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Abstract 9 

SRAM-based Field Programmable Gate Arrays (FPGAs) are vulnerable to SEUs. For applications 10 

demanding high reliability this problem is often solved by integrating in the system a scrubber, a 11 

circuit that periodically scans the FPGA configuration memory and reconfigures it if an error is 12 

detected. Since the scrubber is usually implemented in the same FPGA device, it is also vulnerable 13 

to SEUs, thus the scrubber reliability is increased by adopting standard fault tolerance techniques. 14 

These solutions guarantee the scrubber reliability, but generally require a large area overhead. 15 

In this paper, we present a novel low-cost strategy capable to detect faults in the FPGA 16 

configuration memory implementing the scrubber. The proposed technique is based on time 17 

redundancy, forcing the scrubber output to produce an error indication for each word read from the 18 

FPGA memory, in order to detect the faults affecting the portion of FPGA memory implementing 19 

the scrubber. The implementation of our proposed strategy presents a negligible impact in terms of 20 

area overhead (4.17%) and a limited increase in power consumption (22.9%) over the original 21 

(unprotected) scrubber. As for the impact on system performance introduced by our strategy, it is of 22 

approximately the 38.2% over the unprotected scrubber, but it can be significantly lowered by 23 

reducing the frequency at which the scrubber is applied to test the FPGA. 24 

 25 
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 28 

1. Introduction 29 

The Attitude Determination and Control System (ADCS) is an on-board component of satellites, 30 

whose correct operation is essential to meet the satellite mission. In fact, the ADCS performs the 31 

spacecraft attitude control and maneuvers, tracking a predefined, nominal orbit and maintaining a 32 

preferred orientation in space. Usually, the ADCSs are implemented by means of SRAM based 33 

Field Programmable Gate Arrays (FPGAs) [1], in order to reduce costs and enable the possibility to 34 

reconfigure the system in the field. However, as known, the configuration memory of SRAM-based 35 

FPGAs is vulnerable to SEUs, especially for on-board satellite applications, where external 36 

disturbances, such as trapped particles, cosmic and solar radiations, geomagnetic field interferences, 37 

etc. are very likely to occur [2]. Considering that the ADCS is a crucial element for the satellite 38 

operation, it is of utmost importance to increase its robustness against SEUs, in order to guarantee 39 

its correct operation, thus the reliability of the whole space mission [1]. Moreover, transient and 40 

permanent faults can also affect the operation of FPGA based Networked Control Systems (NCSs) 41 

used in harsh industrial environments, with possible cathastropich consequences to users and/or the 42 

environment [3]. 43 

Consequently, several approaches have been presented in literature to increase the robustness of 44 

SRAM-based FPGAs against SEUs. In particular, the use of low-cost Error Detection and 45 

Correction codes and Interleaving has been largely studied in the literature (e.g., codes in [4, 5]). On 46 

the other hand, the use of the scrubbing techniques has been also studied in literature (e.g., the 47 

techniques in [5, 6, 7]). These techniques have been proven to be effective to protect the 48 

configuration memory of SRAM-based FPGAs [4, 7, 8, 9, 10, 11, 12, 13, 14].  49 

Scrubbing techniques usually adopt an Error Detecting Code (EDC) to detect the presence of SEUs 50 

affecting the configuration memory. They read periodically byte after byte (actually two 51 
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simultaneous bytes) of the FPGA memory and verify the presence of erroneous bit(s). If an error is 52 

detected, then the portion of the FPGA containing the erroneous bit(s) is reconfigured [15, 16]. 53 

There are two main types of scrubbing techniques: the internal and the external scrubbers [5, 6, 7, 54 

17]. The external scrubber uses a second FPGA, different from the FPGA that implements the main 55 

circuit, for the scrubbing circuit, while the internal scrubber implements the scrubber circuitry in the 56 

same FPGA of the main circuit. Internal scrubbers are more effective in terms of time performance 57 

and area occupation [17].  58 

More in details, commercial FPGAs scrubbers usually employ the Cyclic Redundancy Check 59 

(CRC) code as EDC to detect the presence of SEUs affecting the configuration memory [7]. In such 60 

scrubbers, a signature (or checksum) is added to each word (16 bits of information) stored in the 61 

configuration memory of the FPGA. During FPGA in-field operation, this scrubbing technique  62 

reads the FPGA memory periodically and verifies the checksum of the stored words. If the 63 

checksum is incorrect, the scrubber generates an error indication, and the portion of the FPGA 64 

containing the erroneous word is reconfigured [16, 18].  65 

A problem of existing scrubbing techniques is that they are implemented within FPGAs, thus they 66 

are also vulnerable to SEUs [4, 7, 8, 9, 10, 11, 12, 13, 14]. In fact, SEUs can affect both the part of 67 

the FPGA memory implementing the main circuit as well as part implementing the scrubber. These 68 

