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Abstract: Background: People with chronic neurological diseases, such as Parkinson’s Disease (PD)
and Multiple Sclerosis (MS), often present postural disorders and a high risk of falling. When
difficulties in achieving outpatient rehabilitation services occur, a solution to guarantee the continuity
of care may be telerehabilitation. This study intends to expand the scope of our previously published
research on the impact of telerehabilitation on quality of life in an MS sample, testing the impact of
this type of intervention in a larger sample of neurological patients also including PD individuals
on postural balance. Methods: We included 60 participants with MS and 72 with PD. All enrolled
subjects were randomized into two groups: 65 in the intervention group and 67 in the control group.
Both treatments lasted 3040 sessions (5 days/week, 6-8 weeks). Motor, cognitive, and participation
outcomes were registered before and after the treatments. Results: All participants improved the
outcomes at the end of the treatments. The study’s primary outcome (Mini-BESTest) registered a
greater significant improvement in the telerehabilitation group than in the control group. Conclusions:
Our results demonstrated that non-immersive virtual reality telerehabilitation is well tolerated and
positively affects static and dynamic balance and gait in people with PD and MS.

Keywords: telerehabilitation; neurorehabilitation; chronic neurological diseases; Parkinson disease;
Multiple Sclerosis

1. Introduction

Over the past 30 years, the burden of chronic neurological diseases is continuously
augmenting due to population increase and aging, with dramatic medical and economic
implications [1]. Chronic neurological diseases such as Parkinson’s Disease (PD) and
Multiple Sclerosis (MS), have a significant long-term impact on Activities of Daily Living
progressively reducing the Quality of Life (QoL) [2—4]. For these reasons, the management
of PD and MS is a health priority of the WHO considering the increasing demand for
treatment, rehabilitation, and support services [5].
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Both PD and MS result from progressive neuronal dysfunction and neuronal cell death
leading to progressive disability [6]. Patients with PD or MS suffer motor and non-motor
signs and symptoms, including cognitive dysfunction [7,8], behavioral problems [9,10], mo-
tor and gait dysfunction [11,12], and loss of balance [13]. Although PD and MS are different
in pathophysiology and clinical presentation [6], postural balance disorder leads to a high
prevalence of falls in chronic neurological diseases regardless of diagnosis [14-16] and the
implementation of a regular prolonged training program is crucial [17-21]. The recent liter-
ature analyzed the impact of exercise on balance and fall prevention in people with stroke,
PD, and MS, showing that physical activity has a positive effect on increasing postural
control [22,23], especially when it is associated with exergames and virtual [24,25]. In this
context, the use of digital platforms for the continuous delivery of rehabilitation services
represents the new frontier for the management of chronic neurological diseases [26,27].
This approach ensures synergy between different healthcare professionals for a multidi-
mensional diagnostic and rehabilitation service and empowerment of the person in the
management of their care plan.

Considering that people with chronic neurological diseases may have difficulty in
achieving outpatient rehabilitation services because of economic, geographic, and social-
distancing barriers [28], a solution to guarantee the continuity of care may be telereha-
bilitation, i.e., the delivery of clinical rehabilitation services for evaluation and treatment
at distance [29]. The restrictions imposed by the COVID-19 pandemic emphasized, even
more, the fundamental role of telerehabilitation in situations where access to rehabilitation
facilities is limited or, in some cases, impossible [28-31].

The scientific literature on telerehabilitation shows that it is a feasible, easily accepted,
and effective treatment in neurological patients [32-34] since it allows optimization of
the timing, intensity, and personalization of the rehabilitative intervention. Moreover,
telerehabilitation is particularly suitable for people with PD and MS who need repeated
and prolonged rehabilitation cycles due to the chronic and progressive nature of the
diseases [34—40]. The literature on telerehabilitation in people with PD is limited and
controversial, as evidenced in recent systematic reviews [25,34,36-38]: it seems to be fea-
sible and effective in improving only a subset of clinical and non-clinical aspects of PD
(balance and gait, speech and voice, quality of life) similarly to the conventional treatments.
Although systematic reviews on telerehabilitation in people with MS [39,40] reported a
limited number of RCTs on this topic, telerehabilitation seems to be beneficial in func-
tional activities, impairments, and participation. These outcomes have been confirmed by
Truijen et al. [38], who found that platform and exergaming-based telerehabilitation im-
proves balance in individuals with central neurological disorders, and our recent RCT [41]
registered significant improvement in balance, postural control, and dynamic walking in
the telerehabilitation group. Although the current findings are encouraging, even though
limited, further studies on virtual reality and exergaming-based balance telerehabilitation
for improving postural stability are needed [41]. This study intends to expand the scope
of previously published research on the impact of telerehabilitation on quality of life in
an MS sample [40], testing the impact of this type of intervention in a larger sample of
neurological patients also including PD individuals on postural balance.

