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Abstract: Uncertainty is inherent in the modelling of any physical processes. Regarding hydrological
modelling, the uncertainty has multiple sources including the measurement errors of the stresses
(the model inputs), the measurement errors of the hydrological process of interest (the observations
against which the model is calibrated), the model limitations, etc. The typical techniques to assess
this uncertainty (e.g., Monte Carlo simulation) are computationally expensive and require specific
preparations for each individual application (e.g., selection of appropriate probability distribution).
Recently, data-driven methods have been suggested that attempt to estimate the uncertainty of a
model simulation based exclusively on the available data. In this study, two data-driven methods
were employed, one based on machine learning techniques, and one based on statistical approaches.
These methods were tested in two real-world case studies to obtain conclusions regarding their
reliability. Furthermore, the flexibility of the machine learning method allowed assessing more
complex sampling schemes for the data-driven estimation of the uncertainty. The anatomisation
of the algorithmic background of the two methods revealed similarities between them, with the
background of the statistical method being more theoretically robust. Nevertheless, the results from
the case studies indicated that both methods perform equivalently well. For this reason, data-driven
methods can become a valuable tool for practitioners.

Keywords: k-nearest neighbours; data-driven modelling; model uncertainty; machine learning;
statistical analysis; hydrological modelling

1. Introduction

The cornerstone of modern machine learning techniques, the perceptron, was intro-
duced by Rosenblatt in 1957 [1]. Back then, the envisaged applications included “concept
formation, language translation, collation of military intelligence, and solution of problems
through inductive logic”. Indeed, the vision of Rosenblatt has been materialised with the
modern machine learning applications, which include clustering (i.e., divide and organise a
population into a priorly unknown number of classes), automatic translation (e.g., Google
Translate, Babel Fish), classification (i.e., label entities according to their characteristics),
heuristic algorithms boosted by neural networks (e.g., AlphaGo), etc. The rather long period
(more than half of a century) it took to accomplish these achievements is partly attributed
to a misunderstanding after the publication of the book of Minsky and Papert [2], who
proved that a single-layer perceptron is not capable of reproducing the XOR (exclusive or)
function. The misunderstanding was that larger networks would also suffer this limitation.
As a result, between 1969 and the mid 80s the interest in artificial intelligence was reduced.
Then, the publication of Rumelhart et al. [3] came, which popularized backpropagation
and paved the way for the achievements of modern machine learning.

Regarding hydrology, in the last 10 years the interest in machine learning applications
has been growing linearly and the interest in deep learning (a subset of machine learning)
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exponentially [4]. A review of the early and modern machine learning methods utilised in
water resources can be found in [5]. However, the scientific research in statistical hydrology
is more reluctant to adopt machine learning techniques, most probably because of the
lack of a rigorous mathematical formulation of the provided solutions. As a consequence,
there is only a limited number of publications on relevant thematics, such as the stochastic
synthesis of time series (e.g., [6]), the model residual analysis (e.g., [7,8]), and the uncertainty
estimation (e.g., [9,10]).

In this study, we focus on the use of machine learning for estimating the uncertainty of
hydrological models. We attempt to provide a theoretical foundation and demonstrate the
potential benefits of machine learning. More specifically, we combine the idea of using the
k-nearest neighbours (KNN) algorithm [11] in estimating the uncertainty of hydrological
models [9] with the concept behind Bluecat, a direct and simple pure statistical method [12].

A careful inspection of the way KNN functions in this type of applications revealed
that it is algorithmically almost equivalent to Bluecat. Then, taking advantage of the
machine learning flexibility, more complicated sampling schemes were examined with
KNN. Though this was straightforward with KNN, it would require significant changes
in the code of Bluecat. KNN and Bluecat were applied in two real-world case studies
giving similar results. Furthermore, conclusions regarding the more complicated sampling
schemes with KNN were obtained. Finally, a simple technique is suggested to allow KNN
to provide uncertainty estimations for simulation values that are outside the range of the
data available for the KNN inference. The results indicate that KNN is a simple and reliable
method for estimating the uncertainty of hydrological modelling.

