
27 December 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

M. Grossi, M.B. (2022). Low-Cost Strategy to Detect Faults Affecting Scrubbers in SRAM-Based FPGAs.
MICROPROCESSORS AND MICROSYSTEMS, 89, 1-9 [10.1016/j.micpro.2022.104437].

Published Version:

Low-Cost Strategy to Detect Faults Affecting Scrubbers in SRAM-Based FPGAs

Published:
DOI: http://doi.org/10.1016/j.micpro.2022.104437

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/893391 since: 2022-09-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.micpro.2022.104437
https://hdl.handle.net/11585/893391

 1

Low-Cost Strategy to Detect Faults Affecting Scrubbers in SRAM-Based FPGAs 1

Marco Grossi1, Meryem Bouras2, Martin Omaña1, Hassan Berbia2 2

Corresponding author : marco.grossi8@unibo.it , Tel. 0039-0512093038 3

1 Department of Electrical Energy and Information Engineering “Guglielmo Marconi” (DEI), 4

University of Bologna, Bologna, Italy 5

2 Department of Embedded Systems Engineering, Mohammed V University in Rabat, Rabat, 6

Morocco 7

 8

Abstract 9

SRAM-based Field Programmable Gate Arrays (FPGAs) are vulnerable to SEUs. For applications 10

demanding high reliability this problem is often solved by integrating in the system a scrubber, a 11

circuit that periodically scans the FPGA configuration memory and reconfigures it if an error is 12

detected. Since the scrubber is usually implemented in the same FPGA device, it is also vulnerable 13

to SEUs, thus the scrubber reliability is increased by adopting standard fault tolerance techniques. 14

These solutions guarantee the scrubber reliability, but generally require a large area overhead. 15

In this paper, we present a novel low-cost strategy capable to detect faults in the FPGA 16

configuration memory implementing the scrubber. The proposed technique is based on time 17

redundancy, forcing the scrubber output to produce an error indication for each word read from the 18

FPGA memory, in order to detect the faults affecting the portion of FPGA memory implementing 19

the scrubber. The implementation of our proposed strategy presents a negligible impact in terms of 20

area overhead (4.17%) and a limited increase in power consumption (22.9%) over the original 21

(unprotected) scrubber. As for the impact on system performance introduced by our strategy, it is of 22

approximately the 38.2% over the unprotected scrubber, but it can be significantly lowered by 23

reducing the frequency at which the scrubber is applied to test the FPGA. 24

 25

mailto:marco.grossi8@unibo.it

 2

Keywords: fault tolerance; reliability; SRAM based FPGA; configuration memory; time 26

redundancy. 27

 28

1. Introduction 29

The Attitude Determination and Control System (ADCS) is an on-board component of satellites, 30

whose correct operation is essential to meet the satellite mission. In fact, the ADCS performs the 31

spacecraft attitude control and maneuvers, tracking a predefined, nominal orbit and maintaining a 32

preferred orientation in space. Usually, the ADCSs are implemented by means of SRAM based 33

Field Programmable Gate Arrays (FPGAs) [1], in order to reduce costs and enable the possibility to 34

reconfigure the system in the field. However, as known, the configuration memory of SRAM-based 35

FPGAs is vulnerable to SEUs, especially for on-board satellite applications, where external 36

disturbances, such as trapped particles, cosmic and solar radiations, geomagnetic field interferences, 37

etc. are very likely to occur [2]. Considering that the ADCS is a crucial element for the satellite 38

operation, it is of utmost importance to increase its robustness against SEUs, in order to guarantee 39

its correct operation, thus the reliability of the whole space mission [1]. Moreover, transient and 40

permanent faults can also affect the operation of FPGA based Networked Control Systems (NCSs) 41

used in harsh industrial environments, with possible cathastropich consequences to users and/or the 42

environment [3]. 43

Consequently, several approaches have been presented in literature to increase the robustness of 44

SRAM-based FPGAs against SEUs. In particular, the use of low-cost Error Detection and 45

Correction codes and Interleaving has been largely studied in the literature (e.g., codes in [4, 5]). On 46

the other hand, the use of the scrubbing techniques has been also studied in literature (e.g., the 47

techniques in [5, 6, 7]). These techniques have been proven to be effective to protect the 48

configuration memory of SRAM-based FPGAs [4, 7, 8, 9, 10, 11, 12, 13, 14]. 49

Scrubbing techniques usually adopt an Error Detecting Code (EDC) to detect the presence of SEUs 50

affecting the configuration memory. They read periodically byte after byte (actually two 51

 3

simultaneous bytes) of the FPGA memory and verify the presence of erroneous bit(s). If an error is 52

detected, then the portion of the FPGA containing the erroneous bit(s) is reconfigured [15, 16]. 53

There are two main types of scrubbing techniques: the internal and the external scrubbers [5, 6, 7, 54

17]. The external scrubber uses a second FPGA, different from the FPGA that implements the main 55

circuit, for the scrubbing circuit, while the internal scrubber implements the scrubber circuitry in the 56

same FPGA of the main circuit. Internal scrubbers are more effective in terms of time performance 57

and area occupation [17]. 58

More in details, commercial FPGAs scrubbers usually employ the Cyclic Redundancy Check 59

(CRC) code as EDC to detect the presence of SEUs affecting the configuration memory [7]. In such 60

scrubbers, a signature (or checksum) is added to each word (16 bits of information) stored in the 61

configuration memory of the FPGA. During FPGA in-field operation, this scrubbing technique 62

reads the FPGA memory periodically and verifies the checksum of the stored words. If the 63

checksum is incorrect, the scrubber generates an error indication, and the portion of the FPGA 64

containing the erroneous word is reconfigured [16, 18]. 65

A problem of existing scrubbing techniques is that they are implemented within FPGAs, thus they 66

are also vulnerable to SEUs [4, 7, 8, 9, 10, 11, 12, 13, 14]. In fact, SEUs can affect both the part of 67

the FPGA memory implementing the main circuit as well as part implementing the scrubber. These 68

latter SEUs may change the functionality of the scrubber [4, 6, 12, 19, 20], making it unable to 69

detect successive SEUs affecting the FPGA, with possible catastrophic results for the system 70

functionality. 71

In order to cope with this problem, different solutions have been proposed in literature to enhance 72

the reliability of scrubbers [7, 8, 14, 21, 23]. Most of these solutions are based on the triplication (or 73

duplication) of the scrubber, in order to tolerate (or detect) SEUs affecting the portion of the FPGA 74

memory implementing them [6, 20, 22, 23]. A general limitation of these solutions is the significant 75

area overhead they require, which may prevent their use in some applications with strict area 76

