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Abstract. Anomaly detection systems are vital in ensuring the avail-
ability of modern High-Performance Computing (HPC) systems, where
many components can fail or behave wrongly. Building a data-driven rep-
resentation of the computing nodes can help with predictive maintenance
and facility management. Luckily, most of the current supercomputers
are endowed with monitoring frameworks that can build such represen-
tations in conjunction with Deep Learning (DL) models. In this work, we
propose a novel semi-supervised DL approach based on autoencoder net-
works and clustering algorithms (applied to the latent representation) to
build a digital twin of the computing nodes of the system. The DL model
projects the node features into a lower-dimensional space. Then, cluster-
ing is applied to capture and reveal underlying, non-trivial correlations
between the features.
The extracted information provides valuable insights for system adminis-
trators and managers, such as anomaly detection and node classification
based on their behaviour and operative conditions. We validated the
approach on 240 nodes from the Marconi 100 system, a Tier-0 super-
computer located in CINECA (Italy), considering a 10-month period.

Keywords: supercomputer monitoring · deep learning · unsupervised
learning · autoencoders · predictive maintenance.

1 Introduction

High Performance Computing systems have been steadily rising in size and com-
plexity in the last years, as revealed by the exponential increase of the worldwide
supercomputer installation3. HPC systems are typically composed by replicating
a large number of components, usually, in the order of thousands of computing
nodes, each of them constituted of a collection of smaller functional parts, such
as CPUs, RAM, interconnections, storage, etc. Even if similar by design, each

3 https://www.top500.org/
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computing node is affected by manufacturing variability and variations in the op-
erating conditions. The sheer size and complexity of supercomputers create huge
challenges in terms of optimal management of the IT components and their sig-
nificant energy footprint[1]. The race towards Exascale4 continues to make these
challenges ever more pressing[3–5].

Overall, it is a daunting task for system administrators and facility man-
agers to optimize supercomputer performance and power consumption, identify
anomalous behaviors faulty situations, and guarantee systems operate in optimal
conditions. The scale of the problem motivates the development of automated
procedures for anomaly detection and faulty node identification in current su-
percomputers and this need will become even more pressing for future Exascale
systems[6]. The fact that most of today’s HPC computing systems are endowed
with monitoring infrastructures[7] that gather data from software (SW) and
hardware (HW) components can be of great help toward the development of
data-driven automated approaches. Historically, system management was per-
formed through hand-crafted scripts and direct intervention of system adminis-
trators; most of the data is stored in log files, and anomalies are investigated a
posteriori to find the source of reported problems (e.g., when many users recog-
nize the failure and report it to administrators). At the finer granularity, each
core of the processing element is equipped with performance counters which can
monitor several micro-architectural events (i.e., cache misses, stalls, throughput)
and physical means (i.e., temperature, power consumption, and clock frequency).
Processing units as well as the motherboard, the power distribution units, the
onboard voltage regulators, the PCIe devices, and the fans are equipped with
hardware (HW) sensors and counters. Similarly, software components can pro-
vide useful information as well, ranging from the details about jobs submitted
by users (e.g., information gathered by job dispatchers such as SLURM[8] or
PBS[9]) to software tools performing health-check of various subsystems[10] and
I/O monitoring[11].

As the amount of data is overwhelming for human operators, automated
processes could be highly beneficial in improving the data center usage to ease
the burden of human operators and lower the response time to failures. In this
context, Artificial Intelligence (AI) can provide significant benefits, as it allows
to exploit the available big data effectively and to create decision support tools
for HPC system administrators and facility managers[12, 13]. In the past, many
works from the literature and the practice demonstrated the possibility to ex-
tract useful information using data collected from HPC computing nodes and
employing supervised Deep Learning (DL) models[14–16] and semi-supervised
ones[17–19]. These methods have been applied to detect nodes’ availability, de-
fined as operation without anomalies. Availability and the corresponding error
rate (1 minus availability rate) is a key metric of the node’s performance, and a
target for optimization of the HPC system operation [20]. Due to its importance,
we focus on the availability rate in the experimental part of this paper.

