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HIGHLIGHTS 12 

- Comparison of available altimetry products for hydrodynamic model calibration  13 

- Investigation of the potential of multi-mission series for calibrating hydraulic model  14 

- Impact of single- and multi-mission series length (n° of observations) on calibration reliability 15 

- Results show the improvement of satellite performances over time 16 

- Multi-mission series outperform short series of original low-frequency altimetric products  17 



 

 

ABSTRACT  18 

Satellite altimetry is increasingly considered as a valuable source of information in many hydrological and 19 

hydraulic applications. However, the accuracy of different sensors adopted for monitoring the water level from 20 

satellite and the limited temporal resolution that characterizes each sensor (i.e. revisit time most of time varying 21 

from 10 to 35 days; 369 days in case of CryoSat mission) still hamper their common use. Recently introduced 22 

multi-mission (MM) densified time series might represent a possible alternative to ensure higher spatial and 23 

temporal coverage. Though, a comparison of the potential of different altimetry products, including MM series, 24 

for hydrodynamic model calibration is still missing. This study attempts to fill this gap investigating how 25 

available altimetry series perform over a stretch of the Po River (nearly 140 km across Northern Italy) in 26 

calibrating a quasi-2D model built with detailed topographic information. Specifically, objectives are 27 

manifold: i) to provide a comparison of satellite altimetry products available to the research community and 28 

commonly used in hydraulic modelling (Envisat, Envisat extended mission, ERS-2, TOPEX/Poseidon, 29 

SARAL/AltiKa, Jason-2,      Jason-3, Sentinel 3A, Sentinel 3B and CryoSat); ii) to evaluate the performance 30 

of MM satellite series in calibrating a hydraulic model relative to single-mission series; and iii) to investigate 31 

the importance of the number of observations (series length) for each mission.  32 

Results of the model calibration depict a general improvement of satellite performance over time, moving from 33 

the oldest to more recent missions, with the exception of Envisat extended series. In general, Jason-2, Sentinel 34 

3A and Sentinel 3B outperform other series both in terms of calibration error and number of measurements 35 

required to achieve a reliable calibration. MM series provide errors larger than those obtained from original 36 

single-mission time      series considered with their overall length, but they provide more reliable calibrations 37 

than altimetric time series with low sampling rate (i.e., Envisat, Envisat extended, and SARAL/AltiKa) or 38 

those that cover very short periods (e.g. altimetry series limited to 20-40 months in length). The analysis offers 39 

additional insights into the possible use of altimetry series in hydrodynamic applications, providing a 40 

comparison of different original products and showing the potential, as well as limitations, offered by MM 41 

series.    42 

  43 
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1 INTRODUCTION 46 

Over the last thirty years hydraulic modelling has developed to such an extent that it can now provide high-47 

quality flood risk maps (Merz et al., 2010), damage assessment (Luino et al., 2009), water resource 48 

management (Loucks et al., 2005), real-time flood forecasting (Arduino et al., 2005) and dynamic perspective 49 

in case of future scenarios (Bronstert, 2003). Hydraulic modelling describes the flood routing and, hence, 50 

tracks the propagation of a flood wave given as an input at an upstream location of a river channel to any 51 

downstream locations. The routing model requires an accurate geometric description of the river channel and 52 

floodplains, reliable input of river discharge and the calibration of the roughness parameter, considered as the 53 

most important factor that has an impact on predicting flow characteristics (Aronica et al., 1998; Bates et al., 54 

1996; Pappenberger et al., 2005). The model calibration generally consists in tuning the roughness parameter 55 

to minimize the misfit between simulated and observed output represented by flow or water level hydrographs. 56 

Typically, the calibration is done by using water level or discharge observations gathered at the gauged stations      57 

available along the river. Recently, scientific literature is enriched by studies on the integration of remote 58 

sensing and ground observations for hydraulic model calibration. Numerous examples use the flood extent 59 

derived by the backscatter value of Synthetic Aperture Radar (SAR) images to calibrate the roughness 60 

parameter (Andreadis et al., 2014; Schumann et al., 2014; Wood et al., 2016; Matgen et al., 2011; Tarpanelli 61 

et al., 2013a), in some cases considering also the uncertainty in the flood extraction (Di Baldassarre et al., 62 

2009; Giustarini et al., 2015). Directly related to the water surface elevation, satellite altimetry has 63 

demonstrated its large potential in the calibration of 1D or 2D hydraulic models (Domeneghetti et al., 2014, 64 

O'Loughlin et al., 2013; Yan et al., 2014). Neal et al. (2012) calibrated the hydraulic model LISFLOOD-FP 65 

for an 800 km reach of the Niger river in Mali using the laser altimetry data from Ice, Cloud, and land Elevation 66 

Satellite, ICESat. Differently from the radar altimetry data that are collected with a given repeat period at the 67 

same locations, ICESat does not produce repeat-track measurements and, although considered the most 68 

accurate source of altimetry information, the hydrological community is still sceptical about monitoring rivers 69 

in a different way from the traditional adoption of fixed gauging stations (O'Loughlin et al., 2016). Similarly, 70 

CryoSat-2 satellite suffers from a limited use due to the almost annual repeat cycle (i.e., 369 days), which is 71 

considered inadequate to represent river dynamics. However, its dense spatial sampling (about 7.5 km at the 72 

equator) can be extremely useful in deriving water level profiles that normally cannot be achieved. Schneider 73 



 

 

et al. (2018) used CryoSat-2 water level data to calibrate the Manning roughness coefficient each 10 km over 74 

the Po river main channel by using the DHI Mike 11 software (DHI, 2015). Compared with values calibrated 75 

through in situ measurements, CryoSat-2 showed a strong potential to calibrate the roughness coefficient at a 76 

more detailed level with the consequent reduction of the over- and under-estimation of the high flows (Jiang 77 

et al., 2019).  78 

Concerning traditional radar altimetry (i.e. short-repeat and fixed-orbit missions, such as ERS-2, Envisat, and 79 

Jason-2), several examples have demonstrated its valid contribution in supporting the ground network for 80 

describing the hydrometric regime (Garambois et al., 2017; Emery et al., 2016) and the potential benefits 81 

expected in case of its integration with in situ data (Domeneghetti et al., 2014; Huang et al., 2018 and reference 82 

therein). Similar studies have mostly focused on rivers larger in width than about 300 m, a limitation imposed 83 

by the along-track spatial resolution of delay/Doppler altimetry. The Fully Focused SAR (FF-SAR) processing, 84 

however, improves the along-track resolution of SAR altimetry up to the theoretical threshold of half of the 85 

antenna length (Egido and Smith, 2016; Vignudelli et al., 2019). Kleinherenbrink et al. (2020) have 86 

implemented the FF-SAR algorithm over lakes, canals, and ditches in Netherlands using CryoSat-2 full-bit-87 

rate data. For cases where the altimetry track crosses the water bodies in a near-perpendicular angle, they have 88 

successfully derived the water level of a ditch as small as 5 m in width and located only 10 m away from a 89 

canal. Though more studies are required to indicate the potentials and limitations of FF-SAR, it is expected 90 

that the method would open an unprecedented opportunity to monitor smaller water bodies. Moreover, when 91 

the future SWOT mission is fully operational, for rivers wider than 100 m (possibly as narrow as 50 meters; 92 

Desai, 2018; Frasson et al., 2019), a 2D river mapping at 10-70 m resolution is anticipated (Biancamaria et al., 93 

2016). Concerning the use of traditional radar altimetry for the calibration of the hydraulic model, two 94 

limitations are the most relevant and worth to be analysed: the length (duration) of the time series and the 95 

revisit time of the satellite.      96 

The importance of the duration (i.e., years of observation or number of overpasses) of the satellite mission has 97 

been analysed by Domeneghetti et al. (2015) who showed its impact on the estimation of the roughness 98 

coefficient. In particular, they found that sample sizes of 2.5 years can be considered sufficient to the 99 

calibration process in case of using ERS-2 and Envisat time series. However, an extension of similar 100 

investigations to other satellites is desirable to assess the potential of current and past altimetry missions for 101 



 

 

hydraulic simulations.  102 

Also, the revisit time, typically 10 to 35 days for altimetry missions, represents a limitation for hydrodynamic 103 

applications. A possible solution is the development of approaches that consider the use of multiple missions 104 

