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Abstract: Photoplethysmographic (PPG) signals are mainly employed for heart rate estimation
but are also fascinating candidates in the search for cardiovascular biomarkers. However, their
high susceptibility to motion artifacts can lower their morphological quality and, hence, affect the
reliability of the extracted information. Low reliability is particularly relevant when signals are
recorded in a real-world context, during daily life activities. We aim to develop two classifiers to
identify PPG pulses suitable for heart rate estimation (Basic-quality classifier) and morphological
analysis (High-quality classifier). We collected wrist PPG data from 31 participants over a 24 h period.
We defined four activity ranges based on accelerometer data and randomly selected an equal number
of PPG pulses from each range to train and test the classifiers. Independent raters labeled the pulses
into three quality levels. Nineteen features, including nine novel features, were extracted from PPG
pulses and accelerometer signals. We conducted ten-fold cross-validation on the training set (70%)
to optimize hyperparameters of five machine learning algorithms and a neural network, and the
remaining 30% was used to test the algorithms. Performances were evaluated using the full features
and a reduced set, obtained downstream of feature selection methods. Best performances for both
Basic- and High-quality classifiers were achieved using a Support Vector Machine (Acc: 0.96 and 0.97,
respectively). Both classifiers outperformed comparable state-of-the-art classifiers. Implementing
automatic signal quality assessment methods is essential to improve the reliability of PPG parameters
and broaden their applicability in a real-world context.

Keywords: heart rate; morphological analysis; photoplethysmography; quality assessment; wear-
able devices

1. Introduction

Wearable devices (WDs) are among the most widespread technologies introduced in
recent years [1], potentially revolutionizing healthcare. With the aging population and the
higher incidence of chronic diseases [2,3], there is a growing need to provide healthcare
services capable of reaching people who require frequent medical check-ups, especially
those with low mobility and who live in remote areas. With their compact dimensions, high
portability, and low manufacturing cost, WDs can efficiently perform long-term recordings
outside healthcare facilities, allowing for the remote, continuous monitoring of a user’s
health and, in turn, the early detection of anomalies [4,5].

Commonly embedded in commercial smartwatches and fitness trackers worn at
the wrist, one of the most used WD technologies is photoplethysmography (PPG), an
optical technique that detects blood volume changes using a light source and a matched
photodetector. The former illuminates a portion of the body surface, penetrating the skin
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and blood vessels. The latter detects the changes (using reflected or transmitted light,
based on the PPG sensor design [6]) modulated by the pulsatile blood flow, which mainly
depends on the heartbeat, vessel stiffness, and respiratory rate [7].

The PPG signal presents a quasi-periodic stereotyped waveform, commonly called
PPG pulse, which occurs with each heartbeat [8]. Each PPG pulse can be divided into
two phases: the anacrotic phase, which relates to the systolic heart contraction, and the
catacrotic phase, which depends both on the diastolic heart phase and on the pulse wave
reflected from the peripheral artery [9]. Within each PPG pulse, in ideal conditions, four
fiducial points can be identified, as highlighted in Figure 1:

• Systolic foot: the beginning of the systolic phase and the minimum of the pulse;
• Systolic peak: the most prominent maximum;
• Dicrotic notch: most visible in healthy young subjects, it is supposed to represent the

closure of the aortic valve [10];
• Diastolic peak: the second prominent maximum of the pulse.
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Figure 1. The shape of a typical PPG pulse.

The PPG signal is strictly related to heart dynamics. Indeed, it is extensively used in
commercial devices for heart rate (HR) estimation [3,11] and subsequent HR variability
(HRV) analysis [12,13]. For example, HR can be estimated simply by detecting the systolic
foot or peak, calculating the time difference between two consecutive occurrences, and
then calculating the ratio between 60 and the calculated time difference, expressing it in
beats/min [14,15].

Besides the HR estimation, it has long been recognized that the PPG signal carries
valuable information in its morphology [16]. Recent research has corroborated this finding
in emotion recognition [17–19] and cardiovascular measurements [20,21].

In real-world applications, the preferred ground for PPG technology, obtaining reliable
estimates both for HR and morphological features, is hampered by its high susceptibility to
external noise and motion artifacts [22,23]. Consequently, the information above cannot be
used in clinical practice for diagnostic purposes. Before further processing, a signal quality
analysis is essential to promote this signal’s clinical use.

Based on the definitions provided by the recent literature [2,24], the quality of a PPG
pulse exploitable for further analysis can be expressed as:

• Basic-quality pulse: systolic peaks are clearly identifiable;
• High-quality pulse: the pulse waveform is clean and well-defined, with systolic and

diastolic waves visible.
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While HR and some morphological features related to detecting the systolic peak
can be estimated from Basic-quality pulses, more sophisticated morphological features
require the detection of both systolic and diastolic peaks [25–27], so only High-quality
pulses are suitable.

Several researchers have already developed automatic methods for PPG signal quality
assessment. Table 1 shows a selection of their works [24,28–37].

Table 1. State of the art for the PPG signal quality algorithms.