Uncertainty estimation is typically performed with repeated runs of the hydrological
model in Monte Carlo simulations (e.g., [13]), or with stochastic weather generators to
generate various scenarios (e.g., [14,15]). However, these approaches are not appealing
to practitioners. On the contrary, data-driven approaches are much simpler to implement
and employ. For this reason, in this study, we have prepared and made publicly available
a tool to facilitate practitioners to take advantage of the suggested method. This tool is
very light, does not require any library or application to run (e.g., R or MATLAB) and
was developed with minimal resources (a couple of days of coding). This wouldn’t be
possible and worthwhile if the suggested method was not simple, reliable and theoretically
founded.

2. Materials and Methods
2.1. Case Studies

KNN and Bluecat were applied in two case studies, Arno River at Subbiano and Sieve
River at Fornacina. Sieve River is a tributary of Arno River. They both flow in the Tuscany
Region, Italy. Figure 1 presents a schematic map of Arno River and Sieve River basins.

The catchment of Arno River is 752 km2. The observed data include the mean areal
daily rainfall, the evapotranspiration, and the discharge at the basin exit. The period of the
available data starts from 2 January 1992 and ends on 1 January 2014.

The catchment area of Sieve River is 846 km2. The observed data include the mean
areal hourly rainfall, the evapotranspiration, and the discharge at the basin exit. The period
of the available data starts from 3 June 1992 and ends on 2 January 1997 (there is a gap in
the data from 1 January 1995 to 2 June 1995). The flow regime of Sieve River is intermittent,
4% of the observed streamflow values are zero.

The streamflows of the two catchments were simulated with the hydrological model
HyMod [16,17]. It should be stressed that the structure and characteristics of this hydrolog-
ical model did not play any role in the estimation of the uncertainty, which is carried out
exclusively based on the available data. The data of Arno River and Sieve River case studies
were split (without shuffling) into training and test tests. These two sets correspond to the
calibration and validation of HyMod. The split ratio was 91:9 for Arno River (8036 total
data records) and 62:38 for Sieve River (36,554 total data records).
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2.2. Estimate Uncertainty with KNN

An intuitive approach to estimate the uncertainty of a simulation value of a hydro-
logical model would be to analyse the model behaviour during a period with available
measurements and when the model was in states similar to that producing the assessed
simulation value. This would include the following steps, first identify a number of occa-
sions when the model was in a similar state, then, fetch the corresponding observations. If
the hydrological model represents consistently the hydrological process, the fetched obser-
vations, which correspond to similar states of the model, will be similar. On the contrary,
an increased variance of the fetched observations would imply an increased uncertainty
whenever the model is in a state similar to the one assessed. Therefore, the statistical
analysis of the fetched observations can provide information regarding the uncertainty of
the assessed simulation value.

The previously mentioned idea resembles the concept behind the k-nearest neighbours
(KNN) method. “KNN algorithm assumes the similarity between the new case/data and
available cases and puts the new case into the category that is most similar to the available
categories. KNN algorithm can be used for regression as well as for classification” [18].
KNN is an instance-based non-parametric model [19]. It is non-parametric because it
depends on the available data to operate (in contrast, parametric models need the data only
during the model training), and instance-based because it is based on resemblance with
instances in the training set to make inference (instead of employing explicit operations).

KNN has been already applied by other researchers for estimating the uncertainty of
hydrological models as part of complicated frameworks. For example, Sikorska et al. [9],
have included KNN in Monte Carlo simulations for estimating the prediction limits. In
this study, we employ a simpler data-driven approach, similar to the one employed in
Bluecat [12]. KNN returns a set of observations made during an earlier period of that of
the assessed simulation value that are related (i.e., correspond to a similar model state) to
the assessed simulation value. Then, the uncertainty can be estimated with the following
formula:

s = f (KNN(k, x)) (1)

where s is a value related to the uncertainty of the value simulated by the hydrological
model when it is in the state x, x is a vector (or a scalar) that defines the state of the
model (the features in machine learning terminology), KNN(k, x) returns the set of the k
observations that according to KNN are those most related to x, and f : Rk→ R is a function
that returns a value related with some statistical property of the set returned by KNN(k, x),
in the typical regression applications of KNN this is the average. The previous quantities
refer to the time instance t of a simulation obtained by the hydrological model. The symbol
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of the variable t is omitted from Equation (1) for the sake of simplicity (normally should
appear either as a subscript or superscript).

