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ABSTRACT

Context. We present the forward cosmological analysis of an XMM-selected sample of galaxy clusters out to a redshift of unity. We
derive mass-observable relations in a self-consistent manner using the sample alone. Special care is given to the modelling of selection
effects.
Aims. Following our previous 2018 study based on the dn/dz quantity alone, we perform an upgraded cosmological analysis of the
same XXL C1 cluster catalogue (178 objects), with a detailed account of the systematic errors. The results are combined with external
constraints from baryon acoustic oscillations (BAO) and the cosmic microwave background (CMB).
Methods. This study follows the ASpiX methodology: we analysed the distribution of the observed X-ray properties of the cluster
population in a 3D observable space (count rate, hardness ratio, redshift) and modelled as a function of cosmology along with the
scaling relations and the selection function. Compared to more traditional methods, ASpiX allows the inclusion of clusters down to a
few tens of photons and is much simpler to use. Two M − T relations are considered: that from the Canada-France-Hawaii Telescope
(hereafter CFHT) and another from the more recent Subaru lensing analyses.
Results. We obtain an improvement by a factor of two compared to the previous analysis, which dealt with the cluster redshift distri-
bution for the XXL sample alone, letting the normalisation of the M − T relation and the evolution of the L–T relation free. Adding
constraints from the XXL cluster two-point correlation function and the BAO from various surveys decreases the uncertainties by
23% and 53%, respectively, and 62% when adding both. The central value is in excellent agreement with the Planck CMB constraints.
Switching to the scaling relations from the Subaru analysis and leaving more parameters free to vary provides less stringent con-
straints, but those obtained are still consistent with the Planck CMB at the 1-sigma level. Our final constraints are σ8 = 0.99+0.14

−0.23,
Ωm = 0.296±0.034 (S 8 = 0.98+0.11

−0.21) for the XXL sample alone. Combining XXL ASpiX, the XXL cluster two-point correlation func-
tion, and the BAO, leaving 11 parameters free to vary, and allowing for the cosmological dependence of the scaling relations in the fit
induces a shift of the central values, which is reminiscent of that observed for the Planck S-Z cluster sample. We find σ8 = 0.793+0.063

−0.12
and Ωm = 0.364 ± 0.015 (S 8 = 0.872+0.068

−0.12 ), which are still compatible with Planck CMB at 2.2σ.
Conclusions. The results obtained by the ASpiX method are promising; further improvement is expected from the final XXL cos-
mological analysis involving a cluster sample that is twice as large. Such a study paves the way for the analysis of the eROSITA and
future Athena surveys.
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1. Introduction

As the largest gravitationally collapsed objects in the Universe,
clusters of galaxies occupy a privileged position in astrophys-
ical studies for two main reasons. The cluster number counts
and spatial distribution of galaxy clusters as a function of mass
and redshift are sensitive to both the growth of structure and
the geometry of the Universe, and therefore these objects con-
stitute powerful cosmological probes. While the purely grav-
itational aspect is theoretically well understood, the interplay
between the three cluster components, namely galaxies (∼5%),
gas (∼15%) and dark matter (∼80%), renders the physics of the
intracluster medium (ICM) complex. A wide range of phenom-
ena are involved: cooling through X-ray emission, enrichment
and heating of gas through supernovae and AGN feedback, tur-
bulence, and magnetic fields (see e.g., review by Allen et al.
2011). These processes make clusters interesting astrophysi-
cal laboratories and have motivated considerable computational
efforts to reproduce their properties using hydrodynamic simula-
tions (e.g., review by Borgani & Kravtsov 2011). The modelling
of these properties is crucial in linking cluster observables like
galaxy richness, velocity dispersion, gas mass, X-ray luminosity,
and temperature (LX, TX) to the total cluster mass, a key compo-
nent for cosmological studies.

In this context, a Very Large XMM programme was allocated
in 2010: with its two spatially disconnected regions of 25 deg2

each, the XXL survey was specifically designed to obtain robust
cosmological constraints from the X-ray cluster population out
to a redshift of unity. This survey is accompanied by an exten-
sive multi-wavelength follow-up programme and has motivated
the development of sophisticated detection and analysis proce-
dures (Pierre et al. 2016, hereafter XXL Paper I). We refer the
reader to this latter paper for a comprehensive bibliographical
overview of cosmological X-ray cluster surveys. In the construc-
tion of the XXL cluster sample, two aspects were given special
attention: (i) The cluster selection is solely described in terms
of observed X-ray parameters: by selecting clusters in the two-
dimensional count-rate versus apparent-size parameter space, we
can ensure a sample purity of better than 95% and whose defi-
nition is independent of the cosmology. (ii) The cluster scaling
relations entering the cosmological analysis are derived from the
cluster sample data alone.

A first cosmological analysis of the brightest XXL clus-
ters (the C1 sample containing 178 objects) was presented in
Pacaud et al. (2018, hereafter XXL Paper XXV). This study,
based on the modelling of the cluster redshift distribution (dn/dz),
provided constraints on σ8 and Ωm with precision of the order
of 10% and 20%, respectively. No cluster mass information was
propagated in the analysis other than the resulting mass detec-
tion limit as a function of redshift and cosmology. A natural
follow-up would be the subsequent analysis of the dn/dM/dz dis-
tribution, which is theoretically much more constraining than
dn/dz. However, because the direct handling of the (cosmology-
dependent) masses is difficult, we adopted a forward modelling
based on the prediction of directly observable quantities; namely,
the three-dimensional distribution of the count rates (CRs), hard-
ness ratios (HRs), and redshifts of the selected cluster popula-
tion (X-ray observable diagrams, hereafter XOD). This method
(named ASpiX) was initiated by Clerc et al. (2012a,b) and further
validated on analytical and numerical simulations (Pierre et al.
2017; Valotti et al. 2018). ASpiX is intrinsically equivalent to the
study of the mass–redshift distribution because the mass infor-
mation is encoded in the CR–HR–z distribution, but ASpiX is
much simpler to use and is less affected by physics or cosmol-

ogy degeneracies. The method consists in comparing the observed
XOD with the predicted XODs as a function of cosmology and
cluster evolutionary physics. In the present study, the compari-
son is performed adopting a Markov chain Monte-Carlo (MCMC)
approach, in which selections of cosmological parameters and
scaling relation coefficients are left free to vary; the predicted
XOD are convolved by a realistic measurement error model.

The paper is organised as follows. Section 2 briefly recalls the
main properties of the cluster sample. In Sect. 3, we describe the
steps involved in the XOD construction. In Sect. 4 we present a
first cosmological analysis under exactly the same hypotheses as
in XXL Paper XXV; this allows a direct comparison of the two
approaches. We further add constraints from the two-point corre-
lation function from the same cluster sample. In Sect. 5, we update
the study by using the revised scaling relations obtained from our
recent lensing analysis of deep Hyper Suprime Camera images.
The results, along with various sources of uncertainty, are dis-
cussed in Sect. 6 with constraints from other probes. Conclusions
are drawn in Sect. 7. Appendix A describes the procedure used to
measure the cluster quantities appearing in the XOD. Appendix B
gives the details of the cosmological likelihood calculation in the
CR–HR space, including the estimate of the sample variance.

Throughout the paper, we assume a spatially flat Λ cold dark
matter (ΛCDM) model (see Sect. 4). We use the standard nota-
tion M∆ to denote the cluster mass enclosed within a sphere of
radius r∆, within which the mean overdensity is equal to ∆ times
the critical density of the Universe at a particular redshift z.

2. Cluster sample

The present paper deals with a sample of 178 XXL C1 clusters
detected in the 47.36 deg2 XXL survey. This is identical to the
sample used in the previous XXL cosmological analysis (XXL
Paper XXV). In this section, we recall the properties of this sam-
ple and describe the measurements of the cluster parameters used
in the current study.

2.1. Sample

Adami et al. (2018), hereafter XXL Paper XX, published a sam-
ple of 365 clusters divided into two classes, namely the C1 and
C2 class. The C1 subsample consists of 191 sources, achiev-
ing a high degree of purity (fewer than 5% of the point sources
are misclassified as extended; Pacaud et al. 2006). We restricted
the cosmological analysis to only the C1 spectroscopically con-
firmed clusters within the [0.05−1] redshift range. This led to
the exclusion of 8 clusters that were outside of the redshift range
and 5 without redshift estimates, resulting in a final sample of
178 clusters. In the present study, each cluster is characterised
by four observable parameters: redshift (z), X-ray count rate
(CR; defined as the number of X-ray counts received per sec-
ond in the [0.5−2] keV energy band normalised to its on-axis
value), hardness ratio (HR; defined as the ratio between the
count rates in the [1−2] and [0.5−1] keV energy bands), and
angular core radius (θc, assuming a β-profile with β = 2/3;
Cavaliere & Fusco-Femiano 1976, 1978); CR and HR are equiv-
alent to physical flux and colour. The CR–HR distribution of the
XXL C1 sample is shown in Fig. 1.

2.2. Measurements

Along with a precise mapping of the selection function, the
ASpiX method requires robust measurements of the CR and HR
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Fig. 1. X-ray observable diagram (XOD) of the XXL C1 sample con-
taining 178 objects, integrated over the [0.05−1] redshift range. The
blue histograms show the 1D integrated CR and HR distributions. Error
bars only account for shot noise.

quantities with realistic error estimates. We describe the adopted
procedure below.

The XXL detection pipeline (Xamin; Pacaud et al. 2006)
operates on the [0.5−2] keV images and provides a list of
sources; a multi-PSF fit returns the source extent (θc) for the
extended source model, and the resulting CR. The X-ray pipeline
also provides the pixel segmentation mask for each source from
the first detection pass. The fitted CR and θc values are ascribed
measurement likelihoods by Xamin, but errors are not provided
for these quantities. In all that follows, the Xamin output is used
to deal with cluster selection issues only.

In order to obtain model-independent CR measurements
along with associated errors, we apply a novel method based
on Monte-Carlo sampling to fit the X-ray profile (pyproffit;
Eckert et al. 2020) on the mosaic of overlapped XMM observa-
tions. Based on a multi-scale profile decomposition, this method
allows robust CR and therefore HR measurements, together with
an estimate of their uncertainties. Given that the mean number
of collected photons per cluster is low (on average ∼200 counts
for 10 ks exposures), we use a simplified minimisation algorithm
for the θc measurements. The complete procedure is detailed in
Appendix A.

3. Cosmological modelling

The main goal of the paper is to perform a forward cosmological
analysis: the ASpiX method consists of fitting the CR − HR − z
XOD. This approach was tested on simulations and described
in a series of articles (Clerc et al. 2012a,b; Pierre et al. 2017;
Valotti et al. 2018). In this section, we recall the principles and
assumptions inherent to the method.

3.1. ASpiX method

Starting from a theoretical mass function, ASpiX reconstructs
the XOD of a given cosmological-plus-cluster-physics model in
order to match the observed XOD. The strength of this method is
in the fact that it only relies on strictly observable X-ray param-
eters, which means that the cluster temperatures, luminosities,
and masses are not explicitly computed.

We start from the differential mass function computed for a
given cosmology, and expressed in terms of redshift (z) and sky

Table 1. Sampling of the X-ray parameter distribution in the XOD.

Parameter Min, Max Nb. of bins Scale

z 0.05, 1 5 Linear
CR [cts s−1] 0.002, 4.4 16 log
HR 0.09, 2.2 16 log
θc [arcsec] (∗) 3, 211 16 log

Notes. (∗)The selection function is applied in the CR-θc plane, but the
θc distribution is not directly used to constrain the cosmological param-
eters. The XOD is then integrated over the θc and convolved with the
error model prior to the fit.

area (Ω) folded with the XXL survey effective sky coverage. We
compute the distribution in terms of M∆, z and cluster character-
istic size:

r∆ =

(
3M∆

4π × ∆ρc

)1/3

, (1)

where r∆ is the radius within which the average density is ∆ times
ρc, the critical density.