4 The supercomputer peak performance is expected to reach the ExaFlops (1018) scale
in 2023[2].
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Borghesi et al. in [18] show that semi-supervised anomaly detection models
trained on individual nodes data outperform a single model trained on multi-
node data. This suggests that the semi-supervised model can learn differences
between nodes even if the nodes share the same design and composition. Theo-
retically, the learned model encapsulates the node’s characteristics, however to
the best of our knowledge, no one has ever evaluated the feasibility of using the
disparities between trained DL models to evaluate the differences between the
behavior of the corresponding nodes. In this work, we answer this question by
introducing a novel approach that focuses on the latent representation of the
trained DL models (in particular on the coefficients, the weights of the latent
layer); the approach can identify clusters that deviate from the overall (node)
population’s average availability, relying on the DL model parameters.

We focused on a Tier0 supercomputer composed of 985 nodes for which we
trained a series of per-node semi-supervised DL models based on autoencoders
(AE), as proposed by authors in [19], the state-of-the-art for semi-supervised
anomaly and fault detection in HPC systems. We focus on semi-supervised meth-
ods as the availability of labels cannot be taken for granted in a supercomputer
due to the non-negligible cost of annotating the vast wealth of monitored data.
We explored different approaches to extract features from the weights and bi-
ases of the latent layer of the AE model. The key idea is to apply a geometric
transformation to the weight matrix underlying the latent layer of the trained
AEs; we opted to explore a variety of transformations; namely, we compute: (1)
the vector of singular values, (2) the singular vector corresponding to the largest
singular value, (3) the map of the representative vector (with and without bias),
(4) the weights matrix similarity in L1, L2, and absolute L2 norm, (5) the affine
(augmented matrix) similarity in L1, L2, and absolute L2 norm. The empirical
evaluation demonstrates that the vector of singular values identifies interesting
clusters among the different methods to extract salient features from the latent
representation.

We propose to use the deviation from population average availability to evalu-
ate the goodness of the clustering results. The vector of singular values, extracted
from the weights matrix of the latent layer of the trained autoencoder, identifies
two clusters with average overall availability lower than 89% (compared to 96%
population average). The proposed method’s ability to identify these clusters is
significant as the autoencoders have no access to the availability label during
training.

2 Related work

Since anomalies in HPC systems are rare events, the problem of anomaly de-
tection cannot be treated as a classical supervised learning problem [17, 21]; the
majority of works that treat it in a fully supervised fashion have been tested us-
ing synthetic[14, 22] or injected anomalies[15]. Instead of learning the properties
of both relevant classes, the standard approach is to learn just the properties of
the system’s normal operation - anything deviating from this normal operation
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is then recognized as an anomaly. Machine learning models are trained only on
normal data to learn the characteristics of the normal operation. This training
of ML models on normal data is called semi-supervised training [18].

The state-of-the-art for anomaly detection on the HPC system is to train a
particular class of neural networks – called autoencoders – in a semi-supervised
way [19]. Autoencoders are a specific type of neural networks that are trained
to reproduce an input signal while simultaneously learning the most efficient
latent representation of the data [23]. The latent representation of the data has
a lower dimension than the original data; this lower dimension of the latent layer
naturally leads to the idea of using autoencoders as pre-processing step before
applying clustering techniques [24–26], as most of the clustering algorithms have
worse performance in high-dimensional spaces[27]. The autoencoders are first
trained on the whole dataset when using autoencoders as a dimension-reduction
step before clustering. Then the dataset is projected (by the encoder part of the
network) into a lower-dimensional latent layer [24].

Current approaches that combine clustering and autoencoder neural networks
use a single trained autoencoder to encode each instance into a latent space. The
state-of-the-art for HPC anomaly detection, however, is to train multiple models
(a different model for each node in the system) [19]. The fact that the models
trained on individual nodes outperform the model trained on combined data
of all nodes [19, 17, 18] suggests that there are significant differences between
the behavior of the compute nodes and, consequently, the corresponding trained
models. Thus, this paper’s contribution is to explore the possibility of leveraging
the fact that we are training multiple AE models to explore the relationship
between the nodes themselves. Specifically, we explore the possibility to extract
features from the trained neural networks to perform the clustering of the whole
operation history of the compute nodes.

3 Methodology

In this section we present the architecture of the proposed approach. We start
by providing the probabilistic perspective underlying the foundations of our
approach in Sec. 3.1. We then describe in more detail the general architecture
(Sec. 3.2) and the proved the more detailed description of the method in Sec. 3.3
and Sec. 3.4.