 4

requirements (e.g., these solutions are too expensive for on-board ADCS applications, like the one 77

described above). 78

Based on these considerations, in this paper we propose a novel low-cost strategy to detect SEUs 79

affecting the part of the FPGA memory implementing the scrubber. We consider scrubbers using 80

the CRC code as EDC, since it is the EDC most widely used by scrubbers. However, our strategy 81

can be straightforward modified to be used also with other kind of EDCs. Rather than using space 82

redundancy, our strategy employs time redundancy to detect SEUs affecting the part of the FPGA 83

memory implementing the scrubber, thus our strategy requires a significant smaller area overhead 84

compared to space redundance approaches (e.g., like Triple Modular Redundancy – TMR). 85

Our strategy periodically tests the correctness of the words stored in the FPGA memory and the 86

behavior of the scrubber by executing in sequence the following two steps: 1) check the correctness 87

of the checksums of the words read from the FPGA memory (i.e., we verify the absence/presence of 88

errors on the word being tested by the scrubber); 2) check the ability of the scrubber in detecting 89

incorrect words affected by SEUs (i.e., our approach purposely induce bitflips on the words during 90

this step to emulate the presence of SEUs). In step 2) an error indication is expected at the scrubber 91

output in case of scrubber correct behavior (i.e., in case of no SEU affecting the portion of the 92

FPGA memory implementing the scrubber). 93

As shown in the paper, the implementation of our proposed strategy requires a negligible area 94

overhead (4 NOR and 3 AND gates) over the original (unprotected) scrubber, area overhead that is 95

also negligible compared to that required by alternative solutions based on TMR. Moreover, the 96

power consumption required by our proposed approach is also a small fraction of the power 97

consumption of the FPGA memory. 98

The rest of this paper is organized as follows. In Section 2 an overview of the scrubbing techniques 99

for SRAM based FPGAs is presented. In Section 3, some techniques in literature to mitigate the 100

occurrence of SEUs on scrubbers for SRAM based FPGAs are presented and discussed. In Section 101

 5

4, the proposed technique for low-cost detection of SEUs in CRC based scrubbers is discussed and 102

its performances are presented. Finally, conclusions are drawn in Section 5. 103

 104

2. FPGA Scrubbing Techniques 105

In order to implement scrubbing techniques in FPGAs, a dedicated Cyclic Redundancy Check 106

(CRC) generator is used during the FPGA configuration to calculate a checksum for each word (or 107

frame) to be stored on the FPGA memory. Such checksums are stored on the FPGA memory 108

together with their associated frames, and they are used later during the FPGA in-field operation to 109

detect the presence of SEUs in the configuration memory. 110

The configuration of the blocks composing SRAM based FPGAs (e.g., the CLBs, the routing 111

resources, the blocks of RAM, the IO blocks, etc.) is programmed through a bitstream of words 112

(frames), whose size depends on the particular FPGA device and the considered application [18]. 113

For example, for the Virtex-5 FPGAs from Xilinx, the bitstream of the configuration memory is 114

composed by 41 words of 32 bits each (1,312 bits). 115

Each frame [8] has a unique address that is related to the physical position in the FPGA floorplan, 116

and the position in the floorplan is related to a specific resource (e.g. CLB, RAM, DSP, IOB, etc.). 117

Each column of configuration memory defines a specific type of resource (e.g., CLB, DSP, etc.) [7, 118

8]. 119

In order to protect the configuration memory of SRAM-based FPGAs against SEUs or MBUs, 120

scrubbing techniques are usually adopted. These techniques read continuously (scrub), frame by 121

frame, the FPGA configuration memory to detect the presence of SEUs. If an SEU is detected in a 122

frame, the portion of the memory affected by the SEU is reconfigured without interrupting the 123

normal FPGA operation. The circuit that performs scrubbing is commonly called scrubber [4, 15]. 124

There are different kinds of scrubbing techniques, such as blind scrubbing, readback scrubbing, 125

frame level scrubbing and model scrubbing [4, 15]. In this paper, we consider the readback 126

 6

scrubbing, which is the scrubbing technique requiring the lowest power consumption [4, 15], thus 127

being the most suitable for the considered on-board ADCS application. 128

 During the FPGA configuration process, a golden copy of the bitstream is stored in a non-volatile 129

memory (PROM or flash ROM) that is immune to SEUs. Then, during normal operation in the field 130

the memory is readback frame by frame. For each frame read from memory, the scrubber 131

recalculates the CRC checksum, and compares it with the CRC generated during the configuration 132

phase, and stored together with the frames. If due to an SEU the regenerated checksum is different 133

from that stored in memory, an error indication is generated by the scrubber, and the part of the 134

configuration memory of the FPGA containing the erroneous frame is rewritten with the data stored 135

in the golden copy [16]. 136

A problem of this scrubber is that SEUs affecting the part of the FPGA memory implementing the 137

scrubber may change its functionality, which in turn may prevent the detection of successive SEUs 138

affecting the portion of the FPGA memory implementing the main circuit, with consequent 139

catastrophic results for the system functionality. 140

In order to avoid this problem, we propose a novel low-cost strategy that is able to detect SEUs 141

affecting the part of the FPGA memory implementing the scrubber itself. 142

 143

3. Related works 144

In the last years, many scrubber designs have been proposed to mitigate the effects of SEUs 145

affecting the part of the FPGA memory implementing the scrubber itself. Most scrubbers are based 146

on hardware redundancy, mainly adopting the conventional Triple Module Redundancy (TMR) 147

technique, where three copies of the scrubber feed a majority voter. This solution guarantees a high 148

reliable scrubber, but also requires high area occupation and power consumption. Zhang et al. in 149