Therefore, in this study, we analyzed collectively the data obtained from people with
PD and MS using motor outcome measures (the mini-Balance Evaluation Systems Test and
the Timed Up-and-Go) collected for both clinical samples diseases with the purpose of
investigating the efficacy of non-immersive virtual reality telerehabilitation system on the
motor functioning of these two paradigmatic examples of chronic neurological diseases,
compared to at-home conventional rehabilitation. We hypothesized positive effects of
telerehabilitation in improving static and dynamic balance (primary outcome measure),
gait, and cognitive functions, and in reducing the patient’s risk for falls.
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2. Materials and Methods
2.1. Participants

A sample of individuals diagnosed with PD (according to the United Kingdom PD So-
ciety Brain Bank criteria [42]) or MS (according to McDonald’s criteria [43]) was recruited be-
tween 2017 and 2020 within two multicenter randomized controlled trials that involved five
Italian rehabilitation hospitals (Istituti di Ricovero e Cura a Carattere Scientifico—IRCCS) of
the Italian Neuroscience and Rehabilitation Network (https:/ /www.reteneuroscienze.it/en;
accessed on 7 February 2023). The subjects were enrolled if they met the following eligibility
(inclusion and exclusion) criteria:

e  Between 25 and 70 years of age;

e  Stage of disease: mild to moderate as documented by Hoehn and Yahr (H&Y score
range between 2 and 3—PD group) or Expanded Disability Status Scale (EDSS
score < 6.5—MS group);

e  Absence of cognitive impairment measured by the MoCA total score > 18 [44] and suf-
ficient cognitive and linguistic level to understand and comply with study procedures;
Stabilized drug treatment for at least 3 months before starting this study;

Absence of moderate and severe dyskinesia and freezing episodes as documented by
MDS-UPDRS (PD group);

No other neurologic conditions different from MS or PD;

No psychiatric complications or personality disorders, as indicated in the medical
documentation;

e Absence of severe primary sensory deficits such as blurring or low vision, severe
hearing loss and speech disorder

Written and informed consent was obtained for all participants. None of the par-
ticipants were involved in other experimental trials during the entire duration of the
present study.

2.2. Rehabilitation Procedures

All enrolled subjects were randomized into two groups: (1) the Intervention Group (IG)
which received a non-immersive virtual reality telerehabilitation system and (2) the Control
Group (CG) which received at-home conventional rehabilitation. The randomization
procedure was applied to people with PD and to MS separately.

2.3. Intervention Group (IG)

The IG underwent 3040 sessions (5 days/week, 6-8 weeks; 45 min each session) of
motor, and cognitive rehabilitation exercises using the VRRS Tablet home telerehabilitation
system (Khymeia Srl, Noventa Padovana, Italy). The motor exercises were performed
using inertial sensors for the acquisition and processing of the movement performed by
the patient. These data were shown to the patient with visual and auditory feedback
in a serious game environment. The exercises covered the rehabilitation of balance and
lower limbs (e.g., maintaining balance on one leg, marching in place, standing on tiptoe,
squatting, etc.). The therapists involved in the study defined the protocol of exercises in
telerehabilitation mode customized according to the characteristics and needs of the patient.

2.4. Control Group (CG)

The CG underwent 3040 sessions (5 days/week, 6-8 weeks; 45 min each session) of
at-home treatments without the use of any technological devices. The CG rehabilitation was
an active comparator treatment and consisted of a written home-based self-administered
booklet with conventional motor and cognitive activities tailored for each patient. The
motor exercises included the rehabilitation of balance and lower limbs (e.g., maintaining
balance on one leg, marching in place, standing on tiptoe, squatting, etc.). The intensity
and duration of the CG were the same as the IG.
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2.5. Outcome Measures

Clinical assessment was performed at baseline (T1) and at the end of the treatment

(T2) both in people with PD and MS. All investigators and outcome assessors were blinded
to the type of treatment. The following outcome measures were administered by assessors
blinded to the intervention groups:

The mini-Balance Evaluation Systems Test (mini-BESTest) is a shortened version of
the Balance Evaluation Systems Test. It is composed of a 14-item scale that evaluates
balance with a total score of 28. Items are grouped into the following four subcom-
ponents: anticipatory postural control (max score = 6), reactive postural control (max
score = 6), somatosensory orientation (max score = 6), and dynamic walking (max
score = 10). A summary of the subcomponents and the items of the mini-BESTest is
depicted in Table 1. The mini-BESTest has been shown to have good psychometric
properties in both PD and MS [45,46].