Ref. PPG Sensor
Position Settings # Subjects Pulse-Wise or

Segment-Wise Ground Truth Method # Quality
Levels

[28] Finger and
Wrist Clinical

13 stroke patients +
500 patients

retrospectively
selected

30 s segments Labels from
5 raters

Support Vector Machine
with 42 features

2 + “not
sure”

[29] Wrist Real-World 10 elderly subjects +
16 young subjects 10 s segments Labels from

17 raters
Random forest with

9 features 5

[30] Wrist Real-World 50 healthy subjects Pulse-wise Labels from 1
rater

Signal similarity between
adjacent pulses 3

[31] Wrist Real-World 17 epilepsy patients 7 s segments
Correspondence
with RR from

ECG

Support Vector Machine
with PPG and

accelerometer features
2

[32] Finger Clinical
(public DB)

69 subjects from
3 public databases Pulse-wise Labels from

2 raters
Rules-based algorithm
with 13 quality checks 2

[33] Finger Clinical
(public DB)

44 patients from
2 public databases Pulse-wise Labels from

1 rater
Correlation with a

template 2

[24] Finger Clinical 40 healthy subjects 60 s segments Labels from
2 raters

Support Vector Machine
with 1 feature 3

[34] Finger Clinical
(public DB) No info 10 s segments Labels from

3 raters

Rules-based algorithm on
HR estimate + correlation

with a template
2

[35] Finger Clinical
(public DB) 120 subjects Pulse-wise Labels from

1 rater

Non-linear scaling
function based on adjacent

pulses correlation
2

[36] Finger Clinical
(public DB) No info 6 s segments No info

Deep learning algorithm
with 4 features (based on

the comparison with a
template)

2

[37] Finger Lab 13 healthy subjects 60 s segments Labels from
2 raters

Two-step rules-based
algorithm 2

Such studies significantly advanced the development of PPG signal quality algorithms,
providing methods that can be used in real time [32–34], trained on specific populations [28,31],
and validated by making use of publicly available datasets [32,35,36].

However, most previous studies only aim to detect PPG pulses for HR estimate, without
rating their suitability for a more in-depth morphological analysis [31–37]. Moreover, some
base the quality estimation on a time window that includes several pulses [24,28,29,31,34,36,37]
rather than a pulse-wise analysis, losing relevant information that individual PPG pulses
can convey as a result. Such a segment-wise analysis might also discard pulses suitable
for analysis.

Although the publicly available datasets represent a considerable resource for training
and testing automatic classifiers, they do not allow for a proper quality characterization
for real-world purposes. To the best of our knowledge, most of the currently available
datasets are based on recordings of finger PPG signals in a clinical context, imposing
several limitations. Since it is well-known that the morphology strongly depends on the
measurement site [10,38], the translation of a method based on signals recorded at the
finger to signals recorded at the wrist (the preferred measurement site for real-world
applications) is not feasible. Furthermore, the available datasets do not provide any ground
truth information about the different quality of the signals (i.e., Basic and High), but only
dichotomous labels (e.g., usable vs. non-usable). Finally, these datasets rely on hospital
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recordings, a context in which motion artifacts are far less frequent and less impactful than
in the real world during daily life activities.

Recent works used PPG signals recorded by wrist-worn WDs in a real-world context
and collected PPG pulses prone to lifelike motion artifacts [29–31] to overcome these
limitations. Unfortunately, in these studies, no information is provided about the motion of
the sensors, so it is unclear to what degree the related method is robust to daily life motion
artifacts.

This work aimed to develop two motion-aware classifiers:

• Basic-quality classifier: it detects all pulses with valid information content, exploitable
for heart rate estimation, and the extraction of basic morphological features;

• High-quality classifier: it detects all pulses with distinct systolic and diastolic waves,
exploitable for the extraction of more in-depth morphological features.

We collected wrist PPG data for about 24 h to design and test our classifiers in a
real-world context. First, we defined different activity ranges to categorize the level of
motor activity, which translates into motion artifacts in the PPG signals. Activity ranges
were identified based on data from the accelerometer embedded in the same wrist-worn
WD used to record the PPG signal. Then, for each range from each subject, we randomly
selected PPG pulses to be classified. In this way, the classifiers could be trained using data
subjected to different levels of motion artifacts, usually experienced in real-world contexts.

Such an approach could help in improving the reliability of the valuable biomarkers
obtained by wrist PPG signals, minimizing the loss of information by conducting a pulse-
wise analysis and selecting pulses suited for a specific analysis (i.e., HRV and fundamental
morphological analysis or a more in-depth morphological analysis).

2. Materials and Methods
2.1. Wearable Device

An Empatica E4 [39] wristband was used to record the signals. The E4 is a CE medical-
grade device that allows for the continuous, simultaneous recording of several physiological
signals, including PPG and accelerometer data. The PPG sensor is equipped with four light
sources (two green, two red) and two photodetectors; the signal is sampled at a frequency
of 64 Hz. The tri-axial accelerometer has a range of ±2 g and is sampled at 32 Hz.

2.2. Participants

A total of 31 recordings by as many participants were used. All the subjects were
instructed to wear the Empatica E4 for 24 h while carrying on with their normal daily
activities. The participants were asked to provide their age and gender; other personal
information was not collected.