3.1 Probabilistic Background

The idea of extracting information and comparing trained neural networks ex-
tends the standard methodology of statistical modeling where two (or more)
populations (or generally a collection of instances) are compared by contrasting
parameters of fitted distributions. Comparing the parameters of fitted functions
is the key idea underlying the proposed approach. Let us consider as an example
the common statistical problem of comparing two populations of individuals -
specifically, we want to compare a specific random variable X in two distinct
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populations (e.g., height in two different countries). The first point of compar-

ison in such cases is to calculate empirical mean x = 1
N

∑N
i=1 xi and empirical

variance 1
n−1

∑N
i=1(xi − x)2. Two populations can be compared by looking at

the empirical mean and variance of the random variables of interest (observed
variables present inside each population).

The mathematical foundation of comparing mean and variance between two
populations is directly in line with the idea of this paper. If we are observing
two large populations, we know (from the central limit theorem [28]) that the
sum of the variables will tend towards a Gaussian distribution. Two parameters
determine Gaussian distribution: expected value µ and variance σ2 [28]; to fit
the Gaussian distribution to the data (population), we thus have to estimate
these two parameters. If we fit the distribution via the Maximum Likelihood
Estimation (MLE) method, [29], we see that the best estimator for the expected
value is empirical mean and for variance, the best estimator is empirical vari-
ance. From the probability theory, we know that the difference of two random
Gaussian variables is Gaussian variable with mean that is the difference of means
and variance that is the sum of variances [28]. Comparing population mean and
population variance is thus actually equivalent to comparing the Gaussian dis-
tributions fitted to the data.

Another perspective from which to examine the problem of comparing pop-
ulations is that we fit a function to the data (this function being the Gaussian
distribution). For some problems - like High Performance Computer (HPC) sys-
tem monitoring - autoencoders (type of neural networks) achieve state-of-the-art
results [19, 30]. As autoencoders are the class of functions that best describe this
specific class of problems (behavior of compute node in an HPC system), we
examine if we can compare the compute nodes by comparing the parameters of
the fitted autoencoders.

3.2 General overview of the approach

Figure 1 reports the block diagram of the proposed methodology. We can identify
the following steps:

1. On each node, a separate autoencoder model is trained. Semi-supervised
training of per-node autoencoder models is adopted from the state-of-the-
art paper [19].

2. After models are trained on each node, features are extracted (as described
in Section 3.4) from the deep learning models.

3. Based on these extracted features, the similarity between nodes is calculated.
Calculation of similarity can be done as the autoencoder projects the input
features into a latent representation where only the most salient correlations
between the input variables are preserved. The similarity measure is calcu-
lated by comparing the representation maps - specifically, the parameters of
the latent layer.

4. This similarity measure is then used in hierarchical clustering.
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Extracting features and 
calculating similarity 

Trained
AE

Compute node racks

Normal operation data

Fig. 1: Data flow schema. On each of the nodes (red in the picture), organized
into racks, we train a separate autoencoder model (circles). From these trained
models we extract features that are then used in the clustering of nodes.

3.3 Autoencoder models

Dense autoencoders are a type of deep neural network, which can be charac-
terized by different topology; those used in this work have a distinct hourglass
shape, a choice motivated by the results obtained by previous works in the
state-of-the-art5. The most relevant information of the network is encoded in
the latent layer. In this particular type of autoencoder, the latent layer is the
layer in the middle of the network and contains the fewest neurons. It is preceded
by the encoder and succeeded by the decoder, each composed of one or multiple
layers. The encoder and decoder layers used in this work have a symmetrical
architecture, which, generally speaking, is not strictly required. The fundamen-
tal role of the network is to efficiently encode the information from the input in
a compressed representation in the latent layer. Training of the autoencoder is
driven by the reproduction error produced by the decoder; reproduction error,
which is the difference between the real input and the reconstructed signal, is
minimized during training. The architecture of the network used in this work is
presented in Figure 2. It is adapted from the work by Borghesi et al. [19] where
it has been shown to produce state-of-the-art results in detecting anomalies on
an HPC system.

The set of autoencoders - as in original work [19] - are individually trained on
each node in a semi-supervised setting. Semi-supervised training means that the

5 They are also referred to as contractive autoencoders
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data for training is filtered of all anomalies and that only the normal instances
are used in training the model.

