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Abstract

A well known feature of DSGE models is that their dynamic structure is
generally not consistent with agents’ forecasts when the latter are computed
from ‘unrestricted’ models. The expectations correction approach tries to
combine the structural form of DSGE models with the best fitting statistical
model for the data, taken the lag structure from dynamically more involved
state space models. In doing so, the selection of the lag structure of the state
space specification is of key importance in this framework. The problem of
lag selection in state space models is quite an open issue and bootstrap
techniques are shown to be very useful in small samples. To evaluate the
empirical performances of our approach, a Monte Carlo simulation study
and an empirical illustration based on U.S. quarterly data are provided.
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1. Introduction

In recent years, there has been a growing interest on the part of central banks
and academia in the use of Dynamic Stochastic General Equilibrium (DSGE)
models in policy analysis and forecasting. Henry and Pagan (2004) and
An and Schorfheide (2007), among many others, remark that these models
have a limited time series performance and are able to capture only stylized
aspects of the business cycle. As is known log-linearized DSGE models can
be represented in the ABCD form:

xt = A (θ)xt−1 +B (θ) εt, (1)

yt = C (θ)xt−1 +D (θ) εt, (2)

where xt is the vector of state variables, yt is the vector of observable variables
and εt is the vector of structural shocks. The matrices A (θ) , B (θ) , C (θ)
and D (θ) are of comparable dimensions and are functions of the structural
parameters collected in the vector θ. In general, the state space model in (1)-
(2) will give rise to VARMA-type representations of yt, see, e.g. Hannan and
Deistler (1988) and more recently Morris (2016,2017). Instead, for the analy-
sis of the cases in which yt can be given a fundamental and finite-order VAR
representation when the D(θ) matrix in (2) is square, we refer to Fernández-
Villaverde et al. (2007), Ravenna (2007), Franchi and Vidotto (2013) and
Franchi and Paruolo (2015). The approach we propose in this paper does
not need a finite-order VAR representation and it can be applied also to the
DSGE models with a VARMA-type representation. More generally, From
the ABCD representation in (1)-(2), the maximum likelihood estimation of
θ is based on the innovation form:

xt+1|t = A (θ)xt|t−1 +Kt (θ)ut,

yt = Hxt|t−1 + ut,

where H (θ) = C (θ)A (θ)−1, Kt (θ) is the Kalman gain and the innovations ut
are assumed to be Gaussian. What typically happens in practice is that, given
the maximum likelihood Kalman filter based estimate of θ, θ̂, the innovation
residuals ût = yt−H(θ̂)x̂t|t−1 are found to be autocorrelated. As an example,
Figure 1 reports the autocorrelation functions of the innovation terms ût
obtained from the estimation of the DSGE model of An and Schofrfheide
(2007). The significant autocorrelations one finds in the innovation residuals
imply that the estimated DSGE model is not able to fully capture the actual
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dynamic structure present in the data. This issue of omitted dynamics can be
a possible cause of rejection of the theoretical model when it is compared with
an ‘unrestricted’ state space model. DSGE models imply a set of nonlinear
restrictions on the state space representation they generate, denoted Cross
Equation Restrictions (CER), which are the natural metric through which
these models should be empirically evaluated (Hansen, 2004; Hansen and
Sargent, 1980; 1981). The CER can be divided into two different groups:
(i) nonlinear cross restrictions, which map the structural parameters into
the reduced form parameters; (ii) restrictions on the lag structure of the
variables.

This problem is well known in the literature and different solutions have
been recently proposed. Lubik and Schorfheide (2004) suggest specifying a
theoretically micro-founded model with less restrictive dynamic, which pos-
sibly captures all frictions. This adjustment, however, is not always possible.
Curdia and Reis (2010) and Smets and Wouters (2007) suggest using a richer
dynamic specification, like ARMA-type models, for the disturbances of the
DSGE model. Another solution is the DSGE-VAR approach introduced by
Del Negro et al. (2007), which attempts to fill the gap between theory and
the data by specifying a Bayesian Vector AutoRegression (BVAR) model
whose priors are centred on the estimated DSGE model. The idea of the
authors is to evaluate whether the posterior estimates of the BVAR are far
from the priors. Consolo, Favero and Paccagnini (2009) extend the idea of
Del Negro et al. (2007) by introducing factor analysis and proposing the
DSGE-FAVAR model. Another solution recently proposed in the literature
is the Expectations Correction approach [DSGEExC , hereafter] proposed by
Angelini and Fanelli (2016). The aim of DSGEExC is to connect the theo-
retical model with the information provided by the data. In the DSGEExC ,
the dynamics of the best fitting statistical model for the data, which is a
state space model, is used to define a ‘pseudo structural’ form which has the
same dynamic structure as the agents’ forecasting model. The main idea of
the DSGEExC is to derive a data-driven process to determine the lag struc-
ture of the DSGE model without assuming an ARMA-type structure for the
disturbances.

