
03 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Stability of the mean value formula for harmonic functions in Lebesgue spaces / Cupini G.; Lanconelli E.. -
In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 200:3(2021), pp. 1149-
1174. [10.1007/s10231-020-01030-0]

Published Version:

Stability of the mean value formula for harmonic functions in Lebesgue spaces

Published:
DOI: http://doi.org/10.1007/s10231-020-01030-0

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/820037 since: 2021-05-10

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s10231-020-01030-0
https://hdl.handle.net/11585/820037


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Cupini, G., Lanconelli, E. Stability of the mean value formula for harmonic functions 

in Lebesgue spaces. Annali di Matematica 200, 1149–1174 (2021) 

The final published version is available online at: https://dx.doi.org/10.1007/s10231-

020-01030-0 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 

specified in the publishing policy. For all terms of use and more information see the publisher's 

website.   

 

https://cris.unibo.it/
https://dx.doi.org/10.1007/s10231-020-01030-0
https://dx.doi.org/10.1007/s10231-020-01030-0


STABILITY OF THE MEAN VALUE FORMULA

FOR HARMONIC FUNCTIONS IN LEBESGUE SPACES

GIOVANNI CUPINI, ERMANNO LANCONELLI

ABSTRACT. Let D be an open subset of Rn with finite measure, and let x0 ∈ D. We introduce the

p-Gauss gap of D w.r.t. x0 to measure how far are the averages over D of the harmonic functions

u ∈ Lp(D) from u(x0). We estimate from below this gap in terms of the ball gap of D w.r.t. x0,

i.e., the normalized Lebesgue measure of D\B, being B the biggest ball centered at x0 contained in

D. From these stability estimates of the mean value formula for harmonic functions in Lp-spaces,

we straightforwardly obtain rigidity properties of the Euclidean balls. We also prove a continuity

result of the p-Gauss gap in the Sobolev space W 1,p′ , where p′ is the conjugate exponent of p.

1. INTRODUCTION

LetD be an open subset of Rn, n ≥ 2, and letB(x0, r) be the open Euclidean ball with center

x0 and radius r > 0. If B(x0, r) ⊆ D, by the Gauss mean value Theorem,

u(x0) =
1

|B(x0, r)|

∫

B(x0,r)
u(y) dy, ∀u ∈ H(D),

where H(D) denotes the linear space of the harmonic functions in D and |B(x0, r)| stands for the

Lebesgue measure of B(x0, r). By the dominated convergence theorem, it follows that

u(x0) =
1

|B(x0, r)|

∫

B(x0,r)
u(y) dy, ∀u ∈ H(B(x0, r)) ∩ L

1(B(x0, r)). (1.1)

In literature the stability and the rigidity properties of (1.1) have been studied. The question

of rigidity, a sort of an inverse problem for (1.1), is the oldest one treated in literature and is related

to the following question:

if D is an open set with finite Lebesgue measure containing x0, such that the mean integral of

harmonic functions in L1 on D equals the value of these functions at x0, then is D a ball centered

at x0?

The historical development of this problem, together with a comprehensive collection of re-

sults, is contained in the excellent survey [21] by Netuka and Veselý. Here we only quote a the-

orem by Kuran, who definitely gave a positive answer to the previous question, providing a short

and elegant proof, see [18]. In his paper Kuran introduced a harmonic test function (see (1.5))

which will play a crucial role in the present paper. We also remark that a domain satisfying the

mean value property for any harmonic functions is the simplest instance of a so-called quadrature

domain. Quadrature domains have been extensively studied ever since the 1960’s. A good source

of reference is the survey article [17].
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The other question, very recently introduced in literature, is that of the stability of (1.1):

if the mean integral of every harmonic functions in L1 on an open set D is “almost” equal to

the value of these functions at x0 in D, then is D “almost” a ball with center x0?

The answer to this question is affirmative and can be found in the recent paper [11] in a joint

collaboration with N. Fusco and X. Zhong.

In the present paper we face the problem of stability for harmonic functions in Lp with p ∈

]1,∞].

Our Lp-stability theorems straightforwardly imply rigidity results which, in the case 1 < p <
n

n−1 , were proved by Goldstein, Haussmann and Rogge in [16, Theorem 3 (B)]. With a direct

proof, modelled on the one of our stability results, we also obtain a rigidity result for test functions

in H(D), in the same spirit of [16, Theorem 1].

We remark that our technique to prove the stability result Theorem 4.1 does not seem suitable

to obtain a similar result for the Gauss gap related to the surface average. An interesting stability

result in this direction has been obtained in dimension n = 2 by Agostiniani and Magnanini in

[1]. We point out that many stability problems in various settings have been investigated. We limit

ourselves to mention the papers [3], [4], [5], [7], [8], [9], [10], [13], [14], [15], [19], [20], [22].

1.1. Stability results. Our stability results are proved in Section 4. To describe them we need to

mathematically formalize the two “almost” appearing in the naive formulation of the problem.

Given an open set D ⊆ R
n of finite Lebesgue measure (|D| < ∞), we denote Hp(D)

the space of the harmonic functions in D that are p-summable in D with respect the Lebesgue

measure, i.e.,

Hp(D) := H(D) ∩ Lp(D).

In Hp(D) we introduce the following norm:

‖u‖
L̃p(D)

:=

(
−

∫

D

|u(x)|p dx

) 1
p

if p <∞

and

‖u‖
L̃∞(D)

:= ‖u‖L∞(D),

where, as usual,

−

∫

D

· dx :=
1

|D|

∫

D

· dx.

We now introduce the p-Gauss mean value gap, that we use to measure how close is the mean

integral of the harmonic functions in Lp on the set D to the value of these functions at x0 in D.

Given an open set D of finite measure, x0 ∈ D and p ∈ [1,∞], we define the p-Gauss mean

value gap of D w.r.t. x0 as

Gp(D,x0) := sup
u∈Hp(D)\{0}

∣∣∣∣u(x0)−−

∫

D

u(x) dx

∣∣∣∣
‖u‖

L̃p(D)

. (1.2)

We devote Section 2 to discuss the main properties of this function, in particular we will prove that

the p-Gauss gap is always finite and that the supremum is attained if 1 < p ≤ ∞, see Proposition

2.2.
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Taking into account that in the stability problem for the mean value formula the point x0 ∈ D

plays a privileged role, to measure how far is D from being a ball centered at x0 we will use the

following coefficient:

B(D,x0) :=
|D \B(x0, rx0)|

|D|
, where rx0 := dist(x0, ∂D), (1.3)

that we will call the ball gap of D with respect to x0.

The stability question is the following:

fixed p ∈ [1,∞] is it true that lim
Gp(D,x0)→0

B(D,x0) = 0?

If p = 1 the answer to this question is affirmative, since as it is proved in [11],

c(n)B(D,x0) ≤ G1(D,x0). (1.4)

Now, in Section 4 we deal with 1 < p ≤ ∞.

A dichotomy (both regarding the exponent and the regularity of the domain) depending on

the exponent p appears and the threshold exponent is given by n
n−1 .