2018 presented a scrubbing strategy based on TMR and implemented it on a Xilinx FPGA [24]. The 150

results have shown that the proposed approach provides a quick repair of the SEUs and can improve 151

the reliability of SRAM-based FPGAs. Sielewicz et al. in 2017 proposed an experimental method 152

 7

for the evaluation of TMR-based mitigation techniques on the Xilinx Kintex-7 FPGA [25]. The 153

proposed architecture was evaluated under different redundancy topologies, such as no mitigation 154

methods, triplication of the combinational logic, triplication of the output registers, triplication of 155

the voter circuits as well as combination of these techniques. Irradiation experiments have been 156

carried out at the isochronous cyclotron at the Nuclear Physics Institute of the Academy of Sciences 157

of the Czech Republic and the reliability of the different designs evaluated. 158

On the other hand, Giordano et al. in 2018 introduced a scrubber that is implemented in a PicoBlaze 159

8-bit microcontroller running at 100 MHz [26]. The scrubbing algorithm is implemented by 160

software in the microcontroller and the microcontroller reliability is guaranteed by TMR 161

implementation on different modules of the processor. The proposed system has been implemented 162

on an electronic board based on the Xilinx Kintex-7 70T FPGA and the results have shown that the 163

reliability is increased by 42% and 290% if compared to a standard TMR approach and no 164

mitigation techniques, respectively. Wilson et al. in 2021 also proposed a FPGA system based on a 165

32-bit pipelined VexRiscv processor [27] implemented on the Digilent Nexys Video development 166

board integrating also the XC7A200T-ISBG484C FPGA. Two different versions of the processor 167

were designed, one with unmitigated design and the other with TMR approach and triplicated 168

voters. The results have shown how the TMR based soft-core processor provides a 33x 169

improvement in reliability at the cost of 5x resource utilization and decreased operating frequency. 170

Shaker et al. in 2020 presented a FPGA system implementing a penta modular redundancy (5MR) 171

approach capable to detecting SEUs and multiple event upsets (MEUs) [28]. The system is 172

implemented using the Kintex7 7k410tfbg676 FPGA device and adopts a dynamic partial 173

reconfiguration to increase the system reliability. 174

While TMR provides a good protection against SEUs in SRAM-based FPGA designs, this 175

technique requires a significant increase of the resource utilization, which can be unacceptable in 176

particular design with tight constraints on the available resources. Thus, alternative approaches 177

requiring lower resource overhead have been proposed, at the cost of a lower protection against 178

 8

SEUs. Machado Matsuo et al. in 2018 proposed a Dual Modular Redundancy (DMR) mitigation 179

scheme for an heterogeneous CPU-FPGA platform [29]. Keller and Wirthlin in 2018 presented a 180

partial triple modular redundancy (pTMR) for fault mitigation in an FPGA system [30]. The pTMR 181

technique consists in the logic triplication of only a few sub-modules that represent a small fraction 182

of the total area but are particularly vulnerable to SEUs. The paper shows that this approach enables 183

6x increase in the system reliability compared to the unmitigated design, at the cost of only 2.8% 184

increase in terms of area overhead. 185

A different approach to protect SRAM-based FPGA designs against SEUs is the adoption of time 186

redundancy strategies. Time redundancy strategies are characterized by a negligible area overhead, 187

but they require that system operations are executed multiple times in sequence, resulting in a non 188

negligible impact on system performance, that can conflict with the requirements in terms of 189

execution time of some real-time systems. As discussed in [31], time redundancy approaches are 190

particularly suited for applications where erroneous results can be discarded and individual 191

operations can be re-executed, or where an application can be restarted without serious 192

consequences for the system. 193

Villa et al. in 2019 presented a fault tolerant technique based on time redundancy for SEUs 194

detection and recovery in soft-core processors [32]. The architecture of the soft-core processor 195

LEON3 designed on FPGA was modified to implement a fault tolerant technique based on 196

checkpoint recovery. Checkpoints are saved during the program execution and, when an error is 197

detected, program execution stops and returns to the last safe checkpoint. Bahramali et al. in 2011 198

proposed a fault detection scheme of secure hash algorithm (SHA-1 and SHA-512) for 199

implementation in FPGA [33]. The computation is broken in two parts with a pipeline inserted in 200

between. Each part is computed twice and the results compared to detect potential faults. Ibrahim et 201

al. in 2014 presented a comparative study on the performance of FPGA based systems where SEUs 202

are mitigated with time redundancy and hardware redundancy [34]. The solutions were 203

implemented by using the Xilinx FPGA Virtex 5 LX50T. The paper shows that TMR requires 3x 204

 9

 205

Fig. 1 Simplified scheme of the scrubber hardware. 206

 207

resources utilization and 28% increase of the power consumption, but minimally impacts the 208

processing time. On the other hand, the paper shows that time redundancy implies an increase of 209

approximately 3x in the processing time compared to the unprotected system. 210

Generally, the choice between hardware redundancy and time redundancy depends on the type of 211

application and the type of FPGA device. In fact, different applications may have different 212

requirements in terms of reliability, expressed as failures in time (FIT) per billion hours, and 213

different FPGA technologies can be characterized by different SEUs error rate [7]. For example, 214

Xilinx Virtex-II FPGAs have a soft error rate of 405 FIT/Mb, while more recent devices are 215

characterized by improved reliability (soft error rate of 160 FIT/Mb and 100 FIT/Mb in the case of 216

Virtex-6 and Virtex-7 FPGAs, respectively). 217

 218

4. Proposed Solution 219

In this Section, we present a low-cost scrubber for SRAM based FPGAs that is capable to detect 220

SEUs affecting the part of the FPGA memory implementing the scrubber itself. We implemented 221

the proposed scrubber in Verilog RTL, and synthesized it by means of the Quartus II tool. We then 222

 10

performed logic level simulations by means of the Icarus Verilog (iVerilog) tool to verify the 223

operation of the proposed scrubber. 224

Our scrubber employs a dedicated Cyclic Redundancy Check (CRC) generator to verify the 225

correctness of both the words stored in the FPGA memory, as well as the correct behavior of the 226

scrubber itself. This is achieved by executing the following two steps in sequence: 227