(MM) to derive densified time series in specific locations. Tourian et al. (2016) transferred the water level 105 

information coming from four satellite missions (Jason-2, Envisat, SARAL and CryoSat-2) and, hence, several 106 

virtual stations, to specific locations of the river coincident with the ground monitoring stations along the Po, 107 

Mississippi, Congo and Danube rivers. The combination of the altimetry data has been carried out with the 108 

hydraulic concepts of wave travel time and celerity of the flow calculated with the geometric characteristics 109 

of the river, such as length of the reach, slope and width. A successive study of Tourian et al. (2017) analysed 110 

a similar approach over the Niger river and obtained river discharge by assimilating altimetric and in situ river 111 

discharge with a Kalman filter approach. Boergens et al. (2017) integrated water level measurements of 112 

Envisat, SARAL and Jason-2 by using ordinary kriging in the main channel of the Mekong River. All these 113 

attempts to increase the frequency of sampling of the river water surface are valuable contributions especially 114 

for hydrological applications and for deriving more frequent discharge time series. However, the value of MM 115 

time series has never been tested in hydraulic modelling. 116 

Moving from previous considerations, the present work proposes to investigate three main aspects that are still 117 

only partially analysed in the literature:       118 

1) to compare the available altimetry data in terms of their performance for the calibration of hydraulic 119 

models. Specifically, the analysis provides a comprehensive comparison of different satellite altimetry 120 

products available to the research community and covering nearly 27 years, such as: Envisat (E), 121 

Envisat extended mission (EX), TOPEX/Poseidon (TP), SARAL/AltiKa (SA), Jason-2 (J2) and Jason-122 

3 (J3), Sentinel 3A (S3A) and Sentinel 3B (S3B). Despite not directly analysed, the potential of ERS-123 

2 and CryoSat is also presented taking advantage of previous studies carried out on the same study 124 

area (Domeneghetti et al., 2015; Schneider et al., 2018);      125 

2) to assess the effect of the record length (i.e., number of available satellite measurements, in relation to 126 

different data products) on the calibration reliability. The study investigates the possible accuracy of 127 

the model calibration in relation to the record length of the altimetry product adopted for its execution. 128 

This info could be beneficial not only at the early stages of a mission, but also when historical time      129 



 

 

series are limited in length (perhaps due to missing values or mission interruption). Findings of such 130 

evaluation might serve a modeller when called to evaluate the extent of the calibration period;  131 

3) to test the use of  MM satellite time series in the process of hydraulic model calibration. These synthetic 132 

altimetry time series result from the combination of different single-mission time series and overcome 133 

the spatial and temporal sampling limits that characterize a given single mission (see e.g., Tourian et 134 

al., 2016).  135 

The construction of MM time series represents a recent frontier towards a larger exploitation of altimetry data 136 

provided from the overall set of past and on-going satellite missions (see also Coss et al., 2020). Thus, the 137 

evaluation of its potential for the implementation of an accurate and reliable hydraulic model constitutes an 138 

element of interest for the hydrologic community. Although not claiming to provide a general statement and 139 

ranking of the altimetry products, which would require considering a large set of rivers having a variety of 140 

hydrological and morphological characteristics, this study aims at delivering a comprehensive and cross-141 

missions view of the potential of current and past altimetry data. 142 

The analysis is implemented along the Po river in the stretch between the gauged stations of Borgoforte (basin 143 

area equal to 62.450 km²) and Pontelagoscuro (basin area equal to 70.091 km2), for a direct comparison with 144 

other studies. The hydraulic simulation is carried out with the HEC-RAS software package (Hydrologic 145 

Engineering Center, 2001) in a quasi-2D configuration (see Section 3.1). 146 

 147 

1 STUDY AREA AND ALTIMETRY TIME SERIES  148 

1.1 Study area 149 

Figure 1 presents the area of interest: about 140-km reach of the lower portion of the Po river, the largest and 150 

longest Italian river that flows in Eastern direction across Northern Italy. Considering the social and economic 151 

importance of this area, the Po river is consistently monitored and controlled by the Po River Basin Authority 152 

(AdB-Po), which records and provides hydrological and geometrical ground observations used in this study 153 

(Montanari et al., 2017). The analysis focuses on the river reach that is limited upstream by the gauging station 154 

of Borgoforte and downstream by the beginning of the river delta. Along this portion, the main channel width 155 

ranges from 200 to 500 m, while lateral floodplains may span up to 2.5 km.       156 

Figure 1 shows Virtual Stations, VSs  (locations where satellite tracks cross with the river), considered in this 157 



 

 

study, as well as the position of gauged stations (i.e., Borgoforte and Pontelagoscuro) where river discharge 158 

and water surface elevation are recorded daily from 1923 and 1922, respectively. Although Po river dynamic 159 

and its off seasonal behaviour may result challenging for the use of altimetry data, it represents a profitable 160 

case study where both traditionally observed and remotely sensed hydrological data are available 161 

(Domeneghetti et al., 2014, 2015). 162 

 163 

Figure 1. Po river stretch considered in the study (140 km, from Borgoforte to the beginning 164 
 of the river delta) with the identification of gauged stations and the virtual stations (VSs) relative to  165 

the overall set of satellite missions. 166 
 167 

1.2 Satellite altimetry products 168 

     Table 1 summarizes the different altimetry missions considered in the study: Envisat (E), Envisat Extended 169 

Mission (EX), TOPEX/Poseidon (TP), SARAL/AltiKa (SA), Jason-2 (J2),  Jason-3 (J3), Sentinel-3A (S3A) 170 

and Sentinel-3B (S3B). These missions are characterized by different sensors instrumentation, scopes, and 171 

orbits. Therefore, the respective altimetry time series are characterized by distinctive temporal and spatial 172 

resolution as well as different accuracy and reliability. Most of the considered missions have a low temporal 173 

resolution (i.e. 35 days for E and SA, 30 days for EX, and 27 days for S3A and S3B), while TP, J2 and J3 174 

provide water surface elevation measurements every 10 days. E (mission period 05/2002–10/2010) and SA 175 

(03/2013–01/2016) are the successors of the former mission ERS-2 (04/1995–09/2007) using the same orbit 176 



 

 

configuration with inter-track distance of 80 km at equator and a repeat cycle of 35 days. E, EX, and SA data 177 

are processed adopting ICE-1 retracker, shown to provide robust and accurate results over rivers (Frappart et 178 

al., 2006; Silva et al., 2010). J2, launched in June 2008, is the successor of the former missions TP (09/1992–179 

08/2002), and J3 was launched in 2016 as the successor of J2 and placed in the same orbit with the inter-track 180 

distance of about 315 km at equator and a repeat cycle of 10 days. For both J2 and J3, the water levels are 181 

derived using the ICE retracker, as it has proven to outperform other retrackers over continental waters 182 

(Cretaux, J. F. et al., 2018). The currently active S3A and S3B guarantee the continuity of E-type 183 

measurements in a fully operational manner. Sentinel-3 provides SAR altimetry data with a revisit time of 27 184 

days. The two missions have orbits almost similar to that of E and ERS, with the ground-track separation of 185 

104 km at equator. S3A and S3B data are processed using the OCOG retracker which is a heritage of ICE-1, 186 

and hence, reliable for inland applications.   187 

All water level time series are processed using the high-rate altimetry datasets. The usual rate for all missions 188 

is 20 Hz which leads to the along-track distance of 294 m between successive measurements. SA dataset 189 

however is provided with the sampling rate of 40 Hz, and hence, the spatial spacing of 173 m along-track.           190 

For clarity, Figure 2 presents the temporal coverage of the altimetry products considered in the study, while 191 

Figure 3 reports a synoptic view of the water levels derived from the different missions.  192 

 193 

Table 1. Satellite sensors and altimetry time series considered in this study. 194 

Mission 

(Abbreviation) 
Version Retracker 

Observation 
period 

Temporal 
resolution 

[day] 

Height 

[km] 

Inclination 

[degree] 

Data  
source 

TOPEX/Poseidon 
(TP)  

MGDR-B onboard 1992–2002 9.91 1336 66 PODAAC 

Envisat (E) GDR-V3 ICE-1 2002–2010 35 800 98.5 ESA 

Envisat XT (EX) GDR-V3 ICE-1 2010–2012 35 800 98.5 ESA 

SARAL/AltiKa (SA) GDR-t      ICE-1 2013–2016 35 800 98.5 AVISO 

JASON 2 (J2) 
     