2.3. PPG Preprocessing and Pulse Detection

A second-order Butterworth band-pass filter with cut-off frequencies of 0.5 and 12 Hz
was applied for each PPG recording [31]. The algorithm by Elgendi et al. [40], originally
developed to detect second derivative PPG fiducial points, was adapted to detect the
systolic peak and systolic foot of each pulse to segment the signal into single pulses. Each
pulse was then normalized with the z-score procedure:

pulsenorm =
pulse−mean(pulse)

std(pulse)
(1)

2.4. Activity Index and Definition of Activity Ranges

To categorize pulses according to different amounts of movement, the activity index
(Aind) presented in [41] was calculated for each pulse. To this aim, each accelerometer
(ACC) component (x, y, z) was resampled at f sACC−RES = 64 Hz with linear interpolation
(to match the PPG sampling frequency) and converted to g units. Next, a fourth-order
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band-pass filter was applied, with cut-off frequencies of 0.025 and 10 Hz [42,43]. The ACC
vector magnitude was then calculated for each sample j as:

Aj =
√

ACCxj
2 + ACCyj

2 + ACCzj
2 (2)

The Aind was estimated using the algorithm of Lin et al. [41]:

• Standard deviation of Aj for 5-second epochs:

σ =

√
1
N ∑N

j=1

(
Aj − µ

)2 (3)

where
µ = 1

N (A1 + A2 + . . . + AN)

N = 5 s ∗ f sACC−RES

• Minute-wise Aind:

Aind = ∑M
k=1 σk (4)

where M is set to 12 to obtain a minute-wise Aind by summing 12 5-second epochs.
Once we estimated the Aind for each recording, we defined four activity ranges (AR)

based on the quartiles of all the Aind values to label an equal number of pulses in each
activity range.

2.5. Labelling Procedure

Within each recording, we randomly selected a subset of 100 PPG pulses from each
activity range, thus obtaining 400 pulses for each recording (12,400 labelled pulses in total).
Three independent raters (S.M., S.L.G., and G.M.) then assigned a quality level to each
pulse, selecting from one of the three levels defined below [2]:

• Bad (B): systolic and diastolic peaks cannot be easily distinguished from noise→ the
pulse is not suitable for further analysis.

• Fair (F): the systolic peak is clearly detectable; the diastolic peak is not→ it is possible
to estimate the heart rate and some basic morphological features.

• Excellent (E): systolic and diastolic peaks are both clearly detectable→ it is possible to
estimate the heart rate, and basic morphological features, and perform an in-depth
morphological analysis.

An example of the three quality levels is illustrated in Figure 2. A Matlab graphic user
interface was developed to help the raters annotate the quality of the selected pulses, as
shown in Figure 3. The Matlab findpeaks function was applied to highlight the local maxima
of the selected pulse and help detect the systolic and diastolic peaks.

Inter-rater agreement was assessed by calculating the overall Fleiss Kappa Score [44].
A majority voting approach was applied to determine the level if only two raters agreed.
If there was no agreement among raters (i.e., each rater chose a different quality level),
the pulse was automatically labelled as B.
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2.6. Signal Quality Indices

We estimated nineteen signal quality indices (SQIs), listed in Table 2, corresponding to
the selected and labelled pulses recorded in a real-world context. Specifically, we estimated:

• 2 SQIs from accelerometer data;
• 17 SQIs from PPG pulses.
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Table 2. Signal quality indices (SQIs) for quality classification.

SQI Description Source Ref.

Peak2peakACC Peak to peak acceleration vector magnitude ACC This paper
MeanACC Mean acceleration vector magnitude ACC This paper
SigSim Correlation between consecutive PPG pulses PPG [30]
Entropy Entropy PPG [24]

Kurtosis Heavy tail and peaked or a light tail and flatness distribution
relative to the normal distribution PPG [24]

SNR Signal-to-noise ratio PPG [24]

RelPower Ratio of the power spectral density in the 1–2.25 Hz band compared
to the overall power spectral density PPG [24]

Skewness Measure of the symmetry of a probability distribution PPG [24]
ZR Zero-crossing rate PPG [24]
Amplitude Systolic peak amplitude PPG [37]
Width Pulse width PPG [37]
TroughDepth Systolic feet amplitude difference between consecutive systolic feet PPG [37]
MedianPulse Median value of the z-scored PPG pulse PPG This paper
MedianPulse_noZ Median value of the original PPG pulse PPG This paper
MeanPulse_noZ Mean value of the original PPG pulse PPG This paper
StdPulse_noZ Standard deviation of the original PPG pulse PPG This paper
SNR_Moody Signal-to-noise ratio by Moody’s algorithm PPG This paper
Npeaks Number of detected local maxima PPG This paper
ZDR First derivative zero-crossing rate PPG This paper

We estimated the computational complexity of each feature in terms of Floating-point
operations (FLOPs) by using the Matlab package developed by Qian [45].

Labelled PPG pulses were divided into training and test sets, with a proportion of
70% for the training set (22 subjects; 8800 pulses) and 30% for the test set (9 subjects;
3600 pulses).