latter SEUs may change the functionality of the scrubber [4, 6, 12, 19, 20], making it unable to 69 

detect successive SEUs affecting the FPGA, with possible catastrophic results for the system 70 

functionality. 71 

In order to cope with this problem, different solutions have been proposed in literature to enhance 72 

the reliability of scrubbers [7, 8, 14, 21, 23]. Most of these solutions are based on the triplication (or 73 

duplication) of the scrubber, in order to tolerate (or detect) SEUs affecting the portion of the FPGA 74 

memory implementing them [6, 20, 22, 23]. A general limitation of these solutions is the significant 75 

area overhead they require, which may prevent their use in some applications with strict area 76 
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requirements (e.g., these solutions are too expensive for on-board ADCS applications, like the one 77 

described above). 78 

Based on these considerations, in this paper we propose a novel low-cost strategy to detect SEUs 79 

affecting the part of the FPGA memory implementing the scrubber. We consider scrubbers using 80 

the CRC code as EDC, since it is the EDC most widely used by scrubbers. However, our strategy 81 

can be straightforward modified to be used also with other kind of EDCs. Rather than using space 82 

redundancy, our strategy employs time redundancy to detect SEUs affecting the part of the FPGA 83 

memory implementing the scrubber, thus our strategy requires a significant smaller area overhead 84 

compared to space redundance approaches (e.g., like Triple Modular Redundancy – TMR).  85 

Our strategy periodically tests the correctness of the words stored in the FPGA memory and the 86 

behavior of the scrubber by executing in sequence the following two steps: 1) check the correctness 87 

of the checksums of the words read from the FPGA memory (i.e., we verify the absence/presence of 88 

errors on the word being tested by the scrubber); 2)  check the ability of the scrubber in detecting 89 

incorrect words affected by SEUs (i.e., our approach purposely induce bitflips on the words during 90 

this step to emulate the presence of SEUs). In step 2) an error indication is expected at the scrubber 91 

output in case of scrubber correct behavior (i.e., in case of no SEU affecting the portion of the 92 

FPGA memory implementing the scrubber). 93 

As shown in the paper, the implementation of our proposed strategy requires a negligible area 94 

overhead (4 NOR and 3 AND gates) over the original (unprotected) scrubber, area overhead that is 95 

also negligible compared to that required by alternative solutions based on TMR. Moreover, the 96 

power consumption required by our proposed approach is also a small fraction of the power 97 

consumption of the FPGA memory. 98 

The rest of this paper is organized as follows. In Section 2 an overview of the scrubbing techniques 99 

for SRAM based FPGAs is presented. In Section 3, some techniques in literature to mitigate the 100 

occurrence of SEUs on scrubbers for SRAM based FPGAs are presented and discussed. In Section 101 
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4, the proposed technique for low-cost detection of SEUs in CRC based scrubbers is discussed and 102 

its performances are presented. Finally, conclusions are drawn in Section 5.  103 

 104 

2. FPGA Scrubbing Techniques  105 

In order to implement scrubbing techniques in FPGAs, a dedicated Cyclic Redundancy Check 106 

(CRC) generator is used during the FPGA configuration to calculate a checksum for each word  (or 107 

frame) to be stored on the FPGA memory. Such checksums are stored on the FPGA memory 108 

together with their associated frames, and they are used later during the FPGA in-field operation to 109 

detect the presence of SEUs in the configuration memory. 110 

The configuration of the blocks composing SRAM based FPGAs (e.g., the CLBs, the routing 111 

resources, the blocks of RAM, the IO blocks, etc.) is programmed through a bitstream of words 112 

(frames), whose size depends on the particular FPGA device and the considered application [18]. 113 

For example, for the Virtex-5 FPGAs from Xilinx, the bitstream of the configuration memory is 114 

composed by 41 words of 32 bits each (1,312 bits).  115 

Each frame [8] has a unique address that is related to the physical position in the FPGA floorplan, 116 

and the position in the floorplan is related to a specific resource (e.g. CLB, RAM, DSP, IOB, etc.). 117 

Each column of configuration memory defines a specific type of resource (e.g., CLB, DSP, etc.) [7, 118 

8].   119 

In order to protect the configuration memory of SRAM-based FPGAs against SEUs or MBUs, 120 

scrubbing techniques are usually adopted. These techniques read continuously (scrub), frame by 121 

frame, the FPGA configuration memory to detect the presence of SEUs. If an SEU is detected in a 122 

frame, the portion of the memory affected by the SEU is reconfigured without interrupting the 123 

normal FPGA operation. The circuit that performs scrubbing is commonly called scrubber [4, 15]. 124 