The Timed Up-and-Go (TUG) test which involves rising from a seated position, walk-
ing to a pre-determined location, turning, and returning to a seated position, is a
common test used to assess functional mobility, dynamic balance, and walking ability.
The score is the time required to perform the following tasks: standing up from a chair;
walking 3 m: turning around, walking back to the chair and sitting down. The validity
and reliability of the TUG in people with PD and MS have been published [47,48].
TUG performance has been associated with mobility status and fall risk [49,50]. The
TUG test used was the subtest included in the mini-BESTest.

The Timed Up-and-Go-test Dual-task (TUG-D) is a dual-task measure of functional
mobility that evaluates balance with a simultaneous cognitive task. The TUG-D score
is the time required to perform the TUG when the following cognitive task is added:
while walking, the participant counts backward in threes from a randomly chosen
start number between 60 and 100 to avoid a learning effect. The TUG-D performance
on the TUG-D represents a significant predictor of future falls in people with PD and
MS [51,52]. The TUG-D test used was the subtest included in the mini-BESTest.

The Montreal Cognitive Assessment (MoCA) is a rapid screening instrument for
mild cognitive dysfunction. It assesses different cognitive domains: attention and
concentration, executive functions, memory, language, visuo-constructional skills, con-
ceptual thinking, calculations, and orientation. The total MoCA score is 30 points. The
MoCA has been recognized as a valid and sensitive instrument to identify cognitive
impairment in people with PD and MS [53,54].

Table 1. Summary of the subcomponents and the items of the mini-Balance Evaluation Systems Test
(mini-BESTest).

Mini-BESTest (Max 28 Points)

Anticipatory postural control (max 6 points) Somatosensory orientation (max 6 points)
- Sit to stand - Stance on firm surface; eyes open
- Rise to toes - Stance on foam surface; eyes closed
- Stand on one leg (right and left) * - Stance on incline surface, eyes closed
Reactive postural control (max 6 points) Dynamic walking (max 10 points)
- Compensatory stepping correction; forward - Change in gait speed
- Compensatory stepping correction; - Walk with head turns, horizontal plane
backward - Walk with pivot turns
- Compensatory stepping correction; lateral - Step over obstacles
(right and left) * - Timed up & go with dual task

* The worst side score was used to calculate the total score.

Moreover, the following outcome measures were administered for people with PD at

T1 and T2:

The MDS-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) is a multimodal
scale assessing impairment and disability consisting of four parts. Part I assessed non-
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motor experiences of daily living. Part II assessed motor experiences of daily living.
Part III assessed the motor signs of PD. Part IV assessed motor fluctuations and dyski-
nesias. MDS-UPDRS Total Score equals the sum of Parts I, II, and III (Range 0-236). A
higher score indicated more severe symptoms of PD [55].

e  The Parkinson’s Disease Questionaire-8 (PDQ-8) is a short-form version of the Parkin-
son’s Disease Questionaire-39. It is a self-administered questionnaire, used to measure
the quality of life in people with PD [56]. The total PDQ-8 score is 32 points.

The following outcome measures were administrated for people with MS at T1 and T2:

e  The Multiple Sclerosis Quality of Life 54 (MSQoL-54) is a structured, self-report
questionnaire for measuring health-related quality of life in MS [57] consisting of four
parts. The MSQoL-54 consists of 12 subscales and two single items. Each subscale
is scored from 0 to 100, with higher scores indicating a better QoL. Subscale scores
can be weighted and summed to generate Physical Health Composite Score (MSQOL-
54_PHCS) and Mental Health Composite Score (MSQOL-54_MHCS).

The primary outcome of the study was the mini-BESTest total score.

