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Abstract 

Hyperspectral imaging (HSI) has been drastically applied in recent years to cultural 
heritage (CH) analysis, conservation, and also digital restoration. However, the efficient 
processing of the large datasets registered remains challenging and still in develop-
ment. In this paper, we propose to use the hierarchical clustering algorithm (HCA) as 
an alternative machine learning approach to the most common practices, such as 
principal component analysis(PCA). HCA has shown its potential in the past decades 
for spectral data classification and segmentation in many other fields, maximizing 
the information to be extracted from the high-dimensional spectral dataset via the 
formation of the agglomerative hierarchical tree. However, to date, there has been very 
limited implementation of HCA in the field of cultural heritage. Data used in this experi-
ment were acquired on real historic film samples with various degradation degrees, 
using a custom-made push-broom VNIR hyperspectral camera (380–780nm). With the 
proposed HCA workflow, multiple samples in the entire dataset were processed simul-
taneously and the degradation areas with distinctive characteristics were successfully 
segmented into clusters with various hierarchies. A range of algorithmic parameters 
was tested, including the grid sizes, metrics, and agglomeration methods, and the best 
combinations were proposed at the end. This novel application of the semi-automat-
ing and unsupervised HCA could provide a basis for future digital unfading, and show 
the potential to solve other CH problems such as pigment mapping.

Keywords:  Hierarchical Clustering, Machine Learning, Cultural Heritage, Hyperspectral 
Imaging, Image Segmentation

Introduction
The application of imaging spectroscopy in the field of cultural heritage (CH) has drasti-
cally expanded over the last decade, supporting material diagnostics, chemical analysis, 
conservation practice, and also digital restoration [1–4]. Hyperspectral imaging (HSI) is 
one of the non-invasive analysis tools that register a spatial map with spectrum collected 
at each pixel position. It characterises detailed signatures of the material, attributed to 
the fine spectral resolution down to nanometer scale and wide sampling range varying 
from visible to infrared [5]. Due to its superior capacity to document and extract rich 
information from the inherently complex and delicate art materials[3], HSI has found 
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a fruitful application in the CH field. Numerous studies have demonstrated the effec-
tiveness of employing hyperspectral imaging to identify and characterize colourants in a 
variety of media, including paintings, illuminated manuscripts, murals, and prints [6–8].

However, the implementation of HSI to study deteriorated film materials is yet to be 
fully explored. The colour film most typically has a trichromatic structure, in which the 
yellow, magenta, and cyan dyes locate in separate layers in the emulsion and combine in 
different proportions at each pixel upon exposure to the imaging objects [9]. However, 
those large synthetic organic molecules are intrinsically unstable and deterioration is 
inevitable, making the preservation of the original colour a challenging problem. Moreo-
ver, the degradation is non-linear among the dyes, which means certain types of dyes 
degrade at faster rates over time, and is often spatially inhomogeneous that certain areas 
are more damaged than the rest. Unlike in a painting, where areas painted with distinc-
tive pigments are different in chemical compositions and the degradation products are 
unique, all pixels in a film have similar chemical constituents. Thus, the magnitude of 
colour loss needs to be accessed and it is affected by both factors: (1) image content that 
determines the original dye densities at each pixel, and (2) the degree of degradation that 
may vary across the images. This means, the points with similar original dye densities 
may end up in diverse degradation degrees (factor 2), and for pixels that are subjected 
to the same degree of degradation, the magnitudes to bring them back to the original 
states are still different if the original dye densities vary (factor 1). The complexity of 
the non-linear and inhomogeneous deterioration makes the spectroscopic measurement 
preferential to the simple RGB values, by providing extended information on the colour 
loss based on high-resolution spectral signatures [10]. Infrared spectroscopy has been 
applied to quantify the degradation degree of the transparent supports (cellulose-based 
materials) [11, 12], but it is a single point based analysis and not includes the study on 
emulsion layers. Regarding the colour studies of film using HSI, very few works have 
been reported. Trumpy et  al. have proposed a “dye purification” digital restoration 
approach that uses HSI data acquired on the cross-section as references of the spectral 
densities [13]. However, their method is developed on synthetically faded images and 
does not consider the inhomogeneous degradation effect. Another work devoted to the 
digital restoration of films used a “vector quantization” algorithm to look up the most 
suitable unfaded spectrum from the spectral codebooks [14]. The faded and unfaded 
pair of references in a codebook is merely established via spatial relationship. It would 
further improve the performance of digital restoration and extend the applicability of 
the method to first segment the image into clusters of similar spectral features, consider-
ing both the dye density and degradation degree.