In Theorem 4.1 we consider the case 1 < p < n
n−1 and we prove that

c(n, p)B(D,x0) ≤ Gp(D,x0) ∀D ⊂ R
n, D open set, |D| <∞.

This estimate, similar to the one obtained for p = 1, is sharp since for ellipsoids centered at

x0 the p-Gauss gap can be bounded also from above by the ball gap (see Proposition 4.2). The

strategy of the proof of Theorem 4.1, similar to that successfully used for p = 1, is based on the

use of the test function used by Kuran to prove his rigidity result: given the open D, x0 ∈ D

and x̄ ∈ ∂D ∩ ∂B(x0, rx0), where, as above, rx0 is the radius of the greatest ball centered at x0
contained in D, the function considered by Kuran is

hx̄(x) = 1 + |x0 − x̄|n−2 |x− x0|
2 − |x0 − x̄|2

|x− x̄|n
x ∈ R

n \ {x̄}. (1.5)

We will refer to this function as the Kuran’s function and in Section 3 we list and prove its main

properties, the main one being that hx̄ is in Hp(D) for any 1 ≤ p < n
n−1 , enabling us to use hx̄ to

estimate from below the p-Gauss gap.

If n
n−1 ≤ p ≤ ∞ a stability inequality is given in Theorem 4.3. This result is much more

delicate and requires a deeper analysis to overcome the lack of the right summability property

of hx̄. Under a suitable exterior cone condition on D, a bound for Gp(D,x0) of (substantially)

Hölder type is proved if p > n
n−1 , and one of log-Lipschitz type for p = n

n−1 . While our stability

result for p < n
n−1 is sharp, the sharpness of our estimate for p ≥ n

n−1 is still an open problem.

1.2. W 1,p′-continuity of the p-Gauss gap. For the 1-Gauss gap in [11] it is proved that C1,α-

convergence of open sets to a Euclidean ball, for any α ∈]0, 1[, forces the 1-Gauss gap to go to

zero and an example shows that this result is no more true if the C1,α-convergence of open sets is

replaced by the weaker W 1,q-convergence for every q > 1.

In Section 5, we prove that W 1,p′-convergence of domains to a Euclidean ball forces the p-

Gauss gap to go to zero if 1 < p < n
n−1 . Here, as usual, p′ denotes the the conjugate exponent

of p; i.e. p′ is the real number such that 1
p
+ 1

p′
= 1. We refer to Theorem 5.1 for the precise

statement. We point out that the proof of this result relies on a continuity result for the p-Gauss

gap for every real p > 1, see Proposition 5.2. The main tools to prove this proposition are the
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densities with the mean value property defined in [2], see also [12], and the deep Lp-estimate for

the gradient of the solutions to the Dirichlet problem on Reifenberg-flat domains, see [6].

1.3. Rigidity results. Section 6 is devoted to the rigidity question. As remarked in [11], the

estimate from below of the 1-Gauss gap with the ball gap, see (1.4), immediately implies Kuran’s

result, i.e.,

if D is an open set in R
n, |D| <∞, x0 ∈ D, and the mean value formula holds true

u(x0) = −

∫

D

u(x) dx (1.6)

for every u ∈ H(D) ∩ L1(D), then D is a ball centered at x0.

This implication (stability ⇒ rigidity) turns out to be true also for harmonic functions in

Lp. Indeed, the stability result Theorem 4.1 implies that if (1.6) holds for every u ∈ Hp(D),

1 < p < n
n−1 , then D is a ball centered at x0. This rigidity result, Corollary 6.1, has been proved

in a direct way, in [16].

For p ≥ n
n−1 we looked for a direct proof of a rigidity result, so to avoid the exterior cone

condition assumed in the corresponding stability result, Theorem 4.3. This independent proof

allows to prove the following result:

[Theorem 6.2] Let D be an open set in R
n, |D| < ∞, x0 ∈ D, and assume that (1.6) holds

for every u ∈ H(D). If D = intD then D is a ball centered at x0.

This result is in the spirit of [16, Theorem 1], where a similar rigidity result is proved for

bounded open sets and test functions in H(Rn), see Section 6 below for details.

We remark that, since

H(D) ⊂
⋂

1≤p≤∞

Hp(D),

then Theorem 6.2 implies a rigidity result where the class of test functions is Hp(D), for n
n−1 ≤

p ≤ ∞.

The plan of the paper is the following: in Sections 2 and 3 we discuss some properties of the

p-Gauss gap and of Kuran’s function, respectively. In Section 4 we state and prove our stability

results, in Section 5 we present the W 1,p′-continuity result for the p-Gauss gap. The last section

is devoted to the rigidity issue.

Acknowledgements: We thank the referee for carefully reading the manuscript, for the valuable

remarks and suggestions. We also thank N. Garofalo and F. Leonetti for useful discussions on the

Lp-estimates of the gradient of harmonic functions.

2. THE p-GAUSS GAP

In this section we discuss some properties of the p-Gauss gap defined in (1.2), p ∈ [1,∞].

It is easy to verify that Gp(D,x0) is translation and scale invariant; i.e., for every y ∈ R
n and

for every λ > 0,

Gp(D,x0) = Gp(y +D, y + x0) and Gp(λD, λx0) = Gp(D,x0). (2.1)

This immediately follows by the translations and dilations invariance of harmonicity and Lebesgue

measure.
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The following lemma is a straightforward consequence of Hölder’s inequality.

Lemma 2.1. Given an open set D ⊆ R
n of finite measure and x0 ∈ D then for every 1 ≤ p <

q <∞

G∞(D,x0) ≤ Gq(D,x0) ≤ Gp(D,x0) ≤ G1(D,x0) ≤ 1 +
|D|

|B(x0, rx0)|
,

where rx0 := dist(x0, ∂D).

Proof. The last inequality is trivial and it also appears in [11]. Let us discuss the other inequalities.

By Holder’s inequality, for every 1 ≤ p < q <∞ and every u ∈ Lq(D)

(∫

D

|u(x)|p dx

) 1
p

≤

(∫

D

|u(x)|q dx

) 1
q

|D|
1
p
− 1

q ,

therefore

‖u‖
L̃p(D)

≤ ‖u‖
L̃q(D)

.

Since Lq(D) ⊆ Lp(D) we easily get

Gq(D,x0) ≤ Gp(D,x0).

Let us now prove that G∞(D,x0) ≤ Gq(D,x0) if 1 ≤ q <∞. For every u ∈ L∞(D)
∫

D

|u|q dx ≤ ‖u‖q
L∞(D)|D| = ‖u‖q

L̃∞(D)
|D|,

that implies

‖u‖
L̃q(D)

≤ ‖u‖
L̃∞(D)

.

Since L∞(D) ⊆ Lq(D) we get G∞(D,x0) ≤ Gq(D,x0). �

In the following proposition, we prove that if 1 < p ≤ ∞ then the p-Gauss gap, that is defined

as a supremum, is attained.

Proposition 2.2. Given an open set D ⊆ R
n of finite measure and x0 ∈ D, then for every

p ∈]1,∞]

Gp(D,x0) = max
u∈Hp(D),‖u‖

L̃p(D)
=1

∣∣∣∣u(x0)−−

∫

D

u(x) dx

∣∣∣∣.