2.6. Statistical Analysis

The database analyzed in this study was composed of people with MS from our pre-
vious study [38] to which people with PD have been added. A sample size of 60 patients
(30 per arm) achieves 95% power to detect a difference of 2.0 (standard deviation = 2.0;
Cohen’s d = 1) in the primary outcome [58] in a design with two repeated measurements
according to the literature on the psychometric performance of the Mini-BESTest in pa-
tients with balance disorders [59], assuming an alpha error of 0.05, and 5% dropout rate
of patients. A priori sample size was calculated using G*Power 3.1 software. Statistical
analyses were carried out by using jamovi (Version 2.3) software (https:/ /www.,jamovi.org;
accessed on 7 February 2023). Summary statistics are expressed as frequencies, percentages,
means and Standard Deviations (SD), median and Interquartile Range (IQR). Comparisons
between the two groups (IG and CG) of baseline clinical features in the full sample and
people with PD and MS separately using parametric (independent samples t-tests, analysis
of covariance—ANCOVA) or corresponding non-parametric (independent samples Mann—
Whitney U test) tests, as appropriate. Variable distribution was inspected through histograms
and skewness and kurtosis statistics were calculated to assess normality. When variables
violated the assumption of normal distribution, the natural logarithmic [In] transforma-
tion was applied. A modified intention-to-treat method was implemented [60]. Missing
data for the outcome measures comprised in the principal dataset were handled according
to a single imputation procedure replacing missing values with the median value in each
group at a specific time point in case of missing data less than 5% [61]. Outcome measures
were analyzed using the jamovi module General analyses for linear model [62] (retrieved
from https://gamlj.github.io; accessed on on 7 February 2023). Generalized Linear Mixed
Models (GLMMs) were performed to evaluate score differences across the two time points
(T1 and T2). Different test scores were used as dependent variables (one for each model),
and the effects (Time, Group, Pathology) were considered independent variables. Time,
Group, Pathology, and their interaction (Time*#Group, Time*:Pathology, Group:<Pathology,
Time*Group*Pathology) were included in each model as fixed effects. To account for subject
specific variability, each subject was used as a random factor in all the models. GLMMs for the
cognitive outcome (MoCa Test), also included age and education as covariates. The final mod-
els were the following: Motor Outcome measure ~1 + Time + Group + Pathology + Time:Gr-
oup + Time:Pathology + Group:Pathology + Time:Group:Pathology + (1 | Subject), Cognitive
Outcome measure ~1 + Time + Group + Pathology + Age + Education + Time:Group + Time:Pa-
thology + Group:Path-ology + Time:Group:Pa-thology + (1| Subject). Effects sizes (partial
eta-squared pn?) for the posthoc tests performed to interpret significant fixed effects were cal-
culated by R Studio software (Version 1.4.1106), and the magnitude of effects was interpreted
as follows: small (pn2 = (0.01), medium (pn2 =0.06), and large (pn2 = 0.14) effects [63]. The
statistical significance was set at p-value < 0.05 for all analyses.
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3. Results

A sample of 150 participants met the inclusion criteria and were included in the study:
80 people with PD and 70 with SM. Of the sample, 75 participants were allocated to the
IG (PD = 40; MS = 35) and 75 to the CG (PD = 40; MS = 35). A sample of 132 participants
(IG = 65; CG = 67) completed the baseline (T0) and post-treatment (T1) evaluations, and
18 subjects dropped out (IG = 10; CG = 8). None of the drop-outs occurred during the study
for treatment-related reasons, and no participant experienced any adverse event during
treatment. Baseline demographics and clinical data in the full sample, people with PD, and
people with MS are detailed in Table 2. No differences were registered between IG and
CG at T0. The baseline demographics and clinical data in the IG and CG are detailed in
the Supplementary materilas (Table S1). Results of the GLMMs were performed on each
outcome measure to verify whether the two treatments had different effects on the common
outcomes in the full sample of patients with chronic neurological diseases (Table 3).

Table 2. Baseline demographics and clinical data in the full sample, people with Parkinson’s Disease

and people with Multiple Sclerosis.

Group Comparison

Variables IG CG [p-Valuel
N =65 N =67
Age years, [M, (SD)] 58.12 (12.43) 61.12 (11.06) 0.146 8
Education, N (%)
Primary 0 (0%) 3 (4.5%)
Secondary 13 (20.0%) 17 (25.4%) .
_ High School 36 (55.4%) 33 (49.3%) 0288
3 College 16 (24.6%) 14 (20.9%)
% Sex (Male/Female), N% 29 (44.6%) /36 (55.4%) 30 (44.8%)/37 (55.2%) 0.985"
i Mini-BESTest, [M, (SD)]—primary outcome 19.43 (5.75) 19.70 (5.98) 0.791§
5 [Ml\,/[(ig]ij—ﬁESTest Anticipatory postural control, 3.94 (1.55) 3.93 (1.54) 0.961 §
- Mini-BESTest Reactive postural control, [M, (SD)] 4.22 (1.84) 4.21 (1.90) 0.984§
Mini-BESTest Somatosensory orientation, [M, (SD)] 4.55 (1.48) 4.58 (1.43) 09118
Mini-BESTest Dynamic walking, [M, (SD)] 6.74 (2.05) 6.99 (2.27) 0.514 8
TUG [In], [M, (SD)] 2.29 (0.54) 2.33(0.49) 0.668 8
TUG-D [In], [M, (SD)] 2.50 (0.57) 2.50 (0.52) 0.942°§
MoCA, [M, (SD)] 25.88 (2.67) 25.19 (3.22) 0.341 %
N=35 N=37
Age years, [M, (SD)] 66.51 (7.37) 68.32 (5.89) 0.252§
Education, N (%)
_ Primary 0 (0%) 3 (8.1%)
ﬁ Secondary 9 (25.7%) 12 (32.4%) .
Z High School 16 (45.7%) 17 (45.9%) 0166
E College 10 (28.6%) 5 (13.5%)
-‘; Sex (Male/Female), N% 17 (48.6%) /18 (51.4%) 18 (48.6%)/19(51.4%) 0.995"
2 H&Y, [median, (25th-75th)] 2.00 (2.00-2.00) 2.00 (1.50-2.50) 0.340°
gﬁ Disease Duration years [M, (SD)] 5.84 (4.57) 4.70 (3.76) 0.331§
Mini-BESTest, [M, (SD)]—primary outcome 19.86 (5.60) 21.00 (5.52) 0.386 §
Mini-BESTest Anticipatory postural control, [M, (SD)] 4.20 (1.57) 4.05 (1.51) 0.689 §
Mini-BESTest Reactive postural control, [M, (SD)] 4.37 (1.63) 4.54 (1.64) 0.662 8
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Table 2. Cont.