We use scaling relations linking mass and temperature
[M∆–T ], luminosity and temperature [L–T ], and between r∆ and
the cluster core radius rc, assuming a β model with β = 2/3,
[rc–r∆]. The relation between physical and apparent core radii
reads:

θc [arcsec] =
648 000

π
rc [Mpc] / da(z) [Mpc], (2)

where da is the angular diameter distance.
We make use of the apecmodel: the emission spectrum from

collisionally ionised diffuse gas is calculated from the AtomDB
atomic database, (Smith et al. 2001) with a metallicity of 0.3 Z�.
Folding the spectrum with the EPIC (European Photon Imaging
Camera) XMM response matrices provides us with count rates
in the three energy bands of interest ([0.5−2] keV, [0.5−1] keV
and [1−2] keV). From this, we subsequently construct the 4D
z–CR–HR–θc diagram.

We stress that the mass information is implicitly encrypted
in the θc, CR, and HR parameters via the scaling relations. We
then apply the XXL survey selection function (f[CR,θc]) and
finally convolve the XOD with the measurement-error model of
each observable parameter except for z (spectroscopically mea-
sured and thus with negligible error). In the end, we integrate
over θc to obtain the 3D z–CR–HR diagram expected for a given
cosmology.

3.2. Assumptions and numerical inputs

For the purpose of this analysis, we use a Tinker mass function
(Tinker et al. 2008) computed at an overdensity of ∆ = 500. We
disperse over the luminosity, temperature and core radius distri-
butions by including a log-normal scatter around the mean scal-
ing relations. The binning of the XOD is shown in Table 1.

3.2.1. Scaling relations

In the first part of the paper, in order to allow a direct compar-
ison of the different methodologies applied, we continue to use
the scaling relations of XXL Paper XXV modelled, as usual, by
power laws:

M500,WL

X0,M−T
=

(
T300 kpc

1 keV

)αM−T

E(z)γM−T , (3)
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Table 2. Cluster scaling laws used in the first part of the paper.

Law X0 α γ Scatter
(natural log)

M500,WL − T300 kpc (2.6 ± 0.55) × 1013 M� h−1 1.67 −1.0 −

LXXL
500,WL − T300 kpc 8.24 × 1041 erg s−1 3.17 0.47 ± 0.68 0.67

rc − r500 0.15 − − −

Notes. To keep the same configuration as in XXL Paper XXV, we include scatter only in the luminosity distribution. We use a log-normal scatter,
with the value indicated in the table, as in the previous XXL cosmological analyses (XXL Paper XXV). Uncertainties on parameters indicate that
these parameters are kept free during the analysis and are in a Gaussian prior range with σ given by the uncertainties and then marginalised over.
The mass–temperature relation was published in the first XXL release (Lieu et al. 2016, hereafter XXL Paper IV) and the luminosity–temperature
relation in the second XXL release, XXL Paper XX.

LXXL
500,WL

X0,L−T
=

(
T300 kpc

1 keV

)αL−T

E(z)γL−T , (4)

rc

X0,rc−r500

= r500, (5)

where M500,WL is the weak-lensing mass estimate within r500,
T300 kpc is the cluster X-ray temperature measured inside 300 kpc,
LXXL

500,WL is the luminosity within r500 in the [0.5−2] keV energy
band, and E(z) is the redshift evolution of the Hubble parame-
ter, E(z) ≡ H(z)/H0. The mass calibration only relies on weak
lensing measurements based on the Canada-France-Hawaii Tele-
scope (CFHT) lensing data (for a didactic review of cluster weak
lensing, see Umetsu 2020). The scaling law parameters are sum-
marised in Table 2.

During the analysis, two scaling relation parameters were
introduced as nuisance parameters and marginalised. These
parameters correspond to the ones indicated by uncertainties
in Table 2. We do not include any scatter in the rc − r500 and
M500,WL–T300 kpc relations within the base model so that compar-
isons can be made with XXL Paper XXV. Subsequently, we add
a scatter of 0.1 in the rc − r500 in Sect. 5 to correspond to the
updated scaling relations. We discuss the impact of larger values
of the scatter in Sect. 6.3.

3.2.2. Selection function

Assuming a circular β = 2/3 model for extended sources, a clus-
ter population with different count-rates and θc was generated for
a range of XMM exposures. This process takes into account the
instrumental characteristics (PSF distortion, vignetting, detec-
tor masks, background, and Poisson noise) for the three XMM
detectors. Point sources are added at random over the XMM field
of view, with a flux distribution following the log(N) − log(S )
from Moretti et al. (2003) down to 5 × 10−16 erg s−1 cm−2; the
contribution of point sources below 4 × 10−15 erg s−1 cm−2 is
included in the cosmic background component (Read & Ponman
2003). The XXL cluster-detection algorithm is then applied,
allowing a statistical study to determine various levels of com-
pleteness and purity. The cluster selection is performed in the
Xamin output parameter space (ext, ext_stat) and subse-
quently translated into the CR–θc plane. The details of the pro-
cedure are given in Pacaud et al. (2006). The XXL C1 selection
function, matched to the XXL exposure and background maps,
is shown in Fig. 2.

We stress that the selection function is mapped back into
the intrinsic CR–θc space (the probability of detecting a cluster

10−2 10−1

CR [cts/s]

101

102

θ c
[a

rc
se

c]

Selection Function

5 %

10 %

20 %

30 %

40 %

50 %
60 %

70 %

80 %

90 %

Fig. 2. XXL C1 selection function used in this analysis. From sim-
ulations of XMM cluster observations, the detection probability is
expressed as a function of only observable quantities: the count rate and
the apparent size of a β = 2/3 model, θc. The same selection function
was used in XXL Paper XXV.

that has these parameters, and not the pipeline ones measured
at those values); there is therefore no inconsistency in using CR
values for the cosmological analysis that were measured using
the pyproffit package.

3.2.3. Measurement errors

As shown in Clerc et al. (2012b), the inclusion of measurement
errors changes the shape of the predicted X-ray observable dia-
grams. A precise estimate of the measurement errors is therefore
a key step in the analysis.

The pyproffit package provides us with error estimates
for each measurement. This allows us to subsequently model the
relative measurement errors on CR, HR, and θc as a function of
CR and θc using the following parametrisation:

%errx = ax CRbx θ cx
c (x = CR,HR, θc). (6)

The choice of the CR–θc plane is a natural second-order approx-
imation reflecting the fact that, physically, the brighter and more
peaked a cluster, the better the measurement.

We perform a non-linear least square fit using the Levenberg-
Marquardt algorithm (Levenberg 1944; Marquardt 1963) in
order to constrain the {ax}, {bx}, and {cx} coefficients. The result-
ing error models are shown in Fig. 3 and the coefficients are
given in Table 3.
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Fig. 3. Relative error model (in percent) for each observable used in this analysis. These models are computed as a function of CR and θc.

Table 3. The values of the {ax}, {bx}, and {cx} coefficients from Eq. (6).

Error model ax bx cx

%errCR 0.0155 −0.488 0.112
%errHR 0.0298 −0.488 0.143
%errθc 0.0567 −0.432 −0.133

Notes. The functions %errx(CR, θc) = ax CRbx θ cx
c are fitted with the

data using the Levenberg-Marquardt algorithm.

3.2.4. Likelihood

The log-likelihood model used to infer the cosmological param-
eters is given, for each redshift bin, by1:

Lzi = n̄ −
∑

j

N̂ j ln(n̄ j)

+
1
2

ln

1 + σ2
δ

∑
j

N̂ j
b̄ j

b̄

 (7)

−
σ2
δ

2
×

∑
j

N̂ j
b̄ j

b̄
− n̄

2 1 + σ2
δ

∑
j

N̂ j

b̄2
j

b̄2

−1

,

where n̄ j is the number of predicted clusters in the (CR j, HR j)
2D bin (and n̄ the number of predicted clusters in the redshift
bin i) and N̂ j is the number of observed clusters. Here, b̄ j is the
mean galaxy cluster bias for the 2D bin j, and b̄ is the mean
bias of the survey (see Eqs. (B.9) and (B.10) of Appendix B).
To calculate these quantities, we use the Tinker et al. (2010) bias
model. σ2

δ is the variance of the total number density contrast.
Then, in Eq. (7), the first line is the usual shot-noise term and the
second and third lines are the sample-variance terms. Finally,

L =
∑

i

Lzi . (8)

Following the formalism presented in Valageas et al. (2011), we
estimate that the sample variance value is ∼30% of the Poisson
variance.

The cosmological parameters are constrained using
a MCMC procedure by an affine-invariant ensemble
(Goodman & Weare 2010), following the EMCEE algorithm
(Foreman-Mackey et al. 2013). In order to optimise computa-
tion time while having enough statistics to control the chain
convergence, we ran five independent chains in parallel, each
with 2N walkers, with N specifying the number of free parame-
ters. The chains are stopped when reaching the Gelman-Rubin

1 See Appendix B for its formal derivation.

convergence criterion of R − 1< 0.03, after excluding a 20%
burn-in phase.

4. Cosmological analysis with the scaling relations
of XXL Paper XXV

We assume a flat ΛCDM model. We perform the Monte Carlo
analysis and create contour plots by means of the getdist
Python package (Lewis 2019). The displayed 1σ and 2σ con-
fidence intervals show respectively the 68% and 95% limits.

4.1. XXL ASpiX alone

In this section, we present the cosmological constraints obtained
from the XOD alone. We consider five free cosmological param-
eters within the ΛCDM framework: {Ωm, σ8, Ωb, ns, h}. Two
scaling relation parameters are included as nuisance parameters:
the M −T normalisation (X0,M−T ), and the L−T evolution index
(γL−T ) as summarised in Table 2; this already allows for signifi-
cant freedom in the parametrisation of cluster physics unknowns
and related cosmological dependence. These two parameters are
marginalised during the Monte Carlo analysis.

We apply conservative Gaussian priors for the cosmologi-
cal parameters which are not well constrained by cluster counts
(namely Ωb and ns). These are centred on the Planck-2018
(Planck Collaboration VI 2020) values with errors multiplied by
a factor of five in order not to force the agreement between
our results and the Planck ones, i.e.: Ωb = 0.0493 ± 0.0035,
ns = 0.9649± 0.022. The prior on the Hubble constant is chosen
to be uniform within a [0.55−0.9] range.

We choose two different methods to estimate the improve-
ment (or deterioration) in the parameter constraints in the Ωm −

σ8 plane:
We first use Green’s theorem to compute the area, by line

integral, inside the 1σ contours in the Ωm − σ8 plane for two
different probes. Taking the square root of the ratio of these two
areas gives us the estimated gain or loss in constraining power in
the Ωm − σ8 plane.

We also quantify this improvement using a figure of merit

(FoM) defined as FoMΩm−σ8 =

√
Cov−1

Ωm−σ8
where CovΩm−σ8

denotes the covariance matrix.
While keeping the same sample and scaling relations as in

XXL Paper XXV, the ASpiX method allows us to improve con-
straints in the Ωm − σ8 plane by a factor of approximately two.
This improvement was not unexpected because the [CR, HR, z]
combination is comparable to the mass information, which did
not enter the first XXL cosmological analysis, which was based
on only dn/dz.
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Table 4. ASpiX cosmological constraints for the base model and the joint analysis (flat ΛCDM).

