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Mixing and moments properties of a non-stationary

copula-based Markov process

Fabio Gobbi ∗ Sabrina Mulinacci
University of Bologna - Department of Statistics

Abstract

We provide conditions under which a non-stationary copula-based Markov process is geo-
metric β-mixing and geometric ρ-mixing. Our results generalize some results of Beare (2010)
who considers the stationary case. As a particular case we introduce a stochastic process,
that we call convolution-based Markov process, whose construction is obtained by using the
C-convolution operator which allows the increments to be dependent. Within this subclass
of processes we characterize a modified version of the standard random walk where copulas
and marginal distributions involved are in the same elliptical family. We study mixing and
moments properties to identify the differences compared to the standard case.

JEL classification: C22,C10
Mathematics Subject Classification (2010): 62M10, 62H20

Keywords: Markov process, copula, β-mixing, ρ-mixing, gaussian process.

1 Introduction

In this paper we analyze the temporal dependence properties satisfied by a discrete time non-
stationary Markov process. Temporal dependence in time series analysis is relevant since it permits
to verify how well theoretical models explain temporal persistency observed in financial data.
Moreover, it is also a useful tool to establish large sample properties of estimators for dynamic
models where the standard iid assumption is no longer allowed. In particular, in this paper we
analyze geometric β-mixing and geometric ρ-mixing properties and we give sufficient conditions
that ensure they are satisfied.

In the copula approach to univariate time series modelling, the finite dimensional distributions
are generated by copulas and marginal distributions. Darsow et al. (1992) provide necessary and
sufficient conditions for a copula-based time series to be a Markov process. Recent literature on
this topic has mainly focused on the stationary case. Chen and Fan (2006) introduce a copula-
based strictly stationary first order Markov process (Yt)t generated by (F (·), C(·, ·, α)) where F (·)
is the invariant distribution of Yt and C(·, ·, α) is the parametric copula for (Yt, Yt+1). The authors
show that the β-mixing temporal dependence measure is purely determined by the properties of
copulas and does not depend on the invariant marginal distributions. Within the same class of
models, Beare (2010) shows that all stationary Markov models generated via symmetric copulas
with positive and square integrable densities are geometric β-mixing. Many commonly used bivari-
ate copulas without tail dependence such as the gaussian, Frank and Farlie-Gumbel-Morgestern
copulas satisfy this condition. In the same paper the author also shows that, if the density of
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the absolutely continuous part of a copula is bounded away from 0 on a set of Lebesgue measure
1, then the resulting copula-based Markov process is geometric ρ-mixing. Longla and Peligrad
(2012) generalize this result by proving a more restrictive condition, namely φ-mixing. Chen et
al. (2009) show that some asymmetric copulas with tail dependence like Clayton, Gumbel and
t-copula generate Markov models which are geometrically ergodic. In all above mentioned papers
the stationarity assumption is crucial.

In this contribution we focus on a more general setting considering a non-stationary Markov
process where the sequence of joint distributions of (Yt, Yt+1) is given by a sequence of time-
dependent copulas Ct,t+1 and marginal time dependent distributions Ft. Within this general class
of Markov processes, we consider a specific subclass of processes generated by the C-convolution
operator introduced in Cherubini et al. (2011). The C-convolution makes it possible to generate a
non-stationary Markov process (Yt)t with dependent increments in which, however, two ingredients
are stationary: the distribution of the increments ∆Yt+1 = Yt+1 − Yt, given by F∆, and the
dependence structure between the level at the time t and the next increment, modelled by a copula
function C. We call such processes (already considered in Cherubini et al., 2012 and Cherubini
et al, 2016) convolution-based Markov processes. A significant example of this last approach is
provided by a modified version of the standard random walk, Yt = Yt−1 + ξt where both the
copula associated to (Yt−1, ξt) and the marginal distribution of the increment ξt belong to the
same elliptical family. We study moments and autocorrelation functions in order to emphasize the
different temporal properties with respect to the standard case.

The paper is organized as follows. Section 2 presents a general result on mixing properties
satisfied by non-stationary copula-based Markov processes. Section 3 introduces convolution-based
Markov processes and discusses their main properties in the elliptical and gaussian cases. Section
4 concludes.

