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Abstract. The ability of lazily manipulating long or infinite streams of
data is an essential feature in the era of data-driven artificial intelligence.
Yet, logic programming technologies currently fall short when it comes
to handling long or infinite streams of data. In this paper, we discuss how
Prolog can be reinterpreted as a stream processing tool, and re-designed
around an abstract state-machine capable of lazily manipulating streams
of data via backtracking.
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1 Introduction

Streams are a powerful abstraction in computer science as they enable the pro-
cessing of huge amounts of data, especially when keeping all data in memory
would be impractical or infeasible. In the era of the Internet of Things (IoT)
and data-driven artificial intelligence (AI), the ability of manipulating possibly
unlimited streams of data is a must-have for all programming paradigms and lan-
guages. Indeed, a growing amount of application scenarios are characterised by
the pervasive exploitation of smart devices generating/capturing huge amounts
of data, as well as of the software infrastructures aimed at processing them.

A stream is an ordered sequence of data that may or may not be limited in
length. Depending on how the are generated, streams are either cold (a.k.a. pull)
or hot (a.k.a. push). Each item of a cold stream is generated on the fly, as soon
as a consumer pulls it from the stream. In the case of hot streams, instead, an
external entity is supposed to be in charge of generating items and pushing them
to the stream, so that consumers can retrieve them in a FIFO way.

Cold streams are the simplest ones. A cold stream can be naturally at-
tained via functional programming and higher-order functions (e.g. map, filter,
reduce): this is why mainstream programming languages such as Java, C#,
Python, JavaScript, Scala, Kotlin, etc., are being extended to blend functional
features and constructs for dealing with streams. Conversely, hot streams are
more complex, as they require data to be buffered while waiting for consumption—
making them ideal for temporally decoupling data consumers and producers. In
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particular, hot streams are key enablers of advanced stream processing tech-
niques, such as sliding windows, or complex event processing (CEP)—which are
deeply entangled with the time-related aspects of data production.

In this scenario, logic programming (LP), as well, has its role to play, both in
data-driven AI - in particular in relation to explainable systems [6] — or in the IoT
[5]. For instance, LP and rule-based frameworks are generally recognised as well-
suited to support CEP [1l2], as they are expressive enough to capture complex
events from hot streams. Similarly, answer-set programming (ASP) has been
extensively exploited as a means for reasoning over hot streams of data [TTI43].

In this paper, we focus on the Prolog [10] programming language—arguably,
the most popular LP language. Currently, Prolog can hardly be considered as
a suitable stream-processing technology [I5], as it provides minimal support for
consuming both cold and hot streams. However, we believe that this should be
reconsidered because Prolog already supports the lazy exploration of possibly
infinite search spaces via backtracking. Thus, the problem with Prolog is not to
discuss whether it supports stream processing or not, but rather how.

Existing solutions extend Prolog with syntactical, semantical, or library en-
hancements aimed at supporting cold streams explicitly. Conversely, in this pa-
per, we discuss how Prolog can be reinterpreted as a stream processing tool,
capable of manipulating both cold and hot streams of data. In particular, our
solution does not affect the syntax (nor the operation) of the Prolog language.
More precisely, we show how Prolog predicates may be interpreted as generators
of streams to be lazily consumed via backtracking. Along this line, we present
an abstract design for Prolog solvers based on finite-state machines, aimed at
supporting our notion of generators. Finally, a practical demonstration based on
the 2P-KT technology [7] is discussed showing how generators may let a Prolog
solver consume events from the external world in a transparent way.

2 Logic Solvers as Streams Prosumers

2.1 Logic solvers as stream producers

Logic solvers a la Prolog are typically queried interactively by LP users in dif-
ferent modes, which are naturally captured by the message passing perspective
adopted in fig. [l The most common mode of interaction among users and logic
solvers is summarised in fig. users submit queries (a.k.a. goals) to a logic
solver — e.g. a Prolog interpreter — via some ad-hoc operation—e.g., solve. As-
suming that one or more solutions exist, the solver computes and returns one of
them—typically in terms of a unifying substitution, assigning values to the query
variables of interest for the user. However, the user may be interested in solutions
other than the first one: so, the solver should expose one further operation —e.g.,
next — letting users asking for further solutions to some previously-submitted
query. Finally, when no (more) solutions are available for a query, the solver can
return one (last) answer carrying the failed substitution (represented by L in
fig. |1) instead of a unifier.
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This mode of interaction is very effective since it enables the lazy enumer-
ation of a possibly infinite amount of solutions. However, it comes with a few
drawbacks. First, despite logic solvers are actually capable of generating streams
of solutions, the notion of stream is somewhat implicit in the solver machinery—
therefore, not explicitly exploitable. Second, solvers are stateful, in that they are
responsible to keep track of the status of the interaction with each querying user.