SQIs from the training and test set pulses were then separately subjected to a Box-Cox
transformation [46] and z-scored.

2.7. SQIs Selection

To limit the use of redundant SQIs, we applied a Neighborhood Component Analysis
(NCA) separately for the two classifiers. NCA is a non-parametric method for selecting
features to maximize a classifier’s accuracy [47]. As output, NCA provides a weight for
each feature: the higher the weight, the more influential the feature is for solving the
classification problem. We first tuned the NCA regularization parameter λ using ten-fold
cross-validation on the training set to find the value that minimizes the classification loss.
We then labelled those features with a weight greater than 20% of the maximum weight. To
reach higher robustness of the selected features set, we ran the NCA ten times and then
selected those features that were labelled at least 80% of the time.

2.8. Basic- and High-Quality Classifiers

We designed the following classifiers:

• Basic-quality (BQ) classifier: it detects those pulses that can be used to estimate heart
rate and for basic morphological analysis (i.e., the union of F and E pulses);

• High-quality (HQ) classifier: it detects those pulses that can be used for in-depth
morphological analysis (i.e., E pulses).

To develop the HQ classifier, we investigated two alternative strategies:

1. Discern the union of B and F pulses against E pulses through a single-stage approach;
2. Discern between F and E pulses downstream of a BQ classifier through a

multi-stage approach.
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A scheme illustrating the two strategies and the related classifiers is shown in Figure 4.
In summary:

• The BQ classifier is trained to detect the F&E classes against the B class;
• The Type 1 HQ classifier (HQ1) is independent of BQ and is trained to detect the E

class against the B&F class (Figure 3, panel A);
• The Type 2 HQ classifier (HQ2) is trained to detect the E class against the F class,

having as an input the pulses selected by the BQ classifier (Figure 3, panel B).
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Figure 4. Schematic representation of the classification strategies. (A) Two independent classifiers:
the Basic-quality classifier aims at detecting Fair and Excellent pulses against Bad pulses, and the Type
1 High-quality classifier aims to detect Excellent pulses against Bad and Fair pulses. (B) Cascaded
classifiers, with Type 2 High-quality classifier fed with Fair and Excellent pulses selected by the
Basic-quality classifier and aimed at detecting Excellent pulses against Fair pulses.

We first split the dataset into training (70%) and test (30%) sets both for BQ and
HQ classifiers. We then conducted a ten-fold cross-validation on the training set with
five machine learning (ML) algorithms (Tree, Naïve Bayes, Support Vector Machine, K-
nearest neighborhood, and Ensemble) and a neural network (NN) for hyperparameters
optimization by using Bayesian optimization with 30 iterations. Finally, we trained and
tested the classifiers with the full features set, and the SQIs selected features only.

We computed the following performance metrics on unseen data coming from the test
set relative to the detection of eligible pulses (F&E pulses for the BQ classifier, E for HQ
classifiers): area under the ROC curve (AUC), accuracy, sensitivity, specificity, precision,
Matthew’s correlation coefficient (MCC), F1 score, and Cohen’s kappa (κ).

All the methods were implemented in Matlab 2021b. The whole signal processing and
classification pipeline is illustrated in Figure 5.
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2.9. State-of-the-Art Classifiers

We selected and adapted two classifiers from the literature to establish a benchmark
for the performance of our classifiers.

(i) Jang et al. [30] proposed two classifiers based on the signal similarity between
adjacent PPG pulses, a parameter also used in our work (SigSim). Their study identified
three quality levels (i.e., good, moderate, and low) based on detecting the PPG pulse
second derivative’s fiducial points [8]. Then, two dichotomous classifiers, conservative and
non-conservative, were developed. The former compares the good-quality level pulses
against the merge of moderate- and low-quality level pulses, while the latter compares the
good- and moderate-quality level pulses against low-quality level pulses. Each classifier is
based on a fixed threshold, determined using the equal training sensitivity and specificity
criterion [48], meaning that the optimal threshold is obtained by minimizing the difference
between sensitivity and specificity. Jang et al.’s non-conservative classifier is analogous to
our BQ classifier, and their conservative classifier is analogous to both our HQ1 and HQ2
classifiers.

(ii) The classifier proposed by Elgendi [24] is built on a Support Vector Machine that
classifies 60-second PPG segments as belonging to one of three quality levels (i.e., excellent,
acceptable, or unfit for diagnosis) based on the skewness property of the segment. We
adapted this method to perform a pulse-wise analysis. Furthermore, since no information
regarding the hyperparameters was reported, we applied the same approach described in
Section 2.8 to find the best hyperparameters combination.

3. Results
3.1. Experimental Data

We obtained real-world recordings of physiological signals from 31 subjects (15 males,
16 females), with a mean age of 37 years (±14) and an average recording length of 26:50 h
(±05:51). All subjects were Caucasian, except for one African subject.