2 Copula-based Markov processes and mixing properties

Throughout the paper (Yt)t∈Z = (Yt)t is a discrete time Markov process. Thanks to the seminal
paper of Darsow et al. (1992), the markovianity of a stochastic process can be characterized
through a specific requirement that the copulas, representing the dependence structure of the finite
dimensional distributions induced by the stochastic process must satisfy (for a detailed discussion
on copulas see Nelsen (2006), Joe (1997), Cherubini et al. (2012) and Durante and Sempi (2015)).
In particular, in Darsow et al. (1992) it is proved that the Chapman-Kolmogorov equations for
transition probabilities are equivalent to the requirement that, if Ci,j is the copula associated to
the vector (Yi, Yj), then

Cs,t(u, v) = Cs,r ∗ Cr,t(u, v) =

∫ 1

0

∂

∂w
Cs,r(u,w)

∂

∂w
Cr,t(w, v) dw, ∀s < r < t.

As a consequence, since (Yt)t is a discrete time Markov process, if we assume that the set of
bivariate copulas Ct,t+1 (representing the dependence structure of the stochastic process at two
adjacent times) is given for t ∈ Z, then necessarily for k > 0 (we remind that the ∗-operator is
associative)

Ct,t+k(u, v) = Ct,t+k−1 ∗ Ct+k−1,t+k(u, v) = Ct,t+1 ∗ Ct+1,t+2 ∗ · · · ∗ Ct+k−1,t+k(u, v). (1)

Notice that, in the stationary case considered in Beare (2010), Ct,t+1 = C for all t ∈ Z, therefore
all bivariate copulas Ct,t+k are functions of the copula C and of the lag k and not of the time t. In
this paper we extend the study to the more general non-stationary case. In particular we analyze
the temporal dependence problem with a special attention to mixing properties.

The notion of β-mixing was introduced by Volkonskii and Rozanov (1959 and 1961) and was
attributed there to Kolmogorov whereas the ρ-mixing condition was introduced by Kolmogorov
and Rozanov (1960). Given a (not necessarily stationary) sequence of random variables (Yt)t, let
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F lt be the σ-field F lt = σ(Ys, t ≤ s ≤ l) with −∞ ≤ t ≤ l ≤ +∞ and set

β̃(F t−∞,F+∞
t+k ) = sup

{Ai},{Bj}

1

2

I∑
i=1

J∑
j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)|, (2)

where the supremum is taken over all finite partitions {A1, ...AI} and {B1, ...BJ} of Ω such that
Ai ∈ F t−∞ for each i and Bj ∈ F∞t+k for each j. Given the dependence coefficient

βk = sup
t∈Z

β̃(F t−∞,F+∞
t+k ),

we say that the sequence (Yt)t is β−mixing (or absolutely regular) if βk → 0 as k → +∞. In
particular, we say that the sequence is geometric β-mixing when the convergence to zero occurs
at a geometric rate, i.e., when there exist c < ∞ and γ > 0 such that βk ≤ ce−γk for all k.
Analogously, let

ρ̃(F t−∞,F+∞
t+k ) = sup

f,g
|Corr(f, g)|, (3)

where the supremum of the correlation is taken over all square integrable r.vs. f and g measurable
with respect to F t−∞ and F+∞

t+k respectively with finite and positive variance. Given the dependence
coefficient

ρk = sup
t∈Z

ρ̃(F t−∞,F+∞
t+k ),

we say that the sequence (Yt)t is ρ−mixing if ρk → 0 as k → +∞. As in the case of β-mixing, the
sequence is geometric ρ-mixing when the sequence ρk decays to zero at a geometric rate.

In the next two theorems we give conditions on the set of copulas Ct,t+1, t ∈ Z in order
to guarantee that the resulting Markov process is geometric β-mixing and geometric ρ-mixing
respectively. These conditions are based on specific requirements on the maximal correlation
coefficients of the copulas Ct,t+1. We remind that the maximal correlation η of a copula C is given
by

η = sup
f,g

∣∣∣∣∫ 1

0

∫ 1

0

f(x)g(y)C(dx, dy)

∣∣∣∣
where f, g ∈ L2([0, 1]),

∫ 1

0
f(x)dx =

∫ 1

0
g(x)dx = 0 and

∫ 1

0
f2(x)dx =

∫ 1

0
g2(y)dy = 1 and we

refer to Beare (2010) and Rényi (1959) for more details. In our case, non-stationarity implies that
we have a sequence of maximal correlation coefficients (ηt)t associated to the sequence of copulas
(Ct,t+1)t given by

ηt = sup
f,g

∣∣∣∣∫ 1

0

∫ 1

0

f(x)g(y)Ct,t+1(dx, dy)

∣∣∣∣ .
We denote

η̂ = sup
t∈Z

ηt.

