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Abstract—The recent years have witnessed the rise of an
enormous number of software algorithms that implement pe-
dometers (or step counters), which led to the development of
several context-aware IoT-based smartphone apps for sports and
healthcare, among others. While the number of scientific works
in this context is high, there is no comparison study that analyzes
the different proposal at implementation level. In this paper we
first perform a literature review of software implementations
of pedometers for smartphones and then classify them into a
taxonomy. With this, we highlight the similarities of their scheme,
which is based on a number of defined steps to be applied
in a pipeline. We then develop a smartphone application that
implements all the configurations of these steps found in literature
and evaluates them in various scenarios. Finally, we present
comparative results obtained by running extensive and real tests
that show the importance of a carefully designed filtering step.

Index Terms—Internet of Things, Pedometers, Step Counter,
Activity Recognition

I. INTRODUCTION

Pedometers, or step counters, are devices or software mod-
ules designed to count the steps performed by an individual
through motion detection. Historically, pedometers were in-
tended as dedicated physical devices, used to assess a person’s
physical activity or energy expenditure. More recently, numer-
ous software implementation of pedometers on smartphones
and wearables IoT devices have become widespread, as raw
data sampled from the embedded sensors of these devices
can be processed in order to assess whether steps have been
performed [1]. As a matter of fact, studies concerning the
implementation of pedometer algorithms for smartphones are
now several. By analyzing these studies, it is possible to
notice how the majority of them follow a recurrent pattern
in terms of implementation choices, often differing only by
some defined values or the order of certain algorithmic steps.
Furthermore, almost all of the analyzed studies declare a
very high precision of the proposed implementation, making
it difficult to assess coherently the strength points and the
limitations of each of them. Building on these premises, the
present study has the goal of performing a detailed analysis
of most of these studies, in particular those based on Android
devices, by collecting the proposed implementation choices,
comparing them with each other and, finally, highlighting
their advantages and drawbacks through a concrete and all-
encompassing implementation. With this research effort we

attempt to give a glance on the factual efficacy of the proposed
software pedometers.

The work is divided in four different macro-phases. The first
phase consists in the information collection, which we per-
formed through a literature review. In particular, we collected
a number of pedometer implementation and described them in
Section II, where we analyze the state of the art from which it
is already possible to identify the common ground that most of
the existing works follow. Next, the second phase consists in
the collection of all the common features that characterize the
existing works. This led us to frame them within a detailed
taxonomy. The taxonomy includes all the main algorithmic
steps of a software pedometer, by grouping together redundant
ones used in different works and providing a clear visualization
of the different options that can be chosen for each of them.
The taxonomy is outlined throughout Section III. In this
work, our taxonomy and subsequent evaluation only considers
real-time algorithms, which detect whether a step is taken
or not right after the relative data point is sampled. Other
algorithms, identified as offline, count the steps after a certain
number of measurements are performed, thus having access
to more information for a more accurate processing. These
belong to a different category and will be considered for
future works. Subsequently, in the third phase we develop an
Android mobile application, through which a user can test any
of the pedometer implementation proposed in the analyzed
studies. The application is described in Section IV and its
implementation is guided by the taxonomy proposed in the
previous section, thus allowing for the combination of different
algorithmic steps used in different works in a unique pipeline.
The last phase, described in Section V, includes extensive
performance tests of the analyzed algorithms through the
developed application. These have been performed by several
human volunteers in different conditions and results show how
the filtering step has a strong impact on the precision and the
effectiveness of such algorithms. Finally, we draw conclusions
in Section VI.

II. STATE OF THE ART

Technological advancement has gradually replaced the his-
torical mechanic pedometers, used mainly for military pur-
poses, with dedicated sensors first and with software modules
later. With the advent of smartphones and wearable IoT