3.2. Activity Ranges

From the Aind values estimated from the accelerometer signal, we obtained the follow-
ing AR built on the quartile values of the Aind distribution:

• AR0: [0–0.0407];
• AR1: (0.0407–0.4125];
• AR2: (0.4125–1.3254];
• AR3: (1.3254 to 6.7474],

According to the classification proposed by Lin et al. [41], the activity ranges 0–3
correspond to rest/sleep, rest/sleep/sedentary, light, and light/moderate activity, respec-
tively. This means that the distribution of Aind is skewed towards lower activity levels in
our population.

3.3. Labelling Results

A total of 12,400 pulses were labelled by three independent raters, who agreed on
86% of the labels. Only 57 pulses (0.004%) were labelled differently by each rater and
hence relegated to the B category. Overall, the inter-rater agreement was high, with a Fleiss
Kappa Score of 0.84, representing perfect agreement according to Landis and Koch [49].
Using a majority voting approach, we set the final labels to train and test the classifiers:
5962 B pulses (48.08%), 4612 F pulses (37.19%), and 1826 E pulses (14.73%). The overall
distribution of the three quality levels among the four activity ranges is shown in Figure 6.
As expected, as the Aind (the amount of movement) increases, the percentage of B pulses
gets higher, and the percentage of F and E pulses gets lower.
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3.4. SQIs Selection

Considering N, the pulse length, the computational complexity to calculate the 19
features is approximately 37*N FLOPs. The computational complexity for each feature is
reported in Supplementary Materials, Table S1.

We conducted SQIs selection separately for the BQ, HQ1, and HQ2 classifiers. In
Table 3, the best λ values and their respective minimum classification loss values are
reported for the three classifiers.

Table 3. Final best λ values for neighborhood component analysis and the related minimum classifi-
cation loss.

BQ HQ1 HQ2

Min classification loss 0.0498 0.0395 0.0575
Best λ 0.0017 0.0011 0.016

The selection phase identified eight SQIs for the BQ classifier (Peak2PeakACC, SigSim,
TroughDepth, MedianPulse, StdPulse_noZ, SNR_Moody, Npeaks, and ZDR), with a com-
putational complexity of approximately 5*N FLOPS, nine SQIs for the HQ1 classifier
(Peak2PeakACC, SigSim, Kurtosis, RelPower, Skewness, MedianPulse, StdPulse_noZ, Npeaks,
and ZDR), with a computational complexity of approximately 19*N FLOPs, and nine SQIs
for the HQ2 classifier (Entropy, Kurtosis, RelPower, Skewness, MedianPulse, StdPulse_noZ, SNR
Moody, Npeaks, and ZDR), with a computational complexity of approximately 25*N FLOPs.
Results from each iteration of the NCA are reported in the Supplementary Materials, in
Tables S2–S4 for the BQ, HQ1, and HQ2 classifiers, respectively.

3.5. Basic-Quality Classifiers

A total of 5962 pulses belong to the B class (4260 used in the training set and 1702 in
the test set), while 6438 pulses belong to the F&E class (4540 used in the training set and
1898 in the test set).

Table 4 presents the performances of the BQ classifiers on the test set. The best method
using the full features set is the SVM with a Quadratic kernel, reaching an accuracy of
0.9606 and a well-balanced sensitivity (0.9603) and specificity (0.9547). On the other hand,
the GentleBoost Ensemble reached the best performance among the methods trained and
tested with the selected SQIs, with slightly lower values for accuracy (0.9536) and sensitivity
(0.9384) but specificity (0.9706) higher than the best method using the full features set. Final
hyperparameters are reported in Supplementary Materials, Table S5.
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Table 4. Performances for Basic-quality classifiers.

Method AUC Acc Sens Spec Prec MCC F1 κ

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

Tree 0.9389 0.9413 0.9386 0.9406 0.9331 0.9283 0.9448 0.9542 0.9496 0.9576 0.8771 0.8814 0.9413 0.9428 0.877 0.881
NB 0.9242 0.9227 0.9219 0.92 0.883 0.8725 0.9653 0.973 0.966 0.973 0.8477 0.8455 0.9227 0.92 0.8442 0.8405
SVM 0.9606 0.9519 0.9603 0.9514 0.9547 0.9431 0.9665 0.9606 0.9695 0.9639 0.9205 0.9028 0.962 0.9534 0.9204 0.9026
KNN 0.9497 0.9455 0.9489 0.9453 0.9341 0.942 0.9653 0.9489 0.9678 0.9536 0.8983 0.8904 0.9507 0.9478 0.8977 0.8903
Ensemble 0.9546 0.9545 0.9539 0.9536 0.942 0.9384 0.9671 0.9706 0.9696 .9727 0.9081 0.9078 0.9556 0.9552 0.9077 0.9071
NN 0.9513 0.9511 0.9508 0.9508 0.942 0.9457 0.9606 0.9565 0.9639 0.9604 0.9018 0.9016 0.9528 0.953 0.9015 0.9015

Jang et al. 2018 0.9265 0.9253 0.9025 0.9506 0.9532 0.8519 0.9272 0.8506
Elgendi 2016 0.7081 0.7153 0.8398 0.5764 0.6886 0.4337 0.7567 0.4215

Concerning the state-of-the-art classifiers, the threshold based on the equal training
sensitivity and specificity criterion (identified in the work of Jang et al. [30]) is 0.922.
Concerning the classifier proposed by Elgendi [24], the SVM with the Gaussian kernel
function provided the best performance in terms of sensitivity (0.8398) and specificity
(0.5764) with an accuracy of 0.7153. Our classifier outperformed both state-of-the-art
classifiers for the selected performance measures. Results obtained with state-of-the-art
classifiers are shown in the lower panel of Table 4.