Parameter XXL ASpiX XXL ASpiX XXL ASpiX XXL ASpiX Priors
Base + XXL clustering + XXL clustering + Planck CMB

+ BAO

Ωm 0.342+0.038
−0.046 0.314 ± 0.031 0.317 ± 0.017 0.317 ± 0.007 U(0.09, 1.0)

σ8 0.829 ± 0.048 0.840 ± 0.044 0.838+0.035
−0.042 0.811 ± 0.006 U(0.05, 2.0)

S 8 0.882 ± 0.046 0.857+0.042
−0.050 0.861+0.033

−0.042 0.834 ± 0.011 −

Ωb 0.049 ± 0.004 0.046 ± 0.001 0.046 ± 0.001 0.0495 ± 0.0006 N(0.0493, 0.00352)
h – 0.638+0.014

−0.035 0.627+0.011
−0.018 0.672 ± 0.005 U(0.55, 0.9)

ns 0.963+0.021
−0.017 0.966 ± 0.009 0.965 ± 0.009 0.964 ± 0.004 N(0.9649, 0.0222)

τ – – – 0.053 ± 0.008 U(0.01, 0.1)
X0,M−T – – – – N(2.6, 0.552)
γL−T – – – – N(0.47, 0.682)

Notes. For the base model, we do not quote constraints on h because this parameter is poorly constrained by cluster counts and the posterior
distributions are driven by the hard prior. S 8 is defined to be S 8 ≡ σ8(Ωm/0.3)0.5. The last column indicates the priors used in this analysis.
N(µ, σ2) corresponds to a Gaussian prior with mean µ and variance σ2 and U(A, B) a uniform prior within the range [A,B]. We do not quote
constraints on the nuisance parameter used in the analysis.
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Pacaud et al. 2018
Planck lensing
KiDS-450
XXL ASpiX (This work)
Planck TT TE EE lowl lowE
Planck15 Cluster

Fig. 4. Ωm−σ8 cosmological constraints from XXL ASpiX (this work),
Planck-2018 (Planck TT TE EE lowl lowE), Planck S-Z cluster counts
(Planck15 Cluster), Planck lensing (CMB lensing potential analysis;
Planck Collaboration VIII 2020), KIDS-450 (tomographic weak gravi-
tational lensing of the 450 deg2 Kilo Degree Survey; Hildebrandt et al.
2017) and the previous XXL cosmological results, XXL Paper XXV
(Pacaud et al. 2018).

We note that, even though the XXL Paper XXV results,
Planck constraints, and our new constraints are all compatible
at the 2σ level (0.7σ posterior agreement2 in the Ωm − σ8 plane
between XXL ASpiX and XXL Paper XXV), our central val-
ues now show better agreement with the Planck results. We
find Ωm = 0.342+0.038

−0.046 versus 0.3165±0.0085 for Planck, σ8 =
0.829±0.048 versus 0.8119±0.0074, and S 8 = 0.882±0.046 ver-

2 To compute the agreement between two different probes, we rely
on the following process. We first draw a representative sample for
each posterior of interest from the two probes. We compute the dis-
tance between each pair of points of these samples. We build, from
this distance sample, the probability distribution using kernel density
estimate. We then estimate the probability to exceed (PTE) by integrat-
ing the probability distribution over the interval [0-P(0)], with P(0) the
probability of a distance equal to zero. The same formalism is used in
Bocquet et al. (2019). The corresponding significance level is computed
assuming Gaussian statistics. To insure that the results are not impacted
by randomisation effects, we repeat this process one hundred times and
present the mean significance level.

sus 0.834±0.016 for Planck, leading to a 0.4σ posterior agree-
ment in the Ωm−σ8 plane. The results are summarised in Table 4.
The Ωm−σ8 contours are shown in Fig. 4 along with recent con-
straints from other cosmological probes.

4.2. XXL ASpiX + XXL clustering

Cosmological constraints from the 3D clustering analysis of the
XXL cluster sample (two-point correlation function, 2PCF) were
presented in Marulli et al. (2018). In this section, we combine
the 2PCF and ASpiX results.

In order to perform the joint analysis, we run the MCMC
procedure as before, and use the XXL 2PCF mean and covari-
ance results as additional priors for all the parameters that are left
free during the analysis, namely: {Ωm, σ8, Ωb, ns, h, τ}. The
2PCF study was performed using seven free parameters, the six
above-mentioned cosmological parameters and, in addition, the
effective bias of the cluster sample, beff (see Marulli et al. 2018,
for the detailed procedure).

We model the (redshift dependent) effective sample bias fol-
lowing Matarrese et al. (1997):

beff(z) = N−1(z)
∫
M

d lnM′ b(M′, z) N(z,M′), (9)

and we define the averaged effective bias of the sample as:

beff =

√
N−2

∫
Z

d z′ b2
eff

(z′) N2(z′), (10)

where N(z,M) is the number of clusters with mass M and red-
shift z as predicted by a given cosmological scenario (including
the selection effects), and b(M, z) is the dark matter halos bias
computed using the Tinker et al. (2010) model for M500.

While beff is free during the XXL clustering analysis, it is
an output of the cluster counts (or ASpiX) analysis and depends
on the selection function in the M − z space. The selection func-
tion in the M − z space depends, in turn, on the cosmology and
the scaling relations. We therefore implement the results for beff

from the XXL clustering analysis as an additional Gaussian term
in the likelihood from Eq. (7).

The results are shown in Table 4. The Ωm − σ8 contours are
shown in Fig. 5. The joint XXL ASpiX + 2PCF analysis reduces
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Fig. 5. The Ωm − σ8 cosmological constraints of XXL ASpiX clus-
ter counts alone (base), XXL 2PCF (clustering alone), and of the joint
analysis.

Table 5. BAO data used in this analysis.

Survey set I z DV (z) σD rfid
s

6dFGS 0.106 457 27 153.55
SDSS-LRG 0.35 1356 25 152.76
SDSS-MGS 0.15 664 25 148.69
BOSS-DR12 0.38 1477 16 147.78
BOSS-DR12 0.51 1877 19 147.78
BOSS-DR12 0.61 2140 22 147.78
Survey set II z DV (z) σD rfid

s

WiggleZ 0.44 1716 – 148.6
WiggleZ 0.60 2221 – 148.6
WiggleZ 0.73 2516 – 148.6

Notes. The data come from seven different surveys: the 6dF Galaxy
Survey (6dFGS) (Beutler et al. 2011), the Sloan Digital Sky Survey
luminous red galaxy (SDSS-LRG) (Padmanabhan et al. 2012), SDSS
data release 7 main galaxy sample (SDSS-MGS) (Ross et al. 2015),
the Baryon Oscillation Spectroscopic Survey data release 12 (BOSS-
DR12) (Alam et al. 2017) and from the WiggleZ Dark Energy Survey
(Kazin et al. 2014). DV (z), σD and rfid

s are given in Mpc. The σD are
not shown here because the three WiggleZ measurements are correlated
and we take the full covariance matrix in the analysis.

the uncertainties on Ωm and σ8 by 23% (figure of merit (FoM)
increased by a factor of 1.3) compared to ASpiX alone. The
Ωm result is slightly lower, Ωm = 0.314±0.031, and σ8 slightly
higher, σ8 = 0.840 ± 0.044, and with S 8 = 0.857+0.042

−0.050. Never-
theless, the results are still in good agreement with Planck CMB.

4.3. XXL clusters + BAO joint analysis

In this section, we combine the ASpiX constraints with those
obtained from baryon acoustic oscillation (BAO) measurements
of clustering of galaxies. The BAO data used in this analysis are
reported in Table 5. We describe the adopted methodology and
present the results from the joint analysis.

We use two quantities to model the BAO distance measure-
ments: (i) the spherically averaged distance,

DV (z) =

[
(1 + z)2d2

a(z)
cz

H(z)

] 1
3

, (11)
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XXL ASpiX + XXL clustering + BAO
Planck TT TE EE lowl lowE

Fig. 6. Ωm − σ8 constraints obtained by XXL ASpiX alone (base)
and XXL ASpiX + XXL clustering + BAO analysis and Planck-2018
(Planck TT TE EE lowl lowE).

and (ii) the sound horizon at the drag epoch (Eisenstein & Hu
1998),

rs(zd) =
2

3keq

√
6

R(zeq)
ln

 √1 + R(zd) +
√

R(zd) + R(zeq)

1 +
√

R(zeq)

 ,
(12)

where zd is the redshift at the drag epoch, zeq is the matter-
radiation equality redshift, keq is the scale of the particle horizon
at the equality epoch, and R(z) is the ratio of the baryon to photon
momentum density at redshift z. We model these four quantities
following Eisenstein & Hu (1998) (with a CMB temperature of
2.725 K). The BAO distance is then given by

DV (z) =
DV (z)
rs(zd)

rfid
s , (13)

where rfid
s is the sound horizon computed for a chosen fiducial

cosmology (see Table 5). The likelihood is therefore modified
by adding a Gaussian log-likelihood term in Eq. (7) :

LBAO =
1
2

∑
i

Dth(zi) −Dset I
i

σDset I
i

2

+
1
2

[
D

th −Dset II
]
C−1

WiggleZ

[
D

th −Dset II
]
, (14)

where the inverse covariance matrix, C−1
WiggleZ, comes from the

fact that the three WiggleZ measurements are correlated (see
Table 4 of Kazin et al. 2014).

Combining the BAO and the XXL 2PCF decreases the uncer-
tainties by 62% (FoM increased by a factor of 2.6) and con-
firms the agreement with Planck (Ωm = 0.317±0.017, σ8 =
0.845+0.035

−0.042 and S 8 = 0.861+0.033
−0.042). The results are shown in

Table 4. The Ωm − σ8 contours are shown in Fig. 6.

4.4. XXL ASpiX + Planck CMB

In this section, we combine our results with those of Planck-
2018 (CMB anisotropy measurement) by means of importance
sampling. The results are shown in Table 4. The Ωm−σ8 contours
are shown in Fig. 7.

By combining our results with those of Planck-2018 (CMB
anisotropies measurement) we reduce Planck uncertainties by
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Fig. 7. Comparison between Planck CMB + XXL ASpiX and Planck
CMB + Planck lens and Planck CMB alone in terms of the Ωm − σ8
constraints.

30% (FoM increased by a factor of 1.4) on Ωm and σ8 and find
good agreement with the constraints from the combination of
Planck-2018 and Planck lensing (lensing potential analysis of
the temperature and polarisation data); see Fig. 6. We note that
the XXL + Planck-2018 combination yields constraints compa-
rable to those provided by the Planck-2018 + Planck lensing
combination.

5. Cosmological modelling with updated scaling
relations

Two independent mass-observable studies (Eckert et al. 2016,
hereafter XXL Paper XIII, and Umetsu et al. 2020) suggest that
cluster masses were overestimated in our first analysis based
on the CFHT lensing data (XXL Paper IV). In this section, we
rerun the cosmological analysis, assuming our newly determined
scaling relations from the joint XXL-HSC (Hyper Suprime-
Cam Survey) analysis by Umetsu et al. (2020) and Sereno et al.
(2020).

For this purpose, we follow the formalism of Umetsu et al.
(2020) for the scaling relations.

We consider the cluster true mass M500,True as the fundamen-
tal property of galaxy clusters for the T −M relation and we use
the weak lensing mass M500,WL as a mass proxy.