Theorem 2.1. Let (Yt)t be a Markov process. Let Ct,t+1 be the copula associated to the vector
(Yt, Yt+1) for t ∈ Z that we assume to be absolutely continuous, with symmetric and square-
integrable density ct,t+1 so that (ct,t+1)t is uniformly bounded in L2([0, 1]). If the sequence of
maximal correlation coefficients (ηt)t associated to (Ct,t+1)t satisfies

η̂ < 1, (4)

then (Yt)t is geometric β-mixing.

Proof. The proof follows that of Theorem 3.1 in Beare (2010) who proves a similar result for
stationary copula-based Markov processes. First of all, since the stochastic process is Markovian,
(2) can be rewritten in terms of the cumulative distribution functions of (Yt, Yt+k), Yt and Yt+k
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(Ft,t+k, Ft and Ft+k, respectively) and the total variation norm ‖ · ‖TV (see Bradley, 2007) and
then, applying Sklar’s theorem, we can write

β̃(F t−∞,F+∞
t+k ) =

1

2
‖ Ft,t+k(x, y)− Ft(x)Ft+k(y) ‖TV =

=
1

2
‖ Ct,t+k(Ft(x), Ft+k(y))− Ft(x)Ft+k(y) ‖TV≤

≤ 1

2
‖ Ct,t+k(u, v)− uv) ‖TV .

From (1) it follows that all bivariate copulas of type Ct,t+k for t ∈ Z and k ≥ 1 are absolutely
continuous: let us denote their density as ct,t+k. Then

β̃(F t−∞,F+∞
t+k ) ≤ 1

2
‖ ct,t+k(u, v)− 1 ‖L1≤ 1

2
‖ ct,t+k(u, v)− 1 ‖L2

and

βk ≤
1

2
sup
t∈Z
‖ ct,t+k(u, v)− 1 ‖L2 .

Since ct,t+1 is a symmetric square-integrable joint density with uniform margins, it admits the
following series expansion in terms of a complete orthonormal sequence (φi)i≥1 in L2[0, 1],

ct,t+1(u, v) = 1 +

+∞∑
i=1

λi,tφi(u)φi(v),

where the eigenvalues (λi,t)i form a square-summable sequence of nonnegative real numbers: notice
that, as proved in Lancaster(1958)

max
i≥1

λi,t = ηt. (5)

Applying (1), we get

ct,t+k(u, v) = 1 +

+∞∑
i=1

k−1∏
j=0

λi,t+j

φi(u)φi(v).

Then, using (5) and (4), we get

‖ ct,t+k(u, v)− 1 ‖L2 =

∥∥∥∥∥∥
+∞∑
i=1

k−1∏
j=0

λi,t+j

φi(u)φi(v)

∥∥∥∥∥∥
L2

=

+∞∑
i=1

k−1∏
j=0

λ2
i,t+j

1/2

=

=

+∞∑
i=1

λ2
i,t

k−1∏
j=1

λ2
i,t+j

1/2

≤

+∞∑
i=1

λ2
i,t

k−1∏
j=1

η2
t+j

1/2

≤

≤ η̂k−1

[
+∞∑
i=1

λ2
i,t

]1/2

= η̂k−1 ‖ ct,t+1(u, v)− 1 ‖L2 .

(6)

Therefore

βk ≤
1

2
η̂k−1 sup

t∈Z
‖ ct,t+1(u, v)− 1 ‖L2

which, since (ct,t+1)t is uniformly bounded in L2([0, 1]), tends to zero as k → +∞.

Notice that, as argued by Beare (2010), any copula exhibiting upper or lower tail dependence
will not admit a square integrable density while gaussian, Frank and Farlie-Gumbel-Morgenstern
copulas have a maximal correlation coefficient strictly smaller than one provided that the copula
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parameter lies in the interior of the parameter space. Clearly, if the parameters of the involved
bivariate copulas Ct,t+1 lie in a compact subset of the interior of the parameter space, then the
assumptions of Theorem 2.1 are satisfied.