Encoder Decoder

Data

ExaMon

R. ERROR
(*,462)

Anomaly 
probability

Input
(*,462)

Dense
(*,16)

Dense
(*,8)

Dense
(*,16)

Dense
(*,462)

Fig. 2: Architecture of the state-of-the-art model, proposed by [19]. In this pa-
per, relevant information is extracted from the latent layer Dense (*,8). Data is
collected for the ExaMon monitoring system [31].

3.4 Feature extraction

Due to the architecture of the neural network used in this work - as discussed
in Section 3.3 - we extract the relevant features from each node (each one with
its data set); these features are embedded in the weights of the latent layer. The

latent layer is described by the weights matrix W and the bias vector b⃗. The
activation of the latent layer is given by a⃗′ = f(Wa⃗+ b⃗) where f if a nonlinear
activation function. In the next subsections, we will describe different encoding
approaches of the latent layer information, which will then be used to extract
features.

Singular value decomposition Singular value decomposition represents ma-
trix M as M = USV ∗ where S is a diagonal matrix containing singular values
[32]. In this work, we used singular value decomposition on W , and we extracted
the vector of singular values (abbreviated to singular values in the future) and a
singular vector corresponding to the largest singular value (abbreviated singular
vector).

Representative vector A vector of ones 1⃗ is used as a representative vector
as it corresponds to the activation of all neurons in a latent layer. It can serve as
a proxy for the transformation of the (linear part) of the latent layer. For each
node, we have thus calculated the product of W 1⃗ (abbreviated vector of ones)

and W 1⃗ + b⃗ (abbreviated vector of ones plus bias).
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Matrix measures In this work, we leveraged the L1 and L2 norms induced in
the matrix space (induced by p norms for vectors) [33]. Based on these norms
we propose two ways to calculate distance between two matrices: distance =
||A − B||p and absolute distance abs distance = |||A − B||p| where p is 1 or
2. Since the L1 measure is already symmetric, we do not separate a case with
absolute distance. We introduce the absolute value as we want our distance
measure to be symmetric.

We calculate the distance between nodes as a distance between the weights
matrices of autoencoders trained on them. Additionally, since the linear part of
the neural network is an affine transform, we introduce an augmented matrix A:

A =

(
W b⃗

0...0 1

)
.

This matrix A captures the affine transform since a⃗′ = Wa⃗+ b⃗ is equivalent to(
a⃗′

1

)
= A

(
a⃗
1

)
.

Another way to calculate the distance between nodes is to calculate the
distance between an affine transform that is determined by the (affine Wa⃗+ b⃗)
part of the latent layer of the corresponding autoencoder.

3.5 Clustering

The calculated distance between clusters is an input for clustering. In this work,
we use agglomerative hierarchical clustering: each instance (in our case node)
starts as its cluster. At every step of the iteration, the two closest clusters are
connected. The connection between clusters is the closest distance between two
instances in corresponding clusters. The combining of clusters is repeated until
we reach the predetermined number of clusters.

3.6 Evaluating clustering

There are several possible measures to evaluate the goodness of the clustering
(e.g., Silhouette score) [34]. These scores, however, are not applicable in the
scenario explored by this work. We evaluate different possible feature extrac-
tion methods from the trained autoencoders; these different feature extraction
approaches produce different feature spaces. Thus we cannot compare the clus-
tering score (like Silhouette score) between different spaces. For this reason, we
evaluate the relevance of our clustering approaches by evaluating how “interest-
ing” the created clusters are.

The interest of clusters is reflected by how well they separate a specific vari-
able. Since clustering is an unsupervised method, it is reasonable to assume that
not all clusters will separate the same variable (such clustering would produce
distinctly uninteresting clusters). However, we expect that there would be at
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least one cluster where the distribution of the target variable would be signifi-
cantly different than it is in the whole dataset. In this work, the target variable
is system availability. In other words, clusters will separate computing nodes
based on the autoencoder model’s latent layer encoding in groups having similar
availability, thus similar failure rate. We stress that from a practical point of
view, this means that an autoencoder model for each node is trained only on
”normal” operation samples and contains the information on the likelihood of
the node to be available (or not to fail). Clusters of nodes sharing the same
failure’s likelihood can be used to rationalize the maintenance procedure.