PISTACH 
ICE-3 2008–2015 9.91 1336 66 AVISO 

JASON 3 (J3) GDR-d ICE      2016-2019      10 1336 66 AVISO 

Sentinel-3A (S3A) O_NT_003 OCOG 2016-2019 27 814.5 95.65 COPERNICUS 

Sentinel-3B (S3B) O_NT_003 OCOG 2018-2019 27 814.5 95.65 COPERNICUS 

Multi-mission (MM)   1995–2019 ca. 3   - 

 195 



 

 

 196 

Figure 2. Temporal distribution of satellite altimetry missions used in this work: TOPEX/Poseidon, Envisat, Envisat 197 
EX, JASON-2, SARAL/AltiKa, JASON-3, Sentinel-3A, and Sentinel-3B (*ERS-2 is reported for comparison with other 198 

studies in literature). 199 
 200 

 201 
 202 

Figure 3. Synoptic view of altimetry time series at VSs identified along the river stretch of interest. The grey dashed line 203 
reports water levels observed at Borgoforte. 204 

 205 

Referring to the same study area, Tarpanelli et al. (2013b) and Domeneghetti et al., (2014, 2015) investigated 206 

the potential of ERS-2 time series for similar purposes. The comparison of ERS-2 with water level values 207 

recorded at the nearest gauging station, or estimated at VSs, shows significant correlations, with the mean 208 

absolute error in the order of 0.7 m. In particular, Domeneghetti et al., (2015) investigated the effect of ERS-209 

2 uncertainty on model calibration, while Schneider et al., (2018) did the same considering CryoSat time series. 210 

For the sake of brevity, and to avoid the repetition of already performed investigations, calibrations with ERS-211 

2 and CryoSat data are not carried out in this work. Actually, the drifting orbit of CryoSat implies a long-repeat 212 

ground track pattern that would impose the adoption of different calibration strategies (i.e., it is not 213 

straightforward to construct time series since its long repeat cycle – 369 day). Nevertheless, this does affect 214 



 

 

the completeness of this investigation: results previously obtained with both ERS-2 and CryoSat are 215 

summarized and compared with those of other altimetry time series to provide a complete overview of 216 

altimetry performance.      217 

 218 

1.3 Multi-mission (MM): altimetry time series at high spatial and temporal coverage 219 

Water level time series from individual altimetry missions over the river are merged using an approach 220 

developed by Tourian et al. (2016) to overcome spatial and temporal limitation of single altimetry missions. 221 

Adopting this solution all VSs of several satellite altimeters along the Po River are connected to each other 222 

hydraulically and statistically. To this end, first the bias between different missions is removed (see Tourian 223 

et al., 2016, for more details). Then, for any given location along the river, the time lag due to stream flow 224 

between the altimetric virtual stations and the selected location is estimated. Since the MM approach has been 225 

developed for being applicable also on poorly surveyed areas, average river width using imagery together with 226 

the slope derived from satellite altimetry are used as inputs to a simple empirical hydraulic equation that 227 

estimates average flow velocity and thus the time lag between VSs (Bjerklie et al., 2005; Tourian et al., 2015). 228 

Figure 4 shows the estimated time lag between VS along the Po River highlighted with those selected for this 229 

study. From the most upstream selected VS in this study (TP120, J2-120 and J3-120; see Figure 1) till most 230 

downstream VS (TP85, J2-85 and J3-85), the time lag is about 0.85 day. 231 

 232 

Figure 4. Estimated time lag between each VS along the Po River relative to the very first VS. The red box highlights 233 
VSs selected for this study (from Tourian et al., 2016).  234 

 235 

Using the estimated time lag, the water level hydrographs of all measurements are shifted and stacked at the 236 



 

 

selected location. The stacked time series at the selected location is then normalized according to its statistical 237 

distribution and especially the water level value at 3rd and 85th percentiles as lower and upper bounds. As an 238 

example, Figure 5 shows normalized water level obtained at VS J2-85, for which first the time lag between all 239 

VSs and the J2-85 is corrected and then individual time series are normalized according to their 3rd and 85th 240 

percentiles.  241 

 242 

Figure 5. Normalized water level values at VS J2-85. The gray curves show the boundaries of confidence limit after 243 
rejecting all possible outliers. 244 

 245 

 246 

Afterwards, outliers are identified and removed from the normalized time series by defining a confidence limit 247 

of 99% of a Student’s t test for a one month sliding time window. The confidence limit is delineated in Figure 248 

5 by an upper- and a lower bound confidence level. All measurements outside the confidence limit are 249 

identified as outlier and removed from measurements. The outlier-free normalized time series is then rescaled 250 

back according to the water level distribution of the selected location (Figure 6).  251 



 

 

 252 

Figure 6. Densified water level time series at VS J2-85 253 

Using this methodology, we obtain a time series with 3 days effective temporal resolution from altimetry 254 

missions originally with temporal resolution ranging from 10 to 35 days.  255 

The MM water level time series are validated at the gauging stations of Borgoforte and Pontelagoscuro, for 256 

which individual water level time series are densified, obtaining correlation coefficient equal to 0.75 and 0.78, 257 

RMSE (root mean square error) of the value of 0.94 m and 0.75 m, and bias of 0.05 and 0.37 m, respectively. 258 

The accuracy of MM series inevitably conveys the simplifications and assumptions of the approach used for 259 

their construction. Thought for applications in data scarce areas, those simplifications mainly regards the 260 

description of the river geometry and dynamics (i.e., river width and time lag). Investigating the impacts of 261 

such limitations on the use of MM series for the calibration was out of the scope of this work. Nevertheless, 262 

these analyses are suggested for future work.  263 

 264 

2 NUMERICAL ANALYSIS AND METHODOLOGICAL APPROACH 265 

2.1 Model set-up, calibration and validation  266 

The numerical simulations of the river stretch of interest is carried out by means of a quasi-two-dimensional 267 

(quasi-2D) model implemented with the HEC-RAS code that uses an implicit four-point finite difference 268 

algorithm to solve the De Saint-Venant equations. The river geometry is properly reproduced by taking 269 

advantage of a 2-m DEM (Digital Elevation Model) available along the overall Po river, which combines a 270 

LiDAR survey of the emerged river portion with traditional ground cross-sections and multi-beam sonar 271 

surveys (Camorani et al., 2006). The quasi-2D scheme ensures a proper representation of the flow dynamics 272 

by enabling mutual interactions between the main channel and a series of lateral floodplains (i.e. storage areas) 273 



 

 

delimited by a system of minor dikes, which are schematized within the code as lateral structures. Although 274 

the numerical scheme refers to 1D hydraulic equations, the adoption of this schematization enables a proper 275 

simulation of the hydraulic interaction among the main channel and lateral floodplains. The appropriateness 276 

of this configuration has been proven by a number of previous studies that referred to the same river portion 277 

(Castellarin et al., 2011; Castellarin et al., 2011a; Domeneghetti et al., 2015).       278 

The numerical simulations for the overall period of interest (1992-2019) are carried out by imposing the mean 279 

daily discharge values recorded at the upstream gauged station (Borgoforte) as upstream boundary conditions, 280 

and the normal flow condition at the downstream cross-section located at the beginning of the river delta (see 281 

Figure 1). According to previous experiences on the study area (Domeneghetti et al., 2014, 2015a), lateral 282 

inflows of some minor tributaries are not taken into account during the simulation since their contributions are 283 

neglectable relative to the Po river discharge. 284 

The calibration procedure focuses on the identification of the Manning coefficient, n (s·m-1/3), of the main 285 

channel that maximizes the Nash-Sutcliffe efficiency (NS; Nash and Sutcliffe, 1970) coefficient obtained in 286 

reproducing the observed water levels, by varying it within the range 0.01-0.06 s·m-1/3. Because the quasi-2D 287 

model has limited sensitivity to the roughness coefficient adopted for the floodplains, its value is considered 288 

constant and equal to 0.1 s·m-1/3 for all the numerical simulations (see also Castellarin et al., 2011a; 289 