Umetsu et al. (2020) characterised the weak lensing mass
bias as a function of true cluster mass using cosmologi-
cal N-body simulations (the dark-matter-only run from the
BAHAMAS project; McCarthy et al. 2017, 2018). These authors
estimated that, at the typical mass for the XXL sample (M500 =
7 × 1013h−1M�), the bias is approximately −11%. We therefore
apply a correction for the weak lensing mass bias by assuming a
constant of −11%:

T300 kpc

X0,T−M
=

(
M500,True

7 × 1013h−1M�

)αT−M
(

E(z)
E(z = 0.3)

)γT−M

, (15)

with

log10(M500,WL) = log10(M500,True)
+ log10(1 + bWL) ± σlog10 MWL , (16)

and we assume a Gaussian prior on log10(1 + bWL) of log10(1 +
bWL) = log10(1 − 0.11) ± 5%/ln10 to marginalise over the mass
calibration uncertainty of ±5%, see Umetsu et al. (2020). Here

σlog10 MWL in Eq. (16) is the intrinsic scatter of weak-lensing mass
at fixed true cluster mass, M500,True.

The L − T relation is given by:

LXXL
500,WL

X0,L−T
=

(
T300 kpc

1 keV

)αL−T
(

E(z)
E(z = 0.3)

)γL−T

, (17)

and we keep Eq. (5) for the relation between rc and r500.
We fit the coefficients of the T − M and L − T rela-

tions (namely : {X0,T−M , X0,L−T , αT−M , αL−T , γT−M , γL−T ,
σT−M , σlog10 MWL , σL−T }, with σT−M/L−T the log-normal intrin-
sic scatters) using the publicly available LIRA package (Sereno
2016a,b) for the XXL C1 sample (using the procedure and
measurements described in Sereno et al. 2020 and Umetsu et al.
2020). The results, computed for Ωm = 0.28 and h = 0.7 in a flat
ΛCDM universe, are shown in Table 6.

The effective impact of the cosmological dependence3 of
weak lensing mass measurements and luminosities is expected
to be small given the parameter range considered and the statis-
tical and systematic errors inherent to our cluster sample. Nev-
ertheless, to ensure better consistency, we model the effect of
cosmology on the scaling relations a posteriori as follows:

– We use an analytical approximation (Sereno 2015) to acc-
ount for the dependence of the lensing mass on cosmology:

M500,WL ∝ D
−

3δγ
2−δγ

l

(
Dls

Ds

)− 3
2−δγ

H(z)−
1+δγ

1−δγ/2 , (18)

where Dl, Ds, and Dls are the lens, the source, and the
lens-source angular diameter distances respectively. In a first
approximation, we assume a linear relation between the clus-
ter redshift and mean redshift of the source galaxies:

〈zsources〉 = 0.714 zcluster + 0.786. (19)

This results in a mean source–galaxy redshift of 1 for a
cluster at 0.3 and of 1.5 for a cluster at redshift 1. We use
δγ = 0.196, fitted on our C1 sample, to rescale the masses
on a grid of Ωm and h values. The ranges are defined to be
Ωm ∈ [0.1 − 0.8] and h ∈ [0.5 − 0.9], with a step of 0.1
for each parameter. This provides us with the masses for 40
combinations of Ωm − h values. We then compute the T–M
scaling relation for each [Ωm − h] point of the grid to obtain
the corresponding mean values and covariance matrices.

– Masses from the M–T relations are used to rescale r500
(r500,rescale); we then extrapolate the luminosities within
r500,rescale assuming a β-profile with a core radius rc =
0.15 r500,rescale and a slope β = 2/3.
Finally, luminosities are normalised by the correction factor
(dL/dfid

L )2. This procedure provides us with rescaled lumi-
nosities for the 40 combinations of Ωm − h values. We then
compute the L–T scaling relation for each Ωm − h point of
the grid to obtain corresponding mean values and covariance
matrices.

– Here, the cosmological analysis deals with five free cos-
mological parameters : {Ωm, σ8, Ωb, ns, h} plus six free
scaling relation parameters: {X0,T−M , X0,L−T , αT−M , αL−T ,
γT−M , γL−T }. In the MCMC, the values of the six scaling
relation parameters are limited through adaptive Gaussian
priors by interpolating the means and covariance matrices
over the grid of 40 combinations of Ωm − h values.

– We disperse temperatures and luminosities; these scatters
are assumed to be independent of cosmology. We moreover
introduce a log-normal scatter in the rc − r500 relation.

3 On Ωm and h, for a flat ΛCDM model.
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Table 6. Cluster scaling laws used in Sect. 5.

Law X0 α γ Scatter
(natural log)

T300 kpc − M500,WL 2.46 ± 0.65 keV 0.85 ± 0.39 0.32 ± 0.75 0.13
LXXL

500,WL − T300 kpc (20.9 ± 5.0) ×1041 erg.s−1 2.63 ± 0.34 2.17 ± 0.94 0.38
rc − r500 0.15 – – 0.1

Notes. We disperse over the luminosity, temperature, and core radius distributions in this case. Uncertainties on parameters indicate that these
parameters are left free during the analysis. The values shown in this table are calculated assuming Ωm = 0.28 and h = 0.7. During the analysis,
the parameter means and covariances are rescaled as a function of cosmology as described in Sect. 5.
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Fig. 8. Impact of thawing parameters in the scaling relations. XXL
ASpiX (base) refers to the results presented in Sect. 4.1 (two free scal-
ing parameters); XXL-HSC ASpiX contours are the results following
the methodology presented in Sect. 5 (six free cosmology-dependent
scaling parameters); simple dark blue contours, same as XXL-HSC but
the priors of the scaling coefficients are fixed to the indicated cosmol-
ogy. We can see that, in this case, the results in Ωm − σ8 are shifted
(lower Ωm and higher σ8) because of the fact that the scaling relation
priors do not depend on the cosmology and then introduce a bias in the
analysis.
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Fig. 9. Same as Fig. 8 when adding constraints from XXL clustering
and external BAO. The dashed line stands for the case where only two
scaling coefficients are let free.

Resulting constraints on Ωm−σ8 (we refer to this model as XXL-
HSC ASpiX) are shown in Fig. 8 and compared with the results
of Sect. 4.1 (referring to this model as the base model). The con-
straints when adding the XXL 2PCF and BAO measurements are
shown in Fig. 9. All the results are shown in Table 7.

For XXL-HSC ASpiX, we find slightly higher Ωm and σ8
results and with larger error bars, Ωm = 0.3780.068

0.13 , σ8 = 0.890.12
0.28

(S 8 = 0.970+0.067
−0.21 ). Nevertheless, the results are compatible at

the 1-σ level with our base model and the Planck CMB. Further-
more, because our uncertainties are now larger, we are compati-
ble with the Planck S-Z cluster counts as well.

Adding the XXL clustering, we find a smaller Ωm = 0.296 ±
0.034 and a higher σ8 = 0.99+0.14

−0.23 (S 8 = 0.98+0.11
−0.21), which are

fully consistent with the findings of Planck CMB at the 1-sigma
level.

Combining XXL-HSC ASpiX with the XXL clustering and
the BAO measurements, the results are shifted (Ωm = 0.364 ±
0.015, σ8 = 0.7930.063

0.12 , S 8 = 0.872+0.068
−0.12 ) and we find results

in better agreement with the Planck S-Z cluster sample while
remaining consistent with Planck CMB at 2.2σ.

6. Discussion

6.1. Summary of results

Figure 4 shows that, as expected, the constraints on Ωm − σ8
have improved by more than a factor of two with respect to
XXL Paper XXV under exactly the same hypotheses. This con-
firms, on real data, the power of the ASpiX forward modelling
in terms of simplicity and accuracy. The size of the error bars
is now comparable to that from the Planck S-Z cluster sample
(Planck Collaboration XXIV 2016). At this point, it is impor-
tant to recall that the Planck cluster sample contains almost three
times as many clusters as XXL, that these clusters are much more
massive, and that the XXL scaling relations do not rely on exter-
nal cluster calibration samples or on hydrodynamical simula-
tions, contrary to those of Planck; currently, the two data sets are
still consistent at the 2-σ level, even though the favoured XXL
cosmology is closer to the Planck CMB values. Combining the
ASpiX constraints with the results from the cluster–cluster cor-
relation function from the same sample improves the constraints
by 23% (Fig. 5), and by 62 % (Fig. 6) when adding both cluster–
cluster correlation function and BAO measurements.

In a second step, we reran the ASpiX analysis by implement-
ing the updated scaling relations along with a modelling of their
cosmological dependence, that is, by increasing the degrees of
freedom on cluster physics from two to six (Fig. 8 and Table 6).
As expected, this results in larger error bars: we now favour a
higher σ8 value, σ8 = 0.89+0.12

−0.28, but this is still compatible at the
1-σ with the results of the Planck CMB.

At this stage, we are close to having exhausted the cosmolog-
ical information contained in the current data set relative to the
XXL C1 cluster sample. It is instructive to review and discuss the
various possible sources of systematic error that impinge upon
these new results and, thus, assess their robustness.
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Table 7. ASpiX cosmological constraints for the HSC-XXL ASpiX model and the joint analysis (flat ΛCDM).

Parameter XXL-HSC ASpiX XXL-HSC ASpiX XXL-HSC ASpiX Priors
+ XXL clustering + XXL clustering

+ BAO

Ωm. . . . . . . . . 0.378+0.068
−0.130 0.296 ± 0.034 0.364 ± 0.015 U(0.09, 1.0)

σ8 . . . . . . . . . 0.890+0.120
−0.280 0.990+0.140

−0.230 0.793+0.063
−0.120 U(0.05, 2.0)

S 8 . . . . . . . . . 0.970+0.067
−0.210 0.980+0.110

−0.210 0.872+0.068
−0.120 –

Ωb . . . . . . . . . 0.049 ± 0.002 0.047 ± 0.001 0.047 ± 0.001 N(0.0493, 0.00352)
h . . . . . . . . . 0.674+0.017

−0.019 0.693 ± 0.010 0.682 ± 0.009 U(0.55, 0.9)
ns . . . . . . . . . 0.965 ± 0.015 0.964 ± 0.008 0.964 ± 0.008 N(0.9649, 0.0222)

Notes. S 8 is defined as S 8 = σ8(Ωm/0.3)0.5. We do not quote constraints on the nuisance parameters used in this analysis. Furthermore, the mean
and covariance of the Gaussian priors for the six free scaling relation parameters (namely {X0,T−M , X0,L−T , αT−M , αL−T , γT−M , γL−T }) are not
shown here as they are rescaled as a function of cosmology (described in Sect. 5).

0.80 0.85 0.90 0.95
S8 = σ8(Ωm/0.3)0.5

Base model

Error + 20%

Error + 50%

σ0.5,rc−r500

σ0.41,M−T

Ωb prior × 4

Selfunc ∗ Gauss

Fig. 10. S 8 = σ8(Ωm/0.3)0.5 results for all tests discussed in Sect. 6.

A number of possible systematic uncertainties were already
identified and discussed in the previous cosmological analysis
of XXL Paper XXV. In the following section, we review further
hypotheses and examine the impact on the initial base model. To
quantify the robustness of our results, we analyse the posterior
distribution of the S 8 = σ8(Ωm/0.3)0.5 product.

6.2. Impact of error model

To study the impact of the error model, we arbitrarily modify the
true error model by increasing errors by 20% and 50%, and we
monitor the effect on the cosmological constraints (referring to
them as Error + 20% and Error + 50% respectively).

We can see from Fig. 10 that increasing the relative mea-
surement errors increases the uncertainty on S 8 slightly, without
any drastic change in the mean result. Nevertheless, the general
pattern seems to indicate that assuming excessive measurement
errors tends to decrease S 8. The agreement between models is
shown in Table 8.

6.3. Scaling relation model

We now investigate how the results are impacted by different
scaling relation models. First, we present the results when only

adding a scatter of 0.5 in the rc − r500 relation. We then study the
effect of adding scatter in the M − T relation.