Next theorem shows ρ-mixing conditions.

Theorem 2.2. Let (Yt)t be a Markov process. If η̂ < 1, then (Yt)t is geometric ρ-mixing.

Proof. The proof is a generalization of the proof of Theorem 4.1 in Beare (2010) to the case of
non-stationary Markov processes. In fact, Theorem 3.3 in Bradley (2005) ensures that the mixing
coefficients ρk decay geometrically fast if ρ1 < 1. Therefore, it is sufficient to prove that ρ1 < η̂.
Let (Ft)t be the sequence of distributions associated to (Yt)t and let (Ut, Ut+1) be a random vector
with joint distribution Ct,t+1. Since (Yt, Yt+1) and

(
F−1
t (Ut), F

−1
t+1(Ut+1)

)
(where F−1

t is the quasi-
inverse of Ft) share the same distribution, thanks to Proposition 3.6(I)(c) in Bradley (2007), we
have that sup

t∈Z
ρ̃(σ(Yt), σ(Yt+1)) = sup

t∈Z
ρ̃(σ(F−1

t (Ut)), σ(F−1
t+1(Ut+1))). Since σ(F−1

t (Ut)) ⊆ σ(Ut)

and σ(F−1
t+1(Ut+1)) ⊆ σ(Ut+1) it follows that ρ1 ≤ sup

t∈Z
ρ̃(σ(Ut), σ(Ut+1)) = η̂.

As observed above, the gaussian, Frank and Farlie-Gumbel-Morgestern Ct,t+1 copulas satisfy
η̂ < 1 for parameters in a compact subset of the interior of the respective parameter spaces.

Remark 2.1. In Theorem 4.2 in Beare (2010) it is proved that, in the stationary case (Ct,t+1 = C),
a sufficient condition for the the maximal correlation coefficient to be strictly smaller than one is
that the density of the absolutely continuous part of C is bounded away from zero on a set of
full measure. In our more general setting, we have that if ct,t+1 is the density of the absolutely
continuous part of Ct,t+1, then

inf
t∈Z

ct,t+1(u, v) ≥ ε almost everywhere on [0, 1]2 with ε > 0

implies that
η̂ < 1.

In fact, by definition of maximal correlation of a copula function we have for all t∫ 1

0

∫ 1

0

f(x)g(y)Ct,t+1(dx, dy) = 1− 1

2

∫ 1

0

∫ 1

0

(f(x)− g(y))2Ct,t+1(dx, dy) ≤

≤ 1− 1

2

∫ 1

0

∫ 1

0

(f(x)− g(y))2ct,t+1(x, y) dxdy ≤ 1− ε,

where the last inequality derives from the assumption inf
t∈Z

ct,t+1(u, v) ≥ ε almost everywhere on

[0, 1]2 and implies that the sequence of maximal correlations (ηt) is bounded by 1− ε. Therefore, η̂
cannot exceed 1− ε as required.

Notice that the above condition is satisfied by the Marshall-Olkin copulas and the t-copulas
Ct,t+1 provided that the set of corresponding parameters lies in a compact subset of the parameter
space.

3 Convolution-based Markov processes

In this section we propose a construction of a non stationary copula-based Markov process using

the C-convolution operator (denoted by
C∗), introduced in Cherubini et al. (2011) as a tool to

recover the distribution of the sum of two dependent random variables. As shown in Cherubini et
al. (2011), in Cherubini et al. (2012) and in Cherubini et al. (2016) the C-convolution technique
may be used in the construction of (non-stationary) dependent increments stochastic processes.
More precisely, if Ft is the cumulative distribution function of Yt and Ht+1 that of the increment
∆Yt+1 = Yt+1 − Yt and, moreover, the dependence structure of the couple (Yt,∆Yt+1) is modelled
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by a copula Ct, we may recover the cumulative distribution function of Yt+1 iterating the C-
convolution across t

Ft+1(yt+1) = (Ft
Ct∗ Ht+1)(yt+1) =

∫ 1

0

D1Ct(w,Ht+1(yt+1 − F−1
t (w)))dw, t ≥ 2 (7)

while, the copula associated to (Yt, Yt+1) is

Ct,t+1(u, v) =

∫ u

0

D1Ct(w,Ht+1(F−1
t+1(v)− F−1

t (w)))dw, t ≥ 2 (8)

where D1Ct(u, v) = ∂
∂uCt(u, v). Equations (7) and (8) provide the ingredients to construct discrete

time Markov processes according to Darsow et al. (1992). We can say that Yt ∼ (Ft, Ct,t+1) is a
convolution-based Markov process.