Proof. If Gp(D,x0) = 0 we have nothing to prove.

Assume Gp(D,x0) > 0.

Let (uj) be a sequence in H(D), such that

‖uj‖L̃p(D)
= 1, (2.2)

and

Gp(D,x0) = lim
j→∞

∣∣∣∣uj(x0)−−

∫

D

uj(x) dx

∣∣∣∣.

Since 1 < p ≤ ∞, by (2.2) there exists û ∈ Lp(D), such that, up to subsequences:

(uj) weakly converges to û in Lp(D) if 1 < p <∞,

(uj) ∗-weakly converges to û in L∞(D) if p = ∞.
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Moreover, by (2.2) and by the weak lower semicontinuity of the Lebesgue norms,

‖û‖
L̃p(D)

≤ 1 for every 1 < p ≤ ∞. (2.3)

On the other hand, since the Laplacian is a hypoelliptic partial differential operator, we may as-

sume û harmonic in D. Hence û ∈ Hp(D).

Let us consider the linear functional F : Hp(D) → R,

F (u) := u(x0)−−

∫

D

u(x) dx.

Since for any open Euclidean ball B centered at x0 and contained in D

F (u) = −

∫

B

u(x) dx−−

∫

D

u(x) dx ∀u ∈ Hp(D),

then F is continuous with respect to the weak convergence, if 1 < p <∞, and with respect to the

∗-weak convergence, if p = ∞. Therefore, for every p ∈]1,∞]
∣∣∣∣û(x0)−−

∫

D

û(x) dx

∣∣∣∣ = |F (û)| = lim
j→∞

|F (uj)| = Gp(D,x0) > 0.

This implies û 6≡ 0 and, by (2.3),

Gp(D,x0) ≤

∣∣∣∣û(x0)−−

∫

D

û dx

∣∣∣∣
‖û‖

L̃p

.

Hence, by the very definition of Gp(D,x0), see (1.2), we conclude. �

3. THE KURAN’S FUNCTION

Fix x0, α ∈ R
n, x0 6= α, n ≥ 2.

As in Kuran [18], we define hα : Rn \ {α} → R,

hα(x) := 1 + |x0 − α|n−2 |x− x0|
2 − |x0 − α|2

|x− α|n
. (3.1)

This function has the following properties:

Lemma 3.1. The following properties of the Kuran’s function (3.1) hold true:

(i) for every x ∈ R
n \ {α}

hα(x) = 1 + |x0 − α|n−2


 1

|x− α|n−2
+ 2

n∑

j=1

(α− x0)j
(x− α)j
|x− α|n


 ,

(ii) hα ∈ H(Rn \ {α}),

(iii) hα(x0) = 0,

(iv) hα > 1 in R
n \B(x0, |α− x0|),

(v) hα ∈ Lp
loc(R

n) for every p ∈ [1, n
n−1 [.
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Proof. The proof of items (iii) and (iv) is trivial. As far as (i), (ii) and (v) are concerned, it is

enough to notice that

|x− x0|
2 − |x0 − α|2

|x− α|n
=

|x− α|2 + 2〈x− α, α− x0〉

|x− α|n

=
1

|x− α|n−2
+ 2

n∑

j=1

(α− x0)j
(x− α)j
|x− α|n

(3.2)

and to observe that, up to constants, the last right hand side is the sum of the fundamental solution

with pole at α of the Laplace operator (if n ≥ 3, otherwise, if n = 2 of a constant function) and

a linear combination of its first order derivatives. Moreover, by this formulation we immediately

conclude that hα ∈ Lp
loc(R

n) for every p ∈ [1, n
n−1 [.

�

Given an open set D of finite measure, x0 ∈ D, we denote rx0 the radius of the greatest ball

centered at x0 contained in D, i.e.

rx0 := dist(x0, ∂D).

If α ∈ ∂D ∩ ∂B(x0, rx0) then the norm in Lp(D), 1 ≤ p < n
n−1 , of Kuran’s function hα can

be estimated by a constant only depending on n, p and |D|.

Proposition 3.2. Consider an open set D ⊆ R
n of finite measure and x0 ∈ D.

For every 1 ≤ p < n
n−1 , there exists a constant c(n, p, |D|) only depending on n, p and |D|,

such that

‖hα‖Lp(D) ≤ c(n, p, |D|) ∀α ∈ ∂D ∩ ∂B(x0, rx0).

To prove this result we will use some integral estimates of the function x 7→ 1
|x−α| .

Lemma 3.3. Consider an open set D ⊆ R
n of finite measure and x0 ∈ D. For every α ∈ R

n and

for every q ∈ [0, n[ there exists a positive constant c, depending only on n, q and |D|, such that
∫

D

1

|x− α|q
dx ≤ c(n, q, |D|).

Proof. It is easy to show that there exists a positive constant c, depending only on n and q, such

that ∫

D∩B(α,1)

1

|x− α|q
dx ≤ c(n, q).

Indeed, ∫

D∩B(α,1)

1

|x− α|q
dx ≤

∫

B(α,1)

1

|x− α|q
dx =

∫

B(0,1)

1

|x|q
dx

and the last integral is finite, because q < n, and it is bounded by a positive constant depending

only on n and q.

On the other hand, for every x ∈ D \B(α, 1), we have that |x− α| ≥ 1, therefore
∫

D\B(α,1)

1

|x− α|q
dx ≤ |D \B(α, 1)| dx ≤ |D|.

This concludes the proof. �

Thanks to the estimate in Lemma 3.3, we can prove Proposition 3.2.
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Proof of Proposition 3.2. Let α be in ∂D ∩ ∂B(x0, rx0). By (3.2)

|hα(x)| ≤ 1 + |x0 − α|n−2

(
1

|x− α|n−2
+ 2

|α− x0|

|x− α|n−1

)
.

Taking into account that |α − x0| = rx0 , the radius of the greatest inner ball in D centered at x0,

then

|α− x0| = rx0 ≤

(
|D|

ωn

) 1
n

, (3.3)

where ωn is the Lebesgue measure of the unit ball of Rn. Therefore

|hα(x)| ≤ 1 +

(
|D|

ωn

)n−2
n

[
1

|x− α|n−2
+

(
|D|

ωn

) 1
n 2

|x− α|n−1

]
.

By Lemma 3.3 the conclusion easily follows. �

4. STABILITY RESULTS

In this section we establish stability results for the Gauss mean value formula of harmonic

functions in Lp. Precisely, we will estimate the p-Gauss gap with a function depending on the ball

gap, see (1.2) and (1.3) for their definitions.

The first result deals with the case 1 ≤ p < n
n−1 . The case p = 1 has been yet considered by

the authors in a joint paper with Fusco and Zhong, see [11].

Theorem 4.1 (1 ≤ p < n
n−1 ). Let D ⊂ R

n be an open set of finite Lebesgue measure, x0 ∈ D.

If 1 ≤ p < n
n−1 then there exists a positive constant c, only depending on n and p, such that

cB(D,x0) ≤ Gp(D,x0). (4.1)

Proof. If p = 1 this result has been proved in [11]. Here we are left to consider the case 1 < p <
n

n−1 .