Hereafter, we refer to the 0.5 scatter in the rc − r500 relation
as the σ0.5,rc−r500 model. In Fig. 10, we can see that adding a 50%
scatter in the rc − r500 relation favours a slightly higher S 8 value
while increasing the uncertainties by only 3% compared to the
base model. All in all, the results appear little affected (Table 8).
If we had added θc as the fourth dimension in the XOD and used
it in the cosmological inference, the error bars would probably be
smaller, but more dependent on the scatter value (cf. Valotti et al.
2018).

In the base model, we did not implement a scatter in the M−
T relation to keep the same configuration as in XXL Paper XXV
(all scatter is supposed to be encapsulated in L − T ). However,
because HR directly depends on cluster temperature, it is logical
to include a dispersion. We then include a 0.41 scatter in the
M − T relation obtained from XXL Paper IV. We refer to this
model from now on as σ0.41,M−T .

This model is in good agreement with the base one with a
significance level of posterior agreement in the Ωm−σ8−Ωb−ns
space of 0.1σ and 0.3σ in the Ωm − σ8 plane; see Table 8 and
Fig. 10.

6.4. Impact on Ωb priors

To ensure that the prior chosen for Ωb is not too restrictive, we
apply a Gaussian prior centred on the Planck 2018 values but
with errors multiplied by a factor of 20 : Ωb = 0.0493 ± 0.015
(i.e. our previous prior multiplied by 4). We refer to this model
from now on as ‘Ωb prior × 4’.

The resulting constraint on S 8 is shown in Fig. 10 and the
agreement between models in Table 8.

We find that the results are fully consistent with the base
model (0.02σ posteriors agreement in 4D Ωm−σ8−Ωb−ns space
and 0.04σ posteriors agreement in Ωm − σ8 only, see Table 8).
In conclusion, because Ωb prior × 4 becomes computationally
expensive, we determine that it is relevant to keep the base model
prior for Ωb.

6.5. Error on the selection function

In this section, we study the impact of uncertainties on the
selection function. This is a priori a key issue because an ill-
determined selection directly biases the modelling of the cluster
number counts. Currently, our selection is based on simulations
assuming spherically symmetric and β = 2/3 profiles for the
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Table 8. Posterior agreement between the various cases studied in Sect. 6.

Models Base Error + 20% Error + 50% σ0.5,rc−r500 σ0.41,M−T Ωb prior × 4 Selfunc ∗ Gauss

Base 0.03σ 0.03σ 0.06σ 0.1σ 0.02σ 0.2σ
Error + 20% 0.04σ 0.03σ 0.04σ 0.1σ 0.03σ 0.2σ
Error + 50% 0.05σ 0.03σ 0.04σ 0.08σ 0.02σ 0.1σ
σ0.5,rc−r500 0.04σ 0.1σ 0.1σ 0.1σ 0.03σ 0.3σ
σ0.41,M−T 0.3σ 0.3σ 0.3σ 0.4σ 0.09σ 0.05σ
Ωb prior 0.04σ 0.03σ 0.04σ 0.09σ 0.3σ 0.15σ
Selfunc ∗ Gauss 0.5σ 0.5σ 0.5σ 0.7σ 0.1σ 0.4σ

Notes. Left of the diagonal: the posterior agreement in the Ωm − σ8 plane. Right of the diagonal (shaded cells): the posterior agreement in the 4D
Ωm − σ8 −Ωb − ns plane.

cluster emission. To quantify the impact of a poorly monitored
cluster selection on the cosmological inference, we degrade the
selection function; i.e. we blur the current function displayed in
Fig. 2 by a 2D adaptive Gaussian filter characterised by:

σsel. func. = 0.05 CR−0.6θ−0.4
c . (20)

As easily understandable, in this way, fainter and smaller clusters
are more affected. We refer to this modelling from now on as
Selfunc ∗ Gauss.

The Selfunc ∗Gauss result on S 8 is shown in Fig. 10 and the
agreement between models is shown in Table 8. While increas-
ing uncertainties on S 8, the blurred selection function also low-
ers the mean S 8 value.

6.6. Remaining sources of uncertainty

In addition to the sources of systematic uncertainty reviewed
above, we also note the main assumptions used in the course
of the present study. Firstly, the covariance between the observ-
able parameters (CR, HR, and θc) is neglected; the model has
been slightly extrapolated in order to account for objects scat-
tered out or in the measured domain. Furthermore, we do not
consider the covariance between the scatters of the M–T and
L–T scaling relations. In both cases, the scatter is assumed to be
independent of the underlying cosmology. In the lensing anal-
ysis, we assume a linear relation between lens cluster redshift
and the galaxy source photometric redshifts as stated in Eq. (19).
Finally, we restrict our analysis to only one particular mass func-
tion (Sect. 3.2) for this study. We aim to examine the impact
of these assumptions in the subsequent and final XXL analysis
– consisting of a larger number of clusters – in order to deter-
mine the most accurate, unbiased cosmological estimates from
the XXL sample.

7. Conclusions

Following Clerc et al. (2012b) and simulation case studies, we
present the first application of the ASpiX cosmological forward
modelling on real data with redshift information. The outcome
confirms the flexibility and efficiency of the method. The con-
straints obtained from the 178 XXL C1 clusters, under various
hypotheses, yield a precision comparable to that of the current
BAO and Planck S-Z samples, as shown in Fig. 9. Nevertheless,
the number of degrees of freedom left in the analysis reflects
the accuracy of the recovered cosmological parameters, which
is most easily seen when comparing the XXL base model alone
(dashed blue contours) to the tightest constraints from this anal-
ysis (purple contours).

In short, the current results present an improvement by a fac-
tor of two compared to the preceding dn/dz analysis of the same
sample. At this stage, we may recall the final cosmological mod-
elling of the REFLEX survey number counts. This latter is based
on the luminosity function of more than 800 clusters detected in
the ROSAT All-Sky Survey (z < 0.4; Böhringer et al. 2014). Our
base model analysis (Sect. 4.1) on the 178 C1 clusters includes
four free cosmological parameters plus two scaling relation coef-
ficients as nuisance parameters; in the REFLEX analysis, only
the slope of the M–L relation was left free to vary free and it
was assumed that the luminosity function does not evolve. Under
these conditions, we find a precision on Ωm comparable to that
of REFLEX but almost twice better for σ8; both parameter sets
being compatible within the error bars.

Another cosmological analysis of RASS clusters was con-
ducted as part of the ‘Weighing the Giants’ project. The
224 ‘Giants’ are massive clusters spanning the 0 < z < 0.3 red-
shift range. Gas masses from deep ROSAT and Chandra obser-
vations were subsequently derived for 94 of them. Independent
mass calibration was achieved by weak gravitational lensing for
27 of these. This enabled the derivation of uniquely well-defined
scaling relations and subsequently yielded a precision of the
order of 5% on σ8 and Ωm (with standard priors on Ωb, h, and
ns fixed; Mantz et al. 2015). Constraints are tighter than with the
XXL clusters, but it is important to recall here that the only X-ray
information used in the current study is the XMM 10ks survey
data, which means a median number of photons of about 200 per
cluster. We can anticipate that devoting very large amounts of
X-ray follow-up time to the XXL clusters would lead to signif-
icant improvement on the WtG constraints thanks to the wider
redshift range spanned by the XXL clusters.

Ultimately, the XXL XMM observation set will be repro-
cessed at full depth by running the detection algorithm
on the mosaicked data (Faccioli et al. 2018, hereafter XXL
Paper XXIV). This will not only increase the sensitivity but
also the surveyed area, because the current cluster catalogue
(XXL Paper XX) was extracted only from the single pointings,
restricted to an off-axis distance of 13 arcminutes. It is therefore
expected that the final XXL cosmological release will involve a
sample twice as large as the current one, with a deeper C1 and
C2 population. In the subsequent cosmological analysis, we shall
add information from the third X-ray observable, the apparent
core radius (Valotti et al. 2018). The final cosmological sample
should bring an improvement of a factor of approximately 1.5−2
on the present constraints.

Using the same sample of 178 clusters, our next study will
focus on the w parameter of the ΛCDM model. To this pur-
pose, we shall make use of the HSC full depth information on
the background galaxy photometric redshifts; the cosmological
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dependence of the cluster lensing masses will be rescaled as a
function of w. The inclusion of the cluster two-point correlation
function, while having little effect on the current study which is
limited to Ωm and σ8, is expected to reduce the uncertainty on w
by a factor of two (Pierre et al. 2011). Similarly, we shall allow
for more flexibility in the determination of the cluster selection
function: by considering a range of cluster ellipticities and quan-
tifying the impact of cool cores or central AGN in the detection,
we will be in a position to assess systematic uncertainties more
precisely.

Because photometric redshifts are almost as efficient as spec-
troscopic redshifts in ASpiX (Clerc et al. 2012a), the applica-
tion of the method to the upcoming eROSITA cluster sample
should readily reveal most of the cosmological potential of the
eROSITA sample.

Acknowledgements. XXL is an international project based around an XMM
Very Large Programme surveying two 25 deg2 extragalactic fields at a depth
of ∼6 × 10−15 erg cm−2 s−1 in the [0.5–2] keV band for point-like sources.
The XXL website is http://irfu.cea.fr/xxl. The Saclay team acknowl-
edges long term support from the Centre National d’Etudes Spatiales. This work
was supported by the Programme National Cosmology et Galaxies (PNCG) of
CNRS/INSU with INP and IN2P3, co-funded by CEA and CNES. MS acknowl-
edges financial contribution from contract ASI-INAF n.2017-14-H.0 and INAF
‘Call per interventi aggiuntivi a sostegno della ricerca di main stream di INAF’.
LM acknowledges the grants PRIN-MIUR 2017 WSCC32 and ASI-INAF n.
2018-23-HH.0. KU acknowledges support from the Ministry of Science and
Technology of Taiwan (grants MOST 106-2628-M-001-003-MY3 and MOST
109-2112-M-001-018-MY3) and from the Academia Sinica Investigator Award
(grant no. AS-IA-107-M01). Finally, the authors would like to thanks the referee
for the useful comments.

References
Adami, C., Giles, P., Koulouridis, E., et al. 2018, A&A, 620, A5 (XXL

Paper XX)
Alam, S., Ata, M., Bailey, S., et al. 2017, MNRAS, 470, 2617
Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARA&A, 49, 409
Beutler, F., Blake, C., Colless, M., et al. 2011, MNRAS, 416, 3017
Bocquet, S., Dietrich, J. P., Schrabback, T., et al. 2019, ApJ, 878, 55
Böhringer, H., Chon, G., & Collins, C. A. 2014, A&A, 570, A31
Borgani, S., & Kravtsov, A. 2011, Adv. Sci. Lett., 4, 204
Cash, W. 1979, ApJ, 228, 939
Cavaliere, A., & Fusco-Femiano, R. 1976, A&A, 49, 137
Cavaliere, A., & Fusco-Femiano, R. 1978, A&A, 70, 677
Clerc, N., Pierre, M., Pacaud, F., & Sadibekova, T. 2012a, MNRAS, 423, 3545

Clerc, N., Sadibekova, T., Pierre, M., et al. 2012b, MNRAS, 423, 3561
Dembinski, H., Ongmongkolkul, P., Deil, C., et al. 2020, https://doi.org/
10.5281/zenodo.3949207

Eckert, D., Ettori, S., Coupon, J., et al. 2016, A&A, 592, A12 (XXL Paper XIII)
Eckert, D., Finoguenov, A., Ghirardini, V., et al. 2020, Open J. Astrophys., 3, 12
Eisenstein, D. J., & Hu, W. 1998, ApJ, 496, 605
Faccioli, L., Pacaud, F., Sauvageot, J. L., et al. 2018, A&A, 620, A9 (XXL