1) To verify the correcteness of each word read from the memory, we first regenerate the 228

checksum from the read word by using the CRC generator. Then, the regenerated 229

checksum is compared with the checksum of the word being checked (that is also stored 230

in the FPGA memory). 231

2) To verify the correct behavior of the scrubber, we check its ability in detecting incorrect 232

words read from the FPGA memory by purposely inducing bitflips on the words (to 233

emulate the presence of SEUs). Therefore, during this step, for the case of scrubber 234

correct behavior we expect to obtain an error indication at the scrubber output. 235

A simplified schematic representation of the proposed scrubber is illutrated in Fig. 1. It includes a 236

non-volatile memory (MEMGOLD) that is immune to SEUs, where the golden copy of the circuit 237

implemented by the FPGA is stored. The volatile memories MEMCODE and MEMCRC represent, 238

respectively, the part of the FPGA memory where the words of the FPGA (implementing the main 239

circuit) and the corresponding checksums are stored. As a simple case study, the size of such 240

memories has been set to 256 words of 16 bits. At the system boot, the volatile memory MEMCODE 241

is initialized with the data from MEMGOLD, while the volatile memory MEMCRC is initialized with 242

the checksums calculated using the CRC circuit. The CRC circuit block is the circuit used to the 243

checksum calculation and error verification, while the controller block generates the control signals 244

required for the operation of the scrubber (i.e. memory operations and initialization, generations of 245

the input signals for the CRC circuit, acquisition of the error signal, etc.). All the blocks of the 246

scrubber in Fig. 1 (except for the non-volatile memory MEMGOLD) are implemented inside the 247

FPGA device. 248

 11

 249

Fig. 2 Schematic representation of the CRC calculation and CRC checker circuits of the scrubber. 250

 251

In the following Subsections, we present a possible implementation for the blocks composing the 252

proposed scrubber. 253

4.1 CRC generator and checker 254

Fig. 2 shows a schematic representation of a 16-bits CRC generator for the considered case of 16-255

bit words, which represents a realistic example of CRC generators used in modern FPGAs [16]. The 256

16-bit CRC generator is based on a Linear Feedback Shift Register (LFSR) with characteristic 257

polynomial given by: 258

 259

121516

16 +++= XXXCRC
 (1) 260

 261

In the FPGA configuration phase, the 16 flip-flops of the CRC checker are reset and the 16-bit word 262

of the FPGA is serially given as input (most significant bit first) at the DATA IN line. After 16 263

clock cycles the DATA OUT array (S16S15…..S1) contains the checksum for the corresponding 264

word. The obtained checksum is stored in the FPGA volatile memory MEMCRC to be used later 265

during the scrubbing of the FPGA in the field. 266

 12

 267

Fig. 3 Waveforms for the scrubber control signals during the checksum calculation and test of a 268

code word. 269

 270

In particular, during scribbing, to verify the correcteness of the words read from the FPGA memory, 271

the following steps are carried out: 272

- The 16 flip-flops of the CRC generator circuit are reset. 273

- A 32-bit word, obtained by appending the word under test from MEMCODE (most significant 274

word) and the checksum from MEMCRC (least significant word), is fed as input (most 275

significant bit first) at the DATA IN line (this step is executed in 32 clock cycles). After the 276

first 16 clock cycles the DATA OUT array (S16S15…..S1) contains the recalculated 277

checksum of the word being verified. In the second 16 clock cycles the checksum from 278

MEMCRC is fed as input at the DATA IN line. 279

- After applying 32 clock cycles, the output of the CRC generator DATA OUT (S16S15…..S1) 280

contains all 0s (00….0) only if the recalculated checksum is equal to the one read from the 281

volatile memory MEMCRC. 282

As can be seen from Fig. 2, the 16-bit CRC checker is implemented by a combinational circuit 283

composed of 3 AND and 4 NOR gates whose output (ERROR) is equal to 1 if no errors are present 284

in the tested code word, or is equal to 0 otherwise. The “CRC generator and checker” are shown in 285

Fig. 2. 286

The working principle of the CRC circuit in Fig. 2 is illustrated in Fig. 3, for the case of absence of 287

errors in the word read from memory. The waveforms for the signals DATA IN, CLK and DATA 288

 13

OUT are shown for the case of the word #B5D6 and the checksum #BCFE. The upper waveform 289

referrs to the checksum recalculation, while the lower waveform refers to the checksum 290

verification. More in details, the following steps are illustrated in Fig. 3: 291

- The flip-flops of the CRC generator are reset (Data Out initially equal to 00….0). 292

- The code word #B5D6 (1011010111010110) from MEMCODE is fed as input at the DATA 293

IN line. After 16 clock cycles the recalculated checksum #BCFE (1011110011111110) is 294

present on DATA OUT (S16S15…..S1). 295

- The checksum from MEMCRC is fed as input at the DATA IN line. Since this value (#BCFE) 296

is the same as the value calculated during the first 16 clock cycles, after the second 16 clock 297

cycles DATA OUT is equal to (00…..0) and the output of the CRC checker is equal to 1 (no 298

error detected). 299

This approach is capable to detect errors due to occurrence of SEUs in the FPGA memory only if 300

the part of the FPGA memory implementing the CRC generator and checker itself is error free (i.e., 301

the CRC generator and checker is correctly configured in the FPGA). However, if a SEU induces an 302

error in the part of the FPGA memory implementing the CRC generator and checker, the reliability 303

of the scrubber may be seriously compromised. In fact, as a simple example, the SEU can make the 304

output of the scrubber constant (ERROR=1, i.e. no error detected) during the FPGA normal 305

operation, so it is not possible to detect SEUs affecting the FPGA memory implementing the main 306

circuit. As clarified before, this critical situation is avoided by our self-checking scrubber based on 307

time redundancy. 308

4.2 Proposed Scrubbing Strategy 309

The algorithm of our novel low-cost self-checking scrubber strategy, based on time redundancy, is 310

illustrated in the flow chart in Fig. 4. In the first phase “word test phase”, the word under test and 311

the corresponding checksum are read from memory (i.e., from MEMCODE and MEMCRC 312

respectively) and given as input to the CRC circuit (the word and the checksum are first appended 313

to obtain a word of 32 bits, as described in previous Subsection). Then we apply 32 clock cycles, 314