In this study, three functions were employed as f in Equation (1). The 90th percentile,
the 10th percentile (these are the bounds of the 80% confidence interval), and the median
value. Regarding the parameter k, this is a hyperparameter. A low k value will result in
overfitting whereas a high k value in underfitting [19] and bias (see the Discussion section).
The values of this parameter can range from 10 (for a small observation dataset) up to 1000
(for a large, say hundreds of thousands of records, dataset). Regarding the vector x, the
following options were tested:

• 1D. One dimensional, this is the simplest approach that includes only the assessed
discharge simulated by the hydrological model at the time step t, x = Qt. KNN returns
the k observations that correspond to the k simulated discharges of the calibration
period that are the closest to Qt.

• 2D Option 1. The vector elements are two successive simulated discharges, x = (Qt,
Qt−1), KNN returns the k observations that correspond to the k vectors of the calibra-
tion period that are closer in the 2D Euclidean space to the vector (Qt, Qt−1).

• 2D Option 2. The vector elements are the discharge Qt and the change of the simulated
discharge between t − 1 and t, x = (Qt, Qt−1 − Qt).

• 2D Option 3. The vector elements are the discharge Qt and a binary value, 0 if the
discharge increases and 1 if it does not increase, this binary value can be obtained with
the function ϕ(·) = max(0, (·)/|·|), x = (Qt, ϕ(Qt−1 − Qt)).

In the last two options, the elements of vector x (i.e., the features) need to be scaled
so that the Euclidean distance is equally sensitive to both dimensions. For this reason, the
z-score normalisation was employed [20]. To avoid data leakage [21], the normalisation
parameters (i.e., the mean and standard deviation) were obtained from the training set only,
and then the normalisation was applied to both sets.

The time complexity for KNN to identify the nearest neighbours in a set of n records
is O(n) when the naive method is used, O(log n) when the binary tree method is used,
and O(1) when a hash table is used [19](pp. 739). In this study, the tool mlpack_knn from
the package mlpack was run with the option of using dual tree for obtaining the nearest
neighbours [22].

2.3. Estimate Uncertainty with Bluecat

In Bluecat, the uncertainty of a simulation value is estimated with the conditional
distribution Fq|Q(q|Q), which is defined by the following formula.

Fq|Q(q|Q) = P{q ≤ q|Q = Q } (1)

where q and Q are specific values of the observed discharge and the discharge sim-
ulated by the hydrological model, respectively, q is the stochastic process that corre-
sponds to the studied discharge, and Q is the stochastic process that corresponds to the
simulated discharge.

The typical approach to estimate the probability at the right hand of Equation (2) is to
use Bayesian inference.

P{q ≤ q|Q = Q} = N(Q = Q|q ≤ q) × N(q ≤ q)/N(Q = Q) (3)

where N(·) is a function that returns the frequency of occurrences of the event given within
the parentheses, i.e., N(Q = Q|q ≤ q) is the inverse of the number of times the observed
discharge is less than q during the calibration period multiplied by the number of times
the simulated discharge is Q when on the same time the observed discharge is less than
q, N(q ≤ q) is 1/n (n is the length of observations) multiplied by the number of times the
observed discharge is less than q, and N(Q = Q) is 1/n multiplied by number of times the
simulated discharge is Q.
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As the variables of interest in hydrology are of continuous type, we may expect that
each value Q of the simulated time series is very uncommon to appear multiple times. As a
result, N(Q = Q) will always be 1/n, and N(Q = Q|q ≤ q) will be non-continuous taking
only the values 0 and the inverse of the number of times the observed discharge is less than
q. For this reason, Koutsoyiannis and Montanari suggested an approximative estimation of
the conditional distribution using the following formula.