In the meantime, it is still challenging to efficiently elaborate and exploit the vast 
data (millions of recorded spectra) of high complexity. In this context, machine learn-
ing (ML) algorithms are highly promising to provide innovative solutions to heavy 
spectral data analysis. From simple to complicated applications, the ML algorithms 
are suited for large data sets, performed with minimal human interference. Moreover, 
it establishes a direct correspondence between the input and output data, reducing 
the necessity of in-depth knowledge of all the chemical compounds during the degra-
dation process [15]. Principal components analysis (PCA) and minimum noise frac-
tion transform (MNF) are the data analysis tools most widely used by conservation 
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scientists for their efficiency and simplicity [15–18]. These multivariate data analy-
sis techniques could be used as the pre-processing step for the pigment classification 
or mapping, while still requiring manual selection or labeling of the representative 
channels [19, 20]. K-means clustering has also been applied as more sophisticated 
algorithms for feature detection or image segmentation [16, 21]. However, finding the 
proper k value can be challenging, and applying it to high-dimensional hyperspectral 
data may result in instability and convergence failures.

To efficiently extract information from the large quantity of high-dimensional HSI 
data, the hierarchical clustering algorithm (HCA) is proposed to use as an alternative 
approach to classify and segment the spectral images [22–24]. In the medical, chemi-
cal, and remote sensing field, the implementation of HCA on spectral data treatment is 
widely explored [25–28]. However, compared to other multivariates analysis tools such 
as PCA, very rare applications of HCA on hyperspectral data have been reported in the 
field of CH. Even though, some simple applications have been described in the strati-
graphical analysis of painting materials. The research tasks are mainly to determine the 
chemical distribution of certain painting materials on the cross-section or to separate 
the artist’s original painting layers and the restorer’s retouches [16, 29, 30]. Without prior 
knowledge of the exact chemical composition of the complex mixture, the unsupervised 
HCA algorithm allowed for successful mapping of the cross-section taking advantage of 
the spectral data. This opens the door for a more in-depth investigation of applying HCA 
to image segmentation, in addition to stratigraphical analysis.

The goal of this project is to investigate the potential of clustering algorithms in assis-
tance for further digital colour restoration. The restoration of cinematic films is a com-
plex process that involves several stages, including digitization, pre-processing, color 
correction, and de-noising. The colour correction will be performed via Singular Spec-
trum Analysis (1D-SSA) based transformation. In the foreseen method, the first SSA 
component is used to compute the distance of the faded spectrum to the unfaded state, 
obtaining a transformation vector that could be applied to all the similar spectra. This 
process is repeated for each fading group since the degradation is inhomogeneous in 
the historical films. Thus, the effective segmentation of various degradation features is 
required for the correct reconstruction.