To overcome these issues we suggest a shift of perspective, as depicted in
fig. There, users and solvers interact in a stream-oriented mode, where the
stream of solutions is explicit and the interaction between solvers and users is
stateless. Thus, solvers expose just one operation —i.e., solve — accepting a user’s
query and returning a reference to the related cold stream of solutions. Users
just need solvers to create solution streams that users can then lazily consume
on demand. Of course, solutions can still be produced lazily behind the scenes:
whenever a user tries to consume a new solution, it can be computed on the fly.

Thus, even though interaction does not change from the operational view-
point, our approach overcomes the limits of traditional logic solvers: solution
streams here are explicitly represented, and can therefore be manipulated as
such.

2.2 Logic solvers as stream consumers

By adopting a message passing perspective, logic solvers do not interact with
users only. Indeed, logic solvers typically act on a knowledge base (KB). In the
general case, KBs are containers of the specific knowledge required by solvers to
compute solutions to users’ queries. For instance, KB for Prolog solvers contain
both rules and facts as Horn clauses, and are either static or dynamic.

From an interaction perspective, however, a KB is just a component exploited
by solvers as part of their resolution process. More precisely, solvers may need
KB to retrieve some clauses, selected via unification, or, to retract or store some
knowledge possibly learned/acquired during the resolution.

Fig. 1: Interaction modes between logic solvers and users or KB.
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In particular, clause retrieval highlights how the interaction between solver
and KB can be described in terms of streams as well. As depicted in fig.[1c] clause
retrieval from KB can be modelled as a operation — e.g., get — accepting a clause
template C' and returning the stream of clauses unifying with C' currently stored
into the KB. The solver can then consume the stream as needed, e.g. either lazily
or not, depending on the search strategy adopted.

Finally, storing a clause in the KB can be modelled as an assert accepting a
clause C and adding it to the KB, whereas clause retraction can be modelled as
a retract accepting a clause template C' and removing a clause C’ unifying with
C. Both operations could be exploited either by the solver or by some external
entity willing to affect the solver’s knowledge.

2.3 Solvers vs. the World

Yet, how can logic solvers deal with event streams coming from the external
world? Once KBs are recognised as individual entities, a trivial answer could
be: via KB. External events may indeed be reified into actual knowledge to be
stored into some solver’s KB. In this scenario, external event streams should
be translated into a sequence of assertions aimed at injecting events into the
KB, as facts. The solver could then lazily consume the events by getting or
retracting the corresponding facts from the KB.

There are, however, two major drawbacks in this approach. First, the reifi-
cation of events into KB requires space. Second, solvers do not necessarily have
to process or consume reified events—thus a lot of space is wasted. Accordingly,
a different approach is required to let solvers consume event streams from the
external world without reifying them unnecessarily.

In this work, we propose generators as the basic means to let solvers interact
with the external world. A generator is a special Prolog primitive capable of
affecting and inspecting the external world via some 1/O facility (fig. [2)). It is
invoked by a solver and produces a stream of facts to be consumed by the same
solver. However, from the solvers perspective, generators are ordinary built-in
predicates denoted by signatures—i.e., name/arity couples of the form p/n.

World

| |

\
> Request >—){ Generator II 7 Response >> Response >> )
/. /

Response Stream
Signature

Solver

Fig.2: Dataflow and component view of generators, i.e. solvers’ gates towards
the external world
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More precisely, whenever the solver needs to compute the assignment of vari-
ables T; satisfying relation p(T1,...,T},), it can trigger the generator denoted by
p/n (if it exists), by sending the p/n generator a request providing a snapshot
of the current resolution context and possibly an initial assignment of some T;.
The generator answers by providing a stream of responses — each one with some
possible complete assignment of T; — that the solver can consume accordingly
to its resolution strategy—i.e., possibly later. To produce responses, generators
may take into account several information sources — e.g., the resolution context,
the external world — as a part of the request. They may also attempt to affect
the external world via some 1/O action—e.g., triggering a sensor.