devices that embed inertial sensors, the deployment of pe-
dometers is nowadays pervasive and potentially accompanying
the device owner all day. IoT software pedometers are then
relying on two main components: the sensors and the detection
algorithm. The smartphone sensors used for the purpose of
counting steps are mainly accelerometer, gyroscope and mag-
netometer – this works similarly for other IoT devices. The
accelerometer detects the acceleration of the device along the
X, Y and Z axes (including the gravity acceleration to which
it is constantly exposed). The gyroscope detects the device
rotation around the X (roll), Y (pitch) and Z (yaw) axes. Fi-
nally, the magnetometer detects the orientation of the magnetic
field to which the device is exposed. In absence of artificial
ones, it is in practice able to discern the device orientation.
Sensors embedded into different smartphones are quite similar
to each other, their only difference is the maximum sampling
frequency, ranging from 100 Hz to 500 Hz depending on the
price, however this does not affect the capability of detecting
steps, which, as we will see, needs much lower sampling
frequencies. The main discriminant for different performances
is therefore the detection algorithm, which is the main object
of the present paper. The section below aims to discuss the
main solutions found in literature.

A. Detection Algorithms

By looking at the body of literature, we found that almost
every publication implement the detection algorithm via a
number of steps to be applied in a sequence. This pipeline
approach is composed by the following steps:

1) Gathering of sensor data.
2) Application of filters to clean out possible noise.
3) Isolation of relevant information that can possibly cor-

respond to steps.
4) Application of a decision algorithm to decide whether

the point corresponds to a step.
As a first example, we take into account the work proposed by
[2], which uses all three sensors cited above and a low-pass
filter to erase all data that presents a magnitude lower than
a certain cutoff frequency. This greatly reduces the amount
of data to be analyzed. Furthermore, it applies a rotation
matrix to the data, by using the orientation given by the
magnetometer, in order to convert the accelerometer values
into a rotation-independent reference system. Subsequently,
the decision process applies the “Peak algorithm” in order
to detect whether a sensor observation is a local maximum
or a local minimum and takes the final decision upon them.
More in detail, this decision is made through a further step
that divides the data gathered in segments and executes the
detection algorithm a posteriori on each of the segments. This
implies that the detection algorithm is offline, therefore it tries
to achieve a higher accuracy by looking at an extended set
of data, assuming however to have access to an entire time
series and therefore tolerating a certain delay in yielding the
result. This also implies a number of different policies on how
to segment the time series (in [2] it is done by looking at
the gyroscope values). In certain use cases this delay is not

acceptable because the pedometer algorithm is part of a real-
time pipeline (as in activity recognition or indoor navigation
[3]), thus a real-time detection algorithm, able to yield a result
for each sensor observation, is needed.

Much like in [2], all the studies analyzed in this section
use the same pipeline scheme, differing only in how each step
is performed. For instance, the works in [4], [5], [6], [7] e
[8] all use a low-pass filter, however setting a different cutoff
frequency, which varies from 2 Hz to 10 Hz. Among these,
only [6] and [7] describe a completely real-time detection
algoritm, while all the others use the time series segmentation.
In particular, while [5] e [8] use a segmentation process similar
to [2], the work in [4] proposes to cut the time series in
correspondence of the intersection of the data with the x-axis
(this is subsequently proposed by other studies). Concerning
the sensors, [4] proposes the sole usage of the gyroscope; [7]
and [8] only use the accelerometer, while the work in [6] uses
all three of them. The latter, in fact, expresses the necessity
of a rotation-independent coordinate system. Other papers
proposing such a conversion are [9], [10], [11] and [12]. In all
these cases all three sensors are used, however only [6], [9] and
[10] use a rotation matrix for this purpose. The conversion to
a fixed reference system allows the developer to only focus on
the sensor measurements on the z-axis, the one that is subject
the most to sensitive variations, as it is vertical with respect
to the user when the device is in neutral position. This can be
clearly observed in [2] and [9]. Furthermore, this conversion
facilitates the removal of the gravitational acceleration as it
will be only on one axis. In alternative, [11] and [12] use the
acceleration magnitude, which is again independent from the
reference system. Out of these studies, [9] and [11] propose
an offline detection process, while [10] e [12] operate at real-
time. Other papers, such as [13], [14], [15], [16] and [17] make
use of the accelerometer only, without any filtering step, then
apply the peaks algorithm directly on raw data. [13] and [15]
implement the process at real-time, while [14], [16] e [17]
recognize the peaks within certain segments.