There are different kinds of scrubbing techniques, such as blind scrubbing, readback scrubbing, 125 

frame level scrubbing and model scrubbing [4, 15]. In this paper, we consider the readback 126 
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scrubbing, which is the scrubbing technique requiring the lowest power consumption [4, 15], thus  127 

being the most suitable for the considered on-board ADCS application. 128 

 During the FPGA configuration process, a golden copy of the bitstream is stored in a non-volatile 129 

memory (PROM or flash ROM) that is immune to SEUs. Then, during normal operation in the field 130 

the memory is readback frame by frame. For each frame read from memory, the scrubber 131 

recalculates the CRC checksum, and compares it with the CRC generated during the configuration 132 

phase, and stored together with the frames. If due to an SEU the regenerated checksum is different 133 

from that stored in memory, an error indication is generated by the scrubber, and the part of the 134 

configuration memory of the FPGA containing the erroneous frame is rewritten with the data stored 135 

in the golden copy [16].  136 

A problem of this scrubber is that SEUs affecting the part of the FPGA memory implementing the 137 

scrubber may change its functionality, which in turn may prevent the detection of successive SEUs 138 

affecting the portion of the FPGA memory implementing the main circuit, with consequent 139 

catastrophic results for the system functionality. 140 

In order to avoid this problem, we propose a novel low-cost strategy that is able to detect SEUs 141 

affecting the part of the FPGA memory implementing the scrubber itself. 142 

 143 

3. Related works 144 

In the last years, many scrubber designs have been proposed to mitigate the effects of SEUs 145 

affecting the part of the FPGA memory implementing the scrubber itself. Most scrubbers are based 146 

on hardware redundancy, mainly adopting the conventional Triple Module Redundancy (TMR) 147 

technique, where three copies of the scrubber feed a majority voter. This solution guarantees a high 148 

reliable scrubber, but also requires high area occupation and power consumption. Zhang et al. in 149 

2018 presented a scrubbing strategy based on TMR and implemented it on a Xilinx FPGA [24]. The 150 

results have shown that the proposed approach provides a quick repair of the SEUs and can improve 151 

the reliability of SRAM-based FPGAs. Sielewicz et al. in 2017 proposed an experimental method 152 
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for the evaluation of TMR-based mitigation techniques on the Xilinx Kintex-7 FPGA [25]. The 153 

proposed architecture was evaluated under different redundancy topologies, such as no mitigation 154 

methods, triplication of the combinational logic, triplication of the output registers, triplication of 155 

the voter circuits as well as combination of these techniques. Irradiation experiments have been 156 

carried out at the isochronous cyclotron at the Nuclear Physics Institute of the Academy of Sciences 157 

of the Czech Republic and the reliability of the different designs evaluated.  158 

On the other hand, Giordano et al. in 2018 introduced a scrubber that is implemented in a PicoBlaze 159 

8-bit microcontroller running at 100 MHz [26]. The scrubbing algorithm is implemented by 160 

software in the microcontroller and the microcontroller reliability is guaranteed by TMR 161 

implementation on different modules of the processor. The proposed system has been implemented 162 

on an electronic board based on the Xilinx Kintex-7 70T FPGA and the results have shown that the 163 

reliability is increased by 42% and 290% if compared to a standard TMR approach and no 164 

mitigation techniques, respectively. Wilson et al. in 2021 also proposed a FPGA system based on a 165 

32-bit pipelined VexRiscv processor [27] implemented on the Digilent Nexys Video development 166 

board integrating also the XC7A200T-ISBG484C FPGA. Two different versions of the processor 167 

were designed, one with unmitigated design and the other with TMR approach and triplicated 168 

voters. The results have shown how the TMR based soft-core processor provides a 33x 169 

improvement in reliability at the cost of 5x resource utilization and decreased operating frequency. 170 

Shaker et al. in 2020 presented a FPGA system implementing a penta modular redundancy (5MR) 171 

approach capable to detecting SEUs and multiple event upsets (MEUs) [28]. The system is 172 

implemented using the Kintex7 7k410tfbg676 FPGA device and adopts a dynamic partial 173 

reconfiguration to increase the system reliability. 174 

While TMR provides a good protection against SEUs in SRAM-based FPGA designs, this 175 

technique requires a significant increase of the resource utilization, which can be unacceptable in 176 

particular design with tight constraints on the available resources. Thus, alternative approaches 177 

requiring lower resource overhead have been proposed, at the cost of a lower protection against 178 
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SEUs. Machado Matsuo et al. in 2018 proposed a Dual Modular Redundancy (DMR) mitigation 179 

scheme for an heterogeneous CPU-FPGA platform [29]. Keller and Wirthlin in 2018 presented a 180 

partial triple modular redundancy (pTMR) for fault mitigation in an FPGA system [30]. The pTMR 181 

technique consists in the logic triplication of only a few sub-modules that represent a small fraction 182 

of the total area but are particularly vulnerable to SEUs. The paper shows that this approach enables 183 