In the whole dataset, the system is available 0.96179% of the time. The most
interesting cluster is thus the one where the average availability of a cluster will
be as far away from this population average. The best clustering method is the
one producing the most interesting cluster.

3.7 Random sampling baseline

The relevance of the produced clusters determines the relevance of feature ex-
traction and, consequently, of clustering approaches. Specifically, we observe how
well the clusters separate a target variable (in the case of this work, the node’s
availability). To claim the relevance of the clustering approaches, we compare
them to random sampling. We compare how well the target variable is separated
by random sampling to how well clustering methods separate it. We are particu-
larly interested in clustering methods that produce clusters and separations that
do not (are very unlikely to occur) in random separation.

This paper implemented random clustering by producing a random matrix
(of the same size and range as extracted features) that is then passed to cluster-
ing algorithms. The produced clusters are thus equivalent to random sampling
without replacement. The generation of random clusters is repeated several (in
this work 10) times. For each cluster, the distribution of the target variable is
calculated; this distribution is then compared to distributions given by clustering
methods. In the results (section 4), the range of randomly generated distribu-
tions is presented as a box with whiskers plot. Distributions outside the range of
random distributions represent interesting patterns uncovered by the clustering
method.

4 Results

This section presents the results of the experimental analysis conducted on a tier-
0 supercomputer, Marconi100, hosted at CINECA, the largest Italian computing
center. The results were conducted on a statistically significant fraction of the
supercomputing nodes (more than two hundred) and cover a 10-months time
span of production activity of the system.
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4.1 Experimental setting

As explained in the methodology section 3, an individual model was trained on
each of the 241 randomly selected nodes of Marconi100. Models were trained
semi-supervised, meaning that only normal operation data was used for train-
ing. The whole dataset consists of 10 months of operational data collected on
Marconi100. The first eight months of the data were used as a training set and
the last two as a test set. Autoencoder models were trained on the train set. The
cluster analysis was performed only on the test set.

The dataset used in this work consists of a combination of information
recorded by Nagios (the system administrators tool used to visually check the
health status of the computing nodes) and the Examon monitoring systems; the
data encompasses the first ten months of operation of the M100 system. The
features collected in the dataset are listed in table 1. In order to align differ-
ent sampling rates of different reporting services, 15 minute aggregates of data
points were created. 15 minute interval was chosen as it is the native sampling
frequency of the Nagios monitoring service (where our labels come from). Four
values were calculated for each 15 minute period and each feature: minimum,
maximum, average, and variance.

Source Features

Hardware monitoring

ambient temp., dimm[0-15] temp.,
fan[0-7] speed, fan disk power,
GPU[0-3] core temp. ,
GPU[0-3] mem temp. ,
gv100card[0-3], core[0-3] temp. ,
p[0-1] io power,
p[0-1] mem power,
p[0-1] power, p[0-1] vdd temp. ,
part max used,
ps[0-1] input power,
ps[0-1] input voltage,
ps[0-1] output current,
ps[0-1] output voltage, total power

System monitoring

CPU system, bytes out, CPU idle,
proc. run, mem. total,
pkts. out, bytes in, boot time,
CPU steal, mem. cached, stamp,
CPU speed, mem. free, CPU num.,
swap total, CPU user, proc. total,
pkts. in, mem. buffers, CPU idle,
CPU nice, mem. shared, PCIe,
CPU wio, swap free

Table 1: An anomaly detection model is created only on hardware and applica-
tion monitoring features. More granular information regarding individual jobs is
not collected to ensure the privacy of the HPC system users.
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Features extracted from trained autoencoders are passed to hierarchical clus-
tering. Hierarchical clustering has been chosen as it only requires the pairwise
distance between the instances without making any assumptions about the space
induced by the distance measure. The number of clusters is set to 20 for all ex-
periments. A number of clusters is not a tuned parameter; 20 clusters represents
roughly 10% of all nodes and is a randomly chosen number.

4.2 Trained autoencoder

The trained autoencoder is adopted from the current state-of-the-art semi-super-
vised approach for anomaly detection [19]. The structure of the autoencoder is
presented in Figure 3. The autoencoder used as a binary classifier (form the
normalized reconstruction error) on the test set achieves the AUC (area under
the receiver-operator characteristic curve) of 0.7602.