Depending on the numbers of responses a generator provides, it can either
be classified as either functional or relational. Functional generators produce
just one response and their execution is therefore analogous to the execution
of a function, as they consume an input and return a single result. Conversely,
relational generators produce two or more responses.

2.4 Example: TSP in Prolog

Let us consider for instance the case of a user exploiting a standard Prolog
system to solve arbitrary instances of the Traveling Salesman Problem (TSP).

Let us assume the system requires maps to be represented as facts in the form
path(+Src, +Dst, +Cst) — each one representing an undirected path between
two locations, and the estimated cost —, like e.g.:

path(bucarest, giorgiu, 90).
path(bucarest, pitesti, 101).

path(pitesti, ’rimnicu vilcea’, 97).
path(pitesti, craiova, 138).
path(’rimnicu vilcea’, craiova, 146).

Under this assumption, Prolog exposes a predicate tsp(?7Cities, ?Circuit,

?Cost) aimed at computing the best Circuit for some set of Cities, and
the corresponding Cost—where, Cities is a set of cities, Circuit is a list of
cities to be visited in a row, and Cost is an integer. Following a purely-logical
interpretation, the predicate represents a ternary relation tsp C 2¢ x C* x N
grouping subsets of cities, lists of cities, and non-negative integers, where C is
the set of all cities mentioned in the KB as either the first or second argument
of a path/3 fact, and C* is the Kleene-closure of C. Thus, an assignment of the
Cities, Circuit, and Cost variables satisfies the predicate if

— Circuit = [cg,...,Cn—1, o), and
s 1
Cities =J;_, {¢}, and
Vie{l,...,n} path(¢i—1, ¢ modn, %) € KB, and
Cost =) 1 | x;, and
Cost is minimal.

Accordingly, because of Prolog backtracking, a query of the form:
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(7— tsp(Cities, Circuit, Cost).

J

would enumerate all minimally-costly circuits of all possible subsets of cities in
C, and their costs—one for each solution. Users may partially instantiate some
variable in order to contextualise their queries: for instance, a query of the form:

k{?— tsp({pitesti, craiova, ’rimnicu vilcea’}, [pitesti | Others], Cost).

J

would enumerate all minimally-costly circuits starting in Pitesti, and involving
the cities Craiova, and Rimnicu Vilcea.

The predicate tsp/3 could be implemented declaratively in Prolog. In its
simplest formulation, the predicate may leverage Prolog’s depth-first strategy,
and its backtracking mechanism to lazily generate all the possible circuits and
select the less costly one: not likely the best possible strategy, yet a working
one. However, better strategies have been proposed in the literature for solving
the TSP, with efficient implementations built upon them—rarely based on pure
Prolog. Here, instead, generators make it possible to exploit external libraries
for solving the TSP in Prolog as if they were implemented via LP.

For instance, we assume that a “ACME TSP” C library exists that solves
TSP efficiently, which can be wrapped within a relational generator tsp/3 to be
exploited by a Prolog solver. Generator tsp/3 should work as follows:

1. whenever the Prolog solver encounters a tsp(Cities, Circuit, Cost) sub-
goal, it triggers the generator via a request containing a snapshot of the
current KB and the actual values of Cities, Circuit, and Cost;

2. the generator reads (i) the map graph from the KB snapshot, and (i) the
cities from the actual value of Cities;

3. the generator generates the stream of all the possible subsets of C and selects
the ones unifying with the actual value of Cities, thus: if Cities is bound to
a particular sub-set of cities, then the stream has just one element, otherwise
it may have several ones;

4. for each sub-set of cities in the stream, the generator triggers ACME TSP
and computes the corresponding TSP solution, if any;

5. every time it is triggered, ACME TSP computes zero or more solutions for
the TSP and returns them to the generator;

6. for each TSP solution of each selected instantiation of Cities, the generator
yields a response to the solver;

7. each response may either contain a unifier — assigning Cities to the selected
list of cities, Circuit to the minimally-costly circuit for those cities, and Cost
to the cost of that circuit — or a failed substitution—informing the solver the
tsp/3 predicate should fail;

8. the solver can consume the response stream lazily via backtracking.