Domeneghetti et al., 2015a).      290 

Referring to the simulation time frame considered in this study (1995-2019), calibration and validation 291 

schemes vary in relation to investigation setting, as indicated hereafter: 292 

a) analysis considering one VS at time, referring separately to the dataset retrieved from specific altimetry 293 

mission (Table 1, Figure 1) and the MM time series. In each calibration, the roughness coefficient is unique 294 

and assumed to be static through time. For each single mission the calibration is performed referring to the 295 

overall period of altimetry data availability (see Figure 3); once calibrated, the model validation is carried 296 

out comparing simulated water surface levels with in situ data available within the considered time frame 297 

(1995-2019) and not used for the calibration. For a single MM series that covers the overall period of 298 

interest, the latter is split in two parts: 1995-2017 for calibration, 2017-2019 for validation.  299 

b) Analysis considering all MM time series together: the calibration adopts spatially distributed 300 

parameterization by splitting the river into a number of stretches corresponding to VSs locations and 301 



 

 

considering multiple roughness coefficients.  302 

When referring to MM time series, the calibration covers the period that consider the presence of all altimetry 303 

missions. Its considerable extent (22 years, from 1995 to 2017) ensures a data series length sufficient to ensure 304 

a consolidated calibration, guaranteeing at the same time a sufficient validation period (2 years, 2018-2019). 305 

  306 

2.2 Accuracy of altimetry products 307 

Typically, as spotted in Figure 1, VSs do not coincide with gauging stations and thus a direct comparison 308 

between traditional observation and remotely sensed data is not straightforward. To overcome this problem we 309 

compare the satellite-derived water surface elevation values, ℎ𝑠𝑎𝑡(𝑥, 𝑡),  sensed at a given location, 𝑥, at the 310 

day of the satellite overpass, 𝑡, with the in situ water surface elevation, ℎ𝑠𝑖𝑡𝑢(𝑥, 𝑡), linearly interpolated at the 311 

track location referring to concurrent water levels measured at the gauging stations located upstream and 312 

downstream the satellite track. This appears reasonable in the absence of diversion structures or dams along 313 

the river portion of interest. Following this approach, the error, 𝜀(𝑥, 𝑡), can be calculated with the equation (1): 314 

𝜀(𝑥, 𝑡) = ℎ𝑠𝑎𝑡(𝑥, 𝑡) − ℎ𝑠𝑖𝑡𝑢(𝑥, 𝑡) (1) 

 315 

which has been applied distinguishing all the altimetry products. 316 

The same approach is used considering the MM time series, where t covers all days of observation sensed by 317 

at least one of the considered altimetry missions. 318 

Considering that different altimetry missions use different reference ellipsoids (TOPEX ellipsoid for TP, J2, 319 

J3, and SA, and the WGS84 for E, EX, S3A, and S3B), we calculate the geoid height with respect to the one 320 

adopted for MM creation (EGM2008). The same for in situ data, which refer to ITALGEO 2005 geoid 321 

(Barzaghi et al., 2007). 322 

 323 

2.3 Impact of VS time series length on calibration       324 

               The length of an altimetry dataset, m (i.e., the number of satellite overpasses available at a given VS 325 

from a specific altimeter, which differs from the official mission duration), influences the reliability of the 326 

calibration (Domeneghetti et al., 2015a). To investigate its impact for different satellite products we repeat the 327 

calibration exercise by considering several altimetry subsets randomly sampled from each original altimetry 328 



 

 

time series (i.e., E, TP, J2, etc.) with a length m that varies from 3 to 𝐿𝑡𝑜𝑡. In this case, 𝐿𝑡𝑜𝑡 indicates the total 329 

amount of altimetric observations available for a given mission at a specific VS. Indicating with x the location 330 

of a given VS along the study area, the subset sampled from the original altimetry time series and used for the 331 

calibration can be expressed as: 332 

ℎ𝑠𝑎𝑡,𝑚(𝑥) = [ℎ𝑠𝑎𝑡(𝑥, 𝑡1), … , ℎ𝑠𝑎𝑡(𝑥, 𝑡𝑚)]   ∀𝑚 = 3, … , 𝐿𝑡𝑜𝑡 (2) 

 333 

     For m lower than 3, the time series is considered too short and not suitable for calibration purposes. To 334 

overcome the uncertainty related to the selection of the m observations among those available for a given 335 

mission, and at a given VS, the sampling procedure is embedded in a Monte Carlo framework that generates 336 

1000 random ℎ𝑠𝑎𝑡,𝑚 samples for each m value. Once sampled, the calibration is carried out considering each 337 

ℎ𝑠𝑎𝑡,𝑚 sample at time. 338 

Finally, with the aim to infer the error introduced by the altimetry data, we repeat the same procedure by 339 

calibrating the numerical model with reference to different subsets randomly extracted from the water level 340 

values observed in situ at the VS (ℎ𝑠𝑖𝑡𝑢). Eq. (3) indicates the in situ time series randomly extracted from the 341 

overall set: 342 

ℎ𝑠𝑖𝑡𝑢,𝑚(𝑥) = [ℎ𝑠𝑖𝑡𝑢(𝑥, 𝑡1), … , ℎ𝑠𝑖𝑡𝑢(𝑥, 𝑡𝑚)]   ∀𝑚 = 3, … , 𝐿𝑡𝑜𝑡 (3) 

 343 

Calibration results obtained with these ℎ𝑠𝑖𝑡𝑢,𝑚(𝑥) samples are used as a reference for evaluating the potential 344 

of altimetry for model calibration. 345 

For what regards the adoption of MM time series, in order to make the calibration performances of MM and 346 

traditional time series comparable, we refer to specific observation periods instead of considering a given 347 

number of observations (m). The observation period is expressed in terms of a number of months from the date 348 

of the first altimetry observation and varies in relation to the revisit time of each mission: 12 months for TP, 349 

J2, and J3 (i.e., high-frequency missions), 14 months for S3A and 20 months for other missions. Based on this 350 

temporal discretization, once identified a given observation period (e.g., 1, 2, …, n observation periods), the 351 

number of altimetry observations adopted for the calibration for both MM and traditional time series is defined 352 

as the sum of all available water levels values observed since the beginning of the time series.  353 

 354 



 

 

3 RESULTS 355 

3.1 Accuracy of altimetry products  356 

Table 2 summarizes the results of the comparison between altimetry time series and in situ water surface 357 

elevations estimated at VS locations.  In particular, the table reports the number of observations that constitutes 358 

each time series, the correlation coefficient (R) between altimetry and in situ data, the NS value, the mean 359 

absolute error (MAE) as well as the mean (µ) and standard deviation (σ) of the errors expressed following eq. 360 

(1). Altimetry products are listed in a chronological order following Figure 2. In case of VSs observed from 361 

multiple sensors (e.g. VS 85 and VS 120) each time series is considered separately. 362 

 363 

  364 



 

 

Table 2. Comparison of satellite altimetry and in situ water surface levels: distance from upstream cross-section, n° of 365 
satellite data (Ltot), correlation coefficient (R     ),  366 

Nash-Sutcliffe (NS), Mean Absolute Error (MAE), error mean (µ) and standard deviation (σ). 367 

 368 

VS distance 

[km] 

n° data, 
Ltot 

R      NS MAE 
[m] 

μ  

[m] 
σ  

[m] 

TP120 25.44 174 0.77 0.37 0.67 -0.42 0.75 

J2-120 25.44 298 0.98 0.93 0.29 0.18 0.38 

J3-120 25.44 107 0.87 0.69 0.38 0.20 0.76 

EX820 34.23 12 0.91 0.68 0.52 0.5 0.57 

S3B272 42.24 14 0.96 0.93 0.25 0.00 0.32 

S3A427 48.73 51 0.94 0.84 0.43 0.30 0.47 

E22 49.60 61 0.85 0.72 0.34 0.05 0.87 

SA44 50.89 8 0.92 0.41 0.46 0.14 0.55 

SA629 65.84 15 0.96 0.72 0.44 0.4 0.3 

E315 66.87 65 0.97 0.89 0.37 0.3 0.43 

EX775 78.72 5 -0.35 -3.97 1.17 1.17 1.4 

S3A272 86.76 51 0.96 0.65 0.88 0.84 0.50 

TP85 88.11 158 0.6 -0.35 0.54 0.08 0.7 

J2-85 88.11 294 0.98 0.94 0.29 0.20 0.37 

J3-85 88.11 99 0.95 0.86 0.40 0.24 0.45 

 369 

Table 3 reports the same error statistics referring to MM time series, which is unique for each VS.  370 