Now suppose that the increments ∆Yt+1 are identically distributed with absolutely continuous
distribution F∆ and that the dependence between the level Yt and the next increment ∆Yt+1 is
given by a time-invariant copula C. We can say that the couple (F∆, C) generates a convolution-
based Markov process Yt ∼ (Ft, Ct,t+1). Notice that we assume stationarity in the dependence
structure ”level-increment”, (Yt,∆Yt+1), and in the marginal distribution of the increment F∆

but the resulting Markov process is non-stationary. As shown in Cherubini et al. (2011) and in
Cherubini et al. (2012) there are closed solutions of the equations (7) and (8) in the sense that the
sequence (Ft, Ct,t+1) belongs to the same family of distributions of (F∆, C). In particular, in the
case of copulas and marginal distributions belonging to the same elliptical family, the C-convolution
has a closed form. The most significant cases are provided by the gaussian copula and the t-copula.
As a matter of fact, if F∆ ∼ N(µ, σ) and C is gaussian with a parameter ρ lying in (−1, 1), then
the sequence of distributions (Ft)t recovered by applying relation (7) is gaussian with parameters
that will be functions of t, µ, σ and ρ whereas the sequence of copulas (Ct,t+1)t, determined by
applying relation (8), is gaussian characterized by a sequence of associated correlation coefficients
that will be functions of t, µ, σ and ρ.

3.1 An elliptical random walk with dependent increments

A particular application of this construction is a modified version of a standard random walk where
we allow increments to be dependent. More precisely, we assume that the Markov process (Yt)t is
obtained through

Yt = Yt−1 + ξt, Y0 = 0, (9)

where (ξt)t is a sequence of identically distributed random variables with common distribution F∆.
Furthermore, the dependence structure of (Yt−1, ξt) is given by a time-invariant copula function
C.

The process defined in (9) is a generalization of a random walk since increments are not inde-
pendent. However, we can determine the distribution of Yt for each t thanks to the C-convolution
(7) where Ft−1 is the distribution function of Yt−1 and H is the stationary distribution of ξt.
We may recover the sequence of distribution functions of Yt iterating the C-convolution across t.
Our model (9) is a sort of a modified version of a random walk process where the independence
assumption for the innovations (ξt)t is no longer required: however, its weakness is that in most
cases the distribution function cannot be expressed in closed form and it may be evaluated only
numerically.

From now on we assume a given bivariate absolutely continuous elliptical distribution family:
it is well known that this is specified through a given density generator g (which is a nonnegative

function of a scalar argument satisfying
∫ +∞

0
g(y)dy < +∞), a correlation matrix Σ and a vector

of means µ. We denote this bivariate distribution family as Ell2(µ,Σ, g). It is well known that the
bivariate copula associated to the bivariate family Ell2(µ,Σ, g) depends on the density generator
g and the correlation coefficient θ (we will denote it as Cg,θ) and that the marginal distributions
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belong to the family Ell1(µi, σii, g1), i = 1, 2, where g1(u) = π1/2

Γ(1/2)

∫ +∞
u

g(y)√
y−udy (see Fang et

al.,1990, for more details on elliptical distributions).
More specifically suppose that innovations (ξt)t are identically distributed according to Ell1(0, σ2