Normal operation (the data where the autoencoder is trained) is determined
by the label (system availability) provided by the monitoring systems.

Fig. 3: Architecture of the autoencoder network, adopted from Borghesi et al.
[19]

4.3 Cluster analysis: normal operation percentage

The proposed approach aims to identify interesting clusters of nodes that behave
similarly. The similarity in behavior is also reflected in the fact that a cluster will
have similar values for at least one relevant feature. In this section, we evaluate
the similarity in average availability rate - in other words, we are interested
in seeing if the clustering methods can identify clusters with particularly low
availability (high failure rate). The average failure rate amongst 241 identified
nodes (in the test set) is 0.96179. We wish to identify clusters with significantly
lower availability rate.

In Table 2, the minimum average availability rates in a cluster, unidentified
by a specific feature extraction approach, are reported. The table shows that the
vector of singular values combined by the euclidean distance metric identifies
a cluster with the minimum average availability. This availability is also lower
than the random method’s minimum availability (ever achieved).

In Figure 4 and Figure 5 average availability per node is plotted (red dots).
Results of random sampling without replacement are presented as a box plot.
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Distance measure: Avg ava. in min. cluster: Num. of nodes in min. cluster:

Sing. vector (Euc.) 0.9286 6

Vector of sing. values (Euc.) 0.8809 7

W 1⃗ + b⃗ (Euc.) 0.9126 8

W 1⃗ (Euc.) 0.9367 5

W (absolute L2) 0.9191 7

A (absolute L2) 0.9276 5

W (L2) 0.9239 7

A (L2) 0.9124 10

W (L1) 0.9303 8

A (L1) 0.9303 8

Random sampling 0.9021 Not applicable

Table 2: Minimum average availability within clusters identified by different
feature extraction methods. Vector of singular values identifies a cluster with the
lowest average availability (highest anomaly rate). This is the most interesting
method as it separates the target variable (node availability) the best. None of
the proposed methods identify a cluster with a single node.

Random Singular vec. Singular val. Vec. of [1] Vec. of [1] + bias
Embedding
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Fig. 4: Average error rate per cluster. Representation of nodes with a vector of
singular values identifies two clusters with significantly higher anomaly rate than
the whole population.

The average error rate across all nodes (0.96179) is marked with a violet dotted
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Random Lin. |L2| Aff. |L2| Lin. L2 Aff. L2 Lin. L1 Aff. L1
Embedding and distance measure
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Fig. 5: Average error rate per cluster. Matrix-based feature extraction performs
worse than the vector methods.

line. Area of values, observed in a random process, are marked with gray. Values
never observed by the random process are left white.

Analyzing Figures 4 and 5 we observe that only the vector of singular values
produced cluster with averages never observed in random samples.

The clustering method based on a vector of singular values combined with
euclidean distance identifies two clusters with particularly low average availabil-
ity. Such low average availability has also never occurred in a random selection
of clusters. Low average availability means that hierarchical clustering based on
singular value decomposition of weights matrix produces non-trivial clusters that
are extremely unlikely to be matched by a random selection of clusters.

Identifying interesting clusters regarding availability is a non-trivial result as
a neural network has no access to that label during training.

This promising result suggests that the created clusters share similar avail-
ability, and thus clusters can be created based on autoencoder semi-supervised
models latent layer information. This cluster can then be used during the sys-
tem’s lifetime to create canaries to focus the maintenance over nodes belonging
to the same cluster of the canary node.

5 Conclusions

This work opens the possibility of extracting additional information from the
state-of-the-art approach towards anomaly detection in the HPC setting. Besides
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using per-node autoencoder models for anomaly detection [19, 17, 18], it is also
possible to construct informative clusters from the parameters of the trained
neural networks themselves.

We demonstrate the usefulness of the identified clusters on a concrete exam-
ple: identifying clusters with the abnormal failure rate. This result is significant
as the neural networks, from where the features are extracted, have no access to
that label during training. Still, our approach can identify two clusters of nodes
with lower availability (higher failure rate) than the population average.

We stress the fact that with this approach, clusters can be created based
on a model trained on the first month of operations and then applied for the
remaining lifetime of the system to focus maintenance to the nodes belonging
to the same cluster containing the node which has experienced failures. Sys-
tem administrators focus their regular inspections only on canary nodes, each
representative of one cluster.
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