In this paper we propose an exhaustive analysis of the empirical perfor-
mance of the DSGEExC approach by focusing our attention on the model
selection issue when the reduced form solution of the DSGE is a state space
model which involves more lags than suggested by the theoretical model. The
model selection issue has been much analysed in the literature and many in-
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formation criteria have been proposed over the last years, after the ground-
breaking works of Akaike (1973; 1974). The Akaike Information Criterion
(AIC) is probably the most widely used tool for time series model selection,
even in the context of state space models and even though many competitors
are nowadays available. Among these criteria we have the Hannan and Quinn
Information Criterion (HQC, Hannan and Quinn, 1979) and the Bayesian
Information Criterion (BIC, Schwarz, 1978). Exploiting the work of Stoffer
and Wall (1991), who first applied bootstrap techniques to state space mod-
els, a couple of papers have addressed the issue of model selection in state
space models using bootstrap techniques. Among these papers we underline
the work of Cavanaugh and Shumway (1997), who derive a completely new
bootstrap-based AIC criterion called AICb.

This paper is organized as follows. Section 2.1 introduces the main ideas
by describing the Expectations Correction approach for a univariate exam-
ple. Section 2.2 generalises this idea to the case of DSGE models. Section 3
proposes the bootstrap algorithm to specify the DSGEExC model. Section 4
proposes a Monte Carlo simulation study based on an univariate case and
Section 5 illustrates how our approach works for the DSGE model of An and
Schorfheide (2007) based on U.S. quarterly data. Section 6 concludes the
paper.

2. Dynamic Misspecification and Expectations

Correction

2.1. Univariate example

In this section we discuss a simple example which introduces the concept
of expectations correction. Assuming that the economy is described by the
univariate structural model:

zt = γfEtzt+1 + γbzt−1 + ωt, ωt ∼ WN(0, 1), (3)

where γf and γb are the structural parameters, zt is a scalar unobservable
variable, Etzt+1 = E(zt+1 | Ft) is the expectation operator conditional on
the information set Ft and ωt is a white noise process with variance 1. Given
the condition γf + γb < 1, the unique stable rational expectations solution of
the structural model in (3) is given by:

zt = ãzt−1 + g̃ωt, (4)
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where ã = a (θ) and g̃ = g (θ) are the reduced form parameters which de-
pend nonlinearly on the vector of structural parameter θ = (γf , γb)

′. In this
setup, the mapping between the parameters of model (4) and the structural
parameters is given by:

γf ã
2 − ã+ γb = 0, (5)

(1− γf ã)−1 = g̃,

where ã is the real stable solution (i.e. ã ∈ (0, 1)) of (5). To make this simple
example similar to a real case, it is assumed that zt is not directly observable,
so we need the following measurement equation:

yt = zt + υt, υt ∼ WN(0, 1). (6)

where yt is an observable scalar variable and the measurement error υt is a
white noise process with variance 1 and independent of ωt. The system given
by (4) and (6) is a state space model which can be easily cast into ABCD form
as in (1)-(2) with xt = zt, A(θ) = ã, B(θ) = (g̃, 0), C(θ) = ã, D(θ) = (g̃, 1)
and εt = (ωt, υt)

′. The problem of dynamic misspecification occurs when the
actual autocorrelation structure of y1, y2, ..., yT is not consistent with that
implied in system (4) and (6), i.e. when the number of lags in the state
equation (4) is insufficient for capturing the whole dynamics present in the
data. Assume that the autocorrelation structure of the data is well described
by the following state space model:

zt = a1zt−1 + a2zt−1 + εt, εt ∼ WN(0, σ2
ε ), (7)

yt = zt + υt, υt ∼ WN(0, 1), (8)

where the coefficient related to the second lag a2 6= 0 and εt is a white noise
process with variance σ2

ε . The state space model in (7)-(8) can be cast into
ABCD form as in (1)-(2) by putting:

xt =

(
zt
zt−1

)
, A =

(
a1 a2
1 0

)
, B =

(
1
0

)
,

εt =

(
εt
υt

)
, C =

(
a1 a2

)
, D =

(
1 1

)
.