IG

CG

Group Comparison

Variables [p-Valuel
Mini-BESTest Somatosensory orientation, [M, (SD)] 4.71 (1.38) 5.00 (1.27) 0.364 8
Mini-BESTest Dynamic walking, [M, (SD)] 6.60 (1.99) 7.41 (1.95) 0.087 8
TUG [In], [M, (SD)] 2.15 (0.54) 2.17 (0.50) 0.856§
TUG-D [In], [M, (SD)] 2.39 (0.58) 2.38 (0.55) 0.932§
MoCA, [M, (SD)] 25.51 (2.66) 24.76 (3.09) 0.405 *
MDS-UPDRS part III, [median, (25th-75th)] 27.00 (18.50-44.00) 33.00 (22.00-44.00) 0.388 °
PDQ-8, [M, (SD)] 28.75 (18.82) 27.96 (15.62) 0.8458
N =30 N =30
Age years, [M, (SD)] 48.33 (9.66) 52.23 (9.34) 01178
Education, N (%)
Primary 0 (0%) 0 (0%)
Secondary 4 (13.3%) 5 (16.7%) .
0.561
High School 20 (66.7%) 16 (53.3%
College 6 (20.0%) 9 (30.0%)
Sex (Male/Female), N% 12 (40.0%)/18 (60.0%) 12 (40.0%)/18 (60.0%) 1.000°
§ EDSS, [median, (25th-75th)] 5.00 (3.63-6.00) 4.50 (3.50-5.88) 0.634°
I -
Z MS Phenotype (RR/SP), N% RR (13, 43%)/SP (17; 57%)  RR (16; 53%)/SP (14; 47%) 0.438
2 Disease Duration years [M, (SD)] 15.36 (7.17) 12.68 (6.72) 0.618§
s Yy
';'F: Mini-BESTest, [M, (SD)]—primary outcome 18.93 (5.98) 18.10 (6.23) 0.599 §
s
R Mini-BESTest Anticipatory postural control, [M, (SD)] 3.63 (1.50) 3.77 (1.59) 0.739§
o
i Mini-BESTest Reactive postural control, [M, (SD)] 4.03 (2.08) 3.80 (2.12) 0.669 8
Mini-BESTest Somatosensory orientation, [M, (SD)] 4.37 (1.59) 4.07 (1.46) 0.449 8
Mini-BESTest Dynamic walking, [M, (SD)] 6.90 (2.14) 6.47 (2.56) 0.479 8
TUG [In], [M, (SD)] 2.45 (0.50) 2,51 (0.41) 0.570'§
TUG-D [In], [M, (SD)] 2.64 (0.55) 2.64 (0.44) 0.9618§
MoCA, [M, (SD)] 26.30 (2.67) 25.73 (3.34) 05108
MSQOL-54_PHCS, [M, (SD)] 55.58 (16.47) 53.09 (19.13) 0.590 §
MSQOL-54_MHCS, [M, (SD)] 67.94 (16.59) 58.58 (22.10) 0.069
Legend: PD = Parkinson’s Disease; MS = Multiple Sclerosis; CG = Control Group; IG = Intervention Group;
M = mean; SD = standard deviation; Mini-BES Test = mini-Balance Evaluation Systems Test; TUG = Timed Up
& Go; TUG-D = Timed Up-and-Go-test Dual-task; MoCA = Montreal Cognitive Assessment; MDS-UPDRS part
III = MDS-Unified Parkinson’s Disease Rating Scale; PDQ-8 = Parkinson’s Disease Questionnaire; MSQOL-54
PHCS = Multiple Sclerosis Quality of Life-54 Physical Health Composite Score; MSQOL-54_ MHCS = Multi-
ple Sclerosis Quality of Life-54 Mental Health Composite Score. RR = Relapsing-Remitting; SP = Secondary
Progressive. Statistical comparisons between IG and CG were performed using Independent sample t-test (3);
ANCOVA adjusting for age and education (*); Mann-Whitney U test (*); Chi-square (); In = Logarithm Natural
transformation was applied to account for no normal distribution. Statistically significant results (p-value < 0.05).
Table 3. Results of the Generalized Linear Mixed Models in the Intervention Group (IG) and in the
Control Group (CG).
IG (N = 65) CG (N=67)
. Time Group Time*XGroup
Variables EMM SE EMM SE EMM SE EMM SE [p-Value] [p-Valuel [p-Value]
TO TO T1 T1 TO TO T1 T1
Mini-BESTest—primary 1945 0690 2146 069 1955 068 2004 0.8 <0.001 0.487 0.020
outcome
Mini-BESTest
Anticipatory postural 3.92 0.18 4.51 0.18 391 0.18 4.12 0.18 <0.001 0.394 0.082