In this paper, we focus on the clustering aspect of the overall approach to digital film 
restoration by proposing and investigating an HCA-based data processing pipeline. Data 
sets used in this experiment were acquired with a custom-made push-broom VNIR 
hyperspectral camera (380–780 nm) on a set of historic cinematic film samples with var-
ious degrees of degradation. The data set was pre-processed and divided into sub-images 
by certain grid sizes (200 × 200, 100 × 100, 50 × 50) to learn the input clusters to the 
algorithm. Calculating the distances between every pair of clusters, the initial clusters 
were repeatedly merged into larger clusters according to defined agglomeration func-
tions, until reached only one cluster. All the mergers were recorded, and the segmen-
tation was retrieved from the final clusters obtained. The preliminary outcomes have 
already been published [31]. Here a more thorough analysis of all the relative algorithmic 
parameters is presented, including the grid sizes, metrics, and agglomeration methods. 
The qualitative analyses of the obtained results were presented and the best combina-
tions of parameters were proposed at the end.
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The remainder of the paper is structured as follows. Section Materials and Methods 
presents the data used in this study and the overall methodology. Then, Section Results 
and Discussions details and discusses the results obtained and the limitation of the 
proposed method. Finally, Section Conclusions closes the paper, presenting some final 
remarks and future works.

Materials and methods
This Section describes the materials, the acquired hyperspectral images, and the pre-
processing activities. Then, it presents the hierarchical clustering methodology with the 
relative parameters.

Materials

Five positive frames (Fig. 1) are selected to perform the analysis in this research. Pro-
vided by “L’immagine Ritrovata Film Restoration Laboratory” (Cinematique of Bologna), 
they are authentic historical films from the same scenario that report different fading 
effects. Physical measurements reveal that each frame is 34 mm × 19 mm (± 0.5 mm) in 
size. The film is FUJI N4 cellulose acetate film, produced between April and June 1986, 
according to edge marks printed on the perforation. As could be observed in Fig. 1, the 
degradation is at diverse stages among the image set and is also inhomogeneous within 
a single frame. The less severely degraded film, sample 23, appears purplish in colour 
and has higher dye density, which is supported by the reflectance spectra (Fig. 1b). The 
extensively deteriorated films (samples 22, 25, and 27) present a general pinkish hue 
due to the loss of cyan dyes, with certain yellowish areas more severely degraded that 
also partially lost the magenta dyes, preserving even lower dye density. Even though the 
ground truth is missing in this experiment, because of the inevitable degradation pro-
cess regardless of the preservation condition, the relatively best-preserved sample 21 is 
considered as the reference frame.

Hyperspectral imaging

The spectral data of the sample frames were scanned by hyperspectral imaging. The HSI 
device in this experiment uses the push-broom system with 2448 across-track pixels and 
2,048 wavelengths, composed of an imaging spectrograph (ImSpector V10E, Specim, 
Finland) and a monochromatic camera (Blackfly S, BFS-U3-51S5M-C, 5 MP, FLIR 

Fig. 1  Optical images of the dataset selected for this experiment: frames number 21, 22, 23, 25, and 27
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Integrated Imaging Solutions, Canada) [32]. Spectral images of the film samples were 
acquired in a reflectance geometry with broadband LED light source covering the spec-
tral range from 380–1000nm. The spectral sampling rate is 0.3nm in the spectral range 
of 322.9–1025.3nm, where the considered effective range is from 380nm to 780nm. The 
effective spectral and spatial resolutions of the system were 2.9nm and 100µm , respec-
tively, as evaluated by a gas discharge tube and spatial grids used for system calibra-
tion. Simple calibration and normalization of the spectra are performed at the time of 
registration.

Pre‑processing

Each collected datacube has a size of 2448 pixels x 1400 pixels x 2048 wavelengths. The 
initial datacubes are over-abundant and contain information that is both spatially and 
spectrally out of the region of the interests. The uninformative range was thus removed 
during pre-processing of the data set. The spectra were binned in increments of 5 chan-
nels and the wavelength range less than 380nm and over 780nm were cropped for being 
excessively noisy. Furthermore, the uninformative border and perforation areas were 
removed. The image regions were cropped to multiples of hundreds of pixels for the 
convenience of further division of sub-images. After the initial processing, each individ-
ual reflectance datacube has a size of 1200 × 1000 × 240 (Fig. 2a).