Compared to the reduced form in (4) and (6), the statistical model in (7)-
(8) involves an additional lag of the state variable zt. The state space model
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in (7)-(8) can be considered as the reduced form of the structural model in
(3) if the following restrictions holds:

a1 = ã, (9)

σ2
ε = g̃2,

a2 = 0. (10)

It is now clear that the restriction in (10) conflicts with the autocorrelation
structure of the data captured by the system (7)-(8) based on a2 6= 0. In
a situation like this, if the data generating process belongs to the class of
models in (7)-(8), and the econometrician estimates the structural model in
(3), the estimator of the structural parameters θ is distorted because of the
omission of an important regressor (the second lag of the state variable zt).
The zero restrictions in (10) are implicit, and very often, practitioners are not
aware of their role and importance in the empirical performance of NK-DSGE
models. Indeed the zero restrictions in (10) can be a possible cause of the
statistical rejection of the DSGE model. With our approach, relaxing these
restrictions, it is possible to reduce the empirical rejection of the theoretical
model. Testing the validity of an NK-DSGE when the restrictions in (10)
conflict with the actual autocorrelation structure of the data might distort
the overall evaluation process.

The main method adopted in the literature to fix this problem is to con-
sider a different process for the error term ωt in (3), with a richer dynamic
structure. For instance, if we assume that:

ωt = ρωt−1 + ζt, ζt ∼ WN(0, 1),

we implicitly augment the dynamics of the reduced form solution (Crudia and
Reis, 2010; Smets and Wouters, 2007). Alternatively, Zanetti (2008) suggests
adding measurement errors to (6) in order to capture all the comovements in
the data. The expectations correction approach starts from a different point
of view. We assume that the state space model in (7)-(8) corresponds to
the agents’ forecast model. Starting from this assumption, from the original
structural model in (3), we define a ‘pseudo structural’ form which amends
the theoretical model with the ‘correct’ number of lags, according to the
agents’ forecast model. This leads to the following ‘pseudo structural’ model:

zt = γfEtzt+1 + γbzt−1 + γbbzt−2 + ω∗t , ω∗t ∼ WN(0, 1), (11)
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where γbb is an auxiliary parameter whose role is to reconcile the agents’
expectations with the theoretical model. The additional term γbbzt−2 can be
interpreted as the expectations correction term and its role is to guarantee
that the reduced form solution associated with the ‘pseudo structural’ model
in (11) has the same representation as the agents’ forecast model in (7)-(8).
Indeed, the reduced form solution of the ‘pseudo structural’ model in (11) is
given by the state space model:

zt = ã1zt−1 + ã2zt−2 + ε∗t , ε∗t ∼ WN(0, σ2
ε∗t

), (12)

yt = zt + υt, υt ∼ WN(0, 1), (13)

where the reduced form parameters are connected to θ∗ = (γg, γb, γbb)
′ through

the following set of restrictions:

(1− γf ã1)ã1 = (γf ã2 + γb), (14)

(1− γf ã1)ã2 = γbb,

(1− γf ã1)−2 = σ2
ε∗t
. (15)

Comparing this set of restrictions to that in (9)-(10), we can observe that no
zero restrictions that reduce the lag order arise. In this way we have amended
the dynamic structure of the system without changing the autocorrelation
structure of the disturbances.