control
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Table 3. Cont.

IG (N = 65) CG (N = 67)
. Time Group Time*kGroup
Variables EMM SE EMM SE EMM SE EMM SE [p-Valuel [p-Valuel [p-Valuel
TO To T1 T1 To To T1 T1
Mini-BESTest Reactive 420 022 446 022 417 022 426 022 0.207 0.688 0.554
postural control
Mini-BESTest
Somatosensory 4.54 0.17 4.85 0.17 4.53 0.16 4.57 0.16 0.055 0.513 0.137
orientation
Mini-BESTest Dynamic 675 026 765 026 694 025 708 025 <0.001 0.568 0.011
walking
TUG [In] 230 006 223 006 234 006 231 006 0.002 0.469 0.250
TUG-D [In] 251 007 241 007 251 007 248 007 <0.001 0.714 0.048
MoCA 2585 035 2662 035 2529 034 2585 034 0.003 0.125 0.616

Legend: PD = Parkinson’s Disease; MS = Multiple Sclerosis; IG = Intervention Group; CG = Control Group;
EMM = Estimated Marginal Mean; SE = Standard Error; TO = baseline; T1 = end of treatment; Mini-BESTest = mini-
Balance Evaluation Systems Test; TUG = Timed Up and Go; TUG-D = Timed Up and Go Dual task; MoCA = Mon-
treal Cognitive Assessment; In = Logarithm Natural transformation was applied to account for no normal
distribution; Statistical significant results (p-value < 0.05) are highlighted in bold font.

All clinical outcomes significantly improved between T0 and T1 in both groups except
for Mini-BESTest Reactive postural control and Somatosensory orientation subcomponents.
When considering the primary outcome (i.e., the Mini-BESTest total score), the IG showed
a greater improvement than the CG (effect of interaction Time**Group: p-value = 0.020;
posthoc comparison: IG TO vs. T1 p-value < 0.001, pn? = 0.13) with an improvement
of about 24% concerning the maximum score achievable. A significant effect of factor
Time was observed for the Mini-BESTest Anticipatory postural control subcomponent
(p-value < 0.001, pn? = 0.10) showing an improvement in both groups. When considering
the Mini-BESTest Dynamic walking subcomponent, the IG showed a significantly higher
improvement (effect of interaction Time**Group p-value = 0.011; posthoc comparison: IG
TO vs. T1, p-value < 0.001, pn? = 0.13) than the CG (see Figure 1). A significant effect
of factor Time was observed for the TUG[In] (p-value = 0.002, pn? = 0.07) showing an
improvement in both IG and CG. In TUG-DIIn], the IG improved more than the CG
(effect of interaction Time*Group: p-value = 0.048; posthoc comparison: IG TO vs. T1
p-value < 0.001, pn? = 0.11). A general effect of Time emerged for the global cognitive
functioning (MoCA: p-value = 0.003, pn? = 0.07) with an improvement of about 19% with
respect to the maximum score achievable in both groups.