In other words, generators can be exploited as a means to wrap external data
producers and let the solver consume the data they produce via streams. In Pro-
log, streams of this sort are lazily consumed via ordinary backtracking: the solver
lazily generates a new choice point for each element in the stream and handles
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them as usual. Solvers of different sorts may consume the stream differently—e.g.
buffering (some slice of) it, or, handling each datum concurrently.

3 Solvers as Streams Prosumers via State Machine

In order to design a Prolog solver supporting our notion of generator, we enhance
the Prolog state machine proposed in [13] with the capability of lazily consuming
streams of data coming from either a generator or the KB (fig. . In particular,
we change how the state machine manages the resolution of (sub-)goals, by sup-
porting the selection of a generator as a means to provide one or more solutions
for (sub-)goals, other than the ordinary selection of rules from the KB.

The state machine in fig. [3| stems from the acknowledgement that a Prolog
solver may solve a (sub-)goal by either selecting a generator or a number of logic
rules from the KB. In both cases, a stream of data must be lazily consumed by
the solver—either carrying generator responses or clauses from the KB.

Whenever a stream of data needs to be processed, there are essentially two
major phases: the opening of the stream — where a channel between the stream
producer and its consumer is created —, and the consumption of the stream—
where items from the stream are sequentially processed. To support both phases,
two more locations are included — namely Generator Selection and Generator Exe-
cution — respectively aimed at triggering a generator and consuming the response
stream it provides. Furthermore, to support a stream-oriented interaction among
the solver and its KB, we model rule management as well through two locations,
namely Generator Selection and Generator Execution, respectively aimed at query-
ing the KB, and consuming the rule stream it provides.

All the other aspects are handled in the same way as in [I3]. Thus, state
machine execution is triggered whenever a user submits a query to the solver:
when this is the case, execution starts from the Goal Selection location. Then, it
may go through any location until it eventually reaches some final one (End or

Back
tracking

‘
Response Stream
{7 N
%Response » ..y —— »
,,,,,,,,,, !

Generator @
Selection

;,
!
|
|
!
7777777777777777
Rule
Selection
Goal Y4 Rule
Execution

state transition

,,,,,,, dataflow ___ >

Selection

N\ A

Fig. 3: Handling generators with enhanced Prolog state machine
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Halt), where a new solution is yielded—which the user can eventually consume.
Once a solution is consumed, the user can either submit a new query or ask
for the next solution. In the former case, the automaton is reset to the Goal
Selection location. Conversely, the latter case is only possible if the last solution
was provided by the End location. In that case, the automaton backtracks and
looks for the next solution. This may involve stepping through Backtracking,
then moving back into the Generator (resp. Rule) Execution, in order to consume
one more element from some previously-opened response (resp. caluse) stream.

Overall, our state machine affects the operation of a Prolog solver as follows:

—_

. [Generator Selection] whenever a new sub-goal is selected, the solver looks for
a generator whose signature matches the sub-goal one;

2. [Generator Execution] if some are found, the solver considers the first response
in the stream as a solution to the goal, and generates choice points for
subsequent responses;

3. [Rule Selection] otherwise, if no generator is selected for the current sub-goal,
some rule is looked for instead, whose head unifies with the sub-goal;

4. [Rule Execution] if any such rule is found, resolution can proceed by address-
ing the rule’s body as the next goal to be proved;

5. [Backtracking] otherwise, if no rule is found, the sub-goal is considered failed

and resolution must backtrack.

Location Exception completes the picture by intercepting exceptions — possibly
thrown by generators as part of some response of theirs —, via the standard
catch/3 predicate.

Ordinary Prolog built-in primitives naturally fit the picture as they are re-
interpreted as generators by solvers. For instance, the is/2 predicate can be
considered a functional generator accepting a variable and an expression and
returning a single response assigning the variable to the value attained by re-
ducing the expression — if possible — or an exception—in case the expression
cannot be reduced. Conversely, the member/2 predicate can be considered as a
relational generator, enumerating all the possible items in a list. Accordingly,
the aforementioned Generator Selection location is where built-in primitives are
selected for execution in place of rules from the KB.