6x increase in the system reliability compared to the unmitigated design, at the cost of only 2.8% 184 

increase in terms of area overhead. 185 

A different approach to protect SRAM-based FPGA designs against SEUs is the adoption of time 186 

redundancy strategies. Time redundancy strategies are characterized by a negligible area overhead, 187 

but they require that system operations are executed multiple times in sequence, resulting in a non 188 

negligible impact on system performance, that can conflict with the requirements in terms of 189 

execution time of some real-time systems. As discussed in [31], time redundancy approaches are 190 

particularly suited for applications where erroneous results can be discarded and individual 191 

operations can be re-executed, or where an application can be restarted without serious 192 

consequences for the system.  193 

Villa et al. in 2019 presented a fault tolerant technique based on time redundancy for SEUs 194 

detection and recovery in soft-core processors [32]. The architecture of the soft-core processor 195 

LEON3 designed on FPGA was modified to implement a fault tolerant technique based on 196 

checkpoint recovery. Checkpoints are saved during the program execution and, when an error is 197 

detected, program execution stops and returns to the last safe checkpoint. Bahramali et al. in 2011 198 

proposed a fault detection scheme of secure hash algorithm (SHA-1 and SHA-512) for 199 

implementation in FPGA [33]. The computation is broken in two parts with a pipeline inserted in 200 

between. Each part is computed twice and the results compared to detect potential faults. Ibrahim et 201 

al. in 2014 presented a comparative study on the performance of FPGA based systems where SEUs 202 

are mitigated with time redundancy and hardware redundancy [34]. The solutions were 203 

implemented by using the Xilinx FPGA Virtex 5 LX50T. The paper shows that TMR requires 3x   204 
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 205 

Fig. 1 Simplified scheme of the scrubber hardware. 206 

 207 

resources utilization and 28% increase of the power consumption, but minimally impacts the 208 

processing time. On the other hand, the paper shows that time redundancy implies an increase of 209 

approximately 3x in the processing time compared to the unprotected system. 210 

Generally, the choice between hardware redundancy and time redundancy depends on the type of 211 

application and the type of FPGA device. In fact, different applications may have different 212 

requirements in terms of reliability, expressed as failures in time (FIT) per billion hours, and 213 

different FPGA technologies can be characterized by different SEUs error rate [7]. For example, 214 

Xilinx Virtex-II FPGAs have a soft error rate of 405 FIT/Mb, while more recent devices are 215 

characterized by improved reliability (soft error rate of 160 FIT/Mb and 100 FIT/Mb in the case of 216 

Virtex-6 and Virtex-7 FPGAs, respectively).  217 

  218 

4. Proposed Solution 219 

In this Section, we present a low-cost scrubber for SRAM based FPGAs that is capable to detect 220 

SEUs affecting the part of the FPGA memory implementing the scrubber itself. We implemented 221 

the proposed scrubber in Verilog RTL, and synthesized it by means of the Quartus II tool. We then 222 
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performed logic level simulations by means of the Icarus Verilog (iVerilog) tool to verify the 223 

operation of the proposed scrubber. 224 

Our scrubber employs a dedicated Cyclic Redundancy Check (CRC) generator to verify the 225 

correctness of both the words stored in the FPGA memory, as well as the correct behavior of the 226 

scrubber itself. This is achieved by executing the following two steps in sequence:  227 

1)  To verify the correcteness of each word read from the memory, we first regenerate the 228 

checksum from the read word by using the CRC generator. Then, the regenerated 229 

checksum is compared with the checksum of the word being checked (that is also stored 230 

in the FPGA memory).  231 

2)   To verify the correct behavior of the scrubber, we check its ability in detecting incorrect 232 

words read from the FPGA memory by purposely inducing bitflips on the words (to 233 

emulate the presence of SEUs). Therefore, during this step, for the case of scrubber 234 

correct behavior we expect to obtain an error indication at the scrubber output. 235 

A simplified schematic representation of the proposed scrubber is illutrated in Fig. 1. It includes a 236 

non-volatile memory (MEMGOLD) that is immune to SEUs, where the golden copy of the circuit 237 

implemented by the FPGA is stored. The volatile memories MEMCODE and MEMCRC represent, 238 

respectively, the part of the FPGA memory where the words of the FPGA (implementing the main 239 

circuit) and the corresponding checksums are stored. As a simple case study, the size of such 240 

memories has been set to 256 words of 16 bits. At the system boot, the volatile memory MEMCODE 241 

is initialized with the data from MEMGOLD, while the volatile memory MEMCRC is initialized with 242 

the checksums calculated using the CRC circuit. The CRC circuit block is the circuit used to the 243 

checksum calculation and error verification, while the controller block generates the control signals 244 

required for the operation of the scrubber (i.e. memory operations and initialization, generations of 245 

the input signals for the CRC circuit, acquisition of the error signal, etc.). All the blocks of the 246 

scrubber in Fig. 1 (except for the non-volatile memory MEMGOLD) are implemented inside the 247 