The triple interaction (Time**Group*kPathology) analysis showed significant differ-
ences in the TUG-D[In] only (effect of interaction Time*Group*Pathology p-value = 0.014).
Specifically, the posthoc analysis revealed that the people with MS who underwent the
telerehabilitation intervention improved the velocity in performing the TUG-D[In] after
treatment, whereas no amelioration was observed in the people with MS who underwent
the CG intervention (posthoc comparison: people with MS IG TO vs. T1, p-value < 0.001,
pn? = 0.09). No significant differences were found in the people with PD Figure 2 depicts
the results on TUG-D[In].
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+ CG
* G
Mini-BESTest Mini-BESTest Dynamic walking item Tug_D[In]
8.0 26 1
22 4
75
214 251
70
20 24
65
194
6.0 234
TO T TO T TO T

Figure 1. Statistically significant Time*kGroup effects (p-value < 0.05) of the Intervention Group (IG)
and of the Control Group (CG) in the total score of the mini-Balance Evaluation Systems Test (Mini-
BESTest), Mini-BESTest Dynamic walking subcomponent, and Timed Up and Go Dual task (TUG-D)
assessed before (T0) and after (T1) treatment. In TUG-D, the natural logarithm transformation [nl]
was applied to take into account the absence of normal distribution. Data are represented as estimated
marginal mean and standard error.

Tug_DI[In] Tug D[In] s CG
1G
28 1 28
264 26
244 24
221 221
TO T1 TO T
pwPD pwMS

Figure 2. Statistically significant Time**Group and Time**Group*kPathology effects (p-value < 0.05)
of the Intervention Group (IG) and of the Control Group (CG) in the Timed Up and Go Dual task
(TUG-D) assessed before (T0) and after (T1) treatment. Data from people with Parkinson’s Disease
and Multiple Sclerosis are depicted separately. The natural logarithm transformation [nl] was applied
to take into account the absence of normal distribution. Data are represented as estimated marginal

mean and standard error.

4. Discussion

Considering the importance of a regular sustained program for balance rehabilitation
and fall prevention in chronic neurological diseases [19-21], this study moves from previ-
ously published findings on the impact of telerehabilitation on quality of life in an MS [40]
expanding the research scope and the target sample. Hypothesizing to achieve positive
effects of telerehabilitation in balance capacity, we tested the effect of such intervention on
postural balance in a larger sample of neurologic patients, including not only patients with
MS but also with PD.

An RCT cohort of 132 subjects with chronic neurological diseases was considered,
representing we analyzed 87% of the fulfilled dataset (and the remaining 13% of the dataset
was dismissed due to dropout). Our results showed that the non-immersive virtual reality
telerehabilitation system implemented in this study was feasible and easily accepted in
people with PD or MS, in line with previously published studies [34-36].
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This study showed that the non-immersive virtual reality telerehabilitation system
was effective and allowed to optimize the timing and intensity of the rehabilitation inter-
vention. These findings are particularly relevant in the case of economic, geographic, and
social-distancing barriers than may hinder people with chronic neurological diseases from
achieving outpatient rehabilitation services [28]. In this context, the non-immersive virtual
reality telerehabilitation system is a promising approach to ensure continuity of care [29].

The postural balance assessed with the Mini-BESTest total score registered a higher
improvement in the IG compared to the CG: subjects who conducted non-immersive virtual
reality telerehabilitation system amended postural control more than their peers who con-
ducted at-home conventional rehabilitation without the use of any technological devices.
The outcomes obtained agree with the literature on the effects of telerehabilitation in im-
proving postural control in individuals with chronic neurological diseases [38], PD [39,64],
and MS [24,34,40,42,65,66]. On the other hand, in people with PD, the superiority of telere-
habilitation in increasing postural stability has not been confirmed in some studies [39,62].
Specifically, Gandolfi et al. [39] and Seidler et al. [62] demonstrated that telerehabilitation
improved balance and gait functions similar to conventional treatments.

The impact of the non-immersive virtual reality telerehabilitation system on postural
control had been further explored by analyzing the dynamic balance and gait by means of
the Mini-BESTest subcomponents, TUG, and TUG-D. The results evidenced that both the
TI and the CG improved the Mini-BESTest “anticipatory postural control” subcomponent
and TUG at the end of the treatment, without registering any between-group differences.
Compared with the CG, the TI performed significantly better at the Mini-BESTest “dynamic
walking” subcomponent and TUG-D. Thus, subjects who conducted non-immersive virtual
reality telerehabilitation registered a higher performance in the execution of the following
motor tasks: change in gait speed; walk with head turns; walk with pivot turns; step over
obstacles and timed up and go with a dual task. These results are in agreement with the
literature that showed an improvement in the ability to control balance and change gait
speed and direction in subjects who underwent telerehabilitation [38,62,67].

