using the 8 
areas previously described as descriptors and the fat-content class for the 
discrimination (as in Fig. 5A). 

Fig. 6A shows the scores plot obtained from PLS-DA on thermal- 
treatment dataset. The red dots, associated to UHT milk objects, are 
placed at positive values of Factor 1, while NON-UHT milk objects (black 
dots) can be found in the negative region of Factor 1. PLS-DA cross- 
validation confirms the good discrimination between the two classes 
observed in the scores plot. Most of UHT and NON-UHT samples (45 in 
total) were, indeed, classified in the correct class with recalculated Y 
higher than 0.8 for the corresponding class. 

Two samples (the ones outside the 95% confidence interval, high-
lighted by blue circles in Fig. 6A), instead, had a recalculated Y close to 
0.5 for both classes, indicating that it was not possible to assign them to 
any class. Overall, the model showed good predictive abilities, having 
Non Error Rate (NER) of 95.7%. Fig. 6B shows, instead, the discriminant 
plot obtained by processing the UHT dataset to discriminate samples 
based on fat content by LDA. In this case only one object (highlighted by 
the blue circle) is badly classified and the NER% reaches 99.1%, con-
firming the good classification obtained by the model. 

4. Conclusions 

For the first time, a simultaneous discrimination of different milk 
samples based on the colloidal fingerprints obtained through an AF4 
multidetection platform has been reported. A dataset was created able to 
achieve different discriminations within a single run, such as thermal 
treatment, fat content and manufacturing plant; for the first time, also 
milk sub-typologies could be identified. The mathematical models 
created based on such dataset could help to identify product fraudulent 

Fig. 4. A) Scores plot and loadings plot for PCA-X + Y performed on the complete milk dataset (47 samples); Circles represent the 95% confidence intervals, based on 
Hotelling T2 computation, of each thermal-treatment class. B) Loadings plot for PC1. 
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labelling (ex. UHT-milk labeled as fresh). However, since the models 
were created starting from commercial samples, we cannot exclude the 
possibility of some samples being subject to fraud. Within this context 
our future aim will be development of an analogous approach on sam-
ples of verified origin and treatment. The developed AF4 separation 
method is fast, requires small amounts of sample (0.5 μL of milk per 
injection), and minimal sample preparation, with no chemical treatment 
and in saline conditions. The multivariate methodologies used allowed a 
rapid visualization of the results and can represent a starting point to 
improve the overall processes of quality control and fraud identification 
in the food industry. Colloidal fingerprinting was proposed as a per-
forming, green and fast approach to source data for sample grouping and 

chemometric analysis. The approach can easily be translated to other 
food samples presenting a colloidal content (ex. wine, tomato sauce, 
beer, vinegar) and possibly to the detection of other kinds of milk food 
frauds after the definition of a proper dataset and offers a breakthrough 
in reducing analysis impact and time while retaining high quality and 
reliable results. Finally, this study further highlights the necessity of 
increasing the implementation of multivariate analysis to the results 
directly provided by FFF platforms. 
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Fig. 5. Scores plot for PCA-W-A (A, B) and PCA-X + Y (C-F) datasets of UHT and NON-UHT milk. A,B: scores plot of UHT (A) and non-UHT (B) dataset and 
discrimination between whole, semi skimmed, skimmed. Circles represent the 95% confidence intervals, based on Hotelling T2 computation, of each fat-content 
class. C-F Scores plot for on the UHT (C,E) and NON-UHT (D,F) semi skimmed milk sets. The plot differs based on the category variable used, points with the 
same color corresponds to objects with the same: Manufacturing plant (C-D) or brand (E-F). Hotelling T2 ellipses highlight areas in which clustering between different 
brands is explained by the same manufacturing plant. 
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