2.2. Expectations Correction in DSGE models

In this section we generalize the expectations correction idea to the case
of DSGE models. Let Zt = (Z1,t, Z2,t, · · · , Zn,t)′ be an nz × 1 vector of
endogenous variables. Assume the economy is described by the following
structural model:

Γ0Zt = ΓfEtZt+1 + ΓbZt−1 + Πωt, (16)

where Γi = Γi(θ), i ∈ {0, b, f} are nz×nz and Π is a nz×nω, whose elements
depend on the nθ × 1 vector of structural parameters θ, ωt is a nω × 1 vector
of disturbances. The matrix Γ0 is assumed to be non-singular, while Γf and
Γb can be singular and Γb possibly zero. As common in the literature, we
complete the structural system specifying an autoregressive process for the
disturbances ωt in (16):

ωt = Rωt−1 + εt, (17)
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where R is a nω × nω diagonal stable matrix (i.e. with its eigenvalues inside
the unit disk), and εt is a fundamental white noise term with covariance
matrix Σε.

Assuming that there exist an unique stable solution of the system, one
way to express the reduced form solution associated with the system (16)-(17)
is: (

Zt
Zt−1

)
=

(
Φ̃1 Φ̃2

Inz 0nz×nz

)(
Zt−1
Zt−2

)
+

(
Ψ̃

0nz×nz

)
εt, (18)

where Φ̃1 = Φ1(θ), Φ̃2 = Φ2(θ) and Ψ̃ = Ψ(θ) depend nonlinearly on θ
through the CER:(

Γ0 + Π̌Γf
)

Φ1 − Γf

(
Φ̃2

1 + Φ̃2

)
+ Γ̌b = 0nz×nz ,(

Γ0 + Π̌Γf
)

Φ̃2 − Γf

(
Φ̃1Φ̃2

)
− Π̌Γb = 0nz×nz ,(

Π̌−1
(

Γ0 − Γf Φ̃1

))−1
= Ψ̃,

where Π̌ = Π−1RΠ and Γ̌b = Γb + Π̌Γ0. It can be proved (Castelnuovo
and Fanelli, 2015) that the stability of the matrix W (θ) = (Γ0 + Π̌Γf −
Γf Θ̃1)

−1Γf is sufficient for uniqueness (determinacy). The solution is not
unique (i.e. there are multiple stable solutions) if A(θ) has eigenvalues inside
the unit disk but the matrix W (θ) has eigenvalues outside the unit disk,
see Binder and Pesaran (1995), section 2.3. For more details about the
derivation of the CER, see B̊ardsen and Fanelli (2015) and Castelnuovo and
Fanelli (2015). Assuming that the vector of endogenous variables Zt is not
completely observable, the measurement system which connects Zt to the
observable variables yt = (y1,t, y2,t, ..., yny ,t)

′, can be written as:

yt = Hxt + V υt, (19)

where the ny×2nz matrix H and the ny×nυ matrix V are selection matrices
and the nυ × 1 vector υt, nυ ≤ ny, is the measurement error with covariance
matrix Συ. The link between (18)-(19) and the state space model in (1)-(2)
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is straightforward:

xt =

(
Zt
Zt−1

)
, A(θ) =

(
Φ̃1 Φ̃2

Inz 0nz×nz

)
, (20)

B(θ) =

(
Ψ̃ 0nz×nυ

0nz×nz 0nz×nυ

)
, C(θ) = HA(θ),

εt =

(
εt
υt

)
, D(θ) =

(
HB(θ) V

)
. (21)

The ABCD solution described by the matrices in (20)-(21) is based on two
lags of the endogenous variables. This can be inconsistent with the dynamics
that characterise the observable data. As we have already stressed in the
univariate example, the problem of omitted dynamics can affect the inference.
Assume that the number of lags necessary to catch the actual dynamics in
the observable data is kop > 2, which means that the agents’ forecast model
belongs to the class of state space models with kop lags. In this case the
original structural model in (16)-(17) is too simple to describe the dynamics
of the economy. Hence, to fully capture the actual dynamics, we construct a
‘pseudo structural’ model defined by:

Γ0Zt = ΓfEtZt+1 + (Γb + Γ̇b)Zt−1 +
kop−1∑
j=2

ΥjZt−jI{kop≥3} + Πεt, (22)

εt = Rεt−1 + εt, εt ∼ WN (0,Σε) , (23)

where I{·} is the indicator function and the nz×nz matrices Υj, j = 2, ..., kop−
1 contain the expectations correction terms. Note that the nz×nz matrix Γ̇b is
another expectations correction matrix which contains parameters associated
with the first lag of Zt which are missing in the original structural model.
The vector of the parameters associated to the ‘pseudo structural’ model in
(22)-(23) is θ∗ = (θ′, ζ ′)′, where ζ ′ is the vector containing the expectations
correction parameters present in the matrices Υj, j = 2, ..., kop − 1 and Γ̇b.
Together with the measurement error in (19), the solution of the ‘pseudo
structural’ model in (22)-(23) is a state space, which can be cast into ABCD
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form:

xt =


Zt
Zt−1

...
Zt−kop+1

 , εt =

(
εt
υt

)
,

A(θ) =


Φ̃1 . . . Φ̃kop−1 Φ̃kop

Inz . . . 0nz×nz 0nz×nz
...