ξ , g1)
and that the copula between Yt−1 and ξt is the (stationary) elliptical copula Cg,θ with constant
correlation parameter θ ∈ (−1, 1). As anticipated in section 3 both sequences (Ft)t, obtained by
iterating relation (7), and (Ct,t+1)t, obtained by iterating relation (8), belong to the same origi-
nal elliptical families of ξt and Cg,θ, respectively. More precisely Yt ∼ Ell1(0, V 2

t , g1), where, as
obtained in the gaussian sub-case in section 4.3.1 of Cherubini et al. (2016), V 2

t is given by

V 2
t = V ar(Yt) = V 2

1 + (t− 1)σ2
ξ + 2θσξ

t−1∑
i=1

Vt−i, t ≥ 2, (10)

where V 2
1 = σ2

ξ since by assumption Y1 = ξ1 and θ is the correlation coefficient associated to the
invariant copula C. Obviously, the copula between Yt and Yt+1, Cg,τt,t+1 , exactly again as in the
gaussian case, is characterized by a correlation given by

τt,t+1 =
Vt + θσξ
Vt+1

, t ≥ 2 (11)

since E[YtYt+1] = V 2
t + θVtσξ. Hence, from now on we will consider the convolution-based Markov

process Yt ∼
(
Ell1(0, V 2

t , g1), Cg,τt,t+1

)
.

The limiting behavior of the standard deviation Vt has also been analyzed in Section 4.3.1
Cherubini et al. (2016) where it is proved that

lim
t→+∞

Vt =

{
−σξ2θ , if θ ∈ (−1, 0)
+∞, otherwise.

(12)

Notice that only in case of negative correlation between Yt−1 and ξt, the standard deviation of the
levels does not explode: in the following we will restrict the analysis to the case θ ∈ (−1, 0).

The following lemma establishes a general relation

Lemma 3.1. Let (Yt)t be the convolution-based Markov process Yt ∼
(
Ell1(0, V 2

t , g1), Cg,τt,t+1

)
where Vt satisfies (10) and τt,t+1 is given by (11). If θ ∈ (−1, 0), then the sequence of correlation
coefficients τt,t+1 associated to (Yt, Yt+1) satisfy, for every t,

|τt,t+1| ≤ K < 1,

for some constant 0 < K < 1.

Proof. First notice that |τt,t+1| < 1, for every t. In fact this is equivalent to (Vt + θσξ)
2 < V 2

t+1

which is always verified since θ2 < 1 by assumption. Moreover

Vt + θσξ
Vt+1

→
−σξ2θ + θσξ

−σξ2θ

= 1− 2θ2.

Since |1−2θ2| < 1, we have that the sequence |τt,t+1| is bounded by a constant smaller than 1.

Since the sequence of copulas associated to (Yt, Yt+1), Ct,t+1 = Cg,τt,t+1
only depend on the

parameter τt,t+1, Lemma 3.1 implies that the parameters of the copulas Ct,t+1 belong to a compact
subset of the parameter space. An immediate consequence is that, according to Remark 2.1, the
convolution-based Student’s t Markov process is geometric ρ-mixing.
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3.2 A gaussian random walk with dependent increments

From now we will focus on the specific case in which innovations (ξt)t are gaussian identically
distributed with zero mean and standard deviation σξ and that the copula between Yt−1 and ξt is
a (stationary) gaussian copula C with constant parameter θ ∈ (−1, 0) for all t. In other words we
assume (F∆, C) ≡ (N(0, σξ), C(·, ·, θ)).

In Section 4.3.2 in Cherubini et al. (2016), an alternative representation of the gaussian
convolution-based process is introduced and its limiting behavior considered. In fact, more pre-
cisely, setting

φt = 1 +
θσξ
Vt−1

,

it can be easily checked that the stochastic process (Zt)t≥1

Zt = φtZt−1 + ut, Z1 ∼ N(0, σ2
ξ )

with, for t ≥ 2, (ut) ∼ i.i.d.N(0, σ2
ξ (1 − θ2)) and ut independent of Zt−1, is distributed as the

Markov process with dependent increments in (9), being (Yt−1, Yt) ∼ (Zt−1, Zt) for all t ≥ 2.
Since θ < 0, by (12), we have

φt → 1− 2θ2, t→ +∞.

It is immediate to conclude that the distribution of the Markov process with dependent increments
in (9) is asymptotically close to that of an AR(1) process.

Both Theorems 2.1 and 2.2 require the maximal correlation coefficient of the copula Ct,t+1 to
be far from 1 uniformly in t. It is well known that for the gaussian copula the maximal correlation
coefficient is equal to the absolute value of the simple correlation coefficient (see Lancaster, 1957).
Therefore, according to the notation of Section 2, for each t, ηt = |τt,t+1|.