Since the right and left hand sides of (4.1) are translations and dilations invariant, see (2.1),

we may assume x0 = 0 and |D| = 1.

Let r0 = dist(0, ∂D) and let α be a point in ∂D ∩ ∂B(0, r0).

Consider the Kuran’s function hα : Rn \ {α} → R,

hα(x) := 1 + |α|n−2 |x|
2 − |α|2

|x− α|n
, x ∈ R

n \ {α}.

By Lemma 3.1, Proposition 3.2 and taking into account that |D| = 1, we have

‖hα‖Lp(D) = ‖hα‖L̃p(D)
≤ c(n, p),

where c(n, p) is a constant only depending on n and p.

Therefore, by Lemma 3.1 (iii),

Gp(D, 0) ≥

∣∣∣∣h(0)−
∫

D

hα(x) dx

∣∣∣∣
‖hα‖Lp(D)

≥
1

c(n, p)

∣∣∣∣
∫

D

hα(x) dx

∣∣∣∣ .
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Since B(0, r0) ⊆ D, by the Gauss mean value Theorem and properties (iii) and (iv) in Lemma

3.1, we have

∣∣∣∣
∫

D

hα(x) dx

∣∣∣∣ =
∣∣∣∣∣

∫

D\B(0,r0)
hα(x) dx

∣∣∣∣∣ =
∫

D\B(0,r0)
hα(x) dx ≥ |D \B(0, r0)|. (4.2)

So we have proved that

Gp(D, 0) ≥
1

c(n, p)
|D \B(0, r0)| =

1

c(n, p)

|D \B(0, r0)|

|D|
.

Hence, (4.1) follows. �

The estimate from below of the Gauss mean value gap in Theorem 4.1 is sharp in the following

sense.

Proposition 4.2. Consider the family of ellipsoids

Dε :=
{
x ∈ R

n : (εx1)
2 + x22 + · · ·+ x2n < 1

}
, ε ∈]

1

2
, 1[.

For every p ∈ [1, n
n−1 [ there exist two constants c1(n, p), and c2(n), both independent of ε, such

that

c1(n, p)
|Dε \B(0, r0)|

|Dε|
≤ Gp(Dε, x0) ≤ c2(n)

|Dε \B(0, r0)|

|Dε|
.

Proof. By [11], there exists a constant c > 0, independent of ε, depending only on n, such that

G1(Dε, 0) ≤ c(n)
|Dε \B(0, 1)|

|Dε|
. (4.3)

Collecting Lemma 2.1, Theorem 4.1, and (4.3), we get the thesis. �

We remark that another common way to measure the distance of a measurable set D ⊂ R
n,

|D| <∞, from a ball is provided by the so called Fraenkel asymmetry, defined as follows:

α(D) := inf
x∈Rn

|D△B(x, rD)|

|D|
,

where rD is the radius of a ball with the same measure of D and

|D△B(x, rD)| := |D \B(x, rD)|+ |B(x, rD) \D|.

Since |D△B(x0, rD)| = 2|D\B(x0, rD)| ≤ 2|D\B(x0, rx0)|, the stability estimate (4.1) implies

that

if D is an open set of finite measure and x0 ∈ D, then for every 1 ≤ p < n
n−1

c

2
α(D) ≤ Gp(D,x0),

where c is the constant in (4.1).

If we assume the extra condition that the open set D has a suitable exterior cone property, we

can obtain a stability estimate of Gp for p ≥ n
n−1 .

Precisely, we say that

K(x̄, θ, R) is a cone exterior to D with vertex at x̄ ∈ ∂D
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if there exist θ ∈
[
0, π2

[
and R > 0 such that

K(x̄, θ, R) := x̄+ T (Σ(θ,R)), K(x̄, θ, R) ∩D = {x̄},

where

Σ(θ,R) := {(y1, . . . , yn−1, yn) ∈ B(0, R) : tan(θ)
√
y21 + · · ·+ y2n−1 ≤ yn}

and T is a rotation in R
n. We will call axis of the cone K the set

{x ∈ K(x̄, θ, R) : x = x̄+ T (0, · · · , 0︸ ︷︷ ︸
n−1

, t) with t > 0}.

Theorem 4.3 ( n
n−1 ≤ p ≤ ∞). Let D ⊂ R

n be an open set of finite measure and x0 ∈ D.

Denoted rx0 := dist(x0, ∂D) assume that there exists x̄ in ∂D∩∂B(x0, rx0) vertex of a cone

K(x̄, θ, R) exterior to D.

Then, for every γ ∈]0, 1[, the following inequalities hold:

If
n

n− 1
< p ≤ ∞: Gp(D,x0) ≥ cB(D,x0)min{(|D|−

1
nR)γ ,B(D,x0)}

1
γ
(n−1−n

p
)
, (4.4)

if p =
n

n− 1
: Gp(D,x0) ≥ cB(D,x0)

(
log

κ

min{(|D|−
1
nR)γ ,B(D,x0)}

)−n−1
n

, (4.5)

with constants c, κ > 0, c depending only on n, p, θ, γ, and κ depending only on n and γ.

The right hand side in (4.5) is to be interpreted as 0 if B(D,x0) = 0.

We remark that, while our stability result for p < n
n−1 is sharp, the sharpness of our estimates

(4.4) and (4.5) is still an open problem.

To prove the result above we need some integral estimates for the function x 7→ 1
|x−α| .

Lemma 4.4. Let D ⊂ R
n be an open set, |D| = 1, and 0 ∈ D.

Denoted

r0 := dist(0, ∂D),

assume that there exists

x̄ ∈ ∂D ∩ ∂B(0, r0) and K(x̄, θ, R) cone exterior to D. (4.6)

For any α on the axis of K(x̄, θ, R), such that

|α− x̄| ≤
1

2
, (4.7)

the following estimates hold:

(a) there exists a positive constant c only depending on n, θ such that
∫

D

1

|x− α|n
dx ≤ c(n, θ) log

1

|x̄− α|
, (4.8)

(b) if q > n then there exists a positive constant c only depending on n, q, θ such that
∫

D

1

|x− α|q
dx ≤ c(n, q, θ)|x̄− α|n−q, (4.9)

(c) if 0 ≤ q < n then there exists a positive constant c only depending on n, q such that
∫

D

1

|x− α|q
dx ≤ c(n, q). (4.10)
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Proof. Let us define

ρα := sup{r > 0 : B(α, r) ⊆ K(x̄, θ, R)}. (4.11)

The definition of α and ρα, together with (4.6), (4.7), (4.11), imply

ρα = |α− x̄| cos θ ≤ dist(α, ∂D) ≤ |α− x̄| ≤
1

2
. (4.12)

These inequalities, together with (4.6) and (4.11), imply
∫

D

1

|x− α|n
dx ≤

∫

D\B(α,1)

1

|x− α|n
dx+

∫

B(α,1)\B(α,ρα)

1

|x− α|n
dx

≤ |D \B(α, 1)|+ nωn log
1

ρα
≤ 1 + nωn

(
log

1

|α− x̄|
+ log

1

cos θ

)
.