For a more thorough analysis of the data, selected spectra from various pixel 
positions on frame 22 were recovered, as shown in Fig.  2b. The varied degradation 
phenomena are reflected in the spectral patterns. As examples of the influences of 
factor 2 (introduced in the introduction), both spectra 1 and 3 were derived from the 
image’s upper light region. The more extensively degraded pixel (spectrum 1) has lost 

Fig. 2  Pre-processing phases of the hypercubes: a Illustration of the hypercube in region of interest, after 
cropping and binning. b comparison of spectra extracted from the hypercube, on which indicated the 
locations of the selected points. c Schematic representation of the grids evaluated: 200 × 200, 100 × 100, 
and 50 × 50
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almost all the absorption features and has the highest reflectance value, whereas the 
less severely degraded corner (spectrum 3) still preserves the absorption around band 
110. Spectra 4 and 5 come from the image’s darker area of high original dye density, 
where point 4 is more colour-degraded than point 5. The relative lowest reflectance 
values (highest absorption by the dyes) are then found in spectra 5, with spectrum 4 
partially losing the absorption around band 180. For the influence of factor 1, spec-
tra 1 and 6 were both from the most degraded yellowish area. Spectra 6, extracted 
from the human figure, still preserved more dye density than spectra 1, which is origi-
nally very light and contains few dyes. On the other hand, spectra of similar degra-
dation degree and original dye density present very similar spectral signatures, even 
if they belong to different image content. Spectra 2 and 6 were both extracted from 
the yellowish area, one from the wall painting and one from the human figure, and 
are almost overlapping in spectral shapes, suggesting similar requirements for digital 
restoration treatment. As compared to the simple RGB triple values, the distinctive 
spectral characteristics serve as the foundation for further clustering.

To further reduce the computational load, the datacubes were decomposed into 
small sub-images and only the centroids were used as the input for the algorithm. 
In terms of pixels, three grid sizes were chosen: 200 ×  200, 100 ×  100, and 50x50. 
According to each of these three groupings, every datacube in the set was divided 
respectively (Figure 2c). In this step, we obtained:

•	 For grid size 200 × 200: 150 sub-images (30 per frame).
•	 For grid size 100 × 100: 600 sub-images (120 per frame).
•	 For grid size 50 × 50: 2440 sub-images (480 per frame).

For each sub-image, the centroid spectrum was calculated by averaging all pixels to 
represent the entire sub-image. In the calculations that follow, each centroid spec-
trum will be treated as one initial cluster. This step was repeated for every sub-image 
in the whole dataset and then all the centroids were grouped together to form the 
initial input clusters.

Hierarchical clustering

Each group of resulting initial clusters was subjected to the agglomerative hierarchi-
cal clustering analysis. The closest two of the N centroids were repeatedly merged 
into larger clusters, until all of the spectra were in one cluster. All the mergers were 
recorded, and this information formed a hierarchical tree. All the data treatments 
were performed in Matlab R2021b with embedded functions. The processing pipe-
line is summarized as a flowchart (Fig. 3) and described step-by-step in the following 
paragraphs.

Grids and Distance metrics First of all, three groups of initial clusters were 
obtained by the method described in the pre-processing section. The same process 
was performed and repeated on each group of grid sizes (200 × 200, 100 × 100, and 
50 ×  50). Using those centroids as input clusters, five different metrics were tested 
for measuring the distances between every pair of initial clusters: Chebyshev, Cosine, 
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Minkowski, Squared Euclidean, and Euclidean distance, according to different princi-
ples respectively. For N initial clusters (N = 150, 600, or 2400), the distance matrix d 
has a size of 1 × M, M = N × (N−1)/2.