Fq|Q(q|Q) ≈ P{q ≤ q|Q − ∆Q1 ≤ Q ≤ Q + ∆Q2} (4)

where ∆Q1 and ∆Q2 define a neighbourhood of Q such that the intervals above and below
Q contain appropriate numbers of simulation values, say 2m + 1 if the closest plus an equal
number of m values above and below Q is selected.

Using Equation (4), the median and the 80% confidence interval can be obtained,
which will be compared with the results obtained with KNN.

3. Results

This section provides the results of KNN and Bluecat applied in the two case studies
(Arno River at Subbiano and Sieve River at Fornacina). The results are displayed employing
(i) plots of the simulation values during the validation period, including the upper and
lower bounds of the 80% confidence interval, and the median value; (ii) the scatter plots of
the confidence interval, the median, and the observed values against the values simulated
by the hydrological model (HyMod in these case studies); and (iii) the combined probability-
probability plots of the median and the hydrological model values.

Regarding the plots of the simulation values, the criteria of the quantitative evaluation
are the proximity of the median values to the corresponding observed values, and the suc-
cessful envelopment of most of the observations by the confidence interval (approximately
10% should be above the upper limit and 10% below the lower limit).

The scatter plots include in the x-axis the sorted simulation values of the hydraulic
model. The line labelled “True” is obtained when the y-axis refers to the corresponding
observed values, the line labelled “Median” when the y-axis refers to the corresponding
median values, the line labelled “High” when the y-axis refers to the corresponding upper
bound of the 80% confidence interval, and the line labelled “Low” when the y-axis refers
to the corresponding lower bound of the 80% confidence interval. A deviation of the
Equality line from the “True” line indicates errors or bias in the hydrological model. The
smoother the “True” line, the lower the model errors. The spikes of the “True” line should
be evenly placed above and below the Equality line, otherwise the model introduces bias.
Regarding the KNN and Bluecat outputs, the “Median” should lay close to the “True” line
(for the same reason the Equality line should be close to the “True” line). The percentage
of the “True” line outside the “High” and “Low” lines should be equal to the selected
confidence level. Ideally, this percentage should not be influenced by the magnitude of the
simulation value.

The combined probability-probability (CPP) plot is the plot of the values of the empiri-
cal distribution function of the median from KNN or Bluecat, or the hydrological model
simulations (y-axis) against the corresponding values of the empirical distribution function
of the observations (x-axis). Ideally, the CPP plot should be on the Equality line.

The scatter plots are superior in assessing the performance of a model at extreme
values, where there are usually very few simulated and observed values. At this range,
even if there is a significant deviation between these two, the difference between the
corresponding values of the empirical distributions could be negligible because of the
limited number of values at this range compared to the number of values in the whole
assessed period. Thus, this small difference (e.g., 0.97 against 0.99) will pass unnoticed in
the CPP plot. On the other hand, CPP plots are better for assessing the performance of a
model at the range where the majority of simulations/observations occur.
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3.1. Case Study—Arno

Figure 2 displays the simulated discharge of 100 days (out of the 731 in total) of the
validation period (from 1 January 2013 until 11 April 2013), the corresponding confidence
interval (“High” and “Low” lines), and the median values of KNN and Bluecat. The left
panel displays the results of KNN with 40 neighbours, whereas the right panel displays
the results of Bluecat. There are minor differences between these two figures regarding the
confidence interval bounds at the two peaks before 1 April 2013.
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Figure 3 displays the scatter plots of the application of KNN and Bluecat to the
validation period of the Arno River case study. Significant differences between the plots of
the two models appear in the region of very high flows. These differences are related to the
limited number of observations and simulations at this range of values.
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Figure 4 displays the CPP of the application of KNN and Bluecat to the validation
period of the Arno River case study. The differences between the plots of the two models
are insignificant.
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3.2. Case Study—Sieve

Figure 5 displays the simulated discharge of 150 h (out of the 13,896 in total) of the
validation period (starting from 5 January 1996), the corresponding confidence interval
(“High” and “Low” lines) and the median values of KNN and Bluecat. The left panel
displays the results of KNN with 200 neighbours, whereas the right panel displays the
results of Bluecat. The median values of Bluecat appear closer to the observed values
around the peak of this figure.
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Figure 5. Discharge of Sieve River, 150 hourly time steps of the validation period starting from
5 January 1996: (a) KNN; (b) Bluecat. “Det. Model” is the simulation with HyMod.