Paper XXIV)
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125,

306
Goodman, J., & Weare, J. 2010, Commun. Appl. Math. Comput. Sci., 5, 65
Hildebrandt, H., Viola, M., Heymans, C., et al. 2017, MNRAS, 465, 1454
Hoffman, M. D., & Gelman, A. 2011, ArXiv e-prints [arXiv:1111.4246]
Kazin, E. A., Koda, J., Blake, C., et al. 2014, MNRAS, 441, 3524
Levenberg, K. 1944, Quart. Appl. Math., 2, 164
Lewis, A. 2019, ArXiv e-prints [arXiv:1910.13970]
Lieu, M., Smith, G. P., Giles, P. A., et al. 2016, A&A, 592, A4 (XXL Paper IV)
Mantz, A. B., von der Linden, A., Allen, S. W., et al. 2015, MNRAS, 446, 2205
Marquardt, D. W. 1963, J. Soc. Ind. Appl. Math., 11, 431
Marulli, F., Veropalumbo, A., Sereno, M., et al. 2018, A&A, 620, A1
Matarrese, S., Coles, P., Lucchin, F., & Moscardini, L. 1997, MNRAS, 286, 115
McCarthy, I. G., Schaye, J., Bird, S., & Le Brun, A. M. C. 2017, MNRAS, 465,

2936
McCarthy, I. G., Bird, S., Schaye, J., et al. 2018, MNRAS, 476, 2999
Moretti, A., Campana, S., Lazzati, D., & Tagliaferri, G. 2003, ApJ, 588, 696
Pacaud, F., Pierre, M., Refregier, A., et al. 2006, MNRAS, 372, 578
Pacaud, F., Pierre, M., Melin, J. B., et al. 2018, A&A, 620, A10 (XXL

Paper XXV)
Padmanabhan, N., Xu, X., Eisenstein, D. J., et al. 2012, MNRAS, 427, 2132
Pierre, M., Pacaud, F., Juin, J. B., et al. 2011, MNRAS, 414, 1732
Pierre, M., Pacaud, F., Adami, C., et al. 2016, A&A, 592, A1 (XXL Paper I)
Pierre, M., Valotti, A., Faccioli, L., et al. 2017, A&A, 607, A123
Planck Collaboration XXIV. 2016, A&A, 594, A24
Planck Collaboration VI. 2020, A&A, 641, A6
Planck Collaboration VIII. 2020, A&A, 641, A8
Read, A. M., & Ponman, T. J. 2003, A&A, 409, 395
Ross, A. J., Samushia, L., Howlett, C., et al. 2015, MNRAS, 449, 835
Sereno, M. 2015, MNRAS, 450, 3665
Sereno, M. 2016a, MNRAS, 455, 2149
Sereno, M. 2016b, LIRA: LInear Regression in Astronomy Astrophysics Source

Code Library [record ascl:1602.006]
Sereno, M., Umetsu, K., Ettori, S., et al. 2020, MNRAS, 492, 4528
Smith, R. K., Brickhouse, N. S., Liedahl, D. A., & Raymond, J. C. 2001, ApJ,

556, L91
Tinker, J., Kravtsov, A. V., Klypin, A., et al. 2008, ApJ, 688, 709
Tinker, J. L., Robertson, B. E., Kravtsov, A. V., et al. 2010, ApJ, 724, 878
Umetsu, K. 2020, A&ARv, 28, 7
Umetsu, K., Sereno, M., Lieu, M., et al. 2020, ApJ, 890, 148
Valageas, P., Clerc, N., Pacaud, F., & Pierre, M. 2011, A&A, 536, A95
Valotti, A., Pierre, M., Farahi, A., et al. 2018, A&A, 614, A72

A3, page 12 of 18

http://irfu.cea.fr/xxl
http://linker.aanda.org/10.1051/0004-6361/202141204/1
http://linker.aanda.org/10.1051/0004-6361/202141204/2
http://linker.aanda.org/10.1051/0004-6361/202141204/3
http://linker.aanda.org/10.1051/0004-6361/202141204/4
http://linker.aanda.org/10.1051/0004-6361/202141204/5
http://linker.aanda.org/10.1051/0004-6361/202141204/6
http://linker.aanda.org/10.1051/0004-6361/202141204/7
http://linker.aanda.org/10.1051/0004-6361/202141204/8
http://linker.aanda.org/10.1051/0004-6361/202141204/9
http://linker.aanda.org/10.1051/0004-6361/202141204/10
http://linker.aanda.org/10.1051/0004-6361/202141204/11
http://linker.aanda.org/10.1051/0004-6361/202141204/12
https://doi.org/10.5281/zenodo.3949207
https://doi.org/10.5281/zenodo.3949207
http://linker.aanda.org/10.1051/0004-6361/202141204/14
http://linker.aanda.org/10.1051/0004-6361/202141204/15
http://linker.aanda.org/10.1051/0004-6361/202141204/16
http://linker.aanda.org/10.1051/0004-6361/202141204/17
http://linker.aanda.org/10.1051/0004-6361/202141204/18
http://linker.aanda.org/10.1051/0004-6361/202141204/18
http://linker.aanda.org/10.1051/0004-6361/202141204/19
http://linker.aanda.org/10.1051/0004-6361/202141204/20
https://arxiv.org/abs/1111.4246
http://linker.aanda.org/10.1051/0004-6361/202141204/22
http://linker.aanda.org/10.1051/0004-6361/202141204/23
https://arxiv.org/abs/1910.13970
http://linker.aanda.org/10.1051/0004-6361/202141204/25
http://linker.aanda.org/10.1051/0004-6361/202141204/26
http://linker.aanda.org/10.1051/0004-6361/202141204/27
http://linker.aanda.org/10.1051/0004-6361/202141204/28
http://linker.aanda.org/10.1051/0004-6361/202141204/29
http://linker.aanda.org/10.1051/0004-6361/202141204/30
http://linker.aanda.org/10.1051/0004-6361/202141204/30
http://linker.aanda.org/10.1051/0004-6361/202141204/31
http://linker.aanda.org/10.1051/0004-6361/202141204/32
http://linker.aanda.org/10.1051/0004-6361/202141204/33
http://linker.aanda.org/10.1051/0004-6361/202141204/34
http://linker.aanda.org/10.1051/0004-6361/202141204/35
http://linker.aanda.org/10.1051/0004-6361/202141204/36
http://linker.aanda.org/10.1051/0004-6361/202141204/37
http://linker.aanda.org/10.1051/0004-6361/202141204/38
http://linker.aanda.org/10.1051/0004-6361/202141204/39
http://linker.aanda.org/10.1051/0004-6361/202141204/40
http://linker.aanda.org/10.1051/0004-6361/202141204/41
http://linker.aanda.org/10.1051/0004-6361/202141204/42
http://linker.aanda.org/10.1051/0004-6361/202141204/43
http://linker.aanda.org/10.1051/0004-6361/202141204/44
http://linker.aanda.org/10.1051/0004-6361/202141204/45
http://linker.aanda.org/10.1051/0004-6361/202141204/46
http://ascl.net/1602.006
http://linker.aanda.org/10.1051/0004-6361/202141204/47
http://linker.aanda.org/10.1051/0004-6361/202141204/48
http://linker.aanda.org/10.1051/0004-6361/202141204/48
http://linker.aanda.org/10.1051/0004-6361/202141204/49
http://linker.aanda.org/10.1051/0004-6361/202141204/50
http://linker.aanda.org/10.1051/0004-6361/202141204/51
http://linker.aanda.org/10.1051/0004-6361/202141204/52
http://linker.aanda.org/10.1051/0004-6361/202141204/53
http://linker.aanda.org/10.1051/0004-6361/202141204/54


C. Garrel et al.: The XXL survey. XLVI.

Appendix A: X-ray parameter measurements

The use of the XOD for cosmology requires accurate measure-
ments along with realistic error estimates. In this section, we
provide details on the various steps of the X-ray analysis for
single clusters. Measurements are performed on the mosaicked
co-added observations.

A.1. Step 1: Manually monitoring θbkg

We use the interactive fluxmes procedure (Clerc et al. 2012b)
to determine the cluster-centric distance from which the back-
ground can be safely estimated (θbkg). In addition, this proce-
dure allows us to check that all neighbouring sources have been
correctly flagged by the pipeline; and possibly to re-adjust the
corresponding masks. The fluxmes application is based on a
curve of growth analysis and decides where to set the ‘no man’s
land limit’ around the cluster. In the following, the particle back-
ground is measured using a very large number of ‘closed-filter’
observations, scaled to our XXL observations using the detector
parts not exposed to the sky (corners); this results in two 25 deg2

maps, corresponding to the mosaicked observations and expo-
sure maps. The astrophysical background (passing through the
XMM optics) is locally estimated in the [θbkg, 15 arcmin] annu-

lus around each cluster in the course of the pyproffit proce-
dure (see Sec. A.3).

A.2. Step 2: The θc measurements

Given that cluster angular sizes directly intervene in the selection
(Fig. 2), we need to determine the apparent core radii along with
associated uncertainties. This is performed under the hypothesis
of a β = 2/3 model, as used to determine the selection function
by means of simulations (Pacaud et al. 2006). The convolution
by the PSF assumes a mean function over the entire mosaic (a
cluster is generally seen at several off-axis positions on different
observations):

PSF(θon−axis) =

[
1 +

(
θon−axis

4.765′′

)2]−1.505

, (A.1)

where θon−axis is the angular radius (on-axis). The fit is per-
formed for each cluster on the [0.5-2] keV co-added XMM
mosaic and includes the corresponding exposure and back-
ground maps; the neighbouring sources are removed from the
data using the revised masks. We use iminuit (Dembinski et al.
2020) to fit the Cash log-likelihood (Cash 1979).
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Fig. A.1. Example of cluster count-rate measurement with the pyproffit method. The displayed cluster is XLSSC 093 at a redshift of 0.429. (a)
X-ray mosaic around the cluster; the image is 30 arcmin aside. (b) Particle background map. (c) Combined exposure map along with the masks
hiding the neighbouring sources. (d) Extracted cluster profile (black crosses); the green line displays the particle background level extracted from
map (b): this component is already subtracted from the displayed profile. (e) Overlaid on the extracted profile, the reconstructed (PSF-deconvolved)
profile is shown in blue along with the 1-σ estimated uncertainty. (f) Count-rate posterior distribution (MOS1 normalised) of the reconstructed
profile.
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A.3. Step 3: Accurate count-rate measurements

The last step is to obtain best count-rate measurements along
with realistic uncertainties for the three X-ray bands involved
in the construction of the XOD (Sec. 2). To optimise the deter-
mination, we relax the hypothesis of a single β = 2/3 model
and rather model the cluster emission by a linear combination of
β-profiles following the pyproffit methodology (Eckert et al.
2020):

SB(θ) =

NF∑
i=1

αiFi(θ), (A.2)

where NF is the total number of functions and αi the model coef-
ficients. {Fi} is defined (Eckert et al. 2016) as

Fi(θ) =

1 +

(
θ

θc,i

)2−3βi+1/2

, (A.3)

where θ is the distance to the cluster centre. The mean value of
predicted counts (λ) in profile annulus a is given by

λa = PSF ∗

Aata
NF∑
i=1

αiFi(θa)

 + Ba. (A.4)

Practically, we consider six β values within [0.6-3] and N =
θbkg/5′′ values for θc. The set of coefficients {αi} in equation A.2
that maximises the log-likelihood given by equation A.5, namely

− log(L) =

3N/2∑
a=1

µa − Nc,a log(λa), (A.5)

will describe the best-fit profile.
Eventually, we obtain the reconstructed profile by draw-

ing 1000 posterior samples using No-U-Turn Sampler, NUTS
(Hoffman & Gelman 2011). From this profile sample, we draw
the count-rate posterior distribution. The various steps of the
whole procedure are illustrated in Fig. A.1; for further techni-
cal details we refer the reader to (Eckert et al. 2020).