B. Comparative Studies

Pedometer applications have been around for several years,
therefore it is expected that a number of survey studies like
the one in this paper had been conducted. For instance, the
study in [1] evaluates three commercial mobile applications
freely available for download in a laboratory environment (i.e.
Accupedo, Moves, and Runtastic Pedometer). Differently, in
[18] the authors perform an thorough performance evaluation
of a commercial pedometer application against a mechanical
pedometer in order to investigate its validity under different
operation conditions (e.g. speed, location, etc.). Similar studies
have been conducted for this purpose, however, to the best of
our knowledge, no analysis has yet been performed to compare
different algorithms for pedometers under a common ground.
Even though the study of this paper is limited to a certain
category of algorithms (i.e. non commercial, real-time) it is
still a solid basis for encompassing more cases.



Fig. 1. A simple pictorial representation of the proposed taxonomy, outlining
all phases to be executed in sequence.

III. TAXONOMY

Starting from the information collected in the previous
section, we can define a complete and exhaustive taxon-
omy of the steps involved in almost each of the existing
implementations. The taxonomy is presented graphically in
Figure 1 and, for each step, it explores all the options found
in literature. The taxonomy can be used as a guideline for
the combination of such options, which could possibly derive
new implementations that were not found in literature before.
Below we give an overview of each of the steps.

A. Sensors

The usage of one or more sensors at the same time can
yield different results. In this case the choice of the sensors is
not mutually exclusive, meaning that an algorithms can use
them in any possible combination. This step also involves
implicitly any software sensor that combines or alters the
data from accelerometers, gyroscopes and/or magnetometers,
for instance the compass, the orientation sensor or the linear
acceleration sensor.

B. Sampling Frequency

Sensors can be sampled at a different frequency in an
IoT device and this can impact the final results. Typically

the sampling frequency spans from 20 Hz to the maximum
available, however, Figure 1 only reports the values that
have been found in literature. A higher frequency does not
necessarily mean better performance, as it is likely to generate
more noise, thus needing a more sophisticated filter.

C. Filter

The filtering process is an important step when dealing with
data that can possibly include noise, as they aim to clean up
the waveform in a way in which it is easier to process in
the subsequent steps. The most used filter is the low-pass
filter, which attenuates portion of signals presenting a high
frequency, mostly associated with noise. This filter must be
tuned by selecting a proper cutoff frequency, which indicates
the frequency below which the signal is left untouched. Other
filters found are the Kalman filter (used with all three sensors)
the hi-pass filter (used only with the gyroscope) and the
Bagilevi filter (only used with the accelerometer). The latter
is not associated to a specific work in literature, as it is only
proposed in the form of an implementation freely available on
Gihtub1, however, we included it because it has been used as
it is in scientific papers (e.g. [19]).

D. Mode (or Modality)

With this term we mean whether the algorithm works in
real-time or offline. As we anticipated, a real-time algorithm
outputs the result of the computation immediately after the
data point is sampled, while the offline algorithms need to
wait for a whole data segment to be acquired, in order to
process it with the whole information content available. Most
of the times the acquisition windows do not last for more
than few seconds, however the algorithms themselves are more
complicated to apply and still cause a delay in returning a
feedback. In scenarios where the output of the pedometer
must be instantaneous, for instance when it is part of a
more complex an time-sensitive pipeline of tools, then offline
algorithms are less preferable, even though their output is
likely to be more accurate. In this paper we do not deal
with offline algorithms, which are envisioned for future works,
therefore, we skip the discussion on the data segmentation
criteria. Real-time algorithms simply do not apply this step.

E. Detection Algorithm

This is the final step that determines whether a data point
corresponds to a step or not. All the studies considered
implement the “Peaks algorithm”, which identifies a step if the
data point is a local maximum or minimum in the data series.
Some of the works apply a rotation matrix to accelerometer
and gyroscope data, some other do not, as peaks tend to
be significant in any direction. The application of the filter
prior to this step is quite important, as the number of local
maximum/minimum in a noisy wave is much higher, since
they may be caused by small vibrations that are not necessarily
steps. Another aspect that is applied in this phase and helps

1https://github.com/bagilevi/android-pedometer



Fig. 2. Screenshot of the mobile application showing the comparison of
different configurations and, for each of them, a visual feedback on where the
steps are detected in the data trace.

in filtering out false positives is the intersection with the x-
axis (accelerometer only): an additional check that does not
count a step if the wave did not cross the x-axis after the last
maximum/minimum.