Figure 6 displays the scatter plots of the application of KNN and Bluecat to the
validation period of the Sieve River case study. The “High” lines of KNN and Bluecat are
very similar with minor differences at discharges around 200 m3/s. The “Low” line of
Bluecat tends to be higher at high flows. The “Median” line of Bluecat seems to deviate
from the “True” line at high flows.
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Figure 7 displays the CPP of the application of KNN and Bluecat to the validation
period of the Sieve River case study. The CPP of KNN appears slightly closer to the
Equality line.

Hydrology 2022, 9, x FOR PEER REVIEW 8 of 15 
 

 

  
(a) (b) 

Figure 6. Scatter plot of the Sieve River case study: (a) KNN; (b) Bluecat. 

Figure 7 displays the CPP of the application of KNN and Bluecat to the validation 
period of the Sieve River case study. The CPP of KNN appears slightly closer to the Equal-
ity line. 

  
(a) (b) 

Figure 7. CPP plots of the Sieve River case study: (a) KNN; (b) Bluecat. “Det. Model” is the simula-
tion with HyMod. 

4. Discussion 
Regarding the three 2D options for sampling the model status, the basic idea for in-

creasing the dimension of the sampling space was that this could discriminate between 
the rising and falling limbs of the hydrograph. A hydrological model may exhibit different 
magnitudes of errors when switching from one condition (rising) to another (recession), 
which could be captured by the 2D sampling. Option 1 includes the assessed discharge 
and the discharge of the previous step, Option 2 includes the assessed discharge and the 
change, and Option 3 includes the discharge and a binary value, 0 for rising and 1 for 
recession. An assessment of the properties of the Euclidean metric reveals that Option 1 
may not be always appropriate for distinguishing between the rising and falling limbs. 
For example, suppose the assessed hydrological model with status vector (Qt, Qt−1), where 
Qt = 99 and Qt−1 = 100. In this case, the vector (100, 99) is closer to the assessed status vector 
than the vector (100, 102). Yet the former corresponds to a rising part of the hydrograph, 
whereas the latter and the status vector correspond to a recession. The distinction between 
rising and falling limbs of the hydrograph is guaranteed with Option 2 and Option 3. 
However, these options may overemphasise this distinction. For example, Figure 8 dis-
plays the plots of the elements (a.k.a. features) of status vector x for the three 2D options 
(normalised values in Options 2 and 3) for the Arno River case study. It is evident that in 
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4. Discussion