Linkage Then, the distance information generated was used to determine the similarity 
and proximity of every spectrum to each other. Pairs of clusters are merged into a new 
cluster at each step according to different agglomeration criteria, and the distance data 
between those linked leaves is recorded as the intra-cluster distance of the newly formed 
large cluster. In the ith step, the new cluster created is indexed as M + 1, while the final 
total nodes in the tree are M−1. The newly formed cluster would be regarded as one 
large cluster in the next step, and the intra-cluster distance was repeatedly calculated 
based on the current level of clustering. This linkage process was repeated until there 
was just one cluster remaining in the dataset that contained all of the initial clusters. 
Four different linkage functions were tested: Average, Complete, Single, and Weighted. 
They calculated respectively the unweighted average distance, farthest distance, shortest 
distance, and weighted average distance.

Hierarchical tree The grouping index and intra-cluster distance information were 
recorded during each step in the process. As a result, a hierarchical cluster tree is 
formed, with clusters at one level joining to generate larger clusters at the following lev-
els. The dendrogram figures that plot the outcomes of the hierarchical tree, using the 
Euclidean metric and Weighted linkage function as parameters, are provided in Fig. 4 
to better explain the procedure. The tree-shaped graphics show clearly how the initial 
clusters are developed in a multilevel hierarchy. The X-axis indicates the original clus-
ter index, and the Y-axis represents the dissimilarity of clusters at each node. The tree 
consists of many nodes that document every cluster merge, from initial data points (the 
centroids of the sub-images) until all the points are linked in only one cluster. The height 

Fig. 3  The flow chart of the pipeline for determining the best combination of parameters for the hierarchical 
clustering. Parameters marked in red indicate one of the possible combinations

Fig. 4  Dendograms obtained using the Euclidean distance and the weighted method, varying different grid 
sizes: a 200x200, b 100 × 100, and c 50 × 50
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of each node is proportional to the intra-cluster distance of the two leaves that are con-
nected. The hierarchical tree can assist in selecting the clustering level or scale that is 
most suitable for subsequent application.

In each grid size group, the intra-cluster distances of the hierarchical tree are generally 
at the same level, as shown in Fig. 4. Although the linking process varies, the formation 
of the trees is in similar structures: all data points are grouped in three main branches 
(coloured in red, green, and blue), and the proportion of data points covered in sepa-
rated branches is similar. This division might correspond to the regions with different 
degradation features or areas with different dye intensities. The main rises of dissimilar-
ity are contained in the last dozens of nodes that will be examined in detail in the follow-
ing sections.

Clusters Finally, by specifying a threshold, the clustering results at a certain level could 
be retrieved from the tree. The entire dataset is classified into two clusters at the level 
of node 1, three clusters at the level of node 2, and so forth. Each cluster is a collection 
of multiple initial clusters; in other words, every initial cluster is assigned to a specific 
cluster group. By looking at the index of the initial clusters that indicate their original 
location on the dataset, the images could be segmented according to this labeling infor-
mation. In this research, the level of 3, 4, and 5 clusters were selected to demonstrate the 
segmentation results, balancing both the accuracy and computational load.

The flowchart (Fig.  3) summarizes all the parameters that have been examined. For 
each step, tests of the parameters are repeated under every category of the previous 
results. There are a total of 180 possible parameter combinations: 3 grids × 5 metrics 
× 4 linkage functions × 3 cluster numbers. One example of a possible combination is 
highlighted with the chosen parameters marked in black. To better organize the paper, 
only selected significant results are demonstrated in the following results and discus-
sions section.

Results and discussions
The evaluation of the results is performed in three main subsections: (i) Grid sizes, (ii) 
Metrics and (iii) Linkage methods. The results obtained with exhaustive combinations 
of algorithmic parameters are fully investigated, while only selected significant results 
are presented and compared in this paper due to the high number of images generated. 
Some parameter combinations with the best performance are suggested at the end of 
this section, and limitations and future works are discussed.