By (4.7)

1 + nωn log
1

cos θ
≤

1 + nωn log
1

cos θ

log 2
log

1

|α− x̄|
,

therefore (4.8) follows.

If q > n, by (4.11) and the first equality in (4.12) we get
∫

D

1

|x− α|q
dx ≤

∫

Rn\B(α,ρα)

1

|x− α|q
dx = c(n, q, θ)|x̄− α|n−q,

that is (4.9) holds.

If 0 ≤ q < n we remark that
∫

D

1

|x− α|q
dx ≤

∫

D\B(α,1)

1

|x− α|q
dx+

∫

B(α,1)

1

|x− α|q
dx ≤ 1 + c(n, q)

and also (4.10) is proved. �

In the proof of Theorem 4.3 we will also use the following estimate.

Lemma 4.5. For every γ, κ ∈]0, 1] and c, R > 0

(
min{21−γc Rγ , κ}

2max{2γ , c}

) 1
γ

≤ min{
1

2
,
R

2
}.

Proof. Let us denote

F (γ,R, c, κ) :=

(
min{21−γc Rγ , κ}

2max{2γ , c}

) 1
γ

.

We first consider the case 21−γc Rγ ≤ κ.

We get

F (γ,R, c, κ) ≤

(
21−γc

21+γ

) 1
γ

R ≤

(
21−γc

21+γ

) 1
γ ( κ

21−γc

) 1
γ
≤

1

2
κ

1
γ ≤

1

2
. (4.13)

Let us now prove that F (γ,R, c, κ) ≤ R
2 . We have

F (γ,R, c, κ) ≤

(
21−γc

2c

) 1
γ

R =
R

2
.

As far as the first case is concerned, the proof of the claim is concluded.
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Let us consider the remaining case, i.e. κ < 21−γc Rγ .

We have

F (γ,R, c, κ) ≤
( κ

21+γ

) 1
γ
≤

(
1

21+γ

) 1
γ

≤
1

2
.

Let us now prove that F (γ,R, c, κ) ≤ R
2 . By using the assumption,

F (γ,R, c, κ) ≤
( κ
2c

) 1
γ
≤

(
2−γc

c

) 1
γ

R =
R

2
.

The proof is concluded. �

We are ready to prove Theorem 4.3.

Proof of Theorem 4.3. If |D \B(x0, rx0)| = 0 there is nothing to prove.

Let us assume |D \B(x0, rx0)| > 0.

By the translation invariance of the left and right hand sides of (4.4) and (4.5), without loss of

generality we can assume x0 = 0. Denoted

r0 := dist(0, ∂D),

by assumption there exist

x̄ ∈ ∂D ∩ ∂B(0, r0) and K(x̄, θ, R) cone exterior to D. (4.14)

For any α ∈ K(x̄, θ, R),

α = x̄+ T (0, · · · , 0︸ ︷︷ ︸
n−1

, t) with t ∈]0,
R

2
], (4.15)

we define

ρα := sup{r > 0 : B(α, r) ⊆ K(x̄, θ, R)}. (4.16)

A trivial computation shows that

ρα = |α− x̄| cos θ. (4.17)

We split the proof into steps.

Step I.

Let us consider the Kuran’s function hα : Rn \ {α} → R,

hα(x) := 1 + |α|n−2 |x|
2 − |α|2

|x− α|n
, x ∈ R

n \ {α}.

Since α /∈ D, then hα ∈ H(D) ∩ C(D) (see Lemma 3.1) and h ∈ Lp(D), for every p ∈ [1,∞].

Let us prove an estimate of the L̃p-norm of hα in D.

We claim that:

if |D| = 1 and |α − x̄| ≤ 1
2 there exists a positive constant c depending only on n, p, θ, such

that

‖hα‖L̃p(D)
≤

c(n, p, θ)

ϕ(|x̄− α|)
, (4.18)
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where

ϕ(|x̄− α|) :=




|x̄− α|
n−1−n

p if n
n−1 < p ≤ ∞

(
log

1

|x̄− α|

)−n−1
n

if p = n
n−1

(4.19)

with the position 1
∞ = 0.

Let us prove the claim, starting from the case n
n−1 ≤ p <∞.

By Lemma 3.1 (i), (3.3) and taking into account that

|α| ≤ |α− x̄|+ |x̄| ≤ 1 + r0 ≤ 1 +

(
|D|

ωn

) 1
n

= 1 +

(
1

ωn

) 1
n

, (4.20)

we have, if n ≥ 3,

−

∫

D

|hα(x)|
p dx =

∫

D

|hα(x)|
p dx

≤ c(n, p)

[
1 +

∫

D

(
1

|x− α|p(n−2)
+

1

|x− α|p(n−1)

)
dx

]
(4.21)

and, analogously, if n = 2

−

∫

D

|hα(x)|
p dx ≤ c(p)

(
1 +

∫

D

1

|x− α|p
dx

)
. (4.22)

To estimate the right hand sides of (4.21) and (4.22) we use Lemma 4.4.

Collecting (4.21), (4.22), (4.8), (4.9) and (4.10), we easily conclude.

Let us now consider the case p = ∞.

We claim that:

if |D| = 1 and |α− x̄| ≤ 1
2 there exists a positive constant c depending only on n and θ, such

that

sup
D

|hα| ≤
c(n, θ)

|x̄− α|n−1
. (4.23)

Let us prove the claim.

If n ≥ 3, using (4.20) we get

sup
D

|hα| ≤ 1 + c(n) sup
D

[(
1

|x− α|

)n−2

+

(
1

|x− α|

)n−1
]

≤ c(n)

[
1 +

(
1

dist(α, ∂D)

)n−2

+

(
1

dist(α, ∂D)

)n−1
]
.

Taking into account (4.12) we get

sup
D

|hα| ≤
c(n)

dist(α, ∂D)n−1
≤

c(n, θ)

|x̄− α|n−1

and (4.23) is proved.

In analogous way we can prove (4.23) for n = 2.

Step II.

Let us assume |D| = 1.
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We claim that

for every γ ∈]0, 1[ there exists c̄(n, γ) > 0 such that
∣∣∣∣−
∫

D

hα(x) dx

∣∣∣∣ ≥ B(D, 0)− c̄(n, γ)|x̄− α|γ ∀α ∈ B(x̄, 1). (4.24)

Define

H(α) := −

∫

D

Γ(x− α) dx =

∫

D

Γ(x− α) dx = (Γ ∗ χD)(α),

where Γ is the fundamental solution of the Laplace operator with pole at 0.

By Lemma 3.1 (i), there exist an, bn dimensional constants, such that

−

∫

D

hα dx =

∫

D

hα dx = 1 + |α|n−2 (anH(α)− bn〈∇H(α), α〉) if n ≥ 3 (4.25)

and

−

∫

D

hα dx = 2− bn〈∇H(α), α〉 if n = 2. (4.26)

Let us now suppose n ≥ 3 and split H(α) as follows

H(α) =

∫

D∩B(x̄,2)
Γ(x− α) dx+

∫

D\B(x̄,2)
Γ(x− α) dx =: H1(α) +H2(α).