Regarding the three 2D options for sampling the model status, the basic idea for
increasing the dimension of the sampling space was that this could discriminate between
the rising and falling limbs of the hydrograph. A hydrological model may exhibit different
magnitudes of errors when switching from one condition (rising) to another (recession),
which could be captured by the 2D sampling. Option 1 includes the assessed discharge and
the discharge of the previous step, Option 2 includes the assessed discharge and the change,
and Option 3 includes the discharge and a binary value, 0 for rising and 1 for recession.
An assessment of the properties of the Euclidean metric reveals that Option 1 may not be
always appropriate for distinguishing between the rising and falling limbs. For example,
suppose the assessed hydrological model with status vector (Qt, Qt−1), where Qt = 99 and
Qt−1 = 100. In this case, the vector (100, 99) is closer to the assessed status vector than the
vector (100, 102). Yet the former corresponds to a rising part of the hydrograph, whereas
the latter and the status vector correspond to a recession. The distinction between rising
and falling limbs of the hydrograph is guaranteed with Option 2 and Option 3. However,
these options may overemphasise this distinction. For example, Figure 8 displays the plots
of the elements (a.k.a. features) of status vector x for the three 2D options (normalised
values in Options 2 and 3) for the Arno River case study. It is evident that in Option
2 two status vectors corresponding to successive simulated discharges may have very large
Euclidean distance because the difference Qt−1 − Qt fluctuates strongly when passing
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from the rising to the falling limb (Figure 8b before and after 5080). This is probably the
reason the boundaries of the confidence interval and the median value in Figure A2b
exhibit the intense fluctuations. This effect is mitigated in Option 3. However, according
to Figures A1 and A2 neither option appears to offer any advantage over the simplest
1D option. It should be noted that this may be happening just because the error of the
hydrological model used in this study and for these specific two case studies is similar
in the rising and falling parts of the hydrograph. If this is the case, then the uncertainty
depends only on the model output and not on its state. Therefore, the model output alone
can be used in a data-driven method to obtain estimations of its uncertainty.
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The results of KNN and Blueacat displayed in Figures 2–7 indicate only insignificant
differences between the two methods. Figures 3 and 6 indicate that the “Median” line
is closer to the “True” line than the Equality line, which means that the former is less
biassed compared to the simulation values (Table 1). Furthermore, the upper bound of the
80% confidence interval has encapsulated the more extreme events in both case studies
indicating that this would be a more reliable signal than the hydrological model simulation
to be used in an early warning system. Finally, Figures 4 and 7 indicate that the CPP line of
the median values is closer to the Equality line, which means that the median value would
be useful in applications of water resources management.

Table 1. Mean value of the time series of observations, of the HyMod simulation, and of the Bluecat
Median and KNN Median.

Observations
(m3/s)

HyMod
(m3/s)

Bluecat Median
(m3/s)

KNN Median
(m3/s)

Arno River 10.98 16.24 12.24 11.32
Sieve River 12.56 17.79 11.78 11.58

Regarding the insignificant differences between the two methods, a closer inspection
of the theory behind them reveals algorithmic similarities. Applying Bayesian inference to
Equation (4) gives,

Fq|Q(q|Q) ≈ (mQ/nq) × (nq/n)/((2m + 1)/n) = mQ/(2m + 1) (5)

where mQ, is the number of simulation values within the range (Q − ∆Q1, Q + ∆Q2) of
which the corresponding observations are less than q, nq is the number of observations that
are less than q, n is the total number of observations, and 2m + 1 is the predetermined total
number of simulation values within the range (Q − ∆Q1, Q + ∆Q2).

To obtain the number mQ, the observations that correspond to the 2m + 1 simulations
within the range (Q − ∆Q1, Q + ∆Q2) need to be identified. These observations are more or
less the output of KNN(k, x) in Equation (1) with only one difference, Equation (1) does
not take extra care to ensure an equal number of values above and below Q. Furthermore,
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the right side of Equation (5) is the empirical distribution of the 2m + 1 observations. It is
exactly the inverse of this empirical distribution that is used as f in Equation (1) to obtain
the 90th and 10th percentiles, and the median value.

The previously mentioned difference between KNN and Bluecat regarding the se-
lection of neighbours may result in a biased estimation of the conditional distribution
Fq|Q(q|Q) at high and low Q by KNN because of an unbalanced number of values below
and above Q. That is, the higher the assessed value Q the less the number of simulated
values in the calibration period higher than Q. As a result, for very high Q values, KNN
will return mostly observations corresponding to neighbours of Q lower than Q. This bias
is the reason that the upper bound of the 80% confidence interval in Figure 2a coincides
with the hydrological model simulation at the two peaks before 1 April 2013. It is also the
reason for the differences between Figure 3a,b.

In both case studies, the maximum simulated discharge during the validation period
was significantly lower than the maximum simulated discharge during the calibration.
This allowed a sufficient number of neighbours above any Q value, even for the maximum
Q value of the validation. However, it is not guaranteed this will be the case in every
hydrological application. Recently, Koutsoyiannis and Montanari suggested a technique to
address this issue [23]. In this study, we suggest a simpler approach, which is inspired by
the scatter plots in Figures 3 and 6.