 371 

Table 3. Comparison of MM time series and in situ water surface levels: correlation coefficient (R     ),  372 
Nash-Sutcliffe (NS), Mean Absolute Error (MAE), error mean (µ) and standard deviation (σ). 373 

 374 

VS n° data, 
Ltot 

R      NS MAE  
[m] 

μ  

[m] 
σ  

[m] 

MM120 1739 0.81 0.39 0.88 0.73 0.81 

MM820 1739 0.82 0.60 0.49 0.01 0.72 

MMB272 1739 0.82 0.61 0.55 0.22 0.73 

MM427 1739 0.82 0.49 0.70 0.51 0.74 

MM22 1738 0.81 0.67 0.59 0.17 0.79 

MM44 1738 0.81 0.67 0.58 0.11 0.79 

MM629 1733 0.79 0.59 0.66 0.30 0.83 

MM315 1734 0.79 0.58 0.67 0.32 0.83 

MM775 1731 0.76 0.20 1.11 0.94 0.95 

MMA272 1731 0.73 -0.11 1.42 1.29 1.05 

MM85 1731 0.73 0.36 0.90 0.59 0.98 

 375 

 376 

3.2 Performance of different altimetry time series on model calibration 377 

Table 4 summarizes the results of the model calibrations and validations carried out using each altimetry time 378 

series at a time. It reports NS, RMSE and MAE obtained at each satellite track considering the overall available 379 



 

 

datasets, which means 𝑚 = 𝐿𝑡𝑜𝑡. These performance statistics are compared with the ones obtained by 380 

repeating the calibration considering in situ water level elevation interpolated at the same location, and time, 381 

of the satellite overpasses (values in brackets). Δ-RMSE and Δ-MAE quantify the additional calibration errors 382 

due to the use of altimetry data instead of in situ ones, while the last three columns report the results of the 383 

validation performed using satellite time series. 384 

 385 

Table 4. Calibration and validation results: Nash-Sutcliffe efficiency value (NS), root mean square error (RMSE) and 386 
mean absolute error (MAE) obtained      adopting the overall dataset of satellite  387 

and in situ (in brackets) time series (𝑚 = 𝐿𝑡𝑜𝑡). 388 
 389 

 Calibration with Satellite  
(In situ) time series 

Δ = Sat – Situ 
Validation Satellite  

time series 

VS 
NS 
 [-] 

RMSE [m] MAE [m] 
Δ-RMSE 

[m] 
Δ-MAE 

[m] 
NS 
 [-] 

RMSE [m] MAE [m] 

TP120 
0.52 

(0.92) 

0.75 

(0.32) 

0.55 

(0.27) 
0.43 0.28 0.94 0.43 0.37 

J2-120 
0.93 

(0.99) 

0.44 

(0.14) 

0.31 

(0.11) 
0.30 0.20 0.97 0.30 0.24 

J3-120 
0.61 

(0.93) 

0.87 

(0.39) 

0.53 

(0.24) 
0.48 0.29 0.98 0.28 0.22 

EX820 
0.79 

(0.99) 

0.61 

(0.10) 

0.52 

(0.08) 
0.51 0.44 0.95 0.44 0.34 

S3B272 
0.93 

(0.99) 

0.24 

(0.08) 

0.18 

(0.07) 
0.16 0.11 0.62 1.10 1.04 

S3A427 
0.86 

(0.97) 

0.47 

(0.20) 

0.33 

(0.14) 
0.27 0.19 0.95 0.37 0.26 

E22 
0.74 

(0.96) 

0.83 

(0.25) 

0.39 

(0.20) 
0.58 0.19 0.94 0.42 0.33 

SA44 
-0.08 

(0.96) 

0.72 

(0.23) 

0.56 

(0.20) 
0.49 0.36 0.96 0.34 0.26 

SA629 
0.90 

(0.97) 

0.29 

(0.17) 

0.25 

(0.16) 
0.12 0.09 0.87 0.58 0.48 

E315 
0.92 

(0.99) 

0.46 

(0.20) 

0.29 

(0.15) 
0.26 0.14 0.85 0.63 0.52 

EX775 
-2.95 

(0.91) 

1.53 

(0.22) 

1.29 

(0.20) 
1.31 1.09 0.54 1.28 1.11 

S3A272 
0.91 

(0.97) 

0.43 

(0.22) 

0.31 

(0.18) 
0.21 0.13 0.70 1.02 0.89 

TP85 
-0.73 

(0.80) 

0.79 

(0.39) 

0.64 

(0.31) 
0.40 0.33 0.82 0.66 0.42 

J2-85 
0.93 

(0.98) 

0.45 

(0.24) 

0.32 

(0.17) 
0.21 0.15 0.78 0.76 0.52 

J3-85 
0.82 

(0.92) 

0.58 

(0.34) 

0.44 

(0.24) 
0.24 0.20 0.80 0.75 0.52 

 390 

Figure 7 reports the results of the calibration exercise performed considering altimetry time series of different 391 

length and randomly sampled from the original datasets (see eq. (2)). Considering each altimetry product and 392 

VS at time, panels of Figure 7 show the calibrated roughness coefficient in relation to the number of 393 



 

 

observations, m, used for the calibration. The solid line indicates the Manning coefficient that ensures the 394 

optimal NS value among the 1000 calibrations performed with a given m value, while the grey area represents 395 

the range of variability of the roughness coefficients calibrated within the Monte Carlo framework. The wider 396 

this area, the more the results of a calibration process depend on the altimetry record used for the calibration, 397 

with the risk of being significantly influenced by the range of water levels sensed during a specific period (e.g., 398 

mainly high flows or low flows).   399 
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 409 
 410 

Figure 7. Calibration results for different altimetry series length: range of calibrated roughness coefficient (grey areas) 411 
and optimal Manning’s value (black line) as a function of the number of satellite measurements, m. 412 

 413 
 414 

Figure 8 provides an overview of the maximum error that we can expect when we use altimetry data for the 415 

calibration of a hydrodynamic model. The black line indicates the maximum MAE as function of m, thus the 416 

maximum error obtained considering all possible calibrated configurations obtained in the Monte Carlo 417 

framework with a given data length (i.e., grey areas in Figure 7).  The comparison with the same maximum 418 

MAE obtained calibrating the model with in situ data (red line) provides a quantitative estimation of the 419 

additional error induced by satellite altimetry uncertainty. 420 
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 423 

Figure 8.  MAE obtained calibrating the numerical model with satellite altimetry data (black line) and in situ water 424 
levels (red line) as a function of data length, m. 425 

 426 

Figure 9 summarizes the findings of Figure 8 showing the temporal evolution of the performance of satellite 427 

altimetry for model calibration. The length of each box represents the temporal coverage of the mission, while 428 



 

 

the box height identifies the range of variability of the MAE obtained during the calibration considering the 429 

overall amount of available observations (see also Table 4). In order to give a complete overview, Figure 9 430 

also includes the results from the previous investigation using ERS-2 (see Domeneghetti et al., 2015a). A 431 

similar calibration exercise over the Po river was done by Schneider et al. (2018) using CryoSat-2 series 432 

observed during the period 2010-2016. Their findings report an average RMSE (ME, mean error) of nearly 0.4 433 

m (-0.18 m) for the SAR mode, with values ranging from 0.06 m (-0.05 m) up to 0.63 m (-0.23 m) (not shown 434 

in Figure 9 due to the use of different error metrics).       435 

 436 

 437 
 438 

Figure 9. Synoptic view of the MAE of each satellite mission in time (*ERS-2 is a recall from a previous investigation): 439 
the vertical height of each box is defined as the range of the MAE obtained from the calibration at different VSs 440 

considering 𝑚 = 𝐿𝑡𝑜𝑡. 441 

 442 

3.3 Performances of MM series on model calibration 443 

Table 5 summarizes the results of the calibration (1995-2017) performed using MM series, as well as those 444 

obtained using in situ water levels observed, in the same period, at the same day of the satellite overpasses. 445 

MM series are specified for each VS sensed along the study area, thus Table 5 has only 11 rows, according to 446 

the number of intersections between the Po river and the considered satellite orbits (VSs).  447 

 448 
  449 



 

 

Table 5. Calibration and validation results: NS, RMSE and MAE obtained from the calibration process performed 450 
adopting MM and in situ (in brackets) time series (𝑚 = 𝐿𝑡𝑜𝑡). 451 