Grid size

The effect of different grid sizes was first evaluated. In this experiment, the same param-
eters employed in the preliminary work [31] are used. They consists of the Euclidean dis-
tance as the metric and the Weighted as the agglomeration method. They were applied 
to all three grid groups.

The results of the hierarchical clustering are reported in Fig. 5. For each grid size, the 
final three, four, and five clusters are depicted for sample 22. As shown, grid sizes of 
200 × 200 and 100 × 100 obtained comparable results, while the 50 × 50 grid produced 
significantly finer segmentation than the other two. With the total number of clusters 
equal to three and four, the results for the grid sizes 200 × 200 and 100 × 100 are roughly 
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divided into two sections, the upper brighter part, and the lower darker part, without 
capturing more details. As a comparison, the 50 ×  50 grid segmented the image into 
three sections with all cluster numbers and enabled the correct separation of the wall 
painting, the less deteriorated upper-right corner, and the stained area in the lower part 
of the image. By choosing five total clusters, the segmentation results in the 200 × 200 
and 100 × 100 groups are slightly enhanced. However, they are still not comparable to 
the 50 × 50 group. The same tendency was observed in all the results. Hence, in the fol-
lowing experiments, the results obtained using the 50 × 50 grid size are reported.

Distance metrics

Observing all the results, the weighted and complete agglomeration methods were found 
to be the most efficient among all linkage functions. To have a closer investigation of the 
metrics function, a comparison of all the metrics is presented, considering the 50 × 50 
grid size, and evaluating both the weighted and complete agglomeration method. The 
metrics tested in this research are Chebyshev, Cosine, Minkowski, Squared Euclidean, 
and Euclidean distance. The results are presented for three, four, and five clusters.

The results using the weighted method are reported in Fig. 6. As shown, the Cosine 
metric has the worst performance, obtaining only a rough separation of the lighter and 
darker parts. Minkowski, Squared Euclidean, and Euclidean metrics obtained compara-
ble results, segmenting images into three parts with details highlighted. However, the 
segmentation is not improved with a larger number of clusters. The Chebyshev metric 

Fig. 5  Comparison of segmentation results obtained with different grid sizes, employing the Euclidean 
distance and the weighted agglomeration method
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has the best performance among all. For three and four total clusters, the images are 
segmented into three parts, detecting the boundary of the stain. With five total clus-
ters, the lighter part is further separated into the extensively degraded area and the less 
deteriorated middle tone. The wall painting and the upper-right corner are successfully 
segmented, obtaining in total four major clusters on the image. In this case, it could be 
concluded that the Chebyshev combined with weighted method has the most preferable 
results.

Then, also the complete method is evaluated, varying the various distance metrics. 
As shown in Fig. 7, the Chebyshev metric also has outstanding performance with the 
maximum segmentation of four clusters on the image, highlighting the wall paint-
ing, corner area, and staining area. The Minkowski, Squared Euclidean, and Euclidean 
metrics also obtained better results as compared to the weighted method. The seg-
mentation is gradually improved with increasing cluster numbers. For three clusters, 

Fig. 6  Segmentation results with different distance metrics, using a grid size of 50 × 50 and the weighted 
agglomeration method

Fig. 7  Segmentation results with different distance metrics, using a grid size of 50 × 50 and the complete 
agglomeration method
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the images are only separated into two parts. And as the clusters increase, the stain 
areas, wall painting, and corner areas are successfully segmented, obtaining four 
major parts as well. In this case, all results obtained with the complete method are 
better than using the weighted method, while the Chebyshev, Minkowski, Squared 
Euclidean, and Euclidean metrics are comparable in the segmentation efficiency.

Linkage

Given the results presented in the above section, the Chebyshev and Euclidean met-
rics are selected to present a closer analysis of all the agglomeration functions for 
the hierarchical clustering. Figures 8 and 9 report results obtained with four linkage 
functions, (i.e., Average, Complete, Single, and Weighted) using respectively the Che-
byshev and Euclidean metrics. In both cases, the Single agglomeration function is the 
least effective among all, failing to segment the image and classifying the entire image 
into one cluster.