Appendix B: Likelihood

B.1. Probability distribution of galaxy clusters in the
(z,CR,HR) space

We describe the distribution of X-ray clusters as a Poisson real-
isation of an underlying continuous field. Thus, the number of
observed clusters N̂i in the bin i, in the 3D space (zi,CRi,HRi)
(or any other set of observables) follows the Poisson probability
distribution

PN̂i
=

n̂N̂i
i

N̂i!
e−n̂i , (B.1)

where n̂i is the continuous cluster density field. This continuous
field n̂i is also a random variable because of the sample variance,
following the fluctuations of the dark matter density field aver-
aged over the survey volume. It is given by

n̂i =

∫ zi+

zi−

dz
dχ
dz
D2

∫
dΩ

∫
d ln M

dn̂
d ln M

Θi[M, z], (B.2)

with

Θi[M, z] =

∫ ∞

−∞

dεCR
√

2πσCR
e−ε

2
CR/(2σ

2
CR)

∫ ∞

−∞

dεHR
√

2πσHR

× e−ε
2
HR/(2σ

2
HR)

× Θ(CRi− < fCR(M, z) + εCR < CRi+)
× Θ(HRi− < fHR(M, z) + εHR < HRi+). (B.3)

Here, fCR(M, z) is the count rate associated with a cluster of mass
M at redshift z, with a Gaussian scatter σCR. In practice, we can
use a lognormal scatter by considering ln CR as our observable,
or by replacing the Gaussian integral in (B.3) by a lognormal
distribution. Then, the first factor Θ is a unit top-hat that is non-
zero when the count rate falls in the bin i. Similar notations are
used for the hardness ratio. Thus, Θi[M, z] is the probability that
a cluster of mass M at redshift z falls in the 2D bin (CRi,HRi). In
Eq.(B.2) we integrate the number of clusters over the redshift bin
∆zi = zi+ − zi−, the survey angular area ∆Ω, and the cluster mass
M, where χ andD are the radial and angular comoving distances
and dn̂

d ln M is the observed cluster mass function. Selection effects
are included in the mass function dn̂

d ln M , which differs from the
halo mass function and contains the response of the instrument.

At the level of the continuous field, the mean number of clus-
ters in the bin i is

n̄i ≡ 〈n̂i〉 = ∆Ω

∫ zi+

zi−

dz
dχ
dz
D2

∫
d ln M

dn
d ln M

Θi[M, z], (B.4)

where dn
d ln M is the cluster mass function predicted by a given

cosmological scenario (including the selection effects). If we
neglect sample variance, we take n̂i = n̄i without any scatter, and
the Poisson distribution (B.1) has the fixed mean n̄i. This pro-
vides the shot-noise contribution to the measurement error bars
that is associated with the discreteness of the cluster distribution.

To estimate the impact of the sample variance, we consider
the covariance of the continuous number counts n̂i. We have

Ci j ≡ 〈n̂in̂ j〉 − 〈n̂i〉〈n̂ j〉

=

∫
dχ1dΩ1d ln M1

∫
dχ2dΩ2d ln M2D

2
1D

2
2Θi[M1, z1]

× Θ j[M2, z2]
dn

d ln M
(M1, z1)

dn
d ln M

(M2, z2)ξ12(x1 − x2),

(B.5)

where ξ12 is the two-point correlation of halos with masses of
M1 and M2. We assume that the redshift bins are much larger
than the correlation length of the clusters and that the correlation
function can be factorised as

ξ12(x) = b1b2ξ(x), (B.6)

where ξ(x) is the dark-matter correlation function and b(M, z)
is the bias of clusters of mass M at redshift z. We use the
Tinker et al. (2010) bias model during this analysis. Then,
neglecting finite-sized effects associated with the borders of the
survey volume, we can write the covariance matrix as

Ci j = δzi,z j n̄ib̄in̄ jb̄ jξ̄i, (B.7)

where δzi,z j is the Kronecker symbol with respect to the redshift
bins i and j, ξ̄i is the mean correlation in the redshift bin i, defined
by

ξ̄i =

∫ χi+

χi−

dχ
∆χi

∫
dΩ1dΩ2

(∆Ω)2 ξ(x1 − x2), (B.8)
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and b̄i is the mean bias defined by

n̄ib̄i = ∆Ω

∫ zi+

zi−

dz
dχ
dz
D2

∫
d ln M

dn
d ln M

Θi[M, z]b(M, z). (B.9)

Because of the Kronecker redshift factor in the covariance
matrix (B.7), different redshift bins are decoupled and we can
analyse each redshift bin separately. Therefore, in the following
we focus on a single redshift bin and the index j refers only to the
2D bins (CR j,HR j). It is also useful to consider the total number
N̂ of clusters in the survey and its continuous counterpart n̂. For
non-overlapping bins j we have

N̂ =
∑

j

N̂ j, n̂ =
∑

j

n̂ j, n̄ =
∑

j

n̄ j, n̄b̄ =
∑

j

n̄ jb̄ j. (B.10)

Let us define the fluctuations δ̂ j and δ̂ of the continuous number
counts n̂ j and n̂ in the bin j and in the full 2D volume (CR,HR),

n̂ j = (1 + δ̂ j)n̄ j, n̂ = (1 + δ̂)n̄, (B.11)

with means and covariances

〈δ̂ j〉 = 0, 〈δ̂ jδ̂`〉 = b̄ jb̄`ξ̄, 〈δ̂〉 = 0, 〈δ̂ jδ̂〉 = b̄ jb̄ξ̄, (B.12)

and unit correlation coefficients

〈δ̂ jδ̂`〉

〈δ̂2
j〉

1/2〈δ̂2
`
〉1/2

= 1,
〈δ̂ jδ̂〉

〈δ̂2
j〉

1/2〈δ̂2〉1/2
= 1. (B.13)

This implies that the fluctuations {δ̂ j, δ̂} are linear functions of
each other, and we obtain

δ̂ j =
b̄ j

b̄
δ̂. (B.14)

This is a consequence of the factorisation (B.6) of the cluster
correlation function. We also note σ2

δ the variance of the total
number density contrast in the redshift bin,

σ2
δ ≡ 〈δ̂

2〉 = b̄2ξ̄. (B.15)

B.2. Mean correlation ξ̄

For small angular windows and large enough redshift bins, it is
possible to simplify the computation of the mean correlation ξ̄
defined in Eq.(B.8). In the flat-sky approximation, for circular
windows of angular radius θs, this computation reads as

ξ̄ =

∫
dχ
∆χ

∫
dθdθ′

(πθ2
s )2

∫
dk eik‖(χ−χ0)+ik⊥·D(θ′−θ)P(k, z0), (B.16)

where χ0 is the comoving radial distance to the median redshift
z0 of the bin and P(k, z0) is the matter density power spectrum
at redshift z0. For redshift bins that are not too shallow, ∆χ �
Dθs, the integral over χ along the line of sight suppresses the
contributions from parallel wave numbers k‖ > 1/(∆χ), so that
ξ̄ is dominated by transverse wave numbers k⊥ ∼ 1/(Dθs) � k‖
and k ' k⊥. This is Limber’s approximation in its Fourier form.
Then, the integral over χ gives a Dirac factor 2πδD(k‖), and the
integration over k‖ yields

ξ̄ =
2π
∆χ

∫
dθdθ′

(πθ2
s )2

∫
dk⊥ eik⊥·D(θ′−θ)P(k⊥). (B.17)

Introducing the 2D Fourier-space circular window W2(k⊥Dθs),

W2(k⊥Dθs) =

∫
dθ
πθ2

s
eik⊥·Dθ =

2J1(k⊥Dθs)
k⊥Dθs

, (B.18)

where J1 is the Bessel function of first order and first type, and
we obtain

ξ̄ =
4π2

∆χ

∫ ∞

0
k dk P(k)W2(k⊥Dθs)2. (B.19)

B.3. Likelihood for the number counts in (CR,HR)

We now extend the likelihood-ratio analysis of Cash (1979) to
our case. Denoting θα the parameters of the model, such as the
set of cosmological parameters and additional cluster parame-
ters, we consider the likelihood Lzi (θα; N̂ j) in the redshift bin zi
defined by

Lzi (θα; N̂ j) = P(N̂ j; θα) =

∫
dδ P(δ)

∏
j

PN̂ j
. (B.20)

Here we used the fact that the Poisson probabilities PN̂ j
defined

in Eq. (B.1) are governed by the continuous number counts n j,
which are characterised by their means n̄ j and the fluctuating
part δ from Eq.(B.14). The means n̄ j, the bias b̄ j , and the vari-
ance σ2

δ themselves depend on the cosmological parameters θα.
At the level of the second-order moment for δ, assuming the sur-
vey is large enough so that the relative fluctuations δ of the total
number of clusters in a redshift bin are small, we take P(δ) to be
Gaussian so that its probability distribution is fully determined
by its variance. This yields

Lzi (θα; N̂ j) =

∫ ∞

−∞

dδ
√

2πσδ
e−δ

2/(2σ2
δ)
∏

j

[(1 +
b̄ j

b̄ δ)n̄ j]N̂ j

N̂ j!

× e−(1+
b̄ j
b̄ δ)n̄ j , (B.21)

which also reads as

Lzi (θα; N̂ j) =
∏

j

n̄N̂ j

j

N̂ j!
e−n̄ j

∫ ∞

−∞

dδ
√

2πσδ
e−δ

2/(2σ2
δ)

× e
∑

j N̂ j ln(1+
b̄ j
b̄ δ)−n̄δ. (B.22)

Here we used the last property in (B.10). The first product, inde-
pendent of δ, is the usual shot-noise contribution, whereas the
integral over δ of the second product gives the contribution from
the sample variance. If the latter is negligible, σδ → 0, it goes to
unity and we recover the shot-noise value. If the volume is large
enough, the relative fluctuation σδ of the total number of clusters
is small and we can expand the logarithm up to second order in
δ,

ln
(
1 +

b̄ j

b̄
δ

)
=

b̄ j

b̄
δ −

1
2

b̄2
j

b̄2
δ2 + . . . (B.23)

This is valid if we have

∑
j

N̂ j
1
3

b̄3
j

b̄3
δ3 ∼

(δN)3

3N2 � 1, (B.24)

A3, page 15 of 18



A&A 663, A3 (2022)

where we write δ = δN/N and b̄ j ∼ b̄. For large survey sizes,
with N � 1, we typically expect δN ∼

√
N so that the approx-

imation (B.23) is valid. We can then perform the Gaussian inte-
gration in Eq.(B.22), which gives

Lzi (θα; N̂ j) =
∏

j

n̄N̂ j

j

N̂ j!
e−n̄ j

1 + σ2
δ

∑
j

N̂ j

b̄2
j

b̄2

−1/2

× exp

σ2
δ

2

∑
j

N̂ j
b̄ j

b̄
− n̄

2 1 + σ2
δ

∑
j

N̂ j

b̄2
j

b̄2

−1 . (B.25)

For the estimation of the cosmological and cluster parameters θα
with the likelihood method (Cash 1979), we compare the loga-
rithm L = − ln L obtained for different sets of parameters. The
estimated parameters θobs

α are those that minimiseL and the vari-
ation of L with θα provides the confidence intervals, following a
χ2 law. Thus, we consider

Lzi (θα; N̂ j) = n̄ −
∑

j

N̂ j ln(n̄ j)

+
1
2

ln

1 + σ2
δ

∑
j

N̂ j

b̄2
j

b̄2


−
σ2
δ

2

∑
j

N̂ j
b̄ j

b̄
− n̄

2

×

1 + σ2
δ

∑
j

N̂ j

b̄2
j

b̄2

−1

,

(B.26)

where we use
∑

j n̄ j = n̄, within a given redshift bin. Following
common practice, we discard the term ln(N̂ j!) because it does
not depend on the parameters θα and cancels out in the difference
L(θα)−L(θα′ ). The first term is the usual shot-noise contribution
while the other two terms are the sample-variance contribution,
which vanishes for σδ → 0. The sums over j only need to run
over the bins in the 2D space (CR,HR) that are not empty, as
they come with a factor N̂ j. This ensures that the results are not
affected if we enlarge the box in the 2D space (CR,HR) to a
large volume far beyond the realistic domain, including regions
that are always empty.