FPGA device. 248 
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 249 

Fig. 2 Schematic representation of the CRC calculation and CRC checker circuits of the scrubber. 250 

 251 

In the following Subsections, we present a possible implementation for the blocks composing the 252 

proposed scrubber. 253 

4.1 CRC generator and checker 254 

Fig. 2 shows a schematic representation of a 16-bits CRC generator for the considered case of 16-255 

bit words, which represents a realistic example of CRC generators used in modern FPGAs [16]. The 256 

16-bit CRC generator is based on a Linear Feedback Shift Register (LFSR) with characteristic 257 

polynomial given by: 258 

 259 

121516

16 +++= XXXCRC
                                                                                              (1) 260 

 261 

In the FPGA configuration phase, the 16 flip-flops of the CRC checker are reset and the 16-bit word 262 

of the FPGA is serially given as input (most significant bit first) at the DATA IN line. After 16 263 

clock cycles the DATA OUT array (S16S15…..S1) contains the checksum for the corresponding 264 

word. The obtained checksum is stored in the FPGA volatile memory MEMCRC to be used later 265 

during the scrubbing of the FPGA in the field. 266 



 12 

 267 

Fig. 3 Waveforms for the scrubber control signals during the checksum calculation and test of a 268 

code word. 269 

 270 

In particular, during scribbing, to verify the correcteness of the words read from the FPGA memory, 271 

the following steps are carried out: 272 

- The 16 flip-flops of the CRC generator circuit are reset. 273 

- A 32-bit word, obtained by appending the word under test from MEMCODE (most significant 274 

word) and the checksum from MEMCRC (least significant word), is fed as input (most 275 

significant bit first) at the DATA IN line (this step is executed in 32 clock cycles). After the 276 

first 16 clock cycles the DATA OUT array (S16S15…..S1) contains the recalculated 277 

checksum of the word being verified. In the second 16 clock cycles the checksum from 278 

MEMCRC is fed as input at the DATA IN line. 279 

- After applying 32 clock cycles, the output of the CRC generator DATA OUT (S16S15…..S1) 280 

contains all 0s (00….0) only if the recalculated checksum is equal to the one read from the 281 

volatile memory MEMCRC. 282 

As can be seen from Fig. 2, the 16-bit CRC checker is implemented by a combinational circuit 283 

composed of 3 AND and 4 NOR gates whose output (ERROR) is equal to 1 if no errors are present 284 

in the tested code word, or is equal to 0 otherwise. The “CRC generator and checker” are shown in 285 

Fig. 2. 286 

The working principle of the CRC circuit in Fig. 2 is illustrated in Fig. 3, for the case of absence of 287 

errors in the word read from memory. The waveforms for the signals DATA IN, CLK and DATA 288 
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OUT are shown for the case of the word #B5D6 and the checksum #BCFE. The upper waveform 289 

referrs to the checksum recalculation, while the lower waveform refers to the checksum 290 

verification. More in details, the following steps are illustrated in Fig. 3: 291 

- The flip-flops of the CRC generator are reset (Data Out initially equal to 00….0). 292 

- The code word #B5D6 (1011010111010110) from MEMCODE is fed as input at the DATA 293 

IN line. After 16 clock cycles the recalculated checksum #BCFE (1011110011111110) is 294 

present on DATA OUT (S16S15…..S1). 295 

- The checksum from MEMCRC is fed as input at the DATA IN line. Since this value (#BCFE) 296 

is the same as the value calculated during the first 16 clock cycles, after the second 16 clock 297 

cycles DATA OUT is equal to (00…..0) and the output of the CRC checker is equal to 1 (no 298 

error detected). 299 

This approach is capable to detect errors due to occurrence of SEUs in the FPGA memory only if 300 

the part of the FPGA memory implementing the CRC generator and checker itself is error free (i.e., 301 

the CRC generator and checker is correctly configured in the FPGA). However, if a SEU induces an 302 

error in the part of the FPGA memory implementing the CRC generator and checker, the reliability 303 

of the scrubber may be seriously compromised. In fact, as a simple example, the SEU can make the 304 

output of the scrubber constant (ERROR=1, i.e. no error detected) during the FPGA normal 305 

operation, so it is not possible to detect SEUs affecting the FPGA memory implementing the main 306 

circuit. As clarified before, this critical situation is avoided by our self-checking scrubber based on 307 

time redundancy. 308 

4.2 Proposed Scrubbing Strategy 309 

The algorithm of our novel low-cost self-checking scrubber strategy, based on time redundancy, is 310 

illustrated in the flow chart in Fig. 4. In the first phase “word test phase”, the word under test and 311 

the corresponding checksum are read from memory (i.e., from MEMCODE and MEMCRC 312 

respectively) and given as input to the CRC circuit (the word and the checksum are first appended 313 

to obtain a word of 32 bits, as described in previous Subsection). Then we apply 32 clock cycles,  314 
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 315 