. . .
...

...
0nz×nz . . . Inz 0nz×nz

 , B(θ) =


Ψ̃ 0nz×nυ

0nz×nz 0nz×nυ
...

...
0nz×nz 0nz×nυ

 ,

C(θ) = HA(θ), D(θ) =
(
HB(θ) V

)
,

where H is an ny×kopnz selection matrix and Φ̃1 = Φ1(θ), Φ̃2 = Φ2(θ), ..., Φ̃kop =
Φkop(θ) and Ψ̃ = Ψ(θ) depend non-linearly on θ∗ through the restrictions:(

Γ0 + Π̌Γf
)

Φ̃1 − Γf

(
Φ̃2

1 + Φ̃2

)
+ Γ̌b = 0nz×nz ,(

Γ0 + Π̌Γf
)

Φ̃2 − Γf

(
Φ̃1Φ̃2 + Φ̃3

)
+ Υ2 − Π̌Γbb = 0nz×nz ,(

Γ0 + Π̌Γf
)

Φ̃3 − Γf

(
Φ̃1Φ̃3 + Φ̃4

)
+ Υ3 − Π̌Υ2 = 0nz×nz ,

...(
Γ0 + Π̌Γf

)
Φ̃kop − Γf

(
Φ̃1Φ̃kop

)
− Π̌Υkop−1 = 0nz×nz ,(

Π−1
(

Γ0 − Γf Φ̃1

))−1
= Ψ̃,

where Π̌ = Π−1RΠ, Γ̌b = Γbb + Π̌Γ0 and Γbb = Γb + Γ̇b. For a complete
description of the derivation of the restrictions for the expectations correction
approach, see the supplementary material of Angelini and Fanelli (2016). In
this way, if the agents’ forecast model belongs to the class of state space
models with kop lags, the reduced form solution of the ‘pseudo structural’
model in (22)-(23) is consistent with the dynamics of the data.

3. Optimal lag selection

A key role in this exercise is the determination of k̂op, i.e. the optimal number
of lags to capture the dynamics in the data. In this section we propose the
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complete algorithm used for specifying the ‘pseudo structural’ model in (22)-
(23). Assuming that the solution of the structural model belongs to class of
state space models:

Zt = A1Zt−1 + . . .+ AkZt−k + εt, εt ∼ N (0,Σε) , (24)

yt = Hxt + V υt, (25)

we want to determine the value of kop ∈ {1, 2, . . . , kmax} which best fits the
data. In doing so, we consider different information criteria: the Akaike
Information Criterion (AIC, Akaike, 1973,1974), the Hannan and Quinn In-
formation Criterion (HQC, Hannan and Quinn, 1979), the Bayesian Informa-
tion Criterion (BIC, Schwarz, 1978), and the bootstrap-based AIC criterion
(AICb, Cavanaugh and Shumway, 1997). Once kop has been determined,
we can amend the dynamic structure of the DSGE model with the expecta-
tions correction terms. Following the non-parametric bootstrap proposed by
Stoffer and Wall (1991), our approach can be summarized in the following
steps:

1. Estimate the model in (24)-(25) with k = 1 by using a standard maxi-
mum likelihood Kalman filter approach.

2. Compute the AIC, BIC and HQC criteria

AICk = −2`k (τ̂ |yt) + 2q,

HQCk = −2`k (τ̂ |yt) + 2q log log(T ),

BICk = −2`k (τ̂ |yt) + q log(T ),

where `k (τ̂ |yt) is the maximum value of the log-likelihood function
associated with the system (24)-(25) where the number of lags is k, τ̂
is the q × 1 vector of the parameters, and T is the sample size.