 14

 315

Fig. 4 Flow-chart of the algorithm of the test phase implemented in the scrubber controller. 316

 15

and then, if we obtain an error indication at the output of the CRC checker, the FPGA memory is 317

reconfigured using the data in MEMGOLD. Otherwise, the “scrubber test phase” begins to verify its 318

correct operation. As described at the beginning of this Section, in the “scrubber test phase” the 319

CRC circuit is checked by emulating an error in the 32-bit word given to the CRC checker, so that 320

in case of correct behaviour we expect to obtain an error indication at the output of the CRC 321

checker. To achieve this goal we induce a bit flip in the 32-bit word (obtained by appending the 322

checksum to the memory word) before it is given to the CRC circuit. In particular, 15 flip-flops out 323

of the 16 flip-flops of the CRC checker are reset, while one flip-flop is set, in order to modify the 324

initial state of the CRC generator. This way, after 32 clock cycles, we expect to obtain a logic 0 325

(presence of error) at the ouput of the CRC checker for the case of scrubber correct behaviour. 326

Otherwise, if after the 32 clock cycles we obtain a logic 1 at the output of the CRC checker, it 327

means that the scrubber is unable to detect errors in the FPGA memory (words) and the scrubber 328

circuit must be reconfigured. 329

As an example, Figs. 5, 6, 7 and 8 report some waveforms of the signals during the two steps of the 330

algorithm presented in Fig. 4. 331

In particular, Fig. 5 reports the waveforms regarding the FPGA memory read operation of the word 332

#B5D6 and the checksum #BCFE (both read at address 69 of MEMCODE and MEMCRC, 333

respectively), that are stored in the registers Codeword and CRCword, respectively. 334

The values of the registers Codeword and CRCword are used in the next phase of our approach, 335

when the correctness of the word read from memory and the scrubber behaviour are verified. 336

In addition, Fig. 6 illustrates how the word under test and the corresponding checksum are checked 337

(cases a, b and c), as well as how the functionality of the scrubber is verified (case d). 338

In Fig. 6a, the 32-bit word #B5D6BCFE (obtained by appending the content of the register 339

CRCword to the register Codeword) is given as input to the scrubber after the 16 flip-flops of the 340

CRC checker are reset. As expected, after 32 clock cycles, all bits of DATA OUT are equal to 0, 341

thus the CRC checker output is 1 (i.e., no error detected). 342

 16

 343

Fig. 5 Waveforms for the memory read operation. 344

 345

Fig. 6 Waveforms for the step of word checking and verification of the scrubber functionality. 346

 347

On the other hand, Fig. 6b, shows the case in which one bit of the word is altered and the 32-bit 348

words #B596BCFE is given to the scrubber. As can be seen, for this case, after 32 clock cycles, 349

some bits of the signal DATA OUT are 1, thus the CRC checker output is 0 (i.e., error indicaton). 350

Therefore, in this case the MEMCODE word must be reconfigured with the value on MEMGOLD as 351

shown in Fig. 7, and the checksum calculated again and stored in MEMCRC, as shown in Fig. 8. 352

Similarly, Fig. 6c reports the case in which one bit of the checksum is altered and the 32-bit word 353

#B5D6BCBE is given to the scrubber input. Also in this case, after 32 clock cycles, some bits of the 354

signal DATA OUT are 1, thus the CRC checker output is 0 (i.e., error indicaton). As in the previous 355

 356

 17

 357

Fig. 7 Waveforms during the reconfiguration of the FPGA memory containing an erroneous word, 358

after it is detected by our scheme. 359

 360

Fig. 8 Waveforms for the checksum calculation and write operation of the checksum in memory. 361

 362

case, the word on MEMCODE must be reconfigured with the value on MEMGOLD (Fig. 7) and the 363

checksum calculated again and stored in MEMCRC (Fig. 8). 364

Finally, Fig. 6d, shows the case where the scrubber functionality is verified. The same checksum in 365

Fig. 6a corresponding to the correct word is used, and the 32 bit word #B5D6BCFE is given as 366

input to the scrubber. In this case, however, the state of the flip-flop S6 is set instead of reset, while 367

all other flip-flops are reset (initially Data Out is set to #0400). As expected, after 32 clock cycles, 368

DATA OUT has the value #D003, and the output of the CRC checker is 0 (indicating the presence 369

of an error), indicating that the CRC checker is working properly, thus being able to detect errors on 370

words read from the FPGA memory. 371

Fig. 7 reports the waveforms during the reconfiguration of the FPGA memory containing an 372

erroneous word, after it is detected by our scheme. In particular, the correct word #B5D6 is read at 373

the address #69 of MEMGOLD and written to the same address of MEMCODE. In order to complete 374

the reconfiguration process, the checksum (#BCFE) of the reconfigured word must be calculated 375

 18

and stored at the corresponding address (#69) in MEMCRC. The waveforms of this latter operation 376

are reported in Fig. 8. 377

4.3 Costs of the proposed scheme 378

We have estimated the cost of our proposed scrubber in terms of time overhead, resource utilization 379

and power consumption. In order to estimate such costs, the proposed FPGA scrubber has been 380

implemented in Verilog and synthesized on a real FPGA device (Arria II GX EP2AGX45CU17I3) 381

using the Quartus II (64 bit version) tool. For our evaluations, we have considerd as a realistic 382

example a clock frequency of 100 MHz (clock cycle period of 10 ns). 383

Let us first report the cost in terms of time overhead of the proposed solution. The time required to 384

read a word (16 bit) from the volatile memory (MEMCODE or MEMCRC) is 100 ns, while the time 385

required to write a word in such a memory is 150 ns. 386

As for our algorithm presented in Fig. 4, it first verifies the correctness of the word read from the 387

FPGA, and then the ability of the scrubber to detect incorrect words. 388

As for the time required to verify the correctness of the word read from the FPGA memory, it is 389

given by: 1) the time required to load the word from MEMCODE and the checksum from MEMCRC 390

(100 ns each), plus 2) one clock period (10 ns) to reset the 16 flip-flops of the CRC generator, plus 391

3) 32 clock cycles (320 ns) to generate the error/no error indication at the CRC checker output. 392