Fig. 4 Flow-chart of the algorithm of the test phase implemented in the scrubber controller. 316 
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and then, if we obtain an error indication at the output of the CRC checker, the FPGA memory is 317 

reconfigured using the data in MEMGOLD. Otherwise, the “scrubber test phase” begins to verify its 318 

correct operation. As described at the beginning of this Section, in the “scrubber test phase” the 319 

CRC circuit is checked by emulating an error in the 32-bit word given to the CRC checker, so that 320 

in case of correct behaviour we expect to obtain an error indication at the output of the CRC 321 

checker. To achieve this goal we induce a bit flip in the 32-bit word (obtained by appending the 322 

checksum to the memory word) before it is given to the CRC circuit. In particular, 15 flip-flops out 323 

of the 16 flip-flops of the CRC checker are reset, while one flip-flop is set, in order to modify the 324 

initial state of the CRC generator. This way, after 32 clock cycles, we expect to obtain a logic 0 325 

(presence of error) at the ouput of the CRC checker for the case of scrubber correct behaviour. 326 

Otherwise, if after the 32 clock cycles we obtain a logic 1 at the output of the CRC checker, it 327 

means that the scrubber is unable to detect errors in the FPGA memory (words) and the scrubber 328 

circuit must be reconfigured. 329 

As an example, Figs. 5, 6, 7 and 8 report some waveforms of the signals during the two steps of the 330 

algorithm presented in Fig. 4. 331 

In particular, Fig. 5 reports the waveforms regarding the FPGA memory read operation of the word 332 

#B5D6 and the checksum #BCFE (both read at address 69 of MEMCODE and MEMCRC, 333 

respectively), that are stored in the registers Codeword and CRCword, respectively. 334 

The values of the registers Codeword and CRCword are used in the next phase of our approach, 335 

when the correctness of the word read from memory and the scrubber behaviour are verified.  336 

In addition, Fig. 6 illustrates how the word under test and the corresponding checksum are checked 337 

(cases a, b and c), as well as how the functionality of the scrubber is verified (case d).  338 

In Fig. 6a, the 32-bit word #B5D6BCFE (obtained by appending the content of the register 339 

CRCword to the register Codeword) is given as input to the scrubber after the 16 flip-flops of the 340 

CRC checker are reset. As expected, after 32 clock cycles, all bits of DATA OUT are equal to 0, 341 

thus the CRC checker output is 1 (i.e., no error detected).  342 
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 343 

Fig. 5 Waveforms for the memory read operation. 344 

 345 

Fig. 6 Waveforms for the step of word checking and verification of the scrubber functionality. 346 

 347 

On the other hand, Fig. 6b, shows the case in which one bit of the word is altered and the 32-bit 348 

words #B596BCFE is given to the scrubber. As can be seen, for this case, after 32 clock cycles, 349 

some bits of the signal DATA OUT are 1, thus the CRC checker output is 0 (i.e., error indicaton). 350 

Therefore, in this case the MEMCODE word must be reconfigured with the value on MEMGOLD as 351 

shown in Fig. 7, and the checksum calculated again and stored in MEMCRC, as shown in Fig. 8.  352 

Similarly, Fig. 6c reports the case in which one bit of the checksum is altered and the 32-bit word 353 

#B5D6BCBE is given to the scrubber input. Also in this case, after 32 clock cycles, some bits of the 354 

signal DATA OUT are 1, thus the CRC checker output is 0 (i.e., error indicaton). As in the previous  355 

 356 
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 357 

Fig. 7 Waveforms during the reconfiguration of the FPGA memory containing an erroneous word, 358 

after it is detected by our scheme. 359 

 360 

Fig. 8 Waveforms for the checksum calculation and write operation of the checksum in memory. 361 

 362 

case, the word on MEMCODE must be reconfigured with the value on MEMGOLD (Fig. 7) and the 363 

checksum calculated again and stored in MEMCRC (Fig. 8).  364 

Finally, Fig. 6d, shows the case where the scrubber functionality is verified. The same checksum in 365 

Fig. 6a corresponding to the correct word is used, and the 32 bit word #B5D6BCFE is given as 366 

input to the scrubber. In this case, however, the state of the flip-flop S6 is set instead of reset, while 367 

all other flip-flops are reset (initially Data Out is set to #0400). As expected, after 32 clock cycles, 368 