3.6. High-Quality Classifiers

For the Type 1 High-quality classifiers, a total of 10,574 pulses belong to the B&F class
(7754 used in the training set and 1702 in the test set), while 1826 pulses belong to the E
class (1046 used in the training set and 780 in the test set).

Table 5 presents the performances of the HQ1 classifiers on the test set. The best method
for balancing sensitivity and specificity is the SVM, using all the features (Sens = 0.9244,
Spec = 0.9784) or the subset of selected SQIs (Sens = 0.9192, Spec = 0.9702). In both cases, the
SVM has a Quadratic kernel. Final hyperparameters are reported in Supplementary Materials,
Table S6.

Table 5. Performances for Type 1 High-quality classifiers (HQ1).

Method AUC Acc Sens Spec Prec MCC F1 κ

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

Tree 0.9144 0.9217 0.9494 0.9464 0.8526 0.8782 0.9762 0.9652 0.9085 0.8748 0.8484 0.8423 0.8796 0.8765 0.8477 0.8423
NB 0.8838 0.8838 0.9247 0.9283 0.8115 0.8051 0.956 0.9624 0.8362 0.8556 0.776 0.7848 0.8237 0.8296 0.7758 0.7843
SVM 0.9517 0.9447 0.9667 0.9592 0.9244 0.9192 0.9784 0.9702 0.922 0.8951 0.9019 0.881 0.9232 0.907 0.9019 0.8809
KNN 0.8996 0.9234 0.9386 0.9497 0.8308 0.8769 0.9684 0.9699 0.8792 0.8895 0.816 0.8512 0.8543 0.8832 0.8155 0.8511
Ensemble 0.9243 0.9107 0.9614 0.9539 0.859 0.8346 0.9897 0.9869 0.9585 0.9462 0.8839 0.8608 0.906 0.8869 0.8818 0.8581
NN 0.7556 0.9078 0.8881 0.9383 0.5218 0.8538 0.9894 0.9617 0.9314 0.8605 0.6448 0.8178 0.6689 0.8571 0.6078 0.8178

Jang et al. 2018 0.7135 0.7292 0.6859 0.7411 0.4230 0.3685 0.5232 0.3486
Elgendi 2016 0.5 0.7831 0 0.9906 0 0.0088 NaN 0.00005

For the Type 2 High-quality classifiers, 4612 pulses belong to the F class (3494 used in
the training set and 1118 used in the test set), while the distribution of pulses belonging to
the E class is the same used to train and test the HQ1 classifiers

Table 6 presents the performances of the HQ2 classifiers on the test set. The kNN
method using the subset of features selected by the NCA provided the best results regarding
sensitivity–specificity balance (Sens = 0.9321, Spec = 0.9195). The final hyperparameters are
reported in Supplementary Materials, Table S7.
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Table 6. Performances for Type 2 High-quality classifiers (HQ2).

Method AUC Acc Sens Spec Prec MCC F1 κ

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

All
SQIs

Sel.
SQIs

Tree 0.9223 0.8933 0.9278 0.9052 0.891 0.8269 0.9535 0.9597 0.9304 0.9348 0.8505 0.8046 0.9103 0.8776 0.8499 0.8006
NB 0.5 0.5 0.5885 0.5885 0 0 0.9991 0.9991 0 0 0.0192 0.0192 NaN NaN 0.0011 0.0011
SVM 0.7313 0.9393 0.7713 0.9331 0.5064 0.9744 0.9562 0.9043 0.8896 0.8766 0.5376 0.8679 0.6454 0.9229 0.4948 0.8641
KNN 0.7889 0.9258 0.8145 0.9247 0.6449 0.9321 0.9329 0.9195 0.8702 0.8898 0.6177 0.8462 0.7408 0.9105 0.6013 0.8455
Ensemble 0.9358 0.9191 0.943 0.9273 0.8949 0.8731 0.9767 0.9651 0.9641 0.9458 0.8829 0.8499 0.9282 0.908 0.8812 0.8481
NN 0.5331 0.5258 0.6122 0.6096 0.0885 0.0551 0.9776 0.9964 0.734 0.9149 0.1499 0.1632 0.1579 0.104 0.0762 0.0601

Jang et al. 2018 0.5055 0.5042 0.4397 0.5492 0.405 0.0109 0.4216 0.0108
Elgendi 2016 0.5 0.5885 0 0.9991 0 0.0192 NaN 0.9204

By comparing the best HQ1 and HQ2 classifiers, HQ1 achieved better performances
in terms of accuracy and specificity (Acc = 0.9667, Spec = 0.9784) with respect to HQ2
(Acc = 0.9247, Spec = 0.9195), but slightly lower sensitivity (HQ1 Sens = 0.9244 vs. HQ2
Sens = 0.9321).