Proposition 3.1. The convolution-based gaussian Markov process is both geometric ρ-mixing and
β-mixing.

Proof. Thanks to Lemma 3.1 and Theorem 2.2, the process is geometric ρ-mixing. Furthermore,
it is not hard to prove that, if ct,t+1 is the density of the gaussian copula Ct,t+1, for any t

‖ ct,t+1(u, v)− 1 ‖L2=
τ2
t,t+1

1− τ2
t,t+1

≤ η̂2

1− η̂2
.

Thus also Theorem 2.1 applies and geometric β-mixing is ensured.

In order to understand the differences between the introduced gaussian process and the standard
random walk, we study the behavior of moments and autocorrelation functions of the process (Yt)t
when t→ +∞. It is just the case to recall that in the standard random walk model the k-th order
autocorrelation function of (Yt)t tends to 1 as t→ +∞, for each lag k. In our more general setting,
this is no longer true. The limit of the k-th order autocorrelation function of (Yt)t is a function of
k and θ as the following proposition shows.

Proposition 3.2. Let θ ∈ (−1, 0). The k-th order autocorrelation function of (Yt)t tends to
(1− 2θ2)k for any k ≥ 1 as t→ +∞.

Proof. As proved in section 4.3.1 in Cherubini et al. (2016), using the fact that the ∗-product
of two gaussian copulas has a parameter given by the product of the parameters of the copulas
involved in the ∗-product, we have that the copula between Yt and Yt+k is gaussian with parameter

τt,t+k =

k−1∏
s=0

Vt+s + θσξ
Vt+s+1

.
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Therefore, since as t→ +∞ and for any s ≥ 1

Vt+s + θσξ
Vt+s+1

→
−σξ2θ + θσξ

−σξ2θ

= 1− 2θ2, (13)

we easily get the result.

On the other hand, the innovations (ξt)t are no longer serially independent as in the random
walk case and the k-th order autocorrelation function approaches to a limit which again depends
on θ and k.

Proposition 3.3. Let θ ∈ (−1, 0). The k-th order autocorrelation function of (ξt)t tends to
−θ2(1− 2θ2)k−1 for any k ≥ 1 as t→ +∞.

Proof. We compute first the autocovariance of order k, with k ≥ 1, E[ξtξt+k]. We have

E[ξtξt+k] = E[(Yt − Yt−1)(Yt+k − Yt+k−1)] =

= E[YtYt+k]− E[YtYt+k−1]− E[Yt−1Yt+k] + E[Yt−1Yt+k−1] =

= τt,t+kVtVt+k − τt,t+k−1VtVt+k−1 − τt−1,t+kVt−1Vt+k + τt−1,t+k−1Vt−1Vt+k−1.

Since for any fixed k ≥ 1, τt,t+k → (1− 2θ2)k and Vt → −σξ2θ as t→ +∞ we get

E[ξtξt+k]→
σ2
ξ

4θ2

[
(1− 2θ2)k − (1− 2θ2)k−1 − (1− 2θ2)k+1 + (1− 2θ2)k

]
=

= −θ2σ2
ξ (1− 2θ2)k−1, as t→ +∞.

Moreover, it is immediate to find the statement of the proposition since as t→ +∞

corr(ξtξt+k)→ −θ2(1− 2θ2)k−1.

4 Concluding remarks

In this paper we provide conditions under which a non-stationary copula-based Markov process
is geometric β-mixing and geometric ρ-mixing. Our results represent a generalization of those in
Beare (2010), where the author considers the stationary case. The analysis is mainly focused on
the particular case of a new Markov process obtained by using the C-convolution operator which
generates dependent increments. Among C-convolution Markov processes, the most interesting
case is given by a generalization of the standard random walk in which both the copula linking the
level of the process with the next increment and the marginal distribution of the increment itself
belong to the same elliptical family. When we restrict our attention to the gaussian non-stationary
setting we prove that the k-th order autocorrelation function of the process does not converge to 1,
as in the random walk case, but to a quantity that depends on the lag and the correlation between
the state variable and the innovation, which is assumed to be time-invariant. Additionally, it is
proved that the process satisfies the conditions required to be geometric β-mixing and geometric
ρ-mixing.
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