The function H2 is in C∞(B(x̄, 1)) and

‖H2‖C1(B(x̄,1)) ≤ c(n),

where c(n) is a positive constant only depending on the dimension n.

On the other hand, by |D| = 1,

‖χD∩B(x̄,2)‖Lq(Rn) ≤ 1 ∀q ∈ [1,∞].

Therefore by Calderon-Zygmund’s Theorem the function

α 7→ H1(α) = (Γ ∗ χD∩B(x̄,2))(α)

is in W 2,p(B(x̄, 2)) for every p ∈ [1,∞[ with W 2,p-norm only depending on n and p.

This information, together with the Sobolev-Morrey’s embedding Theorem and (4.25), im-

plies that

for every γ ∈]0, 1[ there exists c(n, γ) > 0 such that
∣∣∣∣−
∫

D

hα(x) dx−−

∫

D

hx̄(x) dx

∣∣∣∣ ≤ c(n, γ)|x̄− α|γ ∀α ∈ B(x̄, 1). (4.27)

The same conclusion holds true if n = 2. Indeed,

〈∇H(α), α〉 =
n∑

i=1

αi
∂H

∂αi
(α)

= −
n∑

i=1

αi

(∫

D∩B(x̄,2)

∂Γ

∂xi
(x− α) dx+

∫

D\B(x̄,2)

∂Γ

∂xi
(x− α) dx

)

= 〈α,∇(Γ ∗ χD∩B(x̄,2))(α)〉+ 〈α,∇(Γ ∗ χD\B(x̄,2))(α)〉,

and then we argue as in the previous case.
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By (4.27) and
∣∣∣∣−
∫

D

hx̄(x) dx

∣∣∣∣ ≥
|D \B(0, r0)|

|D|
= |D \B(0, r0)|,

see (4.2), we conclude.

Step III: The p-Gauss gap estimate for |D| = 1.

Let us assume |D| = 1.

For every γ ∈]0, 1[ we now choose α = α(γ, r0) ∈ K(x̄, θ, R). We assume that α is on the

axis of the cone, i.e.,

α := x̄+ T (0, · · · , 0, t̃(γ, r0)), (4.28)

where t̃(γ, r0) is defined as follows:

t̃(γ, r0) :=

(
min{2a(n, γ)Rγ , |D \B(0, r0)|}

2max{2γ , c̄(n, γ)}

) 1
γ

, (4.29)

where c̄(n, γ) is the constant in (4.24) and

a(n, γ) :=
c̄(n, γ)

2γ
. (4.30)

By Lemma 4.5, used with κ = |D \B(0, r0)| and c = c̄(n, γ),

|α− x̄| ≤ min{
1

2
,
R

2
}.

We use this to prove that there exists a constant c depending only on n, p, θ, γ, and a constant

κ only depending on γ such that:

if
n

n− 1
< p ≤ ∞: Gp(D, 0) ≥ cB(D, 0)min{Rγ ,B(D, 0)}

n−1−n
p

γ , (4.31)

if p =
n

n− 1
: Gp(D, 0) ≥ cB(D, 0)

(
log

κ

min{Rγ ,B(D, 0)}

)−n−1
n

. (4.32)

We remark that the ball gap of D with respect to 0 is |D \ B(0, r0)|, because we are assuming

|D| = 1.

Since hα ∈ H(D) ∩ Lp(D) and hα(0) = 0, then by definition of p-Gauss gap,

Gp(D, 0) ≥

∣∣∣∣−
∫

D

hα(x) dx

∣∣∣∣
‖hα‖L̃p(D)

.

Using (4.18) and (4.24) we get

Gp(D, 0) ≥ c(n, p, θ) (|D \B(0, r0)| − c̄(n, γ)|x̄− α|γ)ϕ(|x̄− α|), (4.33)

where (see (4.19))

ϕ(|x̄− α|) :=




|x̄− α|
n−1−n

p if n
n−1 < p ≤ ∞

(
log

1

|x̄− α|

)−n−1
n

if p = n
n−1 .

Let us prove an estimate from below of the right hand side of (4.33).
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By (4.29) and recalling the notation (4.30) we have

c̄(n, γ)|α− x̄|γ =
2c̄(n, γ)

2max{2γ , c̄(n, γ)}
min

{
a(n, γ)Rγ ,

|D \B(0, r0)|

2

}
≤

|D \B(0, r0)|

2
.

Therefore,

|D \B(0, r0)| − c̄(n, γ)|x̄− α|γ ≥
|D \B(0, r0)|

2
. (4.34)

If n
n−1 < p ≤ ∞ then

ϕ(|x̄− α|) = min{21−γ c̄(n, γ)Rγ , |D \B(0, r0)|}
n−1−n

p

γ

≥ c(n, p, γ)min{Rγ , |D \B(0, r0)|}
n−1−n

p

γ .

This inequality, together with (4.34), implies (4.31).

If p = n
n−1 then

log
1

|x̄− α|
=

1

γ
log

2max{2γ , c̄(n, γ)}

min{21−γ c̄(n, γ)Rγ , |D \B(0, r0)|}
≤

1

γ
log

κ(n, γ)

min{Rγ , |D \B(0, r0)|}
,

where κ(n, γ) is a constant only depending on n and γ. By this inequality, together with (4.34),

we obtain that (4.32) holds.

Step IV: Conclusion.

The inequalities (4.4) and (4.5) have been proved in the previous step under the assumption

|D| = 1, see (4.31) and (4.32). Let us now remove this assumption by using dilations.

Let D be an open set with finite Lebesgue measure and let 0 ∈ D. Define

Dλ := {λx : x ∈ D}, λ :=

(
1

|D|

) 1
n

.

Then |Dλ| = 1 and 0 ∈ Dλ. Moreover, if K(x̄, θ, R) is a cone exterior to D with vertex at

x̄ ∈ ∂D, then

Kλ := {λx : x ∈ K(x̄, θ, R)} = K(λx̄, θ, λR)

is a cone exterior to Dλ with vertex at λx̄ ∈ ∂Dλ. Notice that the opening of the cone Kλ is

independent of λ. Then inequalities (4.31) and (4.32) hold true, with the same constants c and κ,

by replacing D with Dλ and R with λR. On the other hand, the p-Gauss gap and the ball gap are

scale invariant, i.e.,

Gp(λD, 0) = Gp(D, 0) and B(Dλ, 0) = B(D, 0).

Therefore inequalities (4.4) and (4.5) follow. �

Since a convex open set D in R
n of finite Lebesgue measure has a cone exterior to D with

vertex at any point of the boundary, with any heightR, then a straightforward corollary of Theorem

4.3 is the following.

Corollary 4.6. Let D ⊂ R
n be an open convex set of finite measure and x0 ∈ D.

Then, for every γ ∈]0, 1[, the following inequalities hold:

If
n

n− 1
< p ≤ ∞: Gp(D,x0) ≥ cB(D,x0)

1+ 1
γ
(n−1−n

p
)
,
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if p =
n

n− 1
: Gp(D,x0) ≥ cB(D,x0)

(
log

κ

B(D,x0)

)−n−1
n

, (4.35)

with constants c, κ > 0, c depending only on n, p, θ, γ, and κ depending only on n and γ.