Concerning the state-of-the-art classifiers, the threshold identified for the HQ1 classi-
fier with Jang’s method [30] was 0.991. The linear SVM obtained the best performance in
reproducing the classifier proposed by Elgendi [24]. However, both state-of-the-art classi-
fiers performed worse than our classifier: the accuracy was 0.7090 for Jang’s and 0.8406
for Elgendi’s. Notably, the former reached moderate sensitivity (0.6301) and specificity
(0.7245), while the latter showed a sensitivity closer to zero (0.0167).

The threshold for the HQ2 classifier with Jang’s method [30] was 0.993. In reproducing
Elgendi’s classifier, the quadratic SVM obtained the best performance. Additionally, in this
case, both state-of-the-art classifiers performed worse than our best HQ2 classifier, similar
to what we observed for the HQ1 classifier.

4. Discussion

In this work, we developed automatic classifiers to detect PPG pulses suitable for
further processing based on their peculiar morphological characteristics. First, using
accelerometer data, we estimated the activity level of the subjects. We then detected four
activity ranges based on the quartile values of aggregated Ainds from all the recordings.
From each recording, we randomly selected 100 pulses for each activity range. Of the 19
SQIs estimated from each labelled pulse, eight and nine SQIs were selected to train and test
the algorithms to develop the Basic- and the two High-quality classifiers, respectively. The
best algorithms were then chosen, and the classifiers’ performances were compared against
two state-of-the-art classifiers.

Categorizing pulses by activity level allowed us to train the algorithms with pulses
containing distinct amounts of motion artifacts. In this way, the ability of classifiers to
detect PPG pulses suitable for heart rate estimate or morphological analysis under various
movement intensities could be achieved. However, it appears evident from Figure 5 that
only a tiny portion of pulses in the highest activity range reached F or E quality levels, even
if the highest activity range in our dataset corresponded to light/moderate activity in the
staging proposed by Lin et al. [41]. Several methods have been proposed to suppress the
effect of motion artifacts on the PPG signals, either via software [50,51] or hardware [52,53]
approaches. Our results suggest that future studies should combine algorithms for motion
artifact suppression with a layer dedicated to signal quality analysis. This approach would
be more conservative, allowing us to obtain reliable parameters from a larger proportion of
recorded pulses, even during intense physical activity.

The three independent raters reached a perfect agreement in the labelling procedure,
probably thanks to the strict definitions given for each quality level. The high level of the
inter-rater agreement also ensures the reliability of the resulting classifiers.
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For each PPG pulse, we estimated 19 SQIs, calculated from two sources (i.e., PPG and
ACC signals). Nine SQIs were novel and proposed for the first time in this study. The
SQIs feature selection phase revealed that eight and nine SQIs were sufficient to solve the
classification problem optimally for the BQ and both types of HQ classifiers, respectively. It
is worth noting that most of the selected SQIs are novel features. In particular, two of the
newly introduced statistical parameters (MedianPulse, StdPulse_noZ) and two parameters
related to the PPG pulse morphology (Npeaks, ZDR) were selected for all classifiers here
presented, adding important information that helped better solve the classification problem.

Although the extraction of multiple features inevitably increases the computational
complexity compared with the extraction of a single feature, the cost of the features pre-
sented in this work remains low and grows linearly with N. Moreover, it is interesting
to note that the NCA selected features with increasing computational complexity for the
BQ (5*N FLOPs), HQ1 (19*N FLOPs), and HQ2 (25*N FLOPs) classifiers, in line with the
increasing complexity of the classification problem.

It is also worth noting that the Peak2PeakACC feature from the accelerometer data was
selected only for BQ and HQ1 classifiers, and not for the HQ2 classifier. This can be ascribed
to the fact that B pulses (involved in both BQ and HQ1 classifiers) are generated because of
motion artifacts, while the F and E pulses are largely independent of the movement.

All the implemented algorithms performed well to achieve BQ and HQ1 classifiers.
Except for the Neural Network fed with the full features set, all the methods showed
an accuracy higher than 0.90. However, the two classifiers differed in sensitivity and
specificity: BQ classifiers showed a balanced sensitivity and specificity, while the HQ
classifiers had specificity higher than sensitivity (on average, 0.9728 compared to 0.9729).
This difference can be ascribed to the imbalance in the number of pulses in the two classes
(only 1826 pulses belonging to the E class compared to 10,574 belonging to the B&F classes),
meaning that the algorithms are better trained in detecting pulses belonging to B&F class
than to the E class.

Regarding performance, some algorithms used to develop the HQ2 classifiers per-
formed relatively poorly, except for the Ensemble and Tree algorithms. Again, the imbalance
between F and E pulses (4612 F pulses against 1826 E pulses) may have played a role. How-
ever, as also pointed out by Elgendi [24], it was reasonable to expect that a classifier aiming
at detecting E pulses against pulses belonging to a single quality level achieved worse
performance than a classifier trained to detect E pulses against different quality pulses. In
addition, it is necessary to consider the inevitable error propagation that a system of two
cascaded classifiers entails. There may be some B pulses wrongly classified within the F&E
pulses by the first stage BQ classifier, so performances might be even worse than the ones
reported in this study since the HQ2 classifier was trained and tested only with real F and
E pulses.