4 Backatrackable Predicates as Streams in 2P-Kt

In order to demonstrate the feasibility of our approach, we propose a case study
based on 2P-KT. 2P-KT [7] is a Kotlin-based ecosystem for LP, including gen-
eral API for stream-oriented logic solvers of any sort. Regardless of the particular
logic, inference rule, or search strategy of choice, a logic solver is modelled in
2P-KT as a prosumer of streams: it produces output streams of solutions and
consumes input streams generated by generators. A Prolog solver implementa-
tion is available as well, leveraging the state-machine-based design presented in
section 3} Furthermore, 2P-KT involves an API for writing generators in Kotlin,
by blending an imperative, object-oriented, and functional programming style.
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In this section, we first illustrate briefly the portion of the 2P-KT API involv-
ing solvers and generators, then we discuss an example generator implementing

the TSP example from

4.1 2P-Kt Solvers and Generators API

Figure[d provides an overview of the 2P-KT APL Here we focus on the resolution-
related portion of this API (cf. [9] for further details). There, logic solvers are
modelled as instances of the Solver type defined as follows:

interface Solver {
val staticKb: Theory
val dynamicKb: Theory
val libraries: Libraries
fun solve(goal: Struct): Sequence<Solution>

}

Essentially, a logic solver is any entity exposing a method solve which accepts
a logic Structure — i.e., a particular case of logic Term in the 2P-KT type
system — as the input goal, and produces a Sequence — i.e., a lazy stream in the
Kotlin type system — of logic Solutions as output. Furthermore, 2P-KT requires
each logic solver to be composed by at least three more entities, namely: (i) a
staticKb and (i) a dynamicKb, both of type Theory — that is, an ordered
and indexed container of logic clauses, retrievable via unification —, and (%i) a
libraries container of type Libraries—which, within the scope of this section,
is essentially an implementation of the structure indexing generators.

Each Solution in 2P-KT may be of any of three sorts, namely Yes, No,
and Halt, representing the positive, negative, and exceptional case, respectively.
All solutions carry the original query they are answering to, other than the
Substitution they are answering through. So for instance, objects of type
Solution.Yes always contain an object of type Substitution.Unifier, whereas
other sorts of solutions always contain an object of type Substitution.Fail.
Similarly, objects of type Solution.Halt carry the uncaught exception which
interrupted the resolution process.

Generators are modelled in 2P-KT as functions of the type:

(typeslias Generator = (Request) -> Sequence<Response> J

/
_

Fig. 4: Overview on the public API of 2P-KT
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i.e., functions accepting a Request as input and returning a Sequence of Responses
as output. There, Request is a container of all the information needed at runtime
to produce a sequence of Responses:

class Request (
val context: ExecutionContext,
val signature: Signature,
val arguments: List<Term>

fun solve(subQuery: Struct): Sequence<Solution>

fun replySuccess(): Response

fun replyFail(): Response

fun replyWith(substition: Substitution): Response

fun replyException(exception: TuPrologRuntimeException): Response

These include: (i) a snapshot of ExecutionContext at invocation time — in
turn including a snapshot of the solver’s staticKb and dynamicKb —, (i) the
Signature of the invoked generator, and (i) the List of Terms storing actual
arguments provided to the generator upon invocation. Furthermore, each in-
stance of Request exposes a bunch of methods — namely, the many reply* ()
ones —, aimed at generating a new Response for that particular Request. As
Responses are mere containers of Solutions, there are many variants of the
reply*() methods, each one aimed at generating a given sort of responses —
e.g. responses carrying positive/negative/exceptional solutions — for the sub-
goal that triggered the generator. Finally, each request supports the spawning of
an inner resolution process via its solve(...) method. This method creates a
novel sub-solver through which generator implementors can resolve sub-queries
as part of some generator execution.
Thanks to this design, any Kotlin method of the form:

fun method(request: Request): Sequence<Response> = sequence {
request.arguments[i]l // read the i-th actual argument
request.context.staticKb[h] // read clauses in KB whose head matches h
solve(goal) // perform sub-queries

val substitution = (arg0 mguWith value0) + (argl mguWith valuel) + ...

yield(request.replyWith(substitution))
// or
yield(request.replyFail())
// or
yield(request.reply*(...))
¥

\S

can be considered a generator in the eyes of a logic solver. This leverages a
particular feature of Kotlin, namely the sequence { ... } blocks, which let
developers write stream generators by blending the imperative and functional
programming styles. This is possible because of the yield(value) method which
users may call inside sequence { ... } blocks in place of return value to
provide values to the stream.