The right hand side in (4.35) is to be interpreted as 0 if B(D,x0) = 0.

5. W 1,p′ -CONTINUITY OF THE p-GAUSS GAP

In this section we consider 1 < p < ∞, and, as usual, p′ denotes the conjugate exponent of

p, i.e. p′ is the real number such that 1
p
+ 1

p′
= 1.

Our main result is that if p ∈]1, n
n−1 [ then the W 1,p′-convergence of domains, in a sense

specified by Theorem 5.1, to an Euclidean ball forces the p-Gauss gap to go to zero. We refer to

[11] for a related result about the C1,α-convergence of domains.

Theorem 5.1. Consider the ball B(0, 2) in R
n, n ≥ 2, and a function d ∈ C1,α(B(0, 2)), α ∈

]0, 1[. Let

D := {x ∈ B(0, 2) : d(x) < 1}

be such that

∂D = {x ∈ B(0, 2) : d(x) = 1}

and

B(0, 1/2) ⊆ D ⊆ B(0, 3/2). (5.1)

Let

de : R
n → R, de(x) := |x|2.

Then for every p ∈]1, n
n−1 [ there exists a positive constant c, only depending on n, p and the

C1,α-norm of d in B(0, 2), such that

Gp(D, 0) ≤ c ‖d− de‖W 1,p′ (B(0,2)) .

This result is a straightforward consequence of the Sobolev-Morrey embedding Theorem and

of the following proposition, that holds true for any p ∈]1,∞[.

Proposition 5.2. Under the same notation and assumptions on D of Theorem 5.1, let p be a real

number, p ∈]1,∞[.

Then there exists a positive constant c, only depending on n, p and the C1,α-norm of d in

B(0, 2), such that

Gp(D, 0) ≤ c
(
‖d− de‖W 1,p′ (B(0,2)) + ‖d− de‖C(B(0,2))

)
. (5.2)

Proof. We give a proof in R
n, n ≥ 3. The case n = 2 can be handled exactly in the same way.

For the sake of simplicity, we will denote B 1
2
, B1 and B2 the balls in R

n centered at 0 with

radius 1
2 , 1 and 2, respectively.

Hereafter Γ denotes the fundamental solution of the classical Laplace operator with pole at

0, GD stands for GD(·, 0), the Green function of D with pole at 0 and GB1 : Rn → R, is an

extension of the Green function of B1 with pole at 0, precisely

GB1(x) = Γ(x)− Γ(1) x ∈ R
n. (5.3)
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Let us consider ϕ : [0,∞[→ R,

ϕ(t) :=
n

n− 2

(Γ(1))
n

n−2

(Γ(1) + t)1+
n

n−2

.

A trivial computation shows that ∫ ∞

0
ϕ(t) dt = 1.

For any open set D, let us define the function wD : D → R by

wD := ϕ(GD)|∇GD|
2. (5.4)

It is easy to check that

wB1 =
1

ωn
=

1

|B1|
. (5.5)

As proved in [2], see also [12], wD is a density with the mean value property for D at 0; i.e.,

u(0) =

∫

D

u(x)wD(x) dx ∀u ∈ H(D) ∩ L1(D). (5.6)

We now turn to the proof, that we split into steps.

Step I.

Let Up := {u ∈ H(D) ∩ Lp(D) : −

∫

D

|u(x)|p dx = 1}. Then, by (5.6),

Gp(D, 0) = sup
u∈Up

∣∣∣∣u(0)−−

∫

D

u(x) dx

∣∣∣∣ = sup
u∈Up

∣∣∣∣
∫

D

u(x)

(
wD −

1

|D|

)
dx

∣∣∣∣ .

Hence

Gp(D, 0) ≤ sup
u∈Up

‖u‖Lp(D)

∥∥wD −
1

|D|

∥∥
Lp′ (D)

= |D|
1
p

∥∥wD −
1

|D|

∥∥
Lp′ (D)

≤ |B2|
1
p

∥∥wD −
1

|D|

∥∥
Lp′ (D)

≤ c(n, p)

(
∥∥wD −

1

|B1|

∥∥
Lp′ (D)

+
||D| − |B1||

|B1||D|
1
p

)
, (5.7)

where in the last inequality we used the triangle inequality.

Step II.

In this step we provide an estimate of the last term at the right hand side of (5.7).

We claim that
||D| − |B1||

|B1||D|
1
p

≤ c(n, p)‖d− de‖C(B2), (5.8)

where c(n, p) > 0.

To prove this claim we notice that

1

|B1||D|
1
p

≤
1

|B1||B 1
2
|
1
p

.

To conclude, we use estimates proved in [11].



STABILITY OF THE MEAN VALUE FORMULA 19

If ‖d− de‖C(B2) ≥
1
2 ,

||D| − |B1|| ≤ |B2| ≤ c(n)‖d− de‖C(B2). (5.9)

As far as the case ‖d− de‖C(B2) <
1
2 is concerned, it is proved in [11] that

∣∣|D| − |B1|
∣∣ ≤ c(n)‖d− de‖C(B2) (5.10)

for some c(n) > 0 depending only on the dimension n, precisely

c(n) =
nωn

2

[
1 +

(n
2
− 1
)

sup
η∈]0,1[

(1 + η)
n
2
−2

]
.

By (5.9) and (5.10) we get (5.8).

Step III.

In this step we estimate the first term at the right hand side of (5.7).

We claim that∥∥∥∥wD −
1

|B1|

∥∥∥∥
Lp′ (D)

≤ c(n, p, ‖d‖C1,α(B2))‖Γ(1)− h‖W 1,p′ (D), (5.11)

where h solves the Dirichlet problem
{

∆h = 0 inD

h = Γ on ∂D

and c(n, p, ‖d‖C1,α(B2)) is a positive constant that only depends on the dimension n, p and on the

C1,α-norm of d in B2.

To prove this, we refer to [11]. Indeed, by using (5.4) and (5.5), it is proved in [11] that the

following inequality holds in D:

∣∣wD −
1

|B1|

∣∣ ≤ c(n, ‖d‖C1,α(B2))
(∣∣GD −GB1

∣∣+
∣∣∇GD| − |∇GB1 |

∣∣) ,

where c only depends on the dimension n and on the C1,α-norm of d in B2.

Taking into account that (5.3) implies GD −GB1 = Γ(1)− h we get

∣∣wD −
1

|B1|

∣∣ ≤ c(n, ‖d‖C1,α(B2))
(∣∣Γ(1)− h

∣∣+
∣∣∇(h− Γ(1))

∣∣) .

and the claim trivially follows.

Step IV.

Collecting (5.7), (5.8) and (5.11) we get

Gp(D, 0) ≤ c(n, p, ‖d‖C1,α(B2))
(
‖Γ(1)− h‖W 1,p′ (D) + C(n)‖d− de‖C(B2)

)
. (5.12)

We now prove that

‖Γ(1)− h‖W 1,p′ (D) ≤ c(n, p, ‖d‖C1,α(B2))‖d− de‖W 1,p′ (B2)
. (5.13)

This inequality, together with (5.12), will prove (5.2).