Therefore, the time required by our scheme to verify the correctness of a word read from the FPGA 393

memory is: 394

nsnsnsnsnsT TESTCODEWORD 53032010100100_ =+++= (2) 395

Similarly, the time required by our scheme to detect the ability of the scrubber in detecting incorrect 396

word is given by: 1) 1 clock period (10 ns) to reset the 16 flip-flops of the CRC generator, plus 2) 397

one clock period to set the state of one flip-flop (10 ns), plus 3) 32 clock cycles to generate the 398

error/no error indication at the CRC checker output. Therefore, the time required for the scrubber in 399

this phase is: 400

nsnsnsnsT TESTSCRUBBER 3403201010_ =++=
 (3) 401

 19

The reconfiguration of a word in the FPGA configuration memory requires a read operation from 402

MEMGOLD (100ns), a write operation to MEMCODE (150 ns), the calculation of the correct checksum 403

(16 clock cycles for an operation time of 160 ns) and to write the checksum to MEMCRC (150 ns). 404

Thus, the reconfiguration of a word in the FPGA configuration memory requires: 405

nsnsnsnsnsT ATIONRECONFIGURFPGACODEWORD 560150160150100__ =+++= (4) 406

The reconfiguration of the CRC circuit is, of course, the most time consuming operation since it 407

requires the reconfiguration of multiple code words in the FPGA used to configure the CRC circuit. 408

Assuming the CRC circuit uses 25 words in the FPGA configuration memory, the required time is: 409

 snsT ATIONRECONFIGURCIRCUITCRC 1425560__ == (5) 410

The total time required to perform a single loop of the algorithm of Fig. 4, in the case of absence of 411

errors, is the sum of the time required for the word test phase (530 ns), the time required for the 412

scrubber test phase (340 ns) and 2 clock cycle to increase the registers for the variables i and j (20 413

ns). Thus the total time required for a single loop of the algorithm is 890 ns. As an example, for the 414

case of a configuration memory size of 256 words of 16 bits (the case study discussed in this paper) 415

the total scrubbing time in absence of errors is 227.84 µs, that corresponds to a total scrubbing time 416

of 58.33 ms for every Mbit of configuration memory. The overhead introduced by the scrubber test 417

phase is 38.2% of the total scrubbing time. However, this overhead can be reduced by performing 418

the scrubber test phase only 1 out of n loops (i.e., the scubber behavior is verified after n words of 419

FPGA memory are scrubbed). For example, in the case of n=2 the time overhead introduced by the 420

scrubber test phase is 23.6% of the total time, in the case of n=4 is 13.4% of the total time and in the 421

case of n=8 is 7.2% of the total time. Thus, depending on the SEU error rate of the particular 422

application, the time overhead of the scrubber test phase can be significantly reduced with a trade 423

off between system performance and reliability. However, the additional time overhead required by 424

our strategy over the original scrubber does not affect the reliability of the FPGA. In fact, as 425

reported in [7], FPGA devices (like the Xilinx Virtex-II) may be characterized by a soft error rate of 426

approximately 405 FIT/Mb, that is 405 soft errors in a billion hours of operation per Mbit of 427

 20

memory. Therefore, the soft error rate is low enough to guarantee the absence of multiple SEUs in 428

the time required by our strategy, which is equal to 58.33 ms per 1 Mbit of configuration memory. 429

Regarding the resource utilization and the power consumption, such costs have been estimated 430

considering the scheme in Fig. 1. As expected, the FPGA memory (MEMCODE and MEMCRC) is the 431

most demanding in terms of resource utilization and power consumption. Each 256 words of 432

memory is responsible for a 20% logic utilization of the entire FPGA device, with 5797 433

combinational ALUTs out of 36100, and a power consumption of 19.83 mW. On the contrary, the 434

CRC generator and checker circuit is responsible for less than 1% logic utilization of the entire 435

FPGA device, with 84 combinational ALUTs out of 36100 and 16 registers, and a power 436

consumption of 2.08 mW. Similarly, the control circuit is responsible for less than 1% logic 437

utilization of the entire FPGA device, with 109 combinational ALUTs out of 36100 and 33 438

registers, and a power consumption of 2.47 mW. Thus, the resource utilization for the CRC 439

generator and checker and the control circuits represents only 4.17% of the resource utilization of 440

the FPGA memory and the power consumption for the CRC generator and checker and the control 441

circuits represents only 22.9% of the power consumption of the FPGA memory. 442

Overall, the proposed strategy based on time redundancy is characterized by a very low resource 443

occupation while still maintaining the total scrubbing time at acceptable levels. Reversely, solutions 444

based on hardware redundancy, although very efficient in terms of time overhead (i.e. processing is 445

carried out in parallel) are extremely expensive in terms of resource utilization. For example, the 446

TMR approach proposed by Zhang et al. in 2018 that exploits the triplication of the circuit, results 447

in a 300% resource increase [24]. The TMR approach on the Xilinx Kintex-7 FPGA proposed by 448

Sielewicz et al. in 2017 triplicates not only the circuit but also the voter, resulting in an area 449

increase > 300% [25]. An even more expensive solution in terms of resource has been proposed by 450

Shaker et al. in 2020 where the circuit is replicated five times, resulting in a 500% increase of 451

resource utilization [28]. In comparison, the proposed strategy is much more area efficient, 452

requiring an increase of only 4.17% of resource utilization. Like in any time redundancy strategy, 453

 21

the low increase in resource utilization is balanced by a higher time overhead. The time redundancy 454

strategy proposed by Villa et al. in 2019 is characterized by a 107% time overhead (compared to 455

the 38.2% required by our strategy) and 93.26% area overhead (compared to the 4.17% of our 456

strategy) [32]. The detection scheme proposed by Bahramali et al. in 2011 is characterized by an 457

increase of resource utilization between 30% and 58% (compared to the 4.17% of our strategy) 458

[33]. The time redundancy strategy proposed by Ibrahim et al. in 2013 is characterized by a 300% 459

time overhead (compared to the 38.2% of our strategy) [34]. Moreover, differently from other 460

strategies in literature, our detection strategy can also detect errors in the scrubber circuit. 461

 462

5. Conclusions 463

In this paper a novel strategy to detect SEUs induced faults in SRAM based FPGAs is presented. 464