Using the Chebyshev distance, the Complete and Weighted methods outperformed 
other methods, successfully segmenting the image into four parts, with fine defining of 
the dark stain, most deteriorated light part, and the corner and middle tone. The Aver-
age function, in this case, has failed to separate the dark staining area in the lower part.

With regard to the Euclidean metric, the Weighted and Complete functions have 
succeeded in separating all important features with four major clusters defined. Any-
way, the best results are achieved by the Complete method. In fact, it is the only one 
that has segmented the lamp and the staining area, that neither the Weighted and 
Average methods were able to detected. The Weighted method in this case is not so 
satisfactory that obtained three rough parts with 3 clusters and is not improved as the 
cluster numbers increase.

Fig. 8  Segmentation results varying the agglomeration method, using a grid size of 50 × 50 and the 
Chebyshev distance
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Considering the results obtained in all the experiments, the best results were obtained 
combining the Chebyshev metric with the Complete and the Weighted methods and are 
suggested for performing a similar task of segmenting hyperspectral images.

Segmentation results

In this Section, the segmentation results on the entire data set, including frames 21, 
22, 23, 25, and 27, are reported. The results were obtained by selecting five clusters in 
total, for the algorithmic parameter combinations of Chebyshev metrics with complete 

Fig. 9  Segmentation results varying the agglomeration method, using a grid size of 50 × 50 and the 
Euclidean distance

Fig. 10  Segmentation results on the full dataset (images 21, 22, 23, 25, and 27): a the original RGB images. 
b results obtained using the Chebyshev metric and the complete method. c results obtained using the 
Chebyshev metric and the weighted method
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linkage function (Fig. 10b), and Chebyshev metrics with weighted method (Fig.  10c). As 
a comparison, the original RGB images of the frames are also reported in Fig. 10a. With 
both combinations, frames with similar deterioration effects have similar segmentation 
clusters. The reference frame 21 is segmented into two clusters, the bright top region 
with high reflectance (c1) and the dark ground portion (c2). Frame 23, which had only 
minor degradation, obtained a similar clustering structure to frame 21, while the more 
degraded pinkish upper left area is classified into a separate cluster c4. Frames 22, 25, 
and 27 have the most extensive, yet comparable, degradation. They have a similar clus-
tering structure yet are different from the reference. They are all segmented into four 
fundamental clusters: (1) c3, the regions that have been most severely degraded and have 
lost the majority of the dyes; (2) c1, middle tone sections, including the wall painting 
and peripheral areas, where colours are still remained and are comparable to those in 
frame 21; (3) c2, which is the small portion on the ground part that still preserves a large 
amount of dyes; (4) c4, the rest of the dark ground area which is severely deteriorated. 
Frame 27 has one more separate cluster (c5), that contains the blue strips on the bottom-
right side of the image and that does not appear in other cases. Throughout the entire 
data set, it could be observed that areas with similar degradation features on diverse 
frames are classified in the same cluster.

On the other hand, within the same frame, the inhomogenous degradation areas are 
successfully segmented into different clusters. For example, on frames 22, 25, and 27, 
the most degraded regions (c3), middle tone areas (c1), the degraded darker parts (c4), 
and the special features (c2 and c5) are segmented with very fine contours, successfully 
separating the wall painting hanging on the wall, the lamp on the left side, and the right 
upper corner with less degraded shades. The two combinations of parameters have both 
obtained satisfactory results with slight differences. Overall, comparing qualitatively the 
segmentation results, it can be conclude that the two proposed combinations of algo-
rithmic parameters is effective for the segmentation task performed on the full data set, 
with the 50*50 grid size.