Similar outcomes were also obtained in studies on the application of virtual reality
technology in rehabilitation, which positively improved movement velocity, balance, and
gait [68,69]. The results on the ability to execute a dual task (i.e., the TUG-D) are rep-
resentative of the potential for non-immersive virtual reality telerehabilitation systems
to improve both motor and cognitive functions [52]. To this extent, Intzandt et al. [70]
analyzed how different types of rehabilitation can influence motor function (gait) and
cognition in people with PD, finding that goal-based training can mitigate both motor
and non-motor symptoms (such as fatigue, depression, apathy, and cognitive impairment)
which can also influence motor performance.

The importance of the obtained outcome in favor of the non-immersive virtual reality
telerehabilitation is also enhanced by the fact that the difficulty in executing a motor task
paired with a simultaneous cognitive task has been associated with falls in people with
chronic neurological diseases [52,71,72]. Furthermore, dual-task activities involving both
motor and cognitive resources constitute a significant portion of most activities of daily
living, and thus improving these activities has a major impact on participation and quality
of life [73-75].

The analysis of the effects of telerehabilitation on cognitive functions revealed that
both treatments improved the MoCA total score, and no differences were found between
groups. Indeed, this outcome was influenced by the criteria for subject recruitment which
included only participants without severe cognitive impairment (MoCA total score > 18).
Although the primary goal of the telerehabilitation treatments was the rehabilitation of
balance and lower limb functions, the obtained outcomes on cognitive performance are
encouraging and consistent with the literature [76,77], calling for future studies on cognitive
telerehabilitation in chronic neurological diseases.

The analysis of differences between PD and MS revealed that the positive improvement
of telerehabilitation in postural balance (Mini-BESTest total score) and ability to change gait
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speed and direction (Mini-BESTest “dynamic walking” subcomponent) was registered in
both pathologies. Thus, the hypothesis of the study, i.e., telerehabilitation is effective in
improving balance in both people with PD and SM, is reinforced and justified. On the other
hand, the ability to execute a dual-task (i.e., the TUG-D) registered a significant difference
between pathologies: subjects with MS who conducted the non-immersive virtual reality
telerehabilitation improved the TUG-D more than their peers with PD. There is supportive
evidence in the literature for the use of dual-task interventions to improve both single and
dual-task gait speed [78]. The findings from the meta-analysis of Cinnera et al. support
dual-task training as a beneficial therapy for improving dynamic balance and functional
mobility in people with MS [79]. On the other hand, the impact of dual-task training in PD
on dual-task gait speed is controversial [80,81]. The difference between performances in
the two disease groups could be influenced by different brain substrates of neuroplasticity
in the two diseases. It is well known that both PD and MS have the intrinsic property
to structurally and functionally reorganize the damaged brain networks in response to
rehabilitation [82,83]. The recovery in mild to moderate MS is achieved and sustained
by the repair of damage through remyelination, with a resolution of inflammation and
functional reorganization [84]. Whereas in PD the exercise, practice and movement strategy
training act on supplementary circuits, thus supporting the sensorimotor integration and
reinforcing the coupling of premotor areas, which are typically affected early in PD [85].

Our study had some limitations that are worth mentioning: it included patients with
mild disability (H&Y score between 2.5 and 3 in people with PD; EDSS score < 6.5 in people
with MS) and the non-immersive virtual reality telerehabilitation system implemented in
this study did not focus on upper limb motor therapy and specific cognitive rehabilitation.
Therefore, the future research agenda should analyze the efficacy of telerehabilitation in
more severely affected patients and increase the panel typology of treatments delivered
remotely for complete physical and cognitive telerehabilitation in patients with chronic
neurological diseases. Furthermore, the observed dropout rate (slightly more than 10%)
was higher than the estimated a priori dropout rate (about 5%), approximately expected
in these two neurological populations after virtual reality clinical trials as reported from
recent metanalyses [86,87]. In these metanalyses, the typical reasons for dropout were
difficulties in reaching the research center, refusal to participate, personal or familial issues,
loss of data due to administrative problems, exacerbation of symptoms or other medical
complications [86]. However, it is worth noting that in the period in which our study was
carried out intervened a worldwide unpredictable adverse event due to the pandemic
COVID-19. It has now been acknowledged that the COVID-19 pandemic has hindered the
progress and completion of clinical trials [88].

5. Conclusions

The recent COVID-19 pandemic has underpinned the importance of ensuring a con-
tinuum of rehabilitation interventions, in particular for a frail population such as people
with PD and MS. While therapeutic intervention in a clinical setting represents the first-
line treatment, telerehabilitation intervention could act as the missing parts of the puzzle
leading to an optimal continuity of care. Our results demonstrated that the non-immersive
virtual reality telerehabilitation system is well tolerated and has positive effects on static
and dynamic balance and gait in both people with PD and MS.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm12093178 /51, Table S1: Baseline demographics and clinical data
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