To prove (5.13) we first observe that h− Γ(1) solves
{

∆(h− Γ(1)) = 0 inD

h− Γ(1) = Φ(Γ− Γ(1)) on ∂D,
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where Φ ∈ C∞
0 (B2) is such that

Φ = 1 on ∂D and Φ = 0 in B 1
2
.

Now, if x ∈ ∂D (i.e. d(x) = 1) we have

Φ(x)(Γ(x)− Γ(1)) = Φ(x)Γ(x)(1− |x|n−2) =
Φ(x)Γ(x)

1 + |x|n−2
(1− |x|2(n−2))

=
Φ(x)Γ(x)

1 + |x|n−2
(dn−2(x)− dn−2

e (x)) = Ψ(x)(d(x)− de(x)),

where, for every x ∈ B2,

Ψ(x) =
Φ(x)Γ(x)

1 + |x|n−2
(dn−3(x) + · · ·+ dn−3

e (x)).

Obviously Ψ ∈ C1,α
0 (B2) and the function v := h− Γ(1) satisfies

{
∆v = 0 inD

u = ψ on ∂D,

with ψ = (d− de)Ψ. Notice that ψ ∈ C1,α(B2).

Let us consider v := ψ − u. This function is a weak solution in W 1,2
0 (D) to

{
∆v = div(∇ψ) inD

v = 0 on ∂D.

Since ∂D is C1,α, then D is a (δ,R)-Reifenberg flat domain, therefore by [6, Theorem 1.5] v

actually belongs to W 1,q
0 (D) for any q ∈]1,∞[ and

‖∇v‖Lq(D) ≤ c‖∇ψ‖Lq(D)

with c independent of v and ψ. Therefore, since

‖ψ‖W 1,q(D) ≤ sup
B2

(|Ψ|+ |∇Ψ|)‖d− de‖W 1,q(D), (5.14)

we obtain

‖v‖W 1,q(D) ≤ c(q)‖∇ψ‖Lq(D) ≤ c(q)‖Ψ‖C1(B2)‖d− de‖W 1,q(D).

By definition of v and using (5.14) once again, we conclude that for any q > 1

‖u‖W 1,q(D) ≤ ‖v‖W 1,q(D) + ‖ψ‖W 1,q(D) ≤ c(q)‖Ψ‖C1(B2)‖d− de‖W 1,q(D).

By using these inequalities with q = p′ we get (5.13). This concludes the proof.

�

6. RIGIDITY RESULTS

As a corollary of Theorem 4.1 we get a rigidity result proved in [16].

Corollary 6.1 (Theorem 3 (B), [16]). Let D ⊆ R
n be an open set with finite Lebesgue measure.

Let 1 ≤ p < n
n−1 . Suppose that there exists x0 ∈ D such that

u(x0) = −

∫

D

u(x) dx ∀u ∈ H(D) ∩ Lp(D).

Then D is a Euclidean ball centered at x0.
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Proof. By assumption, for every u ∈ H(D) ∩ Lp(D), u 6= 0,
∣∣∣∣u(x0)−−

∫

D

u(x) dx

∣∣∣∣
‖u‖

L̃p(D)

= 0.

Therefore Gp(D,x0) = 0, that implies, by (4.1) in Theorem 4.1, |D \ B(x0, rx0)| = 0, with

rx0 := dist(x0, ∂D). Since D is an open set, we conclude that D = B(x0, rx0). �

In [16] it is also proved the following result (see [16, Theorem 1]):

Let D ⊆ R
n be an open bounded set such that Rn \D is connected and D = intD. Suppose

that there exists x0 ∈ R
n such that

u(x0) = −

∫

D

u(x) dx ∀u ∈ H(Rn).

Then D is a ball centered at x0.

Now we prove a related result for open sets D ⊆ R
n with finite Lebesgue measure and test

functions in H(D), where

H(D) := {u ∈ H(D0) : D0 ⊆ R
n is an open set, D ⊂ D0}.

Theorem 6.2. Let D ⊆ R
n be an open set such that |D| <∞ and D = intD. Suppose that there

exists x0 ∈ D such that

u(x0) = −

∫

D

u(x) dx ∀u ∈ H(D). (6.1)

Then D is a ball centered at x0.

Before proving this result we prove a characterization of the assumption D = intD.

Lemma 6.3. Let D ⊆ R
n be an open set. Then the following are equivalent.

(i) D = intD

(ii) ∂D = ∂D.

Proof. That (i) implies (ii) comes from the following chain of equalities:

∂D = D \ intD = D \D = ∂D.

Let us now prove that (ii) implies (i). Since trivially D ⊆ intD, we only need to prove

intD ⊆ D. By contradiction, assume x ∈ intD, but x /∈ D. Then

x ∈ D \D = ∂D = ∂D = D \ intD,

a contradiction. �

Proof of Theorem 6.2. By the translation and dilation invariance of harmonicity, we can assume

without loss of generality that 0 ∈ D and that (6.1) holds for x0 = 0 and |D| = 1.

For every α ∈ R
n \D consider the Kuran’s function hα : Rn \ {α} → R,

hα(x) := 1 + |α|n−2 |x|
2 − |α|2

|x− α|n
, x ∈ R

n \ {α}.
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Since α /∈ D, then hα ∈ H(D) (see Lemma 3.1). Therefore, by (6.1) and by taking into account

that hα(0) = 0, we get

0 =

∣∣∣∣−
∫

D

hα(x) dx

∣∣∣∣ ∀α ∈ R
n \D. (6.2)

By Step II in the proof of Theorem 4.3, see (4.24), if r0 = dist(0, ∂D) and x̄ is a point in

∂B(0, r0) ∩ ∂D, then

there exists c̄(n) > 0 such that
∣∣∣∣−
∫

D

hα(x) dx

∣∣∣∣ ≥ B(D, 0)− c̄(n)|x̄− α|
1
2 ∀α ∈ B(x̄, 1). (6.3)

By (6.2) and (6.3) we have

|D \B(0, r0)| ≤ c̄(n)|x̄− α|
1
2 ∀α ∈ B(x̄, 1) \D. (6.4)

Notice that, by Lemma 6.3,B(x̄, 1)\D is not empty and there exists a sequence (αj) inB(x̄, 1)\D

that is convergent to x̄. By applying estimate (6.4) to each αj and letting j go to ∞, we conclude

that

|D \B(0, r0)| = 0.

Since D is an open set, we conclude that D = B(0, r0). �
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[21] I. NETUKA, J. VESELÝ: Mean value property and harmonic functions, Classical and modern potential theory

and applications (Chateau de Bonas, 1993), 359-398, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 430, Kluwer

Acad. Publ., Dordrecht, 1994.

[22] A. ROSSI, P. SALANI: Stability for a strengthened Borell-Brascamp-Lieb inequality, Appl. Anal. 98 (2019),

1773-1784.

GIOVANNI CUPINI, ERMANNO LANCONELLI: DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI BOLOGNA,
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