So, for instance, to implement the predicate natural/1 — which holds true
for all natural numbers —, one may write the following generator:

fun natural(request: Request): Sequence<Response> = sequence {
var n = 1
while (true) {
yield(Integer.of (n))
n++
}
.map {
request.replyWith(request.arguments [0] mguWith it)

-
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A Prolog solver would then treat such a generator as a backtrackable predicate.
Thus, in Prolog, one may use the goal natural (X) to enumerate all the natural
numbers.

Summarising, 2P-KT generators API supports the creation of backtrackable
Prolog predicates out of lazy data streams.

4.2 Travelling Salesman Problem in 2P-Kt

The real potential of generators is revealed when they are exploited by solvers to
manage input data streams from the external world. There, the external world
may be any source of data, there including other solvers, possibly of different
nature. For example, generators may be exploited to let a Prolog solver call a
TSP solver to efficiently compute solutions for TSP instances, as discussed in
section 241 Accordingly, here we demonstrate how a generator of such a sort
may be realised through 2P-KT.

In [8] we provide a GitHub repository hosting the source code of a 2P-KT
generator leveraging Google OR-Tools [12] to efficiently solve TSP instances.
Google OR-Tools is a C++ library proving many constraint programming and
operative research tools — there including routing-related facilities —, and some
JVM bindings which let us exploit such tools in Kotlin.

Accordingly, our repository includes some scripts aimed at automating the
compilation and execution of a simple demo involving a command-line TSP-
enabled Prolog interpreter. Following the discussion from section|2.4] such a Pro-
log interpreter exposes a tsp/3 predicate aimed at enumerating the minimally-
costly circuits for any given set of cities, provided that the interpreter’s KB
contains several path/3 facts describing the connections among those cities. As
an ordinary Prolog interpreter, such facts may be either consulted from a .pl
file or dynamically asserted via assert/1.

The actual operational behaviour of predicate tsp/3 is governed by the Tsp
generator whose source code (stub) is shown in fig. 5| (cf. [§] for full source
code). The Tsp generator is a singleton object of type TernaryRelation — i.e.,
a particular sort of Generator, tailored on ternary predicates —, whose main
behaviour is encapsulated within the computeAll method.

The Tsp object is also endowed with a method — namely, tsp — which returns
a sequence of circuits and costs for any given list of cities provided as input. Such
method assumes each input city to be represented by a logic term — in particular,
a constant —, and outputs circuits represented as logic lists of cities represented in
the same way. Behind the scenes, the tsp interacts both the Prolog interpreter’s
KB to read distances among cities, and a Google OR-Tool solver for computing
all possible solution to a particular TSP instance.

The computeAll handles the situation where the Prolog interpreter meets a
(sub-)goal of the form tsp(Cities, Circuit, Cost)—where all variables may
be partially or totally uninstantiated. The method operation can then be de-
scribed as a pipeline of lazy operations applied to the actual arguments of tsp/3,
which we refer as fst, snd, and trd within the method. Accordingly, the method
firstly performs a sub-query aimed at computing the set of all cities currently
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contained into the KB (cf. variable allCities in fig. . The sub-query is a Pro-
log goal of the form path(_, _, _), whose solutions are all eagerly consumed
and their first and second arguments — which are assumed to be city names —
are merged into a set, to remove duplicates. Then, all possible permutations of
all possible subsets of allCities are lazily generated. However, only the subsets
of cities that unify with fst are actually selected (this may be just one set of
cities if f£st refers to a fully instantiated set of cities) for the next steps of the
computation. Then, for all selected sets of cities, all possible solutions to the
corresponding TSP instance are computed. Finally, each possible circuit (resp.
cost) computed for each TSP instance is unified with snd (resp. trd). Failed
unifications are of course dropped, while the successful ones are converted into
responses of the tsp/3 generator.

It is worth to highlight that the whole pipeline is lazy. This implies that even
once the first TSP solution has been presented to the user, the other ones are
still to be computed.