 452 
 Calibration with MM  

(In situ) series 
Δ = Sat – Situ 

Validation with MM  
series 

VS 
NS 
 [-] 

RMSE [m] MAE [m] 
Δ-RMSE 

[m] 
Δ-MAE 

[m] 
NS [-] RMSE [m] MAE [m] 

MM120 
0.54 

(0.95) 

0.89 

(0.28) 

0.64 

(0.21) 
0.61 0.43 0.88 0.66 0.54 

MM820 
0.45 

(0.95) 

0.80 

(0.29) 

0.56 

(0.22) 
0.51 0.34 0.95 0.39 0.29 

MMB272 
0.51 

(0.97) 

0.80 

(0.20) 

0.56 

(0.13) 
0.60 0.43 0.97 0.28 0.15 

MMA427 
0.45 

(0.97) 

0.78 

(0.18) 

0.55 

(0.13) 
0.60 0.42 0.89 0.54 0.48 

MM22 
0.63 

(0.92) 

0.80 

(0.33) 

0.58 

(0.24) 
0.47 0.34 0.94 0.41 0.31 

MM44 
0.63 

(0.93) 

0.80 

(0.33) 

0.58 

(0.24) 
0.47 0.34 0.93 0.42 0.31 

MM629 
0.66 

(0.89) 

0.80 

(0.41) 

0.58 

(0.26) 
0.39 0.32 0.90 0.46 0.31 

MM315 
0.66 

(0.95) 

0.76 

(0.28) 

0.55 

(0.19) 
0.48 0.19 0.87 0.56 0.42 

MM775 
0.65 

(0.79) 

0.83 

(0.58) 

0.59 

(0.37) 
0.25 0.22 0.61 1.1 0.92 

MMA272 
0.65 

(0.76) 

0.89 

(0.63) 

0.64 

(0.39) 
0.26 0.25 0.53 1.18 1.12 

MM85 
0.66 

(0.72) 

0.79 

(0.68) 

0.57 

(0.42) 
0.11 0.15 0.70 0.91 0.67 

 453 

As previously shown for the original satellite altimetry data (see section 3.2), Figure 10 reports the results of 454 

the calibration carried out adopting MM altimetry series of different length and randomly sampled from the      455 

datasets used for calibration. Considering each VS at a time, panels in Figure 10 show the Manning coefficient 456 

calibrated in relation to the series length, m. The solid black line indicates the roughness coefficient that ensures 457 

the optimal NS value among those tested for a given m value, while the grey area represents the range of 458 

variability of the calibrated coefficients. Even in this case, the width of the grey area is indicative of the 459 

sensibility of the calibration result to the length of the altimetry record used for the calibration. It is worth 460 

noting here that the temporal interval considered for calibration (1995-2017) is long enough to guarantee the 461 

achievement of a consolidated and stable calibration. 462 

Figure 11 reports the maximum error obtained by calibrating the model with MM series: the black line indicates 463 

the maximum MAE as function of m, which is compared with the error obtained when calibrating the same 464 

model with an in situ data record of the same length (red line).  465 



 

 

   

   

  
 

  

 

   
 466 

Figure 10. Calibration results for different MM series length: range of calibrated roughness coefficient (grey areas) 467 
and optimal Manning’s value (black line) as a function of data length, m. 468 

 469 
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 471 
Figure 11. MAE obtained calibrating the numerical model with MM altimetry data (black line) and in situ water levels 472 

(red line) as a function of data length, m. 473 
 474 

3.4 Comparison of single and MM altimetry series  475 

Table 6 presents the calibration results obtained using the MM time series. Results are compared with those 476 

achieved by calibrating the model with the original satellite altimetry available at the different VSs. Values 477 

reported in Table 6 refer to the case of considering the overall altimetry series length (𝑚 = 𝐿𝑡𝑜𝑡). Last four 478 

columns report the calibration (validation) performances when considering the overall set of MM series along 479 

the Po river. 480 



 

 

Figures 12-17 show the comparison between original satellite series and MM ones. Each figure represents one 481 

satellite mission, E22, J2-85, SA629, TP120, J3-85 and S3A-272 from Figure 12 to 17, respectively (S3B-272 482 

is not shown since the limited amount of data). For each figure panel a) represents the number of measurements 483 

using MM series (grey columns) and unique sensor (black columns) considering different observation periods 484 

(temporal step equal to 20 months for E22 and SA44, 2 months for J2-85, J3-85 and TP120, 14 months for 485 

S3A-272). Panels b), c) and d) depict MAE, NS variability and Manning’s coefficient as a function of the 486 

number of available data, respectively.    487 

 488 

Table 6. Calibration and validation results: optimal calibrated Manning’s coefficient (n), and errors 489 

obtained adopting single and MM altimetry series (𝑚 = 𝐿𝑡𝑜𝑡), as well as all MM series together (validation 490 

results are in brackets). 491 

 Single Orig. 
series 

Single MM 
series 

Δ = MM – Orig. Calibration (validation) results with all 
MM series 

VS n  
[m1/3s-1] 

n  
[m1/3s-1] 

Δn  
[m1/3s-

1] 

Δ-RMSE 
[m] 

Δ-MAE 
[m] 

n  
[m1/3s-1] 

NSE [-] RMSE 
[m] 

MAE 
[m] 

MM-TP120 0.035 0.048 0.013 0.14 0.09 
0.048 

0.39 
(0.40) 

1.01 
(1.06) 

0.80 
(0.78) 

MM-J2-120 0.040 0.048 0.008 0.45 0.33 
MM-J3-120 0.040 0.048 0.008 0.02 0.11 

MM-EX820 0.042 0.038 -0.004 0.19 0.04 0.045 
0.53 

(0.80) 
0.81 

(0.60) 
0.55 

(0.41) 

MM-B272 0.036 0.036 / 0.56 0.38 0.042 
0.56 

(0.59) 
0.80 

(0.68) 
0.55 

(0.48) 

MM-A427 0.032 0.035 0.003 0.31 0.22 0.04 
0.58 

(0.78) 
0.80 

(0.63) 
0.55 

(0.44) 

MM-E22 0.035 0.035 / -0.003 0.19 0.036 
0.62 

(0.75) 
0.80 

(0.70) 
0.56 

(0.50) 

MM-SA44 0.032 0.032 / 0.08 0.02 0.033 
0.61 

(0.75) 
0.81 

(0.69) 
0.57 

(0.50) 

MM-SA629 0.035 0.032 -0.003 0.51 0.33 0.03 
0.46 

(0.54) 
0.96 

(0.91) 
0.73 

(0.69) 

MM-E315 0.035 0.035 / 0.30 0.26 0.03 
0.44 

(0.53) 
0.98 

(0.93) 
0.76 

(0.70) 

MM-EX775 0.046 0.045 -0.001 -0.70 -0.70 0.044 
0.54 

(0.52) 
0.87 

(0.90) 
0.65 

(0.62) 

MM-A272 0.040 0.046 0.006 0.46 0.33 0.046 
0.26 

(0.11) 
1.17 

(1.22) 
0.95 

(0.96) 
MM-TP85 0.030 0.038 0.008 / -0.07 

0.044 
 

0.59 
(0.63) 

0.79 
(0.78) 

0.58 
(0.53) 

MM-J2-85 0.032 0.038 0.006 0.34 0.25 
MM-J3-85 0.032 0.038 0.006 0.21 0.13 
 492 
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Figure 12.  MM and E22: a) number of observations depending on the observation period; b) MAE, c) NS and d) 494 
Manning’s coefficient as a function of the number of available observations for unique sensor (black line)  495 

and MM series (grey line).  496 
 497 
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 499 

Figure 13.  MM and J2-85: a) number of observations depending on the observation period; b) MAE, c) NS and d) 500 
Manning’s coefficient as a function of the number of available observations for unique sensor (black line)  501 

and MM series (grey line).  502 
  503 
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       505 

Figure 14.  MM and SA629: a) number of observations depending on the observation period; b) MAE, c) NS and d) 506 
Manning’s coefficient as a function of the number of available observations for unique sensor (black line)  507 

and MM series (grey line).  508 
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 511 