Our best classifiers outperformed the two state-of-the-art classifiers. Notably, the iden-
tified thresholds set for the Jang et al. [30] classifiers were higher than the values reported
in the original work: 0.922 versus 0.673 for the BQ classifier, and 0.991 (0.993) versus 0.796
for the HQ1 (HQ2) classifier. These discrepancies could be due to the higher quality levels of
the F and E pulses identified in this work. However, the Jang et al. [30] BQ classifier attained
good performance, with an accuracy of 0.9253, considering that a single SQI was used. On the
other hand, the classifier proposed by Elgendi [24] demonstrated moderate performance for
the BQ classifier (Sens = 0.8398, Spec = 0.5764) and poor performance for both HQ classifiers
(Sens = 0.0167, Spec = 0.8406 for type 1; Sens = 0, Spec = 0.9991 for type 2).

The proposed classifiers can help extend the use of PPG signals recorded by wearable
devices in the real world. On the one hand, the BQ classifier showed promising results,
both in terms of sensitivity and specificity. Baek et al. [23] highlighted the detrimental effect
on HRV analysis of missing inter-beat intervals. For this reason, a highly sensitive classifier
is essential for detecting all pulses that can be used for HR estimation without losing
discriminatory power by eliminating too many pulses because of their low quality. On the
other hand, SVM selected as the best HQ classifier has high specificity with (relatively) low
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sensitivity. However, compared to other methods, it shows the best performance in terms of
MCC, F1, and Cohen’s κ. The importance of an HQ classifier is obvious, given the number
of significant applications that have been proposed in the last few years. Features extracted
from PPG morphology could be used, for example, for stress detection purposes [26,54,55]
or blood pressure estimation [56–58], thus allowing for continuous monitoring with a
simple wristband. A large part of the population at risk of developing, e.g., burnout
syndromes or cardiovascular disease, would benefit from this achievement.

As a side result of this work, we built an annotated dataset that can be further exploited
for future studies. As an ongoing activity, we are working on the preparation of the dataset
to be publicly available.

This study has some limitations, most of which are related to the sample population
used to train and test the algorithms. First, more robust classifiers could be obtained by
increasing the sample size: more subjects and labelled pulses would indeed be beneficial,
preferably including subjects with arrhythmias or other cardiac pathologies. As this study
was conceived, the classifiers we developed cannot discern arrhythmias from noise, thus
potentially discarding arrhythmic beats that could also be useful for diagnostic purposes.
Moreover, the algorithms’ training phase could be refined by considering subjects’ age. As
pointed out in [7], the dicrotic notch is more pronounced in healthy young than in older
adults, and PPG morphology changes with age [25]. Therefore, a future study could collect
and balance pulses belonging to different age groups both in the training and testing set. In
addition, a further advancement of the method here proposed can be achieved by using
recordings from different devices to train the signal quality algorithm. In fact, the results
could be device dependent, thus limiting the generalizability to other devices.

The classifiers developed in this study have not been tested in real time. This is a
crucial aspect to be assessed to understand whether the signal quality assessment can be
smoothly embedded in the processing pipeline of wearable devices to provide reliable
information with an acceptable delay [3]. Providing reliable health information in real-time
would indeed facilitate the delivery of personalized treatments to the patient if and when
needed [59].

5. Conclusions

This work aimed to develop two pulse-wise classifiers to detect reliable wrist PPG
pulses that can be used in a real-world context for heart rate estimation and morphological
analysis. We trained and tested several algorithms with a combination of features derived
from different sources, including several novel features, and by selecting PPG pulses
subjected to different levels of motion artifacts. The best performances were obtained by
using subsets of features for both Basic- and High-quality classifiers. For both classifiers,
the SVM with a Quadratic kernel achieved the best performance. Our results could help
in improving the reliability and generalizability of the valuable biomarkers obtained by
wrist PPG signals. Furthermore, the pulse-wise approach minimizes the loss of information
by selecting all pulses suitable for either heart rate variability or morphological analysis.
Future work can optimize the classifiers by increasing the sample size (both in terms of
subjects and various cardiac health conditions) used to train the algorithms and explore the
feasibility of embedding these methods in wearable devices for real-time applications.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s22155831/s1, Table S1: The computational complexity
for each feature. N = pulse length; Table S2: Results from neighborhood component analysis for
the Basic-quality classifier applied ten times; Table S3: Results from neighborhood component
analysis for the Type 1 High-quality classifier applied ten times; Table S4: Results from neigh-
borhood component analysis for the Type 2 High-quality classifier applied ten times; Table S5:
Hyperparameters for Basic-quality classifiers; Table S6: Hyperparameters for Type 1 High-quality
classifiers; Table S7: Hyperparameters for Type 2 High-quality classifiers.

https://www.mdpi.com/article/10.3390/s22155831/s1
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