5 Conclusion and Future Work

In this paper we address the issue of stream processing in logic programming.
In particular, we discuss how logic solvers can be naturally conceived as lazy
prosumers of data streams as they (i) lazily produce data streams thanks to their
interactive nature, (ii) lazily consume data streams as part of their resolution
process—e.g. when they access knowledge bases. Furthermore, we show how
logic solvers can support the processing of input data stream via the notion
of predicates as generators, which we introduce in this paper. Summarising,
generators are reactive computational units which logic solvers may trigger so

import it.unibo.tuprolog.core.List as LogicList

object Tsp : TernaryRelation<ExecutionContext>("tsp") {
init { com.google.ortools.Loader.loadNativeLibraries() }

private fun Request<ExecutionContext>.tsp(cities: List<Term>): Sequence<Pair<LogicList, Integer>> { ... }
// other utility methods

override fun Request<ExecutionContext>.computeAll(fst: Term, snd: Term, trd: Term): Sequence<Response> {
val allCities = solve(Struct.template("path", 3)
.filterIsInstance<Solution.Yes>()
.map { it.solvedQuery }
.flatMap { sequenceOf (it[0], it([1]) }
.toSet ()

return allCities
.subsets ()
.flatMap { it.permutations() }
.map { it to (Set.of(it) mguWith fst) }
.filter { (cities, substitution) -> cities.isNotEmpty() && substitution is Unifier }
.flatMap { (cities, substitution) -> tsp(cities).map { it.addLeft (substitution) } }
.map { (substitution, circuit, cost) -> substitution + (snd mguWith circuit) + (trd mguWith cost) }
.filterIsInstance<Unifier>()
.map { replySuccess(it) }

Fig.5: 2P-KT generator implementing the tsp/3 predicate
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as to receive data streams from the external world. This may be useful, for
instance, to let a solver delegate some part of its resolution process to some
external entity—assuming that it is optimised to the purpose.

To demonstrate the feasibility of our approach in the specific (and techni-
cally most relevant) case of Prolog, we propose a generator-enabled modelling
of Prolog solvers as state machines, formalising the lazy consumption of streams
via backtracking. The proposed formalisation preserves the standard operation
of Prolog and requires no modification to the language, while enabling Prolog
solvers to process data streams.

Finally, we discuss the use case of 2P-KT [7], a Kotlin-based technology for
LP including an implementation of Prolog solvers relying on our state-machine-
based formalisation. We then exploit 2P-KT to show how generators can be used
to bridge different sorts of solvers together via a few lines of Kotlin code.

In our perspective, this work represents one further step towards the prac-
tical exploitation of LP — and, in particular, Prolog — as a general means for
stream processing. Notably, our contribution presents some similarities with
other works [I5JI4]. In particular, similarly to [I5], we focus on letting Pro-
log manipulate streams of data; while, similarly to [14], we provide a mechanism
to let logic solvers delegate computations to extenal entities. However, differ-
ently from [15], we require no variation to the syntax, functioning, or libraries
of Prolog; while, unlike [14], we focus on Prolog rather than ASP.

A number of issues remain uncovered in this work, and will be the subject
of our future research. Among the many, the most relevant issues concern time
and side effects. In particular we plan to explore the temporal dimension in
LP-based stream processing, by providing for instance some means to support
time-dependent or time-limited data streams. Similarly, we would like to explore
the intricacies related to the processing of data streams which may affect the
internal state of a logic solver — e.g. by affecting the KB — in a predictable way.

Acknowledgments

Andrea Omicini has been supported by the H2020 Project “AI4EU” (G.A.
825619). R. Calegari has been supported by the H2020 ERC Project “Com-
puLaw” (G.A. 833647).

References

1. Anicic, D., Fodor, P., Rudolph, S., Stithmer, R., Stojanovic, N., Studer, R.: A
rule-based language for complex event processing and reasoning. In: Hitzler, P.,
Lukasiewicz, T. (eds.) Web Reasoning and Rule Systems - Fourth International
Conference, RR 2010, Bressanone/Brixen, Italy, September 22-24, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6333, pp. 42-57. Springer (2010).
https://doi.org/10.1007/978-3-642-15918-3_5

2. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Real-time complex event recog-
nition and reasoning—a logic programming approach. Applied Artifical Intelligence
26(1-2), 6-57 (2012). https://doi.org/10.1080/08839514.2012.636616


https://doi.org/10.1007/978-3-642-15918-3_5
https://doi.org/10.1080/08839514.2012.636616

14

10.

11.

12.
13.

14.

15.