3. Compute the innovation form of the estimated model:

x̂t+1|t = Âx̂t|t−1 + K̂tξ̂t, (26)

yt = Hx̂t|t−1 + ξ̂t, (27)

where

xt =

 Ẑt+1|t
...

Ẑt−k+2|t−k+1

 , Â


Â1 Â2 . . . Âk
Inz 0nz×nz . . . 0nz×nz
...

. . . . . .
...

0nz×nz 0nz×nz Inz 0nz×nz

 ,
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where ξ̂t is the vector of innovation residuals with estimated covariance
matrix Σξ,t and K̂t is the Kalman gain.

4. Given the innovation residuals ξ̂t = yt−Hx̂t|t−1, derive the correspond-
ing standardized innovations:

ξ̄t = Σ
−1/2
ξ,t ξ̂t,

5. Sample with replacement, T times, from ξ̄1, ξ̄2, . . . , ξ̄T to obtain the
bootstrap sample of standardized innovations ξ̄∗1 , ξ̄

∗
2 , . . . , ξ̄

∗
T .

6. Generate the bootstrap sample y∗1, y
∗
2, . . . , y

∗
T by solving, recursively, for

t = 1, . . . , T , the innovation form in (26)-(27):

x̂∗t+1|t = Âx̂∗t|t−1 + K̂tΣ
−1/2
ξ,t ξ̄∗t ,

ŷ∗t = Hx̂∗t|t−1 + Σ
−1/2
ξ,t ξ̄∗t ,

with the initial condition x̂∗1|0 = x̂1|0 fixed as in the data.

7. Estimate the model in (24)-(25) using y∗t instead of yt.
8. Repeat steps 5-7, B times, obtaining a sequence of bootstrap estimators

of τ , τ̂ 1,∗, τ̂ 2,∗, ..., τ̂B,∗.
9. Compute the AICb criterion of Cavanaugh and Shumway (1997):

AICbk = −2`k (τ̂ |yt) + 2

{
1

B

B∑
b=1

−2
(
`bk
(
τ̂ b,∗|yt

)
− `k (τ̂ |yt)

)}
,

where `bk (τ̂ ∗|yt) is the value of the log-likelihood function computed
using the maximum likelihood estimator of τ , τ̂ b,∗, related to the bth

bootstrap iteration and the original sample yt.
10. Repeat steps 1-9 for each k = 1, ..., kmax, obtaining a sequence of in-

formation criteria, AIC1, ..., AICkmax , HQC1, ..., HQCkmax , BIC1, ...,
BICkmax , and AICb1, ..., AICbkmax .

11. Select the value of kop in accordance with one of the information criteria
considered:

kopAIC = arg min
k

AIC,

kopHQC = arg min
k

HQC,

kopBIC = arg min
k

BIC,

kopAICb = arg min
k

AICb.
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12. Specify and estimate the ‘pseudo structural’ model in (22)-(23) setting
the value of kop following one of the criteria considered above and using
a Kalman filter maximum likelihood approach for the estimation.

4. Monte Carlo study

In this section we present the results of a Monte Carlo simulation study
based on the univariate example of Section 2.1 in order to evaluate which of
the proposed criteria perform better. The Data Generating Process (DGP)
is given by (11) with kop = 2, γf = 0.4,γb = 0.3, and γbb = 0.1. For this
simulation we employed 1000 simulations, 100 bootstrap replications, and 3
different sample sizes, T = 50, 100 and 500. The results are reported in Table
1.
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In the top panel are the results regarding the model selection and in the
bottom panel the results for what concerns the estimation of the structural
parameters. Looking at the results in the top panel we obtain very useful
information about the ‘pseudo structural’ specification. First, it is possible
to observe that the AIC criterion has the worst ability in selecting the true
number of lags, indeed the frequencies of selecting the true model are 27.2%,
39.4%, and 44.8% for T = 50, 100 and 500, respectively. Second, the AICb
criterion produces the best results, having a percentage of selecting the true
model of 56.7%, 82.7%, and 89.3% for T = 50, 100 and 500, respectively.
Regarding the other criteria, the percentage of selecting the true number of
lags for the HQC criterion is 41.6%, 57.6% and 69.7% for T = 50, 100 and
T = 500, respectively, while the BIC criterion selects the true value of k for
52.4%, 72.9%, and 85.0% of the cases for T = 50, 100 and T = 500, respec-
tively. From the bottom panel of Table 1 we can see how the omission of the
second lag in the model specification leads to a wrong inference. Indeed, the
estimation of the structural parameters γf and γb is distorted if we do not
take into account that γbb 6= 0. In particular, we can observe that on increas-
ing the sample size T, the values of the estimated parameters associated to
the ‘pseudo structural’ model tend to become close to the true values, while
the estimation of the parameters associated to the ‘structural’ form (in which
γbb = 0), diverges from the true values. In particular, in the latter case, the
estimate of γf is 0.398 if we consider T = 50 and became 0.322 if we increase
the sample size to T = 500, in relation to a population value equal to 0.4.
Looking at the results for γb, the estimates are stabler even though far from
the true value 0.3. Indeed, the estimates of γb are 0.396, 0.428 and 0.424 for
T = 50, 100 and T = 500, respectively.