DATA OUT has the value #D003, and the output of the CRC checker is 0 (indicating the presence 369 

of an error), indicating that the CRC checker is working properly, thus being able to detect errors on 370 

words read from the FPGA memory. 371 

Fig. 7 reports the waveforms during the reconfiguration of the FPGA memory containing an 372 

erroneous word, after it is detected by our scheme. In particular, the correct word #B5D6 is read at 373 

the address #69 of MEMGOLD and written to the same address of MEMCODE. In order to complete 374 

the reconfiguration process, the checksum (#BCFE) of the reconfigured word must be calculated 375 
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and stored at the corresponding address (#69) in MEMCRC. The waveforms of this latter operation  376 

are reported in Fig. 8. 377 

4.3 Costs of the proposed scheme 378 

We have estimated the cost of our proposed scrubber in terms of time overhead, resource utilization 379 

and power consumption. In order to estimate such costs, the proposed FPGA scrubber has been 380 

implemented in Verilog and  synthesized on a real FPGA device (Arria II GX EP2AGX45CU17I3) 381 

using the Quartus II (64 bit version) tool. For our evaluations, we have considerd as a realistic 382 

example a clock frequency of 100 MHz (clock cycle period of 10 ns). 383 

Let us first report the cost in terms of time overhead of the proposed solution. The time required to 384 

read a word (16 bit) from the volatile memory (MEMCODE or MEMCRC) is 100 ns, while the time 385 

required to write a word in such a memory is 150 ns.  386 

As for our algorithm presented in Fig. 4, it first verifies the correctness of the word read from the 387 

FPGA, and then the ability of the scrubber to detect incorrect words. 388 

As for the time required to verify the correctness of the word read from the FPGA memory, it is 389 

given by: 1) the time required to load the word from MEMCODE and the checksum from MEMCRC 390 

(100 ns each), plus 2) one clock period (10 ns) to reset the 16 flip-flops of the CRC generator, plus 391 

3) 32 clock cycles (320 ns) to generate the error/no error indication at the CRC checker output. 392 

Therefore, the time required by our scheme to verify the correctness of a word read from the FPGA 393 

memory is: 394 

nsnsnsnsnsT TESTCODEWORD 53032010100100_ =+++=                                                          (2) 395 

Similarly, the time required by our scheme to detect the ability of the scrubber in detecting incorrect 396 

word is given by: 1) 1 clock period (10 ns) to reset the 16 flip-flops of the CRC generator, plus 2) 397 

one clock period to set the state of one flip-flop (10 ns), plus 3) 32 clock cycles to generate the 398 

error/no error indication at the CRC checker output. Therefore, the time required for the scrubber in 399 

this phase is: 400 

nsnsnsnsT TESTSCRUBBER 3403201010_ =++=
                                                                        (3) 401 
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The reconfiguration of a word in the FPGA configuration memory requires a read operation from 402 

MEMGOLD (100ns), a write operation to MEMCODE (150 ns), the calculation of the correct checksum 403 

(16 clock cycles for an operation time of 160 ns) and to write the checksum to MEMCRC (150 ns). 404 

Thus, the reconfiguration of a word in the FPGA configuration memory requires: 405 

nsnsnsnsnsT ATIONRECONFIGURFPGACODEWORD 560150160150100__ =+++=                               (4) 406 

The reconfiguration of the CRC circuit is, of course, the most time consuming operation since it 407 

requires the reconfiguration of multiple code words in the FPGA used to configure the CRC circuit. 408 

Assuming the CRC circuit uses 25 words in the FPGA configuration memory, the required time is: 409 

 snsT ATIONRECONFIGURCIRCUITCRC 1425560__ ==                                                                  (5) 410 

The total time required to perform a single loop of the algorithm of Fig. 4, in the case of absence of 411 

errors, is the sum of the time required for the word test phase (530 ns), the time required for the 412 

scrubber test phase (340 ns) and 2 clock cycle to increase the registers for the variables i and j (20 413 

ns). Thus the total time required for a single loop of the algorithm is 890 ns. As an example, for the 414 

case of a configuration memory size of 256 words of 16 bits (the case study discussed in this paper) 415 

the total scrubbing time in absence of errors is 227.84 µs, that corresponds to a total scrubbing time 416 

of 58.33 ms for every Mbit of configuration memory. The overhead introduced by the scrubber test 417 

phase is 38.2% of the total scrubbing time. However, this overhead can be reduced by performing 418 

the scrubber test phase only 1 out of n loops (i.e., the scubber behavior is verified after n words of 419 

FPGA memory are scrubbed). For example, in the case of n=2 the time overhead introduced by the 420 

scrubber test phase is 23.6% of the total time, in the case of n=4 is 13.4% of the total time and in the 421 

case of n=8 is 7.2% of the total time. Thus, depending on the SEU error rate of the particular 422 

application, the time overhead of the scrubber test phase can be significantly reduced with a trade 423 

off between system performance and reliability. However, the additional time overhead required by 424 

our strategy over the original scrubber does not affect the reliability of the FPGA. In fact, as 425 

reported in [7], FPGA devices (like the Xilinx Virtex-II) may be characterized by a soft error rate of 426 

approximately 405 FIT/Mb, that is 405 soft errors in a billion hours of operation per Mbit of 427 
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memory. Therefore, the soft error rate is low enough to guarantee the absence of multiple SEUs in 428 

the time required by our strategy, which is equal to 58.33 ms per 1 Mbit of configuration memory. 429 