Ciatto, Calegari, and Omicini

. Beck, H., Dao-Tran, M., Eiter, T.: Lars: A logic-based framework for

analytic reasoning over streams. Artificial Intelligence 261, 16-70 (2018).
https://doi.org/10.1016/j.artint.2018.04.003

. Beck, H., Eiter, T., Folie, C.: Ticker: A system for incremental ASP-based stream

reasoning. Theory and Practice of Logic Programming 17(5-6), 744-763 (2017).
https://doi.org/10.1017/S1471068417000370

. Calegari, R., Ciatto, G., Mariani, S., Denti, E., Omicini, A.: LPaaS as micro-

intelligence: Enhancing IoT with symbolic reasoning. Big Data and Cognitive Com-
puting 2(3) (2018). https://doi.org/10.3390/bdcc2030023

. Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-

symbolic techniques for XAI: A survey. Intelligenza Artificiale 14(1), 7-32 (2020).
https://doi.org/10.3233 /IA-190036

. Ciatto, G.: 2P-KT, https://github.com/tuProlog/2p-kt
. Ciatto, G.: Travelling salesman problem (TSP) in 2p-KT, https://github.com/tuP

rolog/ortools-tsp-example

. Ciatto, G., Calegari, R., Siboni, E., Denti, E., Omicini, A.: 2P-KT: logic pro-

gramming with objects & functions in Kotlin. In: Calegari, R., Ciatto, G., Denti,
E., Omicini, A., Sartor, G. (eds.) WOA 2020 — 21th Workshop “From Ob-
jects to Agents”. CEUR Workshop Proceedings, vol. 2706, pp. 219-236. Sun
SITE Central Europe, RWTH Aachen University, Aachen, Germany (Oct 2020),
http: //ceur-ws.org/Vol-2706 /paper14.pdf

Colmerauer, A., Roussel, P.: The birth of prolog. In: Lee, J.A.N., Sammet, J.E.
(eds.) History of Programming Languages Conference (HOPL-II). pp. 37-52. ACM
(Apr 1993). https://doi.org/10.1145/154766.155362

Eiter, T., Tanni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Kaelbling,
L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 -
August 5, 2005. pp. 90-96. Professional Book Center (2005), http://ijcai.org/Proc
eedings /05 /Papers/1353.pdf

Perron, L., Furnon, V.: OR-tools, |https://developers.google.com /optimization/
Piancastelli, G., Benini, A., Omicini, A., Ricci, A.: The architecture and design of
a malleable object-oriented Prolog engine. In: Wainwright, R.L., Haddad, H.M.,
Menezes, R., Viroli, M. (eds.) 23rd ACM Symposium on Applied Computing (SAC
2008). vol. 1, pp. 191-197. ACM, Fortaleza, Ceard, Brazil (16-20 Mar 2008).
https://doi.org/10.1145/1363686.1363739

Redl, C.: The DLVHEX system for knowledge representation: recent advances (sys-
tem description). Theory and Practice of Logic Programming 16(5-6), 866-883
(2016). |https://doi.org/10.1017/51471068416000211

Tarau, P., Wielemaker, J., Schrijvers, T.: Lazy stream programming in Prolog.
Electronic Proceedings in Theoretical Computer Science 306, 224-237 (Sep 2019).
https://doi.org/10.4204/eptcs.306.26


https://doi.org/10.1016/j.artint.2018.04.003
https://doi.org/10.1017/S1471068417000370
https://doi.org/10.3390/bdcc2030023
https://doi.org/10.3233/IA-190036
https://github.com/tuProlog/2p-kt
https://github.com/tuProlog/ortools-tsp-example
https://github.com/tuProlog/ortools-tsp-example
http://ceur-ws.org/Vol-2706/paper14.pdf
https://doi.org/10.1145/154766.155362
http://ijcai.org/Proceedings/05/Papers/1353.pdf
http://ijcai.org/Proceedings/05/Papers/1353.pdf
https://developers.google.com/optimization/
https://doi.org/10.1145/1363686.1363739
https://doi.org/10.1017/S1471068416000211
https://doi.org/10.4204/eptcs.306.26

	Copertina_postprint_IRIS_UNIBO
	jelia-2021-2pkt
	 Lazy Stream Manipulation in Prolog via Backtracking: The Case of 2P-Kt 