The proposed technique is based on time redundancy and allows to detect faults both in FPGA 465

configuration memory and the scrubber with negligible area overhead if compared with the 466

unmitigated approach. 467

The working principle of the proposed strategy is to force the scrubber output to assume both 468

possible value (presence or absence of error), thus testing the scrubber functionality to detect errors 469

in the code word under test. 470

The performance of the proposed strategy has been evaluated in terms of time overhead, resource 471

utilization and power consumption by synthesizing the circuit on a real FPGA device (Arria II GX 472

EP2AGX45CU17I3). The results have shown how the scrubber functionality test phase introduces 473

a 38.2% time overhead over the unprotected design but this time overhead can be significantly 474

lowered by decreasing the frequency of the scrubber test phase. The resource utilization overhead is 475

negligible (4.17%) and the power consumption overhead is relatively small (22.9%) if compared to 476

the original unmitigated scrubber. 477

In future works, the proposed stategy based on time redundancy to detect SEUs in SRAM-based 478

FPGAs will be implemented on different FPGA devices from different producers to evaluate the 479

 22

performance differences based on different hardware. The system performance will then be 480

evaluated by laboratory measurements on real hardware and compared with the standard mitigation 481

techniques (TMR, DWC, etc.) in terms of execution times, occupation area and power consumption. 482

 483

 484

 485

 486

 487

 488

 489

 490

 491

 492

 493

 494

 495

 496

 497

 498

 499

 500

 501

 502

 503

 504

 505

 23

References 506

[1] Bouras M., Berbia H., Nasser T., On Modeling and Fault Tolerance of NanoSatellite Attitude 507

Control System. In: El Oualkadi A., Choubani F., El Moussati A. (eds) Proceedings of the 508

Mediterranean Conference on Information & Communication Technologies 2015. Lecture Notes in 509

Electrical Engineering, 380, (2016), Springer, Cham. https://doi.org/10.1007/978-3-319-30301-510

7_43. 511

[2] L.D. van Harten, M. Mousavi, R. Jordans, H.R. Pourshaghaghi, Determining the necessity of 512

fault tolerance techniques in FPGA devices for space missions. Microprocessors and 513

Microsystems, 63, (2018), 1-10. https://doi.org/10.1016/j.micpro.2018.08.001. 514

[3] G.I. Alkady, R.M. Daoud, H.H. Amer, M.Y. ElSalamouny, I. Adly, Failures in fault-tolerant 515

FPGA-based controllers–A case study. Microprocessors and Microsystems, 64, (2019), 178-184. 516

https://doi.org/10.1016/j.micpro.2018.11.003. 517

[4] J.-M. Yang, S. W. Kwak, Corrective control for transient faults with application to configuration 518

controllers. IET Control Theory Appl., 9 (8), (2015). https://doi.org/10.1049/iet-cta.2014.0532. 519

[5] M. Ebrahimi, P. M. B. Rao, R. Seyyedi, M. B. Tahoori, Low-Cost Multiple Bit Upset Correction 520

in SRAM-Based FPGA Configuration Frames. IEEE Trans. Very Large Scale Integr. Syst., 24 (3), 521

(2016), 932–943. https://doi.org/10.1109/TVLSI.2015.2425653. 522

[6] X. Li, H. Lou, Z. Jin, A Fault-tolerant Method of SRAM FPGA Based on Processor Scrubbing. 523

IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference 524

(IAEAC), 5, (2021), 1024-1028. https://doi.org/10.1109/IAEAC50856.2021.9390706. 525

[7] Xilinx and Inc, Mitigating Single-Event Upsets WP395 (v1.1) May 19, 2015. 526

https://www.xilinx.com/support/documentation/white_papers/wp395-Mitigating-SEUs.pdf 527

(accessed 23 June 2021). 528

[8] Xilinx and Inc, 7 Series FPGAs Configuration User Guide UG470 (v 1.13.1) August 20, 2018. 529

https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf (accessed 530

20 June 2021). 531

 24

[9] I. Herrera-Alzu, M. López-Vallejo, Design techniques for Xilinx Virtex FPGA configuration 532

memory scrubbers. IEEE Trans. Nucl. Sci., 60 (1), (2013). 533

https://doi.org/10.1109/TNS.2012.2231881. 534

[10] U. Legat, A. Biasizzo, F. Novak, SEU recovery mechanism for SRAM-Based FPGAs. IEEE 535

Trans. Nucl. Sci., 59 (5), (2012), 2562–2571. https://doi.org/10.1109/TNS.2012.2211617. 536

[11] A. Ebrahim, T. Arslan, X. Iturbe, On enhancing the reliability of internal configuration 537

controllers in FPGAs. Proceedings of the 2014 NASA/ESA Conference on Adaptive Hardware and 538

Systems (AHS 2014), (2014), 83–88. https://doi.org/10.1109/AHS.2014.6880162. 539

[12] M. Wirthlin, A. Harding, Hybrid Configuration Scrubbing for Xilinx 7-Series FPGAs. FPGAs 540

and Parallel Architectures for Aerospace Applications, Cham: Springer International Publishing, 541

(2016), 91–101. https://doi.org/10.1007/978-3-319-14352-1_7. 542

[13] T.S. Nidhin, A. Bhattacharyya, R.P. Behera, T. Jayanthi, A review on SEU mitigation 543

techniques for FPGA configuration memory. IETE Technical Review, 35 (2), (2018), 157-168. 544

https://doi.org/10.1080/02564602.2016.1265905. 545

[14] S. Fouad, F. Ghaffari, M. E. A. Benkhelifa, B. Granado, Reliability assessment of backward 546

error recovery for SRAM-based FPGAs. 9th International Design and Test Symposium (IDT), 547

(2014), 248–252. https://doi.org/10.1109/IDT.2014.7038622. 548

[15] F. Sahraoui, F. Ghaffari, M. E. Amine Benkhelifa, B. Granado, An efficient BER-based 549

reliability method for SRAM-based FPGA. 2013 8th IEEE Design and Test Symposium (IDT), 550

(2013). https://doi.org/10.1109/IDT.2013.6727129. 551

[16] T. Bates, C.P. Bridges, Single event mitigation for Xilinx 7-series FPGAs, IEEE Aerospace 552