Discussions and limitations
As anticipated in the Introduction section, the objective of the overall project is to digi-
tally restore the colours of the film, performing 1D-SSA. In order to apply it, there is 
the need for the effective segmentation of various degradation features in the films. In 
this paper, we investigated the use of clustering algorithms to segment the HSI spectra 
acquired on films. From a qualitative point of view, HCA was able to separate degrada-
tion features among the different frames of film. Unfortunately, the lack of ground-truth 
values does not allow us to conduct also quantitative analysis. Since in the literature 
no other works are focusing on HCA applied to hyperspectral images, we considered 
the several parameters of the Hierarchical Clustering (i.e., the distance metric and 
the linkage approach) as hyperparameters and we conducted several tests to get the 
best combination of them. Considering the final results, the distance metric that per-
formed worse was the cosine distance, probably due to the nature of the data. In fact, 
it is usually employed for text similarities [33] or for recommendation systems [34]. 
The other distance metrics, being all of them special cases of the same function, vary-
ing just one parameter (i.e., the value of p that was 1 in our case for the Minkowski, 2 
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for the Euclidean, and tends to infinity for the Chebychev one), perform pretty similar. 
Concerning the linkage method, instead, the poor performance of the Single method, 
which uses the smallest distance between objects in two clusters, was expected. Such an 
agglomeration method has the tendency of producing long and thin clusters in which 
elements at opposite ends of a cluster can be really distant from each other, favouring 
the separation of outliers first. For this reason, it is commonly used for the clustering of 
galaxies in astronomy [35]. For the opposite reason, better performance was expected 
for the Complete method, as it works in the opposite principle compared to the single 
method, generating highly compact clusters. Since in the average method the distance 
among clusters is computed as the average among the distances between all the ele-
ments of the two clusters, this allows a segmentation based on major variances however 
less sensitive to small variations as compared to Complete method. Finally, the weighted 
method has good performances, similar to the ones of the Complete.

Though through this first stage demonstration of applying HCA to film, the main degrada-
tion features are separated, the precision and accuracy of the segmentation should still be 
improved. This is mainly limited by the division of sub-images, which applies fixed grids. 
On the one hand, the noise of every single spectrum inside the grid is smoothed and the 
computational load is largely decreased. On the other hand, the unique spectral features are 
flattened and the adjacent pixels of different degradation degrees or image content are all 
represented by the centroid spectrum. Even if we evaluated several grid sizes, it is clear that 
such an approach is a major limitation of our approach. Given that the restoration requires 
highly accurate treatment, especially in CH, the spatial relationship of the pixels must be con-
sidered in addition to the spectral dimension. Future works are then expected to combine the 
HCA with the superpixel technique [36]. The sub-images could be formed by SLIC (Simple 
Linear Iterative Clustering) algorithm [37] that generates a number of compact, nearly uni-
form superpixels, maintaining spatial relationships and color features. Then it can be fused 
with the HSI data and an HCA segmentation with higher precision can be performed on the 
superpixels obtained. Finally, the colour correction is expected based on the segmentation.

Conclusions
The hierarchical clustering-based approach proposed in this study offers new possibili-
ties in the spectral image segmentation of films. Applied to the hyperspectral dataset 
acquired on historical film frames, the unsupervised machine learning algorithm has 
successfully differentiated and segmented the fading areas considering the full range 
of degradation features. A simple data pre-processing strategy is tested and the smaller 
grid size is proven to be more promising. Various algorithmic parameters and their com-
binations were evaluated, including the grid sizes, metrics, and linkage functions. The 
Chebyshev metrics combined with the Complete or Weighted linkage function were 
tested to have the best performance. The leveled clustering structure documented in the 
hierarchical tree allows an efficient and more flexible classification of complex data with 
unknown chemical nature or mixture. With the segmented cluster groups, the digital re-
colourisation could be applied separately to each group of clusters. From future perspec-
tives, the HCA-based approach has the potential to be applied to spectral data obtained 
on other art objects, such as paintings, to fulfill tasks like pigment mapping.
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