IV. DATA COLLECTION THROUGH A MOBILE
APPLICATION

The similarity and repetitiveness of the steps outlined in
the previous section suggests that most of the algorithms in
literature – as well as all the other configurations generated
by the combination of the different options in each step –
can be compared within a single environment. For this reason
we developed a mobile application for Android smartphones,
using Java as a programming language, in which a user can
compose his or her own pedometer by choosing, for each
step, which option to use. The application is open source
and available on Github2. The application implements all the
options for the steps shown in Figure 1, with the exception
of the offline aspects. Users can combine the options into
a pipeline by choosing one of them for each step, thus
creating a pedometer configuration, which can be saved and
reused later. At this point, users can use the application in
two main ways: Live testing and Offline testing. In the first
case, once a specific configuration is selected, the application

2https://github.com/GiacomoNeriUnibo/Pedometers

TABLE I
LIST OF TESTED CONFIGURATIONS

Test Detection Algorithm Filter Cutoff freq.
I Peaks No filter —
II Peaks + x-axis intersect. No filter —
III Peaks Rotation m. —
IV Peaks + x-axis intersect. Rotation m. —
V Peaks Bagilevi —
VI Peaks + x-axis intersect. Bagilevi —
VII Peaks low-pass 2Hz
VIII Peaks + x-axis intersect. low-pass 2Hz
IX Peaks low-pass 3Hz
X Peaks + x-axis intersect. low-pass 3Hz
XI Peaks low-pass 10Hz
XII Peaks + x-axis intersect. low-pass 10Hz
XIII Peaks low-pass 2% samp. freq.
XIV Peaks + x-axis intersect. low-pass 2% samp. freq.

starts sampling sensor data and shows in a separate screen
the accelerometer data series updated in real time as well
as a counter for the number of steps detected by then, also
updated in real time. In the second case, users can test multiple
configurations on the same data set in order to compare their
performance. First of all, users can “record a trace”, meaning
that, with a specific function of the application, they can
collect sensor data for a certain period of time and export
it for later in a special trace file within the application folder.
Users can also import traces from other files using the File
Manager of the smartphone. Finally, the offline test feature
allows users to select a number of pre-saved configurations
and test them all together over a single trace. Figure 2 shows
a screenshot of the application performing an offline test
over a single trace using three different configurations. The
application also shows the exact points in the associated wave
where the different configurations detected a step. By knowing
the ground truth, it is possible to evaluate the performance of
different configurations over a single trace.

V. TESTING AND RESULTS

Using the application described in section IV, we compared
the accuracy of different pedometer configurations on the
same data sample. Specifically, 11 different human testers had
to perform 6 different walks, of 50 steps each, recording a
different test individually. In addition, we instructed each tester
to hold the device in texting mode and to turn off device
notifications to avoid vibrations that could compromise the
data recorded by the sensors. The traces recorded were then
analyzed using all the 14 different pedometer configurations
obtainable by combining all implemented options (details
of every configuration are shown in Table I). This section
discusses the result of the different combinations between
algorithms and filters for all walking styles. A sample of
11 different people, with an age ranging from 22 to 26,
averaging at 24, was used to record the different tests. Detailed
information about the different testers is summarized in Table



TABLE II
LIST OF THE TESTERS

Tester Device Age
I Xiaomi Redmi Note 5 25
II Xiaomi Redmi Note 5 24
III Xiaomi Redmi S2 23
IV Samsung Galaxy S8 25
V Samsung Galaxy A40 24
VI Samsung Galaxy A40 24
VII Honor View 20 26
VIII Honor 10 22
IX Huawei P20 Lite 23
X Google Pixel 4a 23
XI Asus Zenfone 5Z 25