On the right side of Figure 9 lies the histogram of the observations that correspond to
the simulated by the hydrological model values that are closer to the assessed simulation
value of 275 m3/s. A rough representation of this histogram can be obtained by the values
of the upper and lower confidence interval bounds and the median value that correspond
to 275 m3/s (see vertical black and dotted lines in Figure 9). Therefore, the lines “High”,
“Median”, and “Low” provide a rough representation of the histograms (or the graphical
representation of the probability density function of Fq|Q(q|Q)) of all assessed Q values.
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Figure 9. Visual explanation of confidence interval bound and median line for the discharge value
of the hydrological simulation during the validation period equal to 275 m3/s (case study of Sieve
River). The histogram on the right organises in classes the observed values that correspond to the 200
simulation values closer to 275 m3/s.

KNN and Bluecat can draw these three lines up to the Q value of the validation period
that is covered by a sufficient number of greater discharges simulated by the hydrological
model during the calibration period. The simplest approach to extend these three lines
beyond this specific Q value, and, consequently, to obtain an estimation of the conditional
distribution Fq|Q(q|Q) for Q values beyond the available information, is to extrapolate
them with linear regression. The application of this simple approach for the two case
studies is demonstrated in Appendix B.
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5. Conclusions

In this study, we have employed a statistical data-driven method (Bluecat) and a
machine learning method (k-nearest neighbours) to assess the uncertainty of a hydrological
model simulation. The two methods were applied in two real-world case studies. The
lessons from these applications were the following.

• The machine learning method is more flexible than the statistical method, which allows
using more complex sampling schemes at higher dimensions (e.g., model simulation
values from multiple time steps). This may improve the reliability of the estimated
uncertainty in some cases. However, the application in the two case studies did not
prove any advantage over the simplest approach (1D sampling, only the discharge).
This finding cannot be generalized since it depends on the performance of the selected
hydrological model in each specific case study. Nevertheless, it appears that the
simplest approach captures successfully most (if not all) of the characteristics of the
uncertainty.

• Machine learning is usually considered a black-box approach with some abstract/intuitive
understanding of its functionality. However, in some applications, a close inspection
can reveal similarities, or even equivalency, with rigorous mathematical approaches.
The identification of the deviations of the algorithm underneath a machine learning
method from the rigorous approach allows detecting the conditions under which
the machine learning model may exhibit poor performance, and thus, increase its
credibility.

• A very simple approach based on linear regression was employed to estimate the
statistical structure of the assessed hydrological model uncertainty at conditions never
met in the available data. This approach was tested in the two case studies and was
found to perform satisfactorily.

The data-driven analysis of the uncertainty of the hydrological model (based on ma-
chine learning or statistical theory) in the two case studies can offer not only an estimation
of the confidence we can have in the model results, but also operational benefits. For
example, the median values had significantly less bias than the values simulated by the
hydrological model. More specifically, the hydrological model overestimated the mean
discharge by 50% whereas the median values by only 4%. Therefore, the median values can
be more useful in applications of water resources management. Similarly, appropriate con-
fidence levels, corresponding to an acceptable risk, could be selected to obtain probabilistic
estimations of extreme values providing more reliable early warning systems. The latter
requires research on the main weakness of the data-driven methods, i.e., the estimation of
the uncertainty at conditions never met in the available data. A more thorough assessment
of the simple approach (linear regression) employed here should be performed and more
elaborated approaches (e.g., multi-layer perceptrons) need to be considered, which may
prove more advantageous.
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Appendix A

The following figures display the scatter plots of the application of KNN to the
validation period of Arno River for the three types of 2D sampling.
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Appendix B

To evaluate the suggested extrapolation method, the simulated discharge values from
the hydrological model greater than a specific value were removed from the calibration
set, which resulted in a trimmed training data set (the set that is used by KNN to fetch the
observations corresponding to the nearest simulated values). This specific value was 200
and 350 m3/s for the Arno River and Sieve River case studies, respectively. The results
when applying the extrapolation method are displayed in the following figures.
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