5. Empirical illustration

The empirical analysis presented in this section is based on the DSGE model
of An and Schorfheide (2007), which is estimated on U.S. quarterly data
for the ‘Great Moderation’ period (1984Q2-2008Q3, T = 98). The model is
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described by the following equations:

x̃t = Etx̃t+1 + gt − Etgt+1 −
1

τ
(rt − Etπt+1 − Etzt+1), (28)

πt = βEtπt+1 + κ(x̃t − gt), (29)

rt = ρrrt−1 + (1− ρr)ψ1πt + (1− ρr)ψ2(x̃t − gt) + εr,t, (30)

gt = ρggt−1 + εg,t, (31)

zt = ρzzt−1 + εz,t, (32)

where εr,t ∼ WN(0, σ2
i ), i = r, g, z, (28) is a forward-looking output-gap

equation where x̃t = xt−xpt is the unobserved output gap (xt is the output and
xpt is the potential output), (29) is a forward-looking New-Keynesian Phillips
Curve (NKPC) with slope κ and inflation rate πt, (30) is the monetary policy
rule with policy rate rt, while (31)-(32) define two autoregressive processes
of order one for the aggregate supply (gt) and demand (zt) disturbances (see
An and Schorfheide (2007) for a derivation and discussion of the system in
(28)-(32)). In the notation of (16)-(17), we have

Zt =

 x̃t
πt
rt

 , εt =

 zt
gt
εr,t

 , εt =

 εz,t
εg,t
εr,t

 ,

Γ0 =

 1 0 τ−1

−κ 1 0
−(1− ρr)ψ2 −(1− ρr)ψ1 1

 , Γf =

 1 τ−1 0
0 β 0
0 0 0

 ,

Π =

 τ−1ρz (1− ρg) 0
0 −κ 0
0 −(1− ρr)ψ2 1

 , Γb =

 0 0 0
0 0 0
0 0 ρr

 ,

Σε =

 σ2
z 0 0

0 σ2
g 0

0 0 σ2
r

 , R =

 ρz 0 0
0 ρg 0
0 0 0

 .

The output gap x̃t is treated as unobservable, so we need a measurement
equation which connects the observable variables yt = (∆xt, πtrt)

′ to the
state variables Zt. The measurement system has the same structure as in
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(19):

xt =


x̃t
πt
rt
x̃t−1
πt−1
rt−1)

 , H =

 1 0 0 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , V =

 1
0
0

 , (33)

and υt is a scalar white noise process with variance σ2
υ. The reduced form

solution of the system in (28)-(33) belongs to the class of state space models
with representation as (1)-(2). Following the results in the top panel of Table
2, the AICb criterion of Cavanaugh and Shumway (1997) selects kop = 3, so
the ‘pseudo structural’ model is specified as follows:

x̃t = Etx̃t+1 + gt − Etgt+1 −
1

τ
(rt − Etπt+1 − Etzt+1) + ζ x̃1 x̃t−1 + ζ x̃2 x̃t−2,

πt = βEtπt+1 + κ(x̃t − gt) + ζπ1 πt−1 + ζπ2 πt−2,

rt = ρrrt−1 + (1− ρr)ψ1πt + (1− ρr)ψ2(xt − gt) + ζr2rt−2 + εr,t,

gt = ρggt−1 + εg,t,

zt = ρzzt−1 + εz,t. (34)

The results of the estimations are presented in the bottom panel of Table 2.
As pointed out in Angelini et al. (2016), the DSGE model of An and

Schorfheide (2007) is strongly identified if the vector of structural parameters
is restricted to θ =

(
κ, ρr, σ

2
g , σ

2
υ

)
while the other parameters are fixed to the

values suggested by Komunjer and Ng (2011). The vector of the structural
parameters related to the ‘pseudo structural’ form is θ∗ =

(
κ, ρr, σ

2
g , σ

2
υ, ζ

x̃
1 , ζ

x̃
2 , ζ

π
1 , ζ

π
2 , ζ

r
2

)
.