Going back to the 3D space (z,CR,HR), because the redshift
bins are independent, we simply have for the full likelihood

L =
∏

i

Lzi , L =
∑

i

Lzi . (B.27)

In practice, the parameters θα should not be far from
those derived from previous experiments, such as Planck (for
the cosmological parameters). Then, as in the Fisher matrix
analysis where we neglect the cosmological dependence of
the covariance matrix, we can neglect the dependence on θα
of the sample-variance quantities {σ2

δ, b̄ j, b̄}, which we com-
pute for a reference cosmology labeled by the subscript (0),
{σ2

δ(0), b̄ j(0), b̄(0)}. We then test the cosmological scenario through
its predictions for the means n̄ j. This implies that we can discard
the second factor in Eq.(B.26), as it does not depend on θα, and
write

Lzi (θα; N̂ j) = n̄ −
∑

j

N̂ j ln(n̄ j) −
σ2
δ(0)

2

×

∑
j

N̂ j
b̄ j(0)

b̄(0)
− n̄

2 1 + σ2
δ(0)

∑
j

N̂ j

b̄2
j(0)

b̄2
(0)


−1

.

(B.28)

B.4. Behaviour of the likelihood L

B.4.1. Cosmology selected by the data

Let us now investigate the behaviour of Lzi as a function of
the theoretical means n̄ j. This will provide us some insight into
the response of the cosmological parameters θα to the measure-
ments N̂ j, through the associated means n̄ j. Thus, the cosmol-
ogy selected by the measurement corresponds to the set {n̄ j} that
maximises the likelihood Lzi , i.e. that minimises the negative log-
arithm Lzi . For N 2D bins at redshift zi, this gives the N equa-
tions ∂L

∂n̄ j
= 0,

1 ≤ j ≤ N : 1 −
N̂ j

n̄ j
+ σ2

∑
`

(
N̂`

b̄`(0)

b̄(0)
− n̄`

)
= 0, (B.29)

where we use n̄ =
∑

j n̄ j and define

σ2 = σ2
δ(0)

1 + σ2
δ(0)

∑
j

N̂ j

b̄2
j(0)

b̄2
(0)


−1

> 0. (B.30)

First, we note that if the measurements are equal to the reference
predictions, we recover the reference cosmology:

if N̂ j = n̄ j(0) then n̄ j = n̄ j(0), (B.31)

where we use the sum rules (B.10).
Second, we note that the N equations (B.29) admit the solu-

tion

n̄ j = αN̂ j, (B.32)

where α is a solution of the single equation

1 −
1
α

+ σ2(N̂(b) − αN̂) = 0, (B.33)

where we introduce

N̂(b) =
∑

j

N̂ j
b̄ j(0)

b̄(0)
. (B.34)

We can understand this from the fact that sample-variance fluc-
tuations of the total number of clusters do not affect the relative
counts in the different pixels (CRi,HRi), as seen in Eq.(B.14).
Therefore, the inferred ratios n̄ j/n̄` are equal to the measured
ratios N̂ j/N̂`. Thus, this likelihood method selects cosmologies
that predict the observed distribution profile in the 2D space
(CR,HR), up to a uniform rescaling α.

Next, the quadratic equation (B.33) has two solutions,

α± =
1 + σ2N̂(b) ±

√
(1 + σ2N̂(b))2 − 4σ2N̂

2σ2N̂
, (B.35)

with the asymptotic behaviours for σ2 → 0,

α− ' 1 + σ2(N̂ − N̂(b)) + . . . , α+ '
1

σ2N̂
→ ∞. (B.36)

The physical solution is α−, which goes to unity when the sample
variance is negligible and we recover the shot-noise likelihood,
where the inferred cosmological values are n̄ j = N̂ j.

The second solution α+ is not physical and this is due to the
approximations in our treatment, such as (B.23). Indeed, it would
correspond to a large uniform density fluctuation δ ' −1, where
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the approximation (B.23) is no longer valid. In practice, α+ does
not appear and does not impair the likelihood algorithm because
we restrict the search in the cosmological parameter space to a
small realistic region not too far from the Planck values (i.e. we
do not consider cosmologies that would predict ten times more
clusters or further than the Planck concordance cosmology).

We can see from Eq.(B.33) that α = 1 is a solution if N̂(b) =

N̂. This leads to a generalisation of the solution (B.31),

if N̂ j = βn̄ j(0) then n̄ j = N̂ j, (B.37)

which applies for any β > 0. Therefore, if the measurements
N̂ j follow the same 2D profile as the reference cosmology, up
to a uniform multiplicative factor β, there is no rescaling and
the likelihood method selects cosmologies that predict the same
number counts n̄ j as those that are measured.

If N̂(b) > N̂, we can see from Eq.(B.36) that α < 1. There-
fore, the likelihood selects cosmologies that predict mean counts
n̄ j that are lower than the measured values N̂ j, and the required
increase up to N̂ j is explained by a local positive fluctuation
δ > 0 of the density field arising from a sample-variance effect.
This can be understood from the fact that N̂(b) > N̂ means that
higher-bias pixels have a greater count than expected. This points
towards positive density fluctuations δ > 0. This is similar to
the well-known Kaiser derivation of the bias of rare objects like
clusters, with respect to the underlying dark-matter density field.
There, using for instance the Press-Schechter mass function or
the peak formalism, it is noted that positive large-scale matter
density fluctuations δ > 0 enhance the formation of rare massive
objects, and the more extreme the object (i.e. a larger mass) the
greater the enhancement. This means a larger bias for more mas-
sive halos, because of the increased sensitivity of the large-mass
tail of the mass function. Reversing this picture, we can see that
enhanced number counts of rare massive halos, i.e. of high-bias
objects, arise from positive fluctuations of the underlying matter
density field.

Therefore, in our case (and more generally), N̂(b) > N̂ signals
an enhancement of high-bias objects and hence a positive under-
lying density fluctuation δ > 0. To accommodate this amplifi-
cation with the observed values N̂ j, the means n̄ j must then be
somewhat smaller than the targets N̂ j.

In Fig. B.1, we show the XXL C1 sample diagram together
with the diagram predicted by our ΛCDM best-fit parameters
given in section 4.1. While the diagram predicted by the best-
fit parameters follow the peak position and the shape of the
observed diagram, we can see that, as expected, in the CR–HR
space not dominated by the shot noise, n̄ j is smaller than N̂ j.

B.4.2. Confidence intervals

We also expect the sample variance to increase the error bars
obtained for the parameters θα from the observations, as com-
pared with the shot-noise-only estimate.

From Eq.(B.28) we obtain the Hessian

H j` ≡
∂2L

∂n̄ j∂n̄`
=

N̂ j

n̄2
j

δ j` − σ
2. (B.38)

We clearly see that the sample-variance contribution decreases
the curvature of the likelihood L and therefore increases the size
of the confidence interval. For instance, we obtain for the trace
and determinant of the Hessian

Tr(H) =
∑

j

N̂ j

n̄2
j

− Nσ2, (B.39)
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Fig. B.1. X-ray observable diagram of the XXL C1 sample, integrated
over the redshift range [0.05-1] used in this study, together with the 1D
CR, HR distributions in blue. In red, the theoretical diagram predicted
by our ΛCDM best-fit parameters given in section 4.1. We can see
where the CR–HR space is not dominated by the shot noise (N̂ j > 2− 4
objects); we obtain, on average, that n̄ j is smaller than N̂ j. Error bars
only account for shot noise.

det(H) =

∏
j

N̂ j

n̄2
j


1 − σ2

∑
j

n̄2
j

N̂ j

 , (B.40)

which are decreased by the sample-variance term proportional to
σ2. From Eqs.(B.39)-(B.40), we can estimate the change δλ j of
the eigenvalues λ j of the Hessian Hi j due to the sample-variance
term. With N̂ j ∼ n̄ j, λ j ∼ λ + δλ, we write

Tr(H + δH) ∼ Nλ
(
1 +

δλ

λ

)
, (B.41)

det(H + δH) ∼ λN
(
1 +

δλ

λ

)N
∼ λN

(
1 +N

δλ

λ

)
. (B.42)

For both the trace and the determinant, the comparison with
Eqs.(B.39)-(B.40) gives the order-of-magnitude estimate

δλ

λ
∼ −σ2n̄ j, (B.43)

where n̄ j is the typical number count in a 2D cell. Consequently,
we expect the interval of confidence on the cosmological param-
eters to increase by a factor of the order of 1 + σ2n̄ j/2, when
we include the effect of the sample variance. Here n̄ j should
correspond to a binning that is well adapted to the survey, that
is, which corresponds to the amount of information that can be
drawn from the observations. By choosing increasingly small
bins, one decreases n̄ j and the apparent magnitude of δλ in
Eq.(B.43), but this is compensated by the larger size of the
matrix H j` and the greater number of constraints, which are
mostly degenerate.

For the likelihood (B.28) to be meaningful, the Hessian H
should be positive definite in the neighbourhood of the reference
point (0), so that the solutions of Eq.(B.29) correspond indeed to
minima of L, and not to local maxima or a saddle points. This
requires the determinant (B.40) to be strictly positive. Substitut-
ing the expression (B.30), we find that det(H) > 0 if

1 + σ2
δ(0)

∑
j

N̂ j

b̄2
j(0)

b̄2
(0)

−
n̄2

j

N̂ j

 > 0. (B.44)
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This is positive when σδ(0) is small. Moreover, at the reference
point, with N̂ j = n̄ j = n̄ j(0), this reads as

1 +
σ2
δ(0)

b̄2
(0)

n̄
(
〈b̄2

j(0)〉 − 〈b̄ j(0)〉
2
)
> 0, (B.45)

where we use the sum rules (B.10) and we define the averages

〈A j〉 =
∑

j

p jA j with p j =
n̄ j(0)

n̄(0)
. (B.46)

The weights p j are positive and sum to unity. Therefore, they
can be interpreted as a probability distribution and we obtain
〈b̄2

j(0)〉 − 〈b̄ j(0)〉
2 ≥ 0.

Thus, the determinant (B.40) is actually strictly positive at
the reference point {n̄ j(0)} for any value of σδ(0). By continuity
on σδ(0), this also implies that the Hessian matrix H is always
positive definite at this reference point. If the search for the cos-
mological parameters does not go too far from this reference, the
Hessian matrix always remains positive definite. This ensures
that the likelihood (B.28) is well behaved.

The Ωm − σ8 constraints from the Log-likelihood of Eq.
(B.28) and a simple Poisson Log-Likelihood without sample
variance contribution,

0.7 0.8 0.9 1.0
σ8

0.2

0.3

0.4

0.5

Ω m

Base Log-Likelihood
Poisson Likelihood

Fig. B.2. Ωm −σ8 contours using the log-likelihood from equation B.28
(Base Log-Likelihood) and the Poisson log-likelihood from equation
B.47 (Poisson Likelihood). The constraints when using the base log-
likelihood compared to the Poisson one are improved by 10%.

Lzi (θα; N̂ j) = n̄ −
∑

j

N̂ j ln(n̄ j), (B.47)

are shown in Fig. B.2.
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