II. A total of 9 Android devices, belonging to 6 smartphone
brands, were used to conduct the tests. The use of several
distinct devices made it possible to obtain even more reliable
indications of the effectiveness of the various algorithms since
they are equipped with different physical sensors. Figure 3(a)
shows the data collected during the tests performed by a
plain walk. We can see that Bagilevi’s algorithm ultimately
gives disappointing results, while the No Filter and Rotation
Matrix are much more accurate, as their average approaches
the value of 50. However, their amplitude denotes inconsistent
results, especially in the case of the Rotation Matrix, in which
outliers are frequently recorded. The low-pass filter provides
optimal results in each case, mainly when used with a low
cutoff frequency. In all cases, using the x-axis Intersection
algorithm did not lead to any particular improvement, except
when using No Filter. In Figure 3(b), uphill walk, the data
collected are very similar to those in Figure 3(a) but without
outliers. The Rotation Matrix provides slightly worse results
than the configurations without a filter, which perform a little
better, especially in combination with the x-axis Intersec-
tion algorithm. Moving to Figure 3(c), downhill walk, the
observations regarding Bagilevi’s algorithm are still in line
with the previous analysis, while the use of No Filter and
the Rotation Matrix provide much less consistent results in
this case, as their representation is much broader. A low-
pass filter is the most accurate method, except when used
with a cutoff frequency of 10Hz, as in this case, it provides
slightly overestimated results. Figure 3(d), on the other hand,
represents the data collected during the tests by performing
a walk with irregular steps; as seen from the image, this
walking style challenged most algorithms, highlighting their
limitations. Using the Rotation Matrix and no filter generated
very uneven results, slightly corrected by using the x-axis
Intersection algorithm. Again, using the low-pass filter seems
to have generated the most accurate results, if often slightly un-
derestimated. Figure 3(e), concerning the data collected during
the baby steps walk, also challenged most algorithms. Since
the results are similar to those shown in Figure 3(d), we refer
the reader to the data analysis was done for that plot. In the
last plot, Figure 3(f), representing the run, we can see how the

algorithms calculated inaccurate results, especially when using
No Filter and the Rotation Matrix. In both cases, however, the
x-axis Intersection algorithm provided a particularly accurate
correction, giving much more precise and compact results.
Bagilevi’s algorithm is the least accurate, while using the
low-pass filter presents the best results, especially with 2%
of the sampling rate cutoff frequencies. In general we can
observe how, in all cases, avoiding to use a filter leads to a
number of false positives due to the noise that has not been
attenuated. In graph 4, we have an overview of the overall
accuracy of all 14 configurations. The diagram shows the
average error that corresponds to the average of the distances
between the recorded data and the ground truth 50, calculated
in absolute value. The closer the value is to zero, the more
accurate results the corresponding configuration provides. We
can observe that Bagilevi’s algorithm is, in every situation, the
worst, as it gives highly inconsistent results that are almost
always utterly distant from the correct value and is subject
to an exceptionally high average error. On the other hand,
it is evident that the low-pass filter is the best in almost all
cases, regardless of the chosen cutoff frequency. Using the x-
axis Intersection algorithm as a corrective generates relevant
improvements when used in configurations related to No Filter
and the Rotation Matrix. At the same time, it is not particularly
relevant when used in configurations related to the low-pass
filter. We can see that irregular and baby steps walks caused
the most significant difficulties; unfortunately, in these two
cases, the data produced by the sensors are highly peculiar, and
processing them becomes a particularly complex task. Again,
the most reliable configurations were those exploiting the low-
pass filter. Ultimately, the best configuration is undoubtedly the
one that uses the low-pass filter with a cutoff frequency equal
to 10Hz, calculated with the Peak algorithm and corrected with
the Intersection algorithm. The results are consistent with each
other and almost always close to the correct value, generating
almost no outliers and the absolute lowest average error value.

VI. CONCLUSION

In this work we provided a basis for a thorough comparison
analysis on software pedometers for IoT devices. We first ana-
lyzed the current literature and highlighted common aspects of
existing implementations by identifying a common structure
and proposing a taxonomy that builds on such a structure.
We then used the taxonomy to develop a mobile application
in order to evaluate all the existing implementation within
a common environment, highlighting the utility of certain
features over others depending on the activity of the user,
in particular the importance of applying a coherent filter to
attenuate the data noise. This work opens up many possibilities
for future works, such as including offline algorithms as well
as including existing applications.
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