Regarding the resource utilization and the power consumption, such costs have been estimated 430 

considering the scheme in Fig. 1. As expected, the FPGA memory (MEMCODE and MEMCRC) is the 431 

most demanding in terms of resource utilization and power consumption. Each 256 words of 432 

memory is responsible for a 20% logic utilization of the entire FPGA device, with 5797 433 

combinational ALUTs out of 36100, and a power consumption of 19.83 mW. On the contrary, the 434 

CRC generator and checker circuit is responsible for less than 1% logic utilization of the entire 435 

FPGA device, with 84 combinational ALUTs out of 36100 and 16 registers, and a power 436 

consumption of 2.08 mW. Similarly, the control circuit is responsible for less than 1% logic 437 

utilization of the entire FPGA device, with 109 combinational ALUTs out of 36100 and 33 438 

registers, and a power consumption of 2.47 mW. Thus, the resource utilization for the CRC 439 

generator and checker and the control circuits represents only 4.17% of the resource utilization of 440 

the FPGA memory and the power consumption for the CRC generator and checker and the control 441 

circuits represents only 22.9% of the power consumption of the FPGA memory. 442 

Overall, the proposed strategy based on time redundancy is characterized by a very low resource 443 

occupation while still maintaining the total scrubbing time at acceptable levels. Reversely, solutions 444 

based on hardware redundancy, although very efficient in terms of time overhead (i.e. processing is 445 

carried out in parallel) are extremely expensive in terms of resource utilization. For example, the 446 

TMR approach proposed by Zhang et al. in 2018 that exploits the triplication of the circuit, results 447 

in a 300% resource increase [24]. The TMR approach on the Xilinx Kintex-7 FPGA proposed by 448 

Sielewicz et al. in 2017 triplicates not only the circuit but also the voter, resulting in an area 449 

increase > 300% [25]. An even more expensive solution in terms of resource has been proposed by 450 

Shaker et al. in 2020 where the circuit is replicated five times, resulting in a 500% increase of 451 

resource utilization [28]. In comparison, the proposed strategy is much more area efficient, 452 

requiring an increase of only 4.17% of resource utilization. Like in any time redundancy strategy, 453 
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the low increase in resource utilization is balanced by a higher time overhead. The time redundancy 454 

strategy proposed by Villa et al. in 2019 is characterized by a 107% time overhead (compared to  455 

the 38.2% required by our strategy) and 93.26% area overhead (compared to the 4.17% of our 456 

strategy) [32]. The detection scheme proposed by Bahramali et al. in 2011 is characterized by an 457 

increase of resource utilization between 30% and 58% (compared to the 4.17% of our strategy) 458 

[33]. The time redundancy strategy proposed by Ibrahim et al. in 2013 is characterized by a 300% 459 

time overhead (compared to the 38.2% of our strategy) [34]. Moreover, differently from other 460 

strategies in literature, our detection strategy can also detect errors in the scrubber circuit.  461 

 462 

5. Conclusions 463 

In this paper a novel strategy to detect SEUs induced faults in SRAM based FPGAs is presented. 464 

The proposed technique is based on time redundancy and allows to detect faults both in FPGA 465 

configuration memory and the scrubber with negligible area overhead if compared with the 466 

unmitigated approach. 467 

The working principle of the proposed strategy is to force the scrubber output to assume both 468 

possible value (presence or absence of error), thus testing the scrubber functionality to detect errors 469 

in the code word under test. 470 

The performance of the proposed strategy has been evaluated in terms of time overhead, resource 471 

utilization and power consumption by synthesizing the circuit on a real FPGA device (Arria II GX 472 

EP2AGX45CU17I3). The results have shown how the scrubber  functionality test phase introduces 473 

a 38.2% time overhead over the unprotected design but this time overhead can be significantly 474 

lowered by decreasing the frequency of the scrubber test phase. The resource utilization overhead is 475 

negligible (4.17%) and the power consumption overhead is relatively small (22.9%) if compared to 476 

the original unmitigated scrubber.  477 

In future works, the proposed stategy based on time redundancy to detect SEUs in SRAM-based 478 

FPGAs will be implemented on different FPGA devices from different producers to evaluate the 479 
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performance differences based on different hardware. The system performance will then be 480 

evaluated by laboratory measurements on real hardware and compared with the standard mitigation 481 

techniques (TMR, DWC, etc.) in terms of execution times, occupation area and power consumption. 482 

 483 
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 488 
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