The inclusion in the system of additional parameters could change the iden-
tifiability of the ‘pseudo structural’ model with respect to the standard one
of An and Schorfheide (2007). For this reason, for each estimated model,
we check whether the minimality (controllability and observability) and lo-
cal identification conditions discussed in Komunjer and Ng (2011) are sat-
isfied. From the results in the bottom panel of Table 2 we notice that
the majority (three out of five) of the expectations correction parameters
ζ =

(
ζ x̃1 , ζ

π
1 , ζ

x̃
2 , ζ

π
2 , ζ

r
2

)
are significant at the 5% level, which underlines the

mismatch between the dynamics of the agents expectations model and the
dynamics of the structural model in (28)-(32). Another important result
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TABLE 2. Estimation of the structural parameters and model selection.

Model selection
Lags AIC HQC BIC AICb

1 283.469 299.152 368.800 284.556
2 239.968 265.062 358.936 242.305
3 222.606 257.110 361.302 221.907
4 214.982 258.896 370.892 224.114
5 220.932 274.256 408.959 245.525
6 235.700 298.434 468.490 275.943
7 242.722 314.866 504.581 320.521
8 247.966 329.520 533.870 346.744

Estimation
Pseudo structural Structural

Param. θ̂T s.e.(Hess.) θ̂T s.e.(Hess.)
κ 0.110 0.043 0.317 0.017
ρr 0.945 0.033 0.803 0.019
ζ x̃1 -0.900 0.838 - -
ζπ1 -0.552 0.165 - -
ζ x̃2 -0.899 0.323 - -
ζπ2 -0.573 0.257 - -
ζr2 -0.045 0.058 - -
σ2
g 0.112 0.098 0.132 0.206
σ2
υ 0.057 0.011 0.101 0.215

Table 2: In the top panel the values of the criteria used for the model selection. In bold the
selected number of lags for the criteria considered. In the bottom panel the estimation of
the parameters associated to the ‘Pseudo structural’ model in (34) and the estimation of
the parameter related to the ‘Structural’ system in (28)-(32). The rest of the parameters
are calibrated to the values in Komunjer and Ng (2010).

taken from Table 2 is how the omission of relevant lags in the specification
leads to a distorted estimation of the structural parameters. Indeed, looking
at the slope of the New-Keynesian Phillips Curve, κ, it decreases from 0.317
to 0.110 if we consider the ‘pseudo structural’ model, indicating less impact
of the output-gap, x̃t, on the inflation rate πt if the true dynamics are taken
into account. In contrast, in what concerns the policy rule, we notice that
the autoregressive parameter ρr significantly increases (0.945 as opposed to

18



0.803) if we estimate the ‘pseudo structural’ model. Finally, looking at the
innovation autocorrelations for the ‘structural’ and for the ‘pseudo structural’
models reported in Figure 1 and Figure 2, respectively, we can observe that
the significant autocorrelations found in the baseline theoretical model are
not present in the innovations estimated in the ‘pseudo structural’ model.
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6. Conclusions

The expectations correction approach is a way to deal with the dynamic
misspecifications which characterize DSGE models, using the information
present in the data directly in the model specification. In this paper we have
analysed the importance of model selection in the specification of a ‘pseudo
structural’ DSGE model that is able to capture the actual dynamics present
in the data. The results suggest that bootstrap techniques can be very use-
ful for model selection, indeed, the bootstrap AICb criterion proposed by
Cavanaugh and Shumway (1997) has the best empirical performance. Our
approach is illustrated through a Monte Carlo simulation study and an em-
pirical illustration based on the DSGE model of An and Schorfheide (2007),
estimated on U.S. quarterly data.
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