Figure 15.  MM and TP120: a) number of observations depending on the observation period; b) MAE, c) NS and d) 512 
Manning’s coefficient as a function of the number of available observations for unique sensor (black line)  513 

and MM series (grey line).  514 
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Figure 16.  MM and J3-85: a) number of observations depending on the observation period; b) MAE, c) NS and d) 516 
Manning’s coefficient as a function of the number of available observations for unique sensor (black line)  517 

and MM series (grey line).  518 
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Figure 17.  MM and S3A-272: a) number of observations depending on the observation period; b) MAE, c) NS and d) 521 
Manning’s coefficient as a function of the number of available observations for unique sensor (black line)  522 

and MM series (grey line).  523 
 524 
 525 
 526 
 527 

4 DISCUSSION  528 

4.1 Accuracy of altimetry products 529 

Table 2 summarizes the comparison between satellite and original altimetry data. Excluding EX775, which 530 

has a very limited number of observations, all the altimetry series show quite high R values, which are always 531 

larger than 0.6 and generally improves moving from historical missions to the most recent ones. Similarly, NS 532 

values are in general positive, with the few exceptions of EX775 and TP85. In general, J2 series outperform 533 

all other missions providing a mean error, µ, of about 20 cm and the lowest values of standard deviation (µ = 534 



 

 

0.38 cm in the worst case). Despite the limited amount of observations, S3B is the only time series having a 535 

lower mean error (µ = 0), while S3A series show performance in line with those of J2 and S3B, unless irregular 536 

among the available VSs. J3 provides µ values comparable to those of J2, but higher standard deviations, σ. A 537 

possible justification can be due to the characteristics of J3 series, which appear shorter than those of J2 (nearly 538 

1/3 in length; see Table 2) and characterized by a higher frequency of low-flow conditions. This latter aspect 539 

is evident in Figure 3, where J3 covers a period of time (2016-on) during which water levels are on average 540 

lower (meaning low flow period) than what observed by J2 (yellow lines). This aspect may play a significant 541 

role when considering possible hooking effect (or “off-nadir” effect, Schwatke et al., 2015), which is expected 542 

to be more relevant in case of smaller water extent. In addition to this, after a closer look at J3 data and 543 

correspondent observed level, the performance of J3 at VS 120 appears strongly influenced by few significant 544 

errors observed during a short period (beginning of 2018), during which the altimeter sensed water level 545 

considerably higher than the observed ones. Those errors, since the limited extent of J3 series, heavily affect 546 

the statistics, which would have been in line with those of J2 otherwise. 547 

SA series ensure high correlation values, while MAE values are worse than those from the older mission E. 548 

This might be due to the limited length of the series (8 and 15 observations in total at the two available VSs). 549 

In contrast, despite the number of available observations, TP provides the worst results, with low NS and high 550 

MAE values. The mean error values, µ, indicate a general overestimation of the satellite series (µ > 0) with the 551 

only exception of TP120 that shows a negative bias. Finally, referring to ERS-2 data, Domeneghetti et al. 552 

(2015a) identify MAE values in the order of 0.7 m, with µ and σ up to 0.64 cm and 0.84 cm, respectively, at 553 

two VS along the Po river.    554 

Table 3 shows the results of the same comparison performed with MM series. Results highlight a uniform 555 

performance in terms of R (0.80). NS values are in general positive, even if always lower than 0.66. In general, 556 

performance indexes appear more homogeneous along the study area, which is somehow expected considering 557 

the way the MM series are defined along the river.  558 

Looking at the spatial distribution of the error, the analysis performed does not enable the identification of a 559 

specific relationship among error magnitude and river morphology, such as river width or river orientation. 560 

However, it is worth noting that in general the performances obtained considering the MM series at a given 561 

location are always lower than those obtained considering the original altimetry series, with the only exception 562 



 

 

of few VSs where the performances of the altimetry products were not convincing, perhaps due to their limited 563 

length (e.g., VS 775). In such a case, MM series is more capable to reproduce the observed water level 564 

dynamics.     565 

4.2 Values of satellite altimetry and effects of time series length on model calibration      566 

The results of the calibration performed using satellite altimetry shed some light on the potential of different 567 

products for modelling applications. In particular, the influence of the number of observations on the variability 568 

of the results varies in relation to the satellite product.  569 

Assuming that a calibration result should be considered reliable when the variability of the roughness 570 

coefficient is very limited (i.e., ±0.005 s·m-1/3 in terms of Manning’s coefficient), this condition is reached in 571 

case of considering a number of observations that varies from one mission to another. Looking at Figure 7, 572 

this target is reached for E in case of using more than nearly 35 observations, which means nearly 3.5 years of 573 

observation considering its revisit time (35 days). Similar results have been obtained considering ERS-2 series 574 

(Domeneghetti et al., 2015a).  The lengths of required series become smaller in case of TP (revisit time equal 575 

to 10 days), which ensures reliable performance with 50 observations, recorded on average in 1.5 years. Better 576 

performances are obtained in case of J2 series, for which the same performance is obtained calibrating the 577 

model with nearly 30 observations (less than 1 year of record considering its temporal resolution). The same 578 

number of observations is required by S3A, although its lower repeat period extends the time series up to more 579 

than 2 years. Similarly, 30 observations are needed for J3-85, while nearly 60 (slightly more than 1.5 year) are 580 

required for the J3-120. Again, this latter difference can be justified by the errors noticed for J3-120 series and 581 

previously described. Regarding the satellite series EX, the limited number of available observations prevents 582 

us from drawing general conclusions. The same holds for SA44 (8 measurements in total). Despite the limited 583 

amount of data, the calibration results with S3B272 and  SA629 are good: the calibration appears reliable 584 

already with a limited number of data, nearly 10, which means a period of observation of approximately 1 year 585 

and less than 1 year for SA and S3B, respectively, considering their repeat periods. In addition, this seems to 586 

confirm the value of SA mission, which is the only one operating at Ka band among those considered. As a 587 

matter of fact, although considering wider inland water bodies and rivers (e.g. nearly 5 km) Schwatke et al., 588 

(2015) proved the higher potential of a Ka-band instrument compared to the typical Ku-band sensors, thus 589 

offering promising expectation from future satellite missions that envisage the adoption of Ka-band altimeter 590 



 

 

(e.g. SWOT mission).    591 

The evolution of the calibration performance in relation to m, number of observations, is clearly depicted by 592 

Figure 8, where the maximum MAE obtained during the calibrations typically decreases with extensive series. 593 

Looking at the errors obtained using in situ data (red lines), the maximum MAE reaches the minimum value 594 

after a limited amount of data, assuming errors that are almost uniform along the study area: the optimal error 595 

varies in the range  ̴10÷30 cm (see also Table 3). The evolution of the black lines (altimetry data) confirms 596 

previous findings on satellite potential. S3A, S3B, J3, J2 and TP products ensure the fastest achievement of 597 

the minimum error. However, regarding the distance between red and black lines, which can be considered as 598 

a measure of the error introduced in the model calibration when using altimetry data instead of in situ, E series 599 

provide performances comparable to that of J2 (see Table 4). On the contrary, TP series, despite being more 600 

frequent, introduce larger errors: nearly double that of E or J2.   601 

Finally, it is worth highlighting the performance of S3B272, which ensures the lowest error among all 602 

considered satellite series. These results are clearly summarized in Figure 9, which shows the temporal 603 

distribution of the satellite series together with their calibration performances. What is evident is that, with the 604 

only exception of EX and caution on considering J3, the error and its variability are generally decreasing in 605 

time, showing a constant improvement in satellite capacity to remotely observe water elevation     . This 606 

potential of altimetry time series is also confirmed by the validation results (Table 4), for which the lowest NS 607 

is equal to 0.54. In general, if not even better, NS values are comparable to the ones obtained during the 608 

calibration phase. Only in few cases the validation provided accuracy significantly worse than the one achieved 609 

during the calibration (e.g., S3B272, S3A272).    610 

Findings concerning SARAL/Altika might be misleading since the poor performance at SA44, which is 611 

responsible for the significant size of the error box. As a matter of fact, the additional error introduced at SA629 612 

is equal to 0.09 m, which is the lowest of all the series. Future analysis with longer SA series will reveal the 613 

real potential of this satellite product for model calibration. 614 

Concerning the use of MM series on model calibration, in the light of the higher number of observations 615 

combined by MM series, the calibration easily converges to the final configuration (Figures 10 and 11). 616 