Conference, (2018), 1-12. https://doi.org/10.1109/AERO.2018.8396520. 553

[17] F. Brosser, E. Milh, V. Geijer, P. Larsson-Edefors, Assessing scrubbing techniques for Xilinx 554

SRAM-based FPGAs in space applications. Proceedings of the 2014 International Conference on 555

Field-Programmable Technology, (2014). https://doi.org/10.1109/FPT.2014.7082803. 556

 25

[18] Xilinx and Inc, Virtex-6 FPGA Configuration User Guide UG360 (v3.9) 18 November 2015, 557

https://www.xilinx.com/support/documentation/user_guides/ug360.pdf (accessed 22 June 2021). 558

[19] D. Rossi, M. Omaña, C. Metra, Transient Fault and Soft Error On-die Monitoring Scheme, 559

IEEE 25th International Symposium on Defect and Fault Tolerance in VLSI Systems, (2010), 391-560

398, https://doi.org/10.1109/DFT.2010.53. 561

[20] J. Tonfat, F.G. Kastensmidt, R.A. Reis, Energy efficient frame-level redundancy scrubbing 562

technique for SRAM-based FPGAs. NASA/ESA Conference on Adaptive Hardware and Systems 563

(AHS), (2015), 1-8. https://doi.org/10.1109/AHS.2015.7231160. 564

[21] R. Glein, F. Rittner, A. Heuberger, Adaptive single-event effect mitigation for dependable 565

processing systems based on FPGAs. Microprocessors and Microsystems, 59, (2018), 46-56. 566

https://doi.org/10.1016/j.micpro.2018.03.004. 567

[22] N.T. Nguyen, D. Agiakatsikas, Z. Zhao, T. Wu, E. Cetin, O. Diessel, L. Gong, Reconfiguration 568

Control Networks for FPGA-based TMR systems with modular error recovery. Microprocessors 569

and Microsystems, 60, (2018), 86-95. https://doi.org/10.1016/j.micpro.2018.04.006. 570

[23] F. Smith, J. Omolo, Experimental verification of the effectiveness of a new circuit to mitigate 571

single event upsets in a Xilinx Artix-7 field programmable gate array. Microprocessors and 572

Microsystems, 79, (2020), 103327. https://doi.org/10.1016/j.micpro.2020.103327. 573

[24] R. S. Zhang, L. Y. Xiao, X. B. Cao, J. Li, J. Q. Li, L. Z. Li, A fast scrubbing method based on 574

triple modular redundancy for sram-based fpgas. 14th IEEE International Conference on Solid-575

State and Integrated Circuit Technology (ICSICT) , (2018), 1-3. 576

https://doi.org/10.1109/ICSICT.2018.8565046. 577

[25] K. M. Sielewicz, G. A. Rinella, M. Bonora, P. Giubilato, M. Lupi, M. J. Rossewij, T. Vanat, 578

Experimental methods and results for the evaluation of triple modular redundancy SEU mitigation 579

techniques with the Xilinx Kintex-7 FPGA. IEEE Radiation Effects Data Workshop (REDW), 580

(2017), 1-7. https://doi.org/10.1109/NSREC.2017.8115451. 581

 26

[26] R. Giordano, D. Barbieri, S. Perrella, R. Catalano, G. Milluzzo, Configuration self-repair in 582

Xilinx FPGAs. IEEE Transactions on Nuclear Science, 65 (10), (2018), 2691-2698. 583

https://doi.org/10.1109/TNS.2018.2868992. 584

[27] A. E. Wilson, S. Larsen, C. Wilson, C. Thurlow, M. Wirthlin, Neutron Radiation Testing of a 585

TMR VexRiscv Soft Processor on SRAM-Based FPGAs. IEEE Transactions on Nuclear 586

Science, 68 (5), (2021), 1054-1060. https://doi.org/10.1109/TNS.2021.3068835. 587

[28] M. N. Shaker, A. Hussien, G. I. Alkady, H. H. Amer, I. Adly, FPGA-Based Reliable Fault 588

Secure Design for Protection against Single and Multiple Soft Errors. Electronics, 9 (12), (2020), 589

2064. https://doi.org/10.3390/electronics9122064. 590

[29] I. B. M. Matsuo, L. Zhao, W. J. Lee, A Dual Modular Redundancy Scheme for CPU–FPGA 591

Platform-Based Systems. IEEE Transactions on Industry Applications, 54 (6), (2018), 5621-5629. 592

https://doi.org/10.1109/TIA.2018.2859386. 593

[30] A. Keller, M. Wirthlin, Partial triple modular redundancy: low-cost resilience for FPGAs in 594

space environments. Orbital ATK Conference Center, (2018). 595

https://digitalcommons.usu.edu/spacegrant/2018/Session_one/2/ (accessed 5 July 2021). 596

[31] C. M. Fuchs, Fault-tolerant satellite computing with modern semiconductors (Doctoral 597

dissertation, Leiden University), (2019). 598

https://scholarlypublications.universiteitleiden.nl/handle/1887/82454 (accessed 5 July 2021). 599

[32] P. R. Villa, R. Travessini, R. C. Goerl, F. L. Vargas, E. A. Bezerra, Fault tolerant soft-core 600

processor architecture based on temporal redundancy. Journal of Electronic Testing, 35 (1), (2019), 601

9-27. https://doi.org/10.1007/s10836-019-05778-z. 602

[33] M. Bahramali, J. Jiang, A. Reyhani-Masoleh, A fault detection scheme for the FPGA 603

implementation of SHA-1 and SHA-512 round computations. Journal of Electronic Testing, 27 (4), 604

(2011), 517-530. https://doi.org/10.1007/s10836-011-5237-4. 605

[34] M. M. Ibrahim, K. Asami, M. Cho, Time and Space Redundancy Fault Tolerance Trade-offs 606

for FPGA Based Single and Multicore Designs. Transactions of the Japan Society for Aeronautical 607

 27

and Space Sciences, Aerospace Technology Japan, 12 (29), (2014), 15-24. 608

https://doi.org/10.2322/tastj.12.Pj_15. 609

 610

 611

 612

 613