However, errors introduced using such series are higher than those associated with traditional series: Δ-RMSE 617 

and Δ-MAE are on average equal to 0.53 m and 0.38 m, respectively (Table 5). As expected, MM performances 618 



 

 

in terms of model calibration do not vary from one location to another being the result of a spatial and temporal 619 

combination of all available satellite dataset. However, it is also worth noting that using high frequency water 620 

level series reduces the calibration accuracy (NS) also in case of referring to extended series of in situ data 621 

(see comparison of NS values for in situ data in Tables 4 and 5). Since the calibration considers a constant 622 

Manning’s coefficient, we argue that this loss      of efficiency might be due to the consideration of a higher 623 

variability of river flow conditions, which include both low and peak flow regime. As a matter of fact, a model 624 

calibrated referring to medium-to-large flow conditions, that are those most frequent in the river, might have 625 

poor performance when used to reproduce low flow scenarios  (see e.g. Moramarco e Singh, 2010; 626 

Domeneghetti et al., 2012). Validation results confirm the potential of MM time series for model calibration, 627 

reporting performances in line with those achieved calibrating the model using in situ data for the same time 628 

period (values in brackets in Table 5).  629 

     Leaving aside specific performances of different single mission products, the calibrated roughness 630 

coefficients obtained considering one time series at time (first two columns of Table 6) appear in line with 631 

values obtained from previous studies performed over the study area, which shown a general decreasing trend 632 

moving downstream (reference values are 0.004-0.042-0.025 sm-1/3 for the upper, middle e lower river portion, 633 

respectively; see Domeneghetti et al., 2014). Similar behaviour is also observed adopting MM series, with 634 

variation on roughness values not particularly significant.  635 

4.3 Potential and limits of MM altimetry series for model calibration 636 

     Using MM series always entails an additional error: Δ-RMSE and Δ-MAE are always positive, with values 637 

up to 0.56 m and 0.38 m, respectively. The only exception is represented by MM-EX775, which is due to the 638 

poor performance of EX series at that location. Thus, in case of considering the overall altimetry series length 639 

(𝑚 = 𝐿𝑡𝑜𝑡; which varies in relation to the series), the use of a single MM series for model calibration does not 640 

provide benefits and is not recommended.  641 

However, results presented in Figures 12-17 provide more insights: NS variability (panel c)) associated to MM 642 

(grey lines) is always lower than the one obtained with the original series (black lines), thus providing more 643 

stable calibration even for very short calibration periods. This is particularly significant in case of altimetry 644 

series with limited observation frequency (i.e., 35 days, such as E and SA), for which the calibration 645 

immediately converges to the real Manning coefficient (black and grey lines overlap in panels d)), even using 646 



 

 

data observed within 1 observation period (i.e., 20 months; see e.g., Figure 12 and 14). On the contrary, 647 

differences are much larger and not negligible in case of satellite products characterized by higher temporal 648 

observation frequency (i.e., J2, J3 and TP). This might be explained by considering that, in case of high 649 

frequency series (i.e., those with revisit time of 10 days), the MM generation process further enhances the 650 

temporal coverage of the remote series, but it introduces errors larger than those associated with the original 651 

satellite series, which are still in any case frequent enough to provide a reliable calibration.  652 

When using all MM series together, some differences emerged in terms of calibrated Manning’s coefficients, 653 

which are not always in agreement with those obtained considering one VS at time (Table 6). This is due to 654 

the mutual interaction of the calibrating river cross-sections (VSs) that requires local modification of the 655 

friction values to deal with opposing biases. However, apart for few exceptions (MM120 and  MMA272), the 656 

use of all MM series together provides performances along the entire river in line with those ensured by 657 

adopting one MM series at time, which is promising in assuring a proper simulation of flowing dynamics over 658 

long river stretch.  659 

Although the improvement of the methodology used for the construction of MM series is out of the scope of 660 

the current investigation, a possible strategy towards an improvement of MM reliability and accuracy, at the 661 

expense of some temporal frequency reduction, could be the adoption of only best performing single missions 662 

(e.g., E, J2, J3 and SA). Preliminary trials on this matter did not provide satisfying results, but future work will 663 

further investigate in this direction. In this context, future analysis could also consider the opportunity to 664 

include other recent altimetry products that, although characterized by long repeat cycles, have high accuracy 665 

on water level measurement. This is the case for example of IceSat-2 (ATLAS altimetry; available from 666 

December 2018) that can ensure high accuracy on water elevation sensing but has a repeat period of 91 days 667 

(see e.g., Yuan et al., 2020). Shifting in space such information could further sustain satellite products 668 

exploitation for inland river monitoring. In addition, any progresses in the characterization of river geometry 669 

(e.g., river width) and of its dynamic (e.g., flow time lag), are expected to lead to further improvements in MM 670 

accuracy.          671 

 672 

5 CONCLUSIONS 673 

This study provides additional insights regarding the potential of satellite altimetry sensors for hydraulic 674 



 

 

applications. Although not aspiring at providing an evaluation and comparison of altimetry missions in 675 

absolute terms (a wider spectrum of rivers and flowing conditions would have been necessary), this work offers 676 

a comprehensive and cross-missions view of the potential of such products, together with MM series, which 677 

have been tested for hydraulic model calibration. To this end, we referred to a reach of nearly 140 km of the 678 

Po river for which we implemented a quasi-2D hydraulic model based on detailed topography data.  679 

In general, altimetry time series properly reproduce observed water level time series, showing correlation 680 

coefficients (R) always larger than 0.6 in case of single missions. Despite limited to one VS, S3B (Sentinel-681 

3B) ensures the lowest error (ŋ=0). J2 (Jason 2) shows high accuracy (mean error equal to 20 cm), followed 682 

by S3A (Sentinel-3A), J3 (Jason 3) and Envisat (E). Even though the limited extent of the derived time series, 683 

SA (SARAL/Altika) shows promising performances with high R values (higher than 0.9). On the contrary and 684 

despite the high number of observations, TP (TOPEX/Poseidon) series do not ensure reliable estimation of 685 

water levels. 686 

MM series ensures a uniform behaviour along the study area (R is nearly constant and equal to 0.80), however, 687 

their performances at a given location are always lower than those obtained considering the original altimetry 688 

series (see Tables 2 and 3). 689 

Results of the model calibration depict a general temporal improvement of satellite performances moving from 690 

the oldest to more recent missions, with the only exception of EX series (see Figure 9). The lower additional 691 

error induced by the use of remote sensing data on model calibration (Δ-MAE) is limited to nearly 20 cm in 692 

case of using J2 and E series, while it is larger (up to 30÷40 cm) in case of other series (up to 60 cm in case of 693 

ERS-2 series; Domeneghetti et al., 2015a). J2 series ensure trustworthiness and reliability on the calibration 694 

process with the lower temporal observation extent: lower than 1 year of data (̴ 30 observations), followed by 695 

J3 and S3A that reach the same reliability after 1.5, 1.6 and 2.2 years, respectively (i.e., 50, 60 and 30      696 

observations, respectively). For a similar performance, E requires nearly 3.5 years of data (i.e, 35 697 

observations). Using ERS-2 data would require a series extent up to 4.5 years (nearly 50 observations 698 

considering a satellite revisit time of 35 days). Unless limited in time, results show SA and S3B time series 699 

potential in achieving reliable calibration using only few observations (e.g., nearly 10).        700 

The use of MM series for model calibration has provided errors higher than those obtained using original 701 

satellite series in case of considering their overall length: additional errors are equal to 0.56 m and 0.38 m in 702 



 

 

terms of Δ-RMSE and Δ-MAE, respectively.   703 

However, the comparison of MM and original series’ performances in relation to the number of available 704 

observations depicts the potential of MM series, which are able to ensure calibrations more reliable than those 705 

obtained in case of altimetry series provided by low frequency satellites (i.e., E, SA) that cover very short 706 

period (e.g. 1÷2 observation period; 20-40 months). In these conditions MM series offer calibration 707 

performances (i.e., reliable estimation of the friction coefficient and lower uncertainty) higher than those 708 

ensured with the original series. However, if satellite sensors with higher temporal observation frequency are 709 

available (i.e., J2 and J3), the use of original series, even though limited in terms of observations, appears to 710 

be the best option. That said, MM series ensure a higher spatial coverage of the river, which could be significant 711 

when referring to long river stretch and single altimetry missions characterized by long inter-track distances. 712 

 713 
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