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Abstract: Foot and ankle disorders are a very common diseases, represent a risk factor for falls
in older people, and are associated with difficulty performing activities of daily living. With an
increasing demand for cost-effective and high-quality clinical services, wearable technology can be
strategic in extending our reach to patients with foot and ankle disorders. In recent years, wearable
sensors have been increasingly utilized to assess the clinical outcomes of surgery, rehabilitation,
and orthotic treatments. This article highlights recent achievements and developments in wearable
sensor-based foot and ankle clinical assessment. An increasing number of studies have established
the feasibility and effectiveness of wearable technology tools for foot and ankle disorders. Different
methods and outcomes for feasibility studies have been introduced, such as satisfaction and efficacy
in rehabilitation, surgical, and orthotic treatments. Currently, the widespread application of wearable
sensors in clinical fields is hindered by a lack of robust evidence; in fact, only a few tests and analysis
protocols are validated with cut-off values reported in the literature. However, nowadays, these tools
are useful in quantifying clinical results before and after clinical treatments, providing useful data,
also collected in real-life conditions, on the results of therapies.

Keywords: wearable sensor; accelerometer; outcome assessment

1. Introduction

Foot and ankle disorders are very common in the general population, often resulting
in walking difficulties, impaired physical functioning, and motor and mobility limita-
tions, which significantly reduce the quality of life [1–5]. Various healthcare professionals,
including orthopedic surgeons, physiatrists, rheumatologists, podiatrists, and physical
therapists, are involved in the diagnosis, treatment, and rehabilitation of these patients.
The therapeutic options available for these conditions range from conservative approaches,
such as orthotics, rehabilitation, and physical therapies, to surgical interventions [6,7].

Traditionally, physicians diagnose and evaluate the response to treatments of these
impairments through physical examinations, along with the use of clinical scoring systems
and staging scales [8]. Among the assessment tools available, gait analysis is currently
considered one of the most precise methods for evaluating various pathological condi-
tions [9]. This is due to its objectivity and ability to measure parameters that are difficult
to assess with conventional orthopedic examinations. Furthermore, gait analysis plays a
crucial role in evaluating post-treatment outcomes, providing objective data to measure
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the effectiveness of one or more therapies [10]. This, in turn, helps healthcare professionals
select the most appropriate therapeutic approach for each individual patient. However,
gait analysis remains a costly tool available in a limited number of hospitals, making it
accessible to only a small fraction of patients [11].

In this context, wearable technologies (WT) offer a significant opportunity for the
collection of new clinical endpoints in clinical settings. WT can support and validate current
therapies or help in the development of new clinical indices. The recent advancements in
WT, including smartwatches, smartphones, smart glasses, and smart insoles, along with
their increasing affordability, provide the ability to continuously collect large amounts of
data outside the traditional laboratory environment [12]. Advances in ergonomics have
made these tools smaller, lighter, and more powerful [13–15].

WT have the potential to assist clinicians using gait analysis not only in the diagnostic
phase but also in the quantitative assessment of outcomes by measuring the reestablishment
of function in daily life, thus evaluating the success of the therapy [16,17]. There is a growing
body of literature that highlights the increasing interest in this technology, which promises
to become a valuable tool for clinicians.

The aim of this article is to provide a comprehensive review of the various gait
analysis methods using WT currently reported in the literature, focusing on (1) outcome
variables, (2) data collection methods, (3) different types of WT available, and (4) barriers
and limitations.

2. Outcome Variables

Traditionally, variables collected during a physical examination in a hospital setting
are numerous, but they share certain common characteristics: these tests are typically brief,
rarely exceeding 10 min, and are conducted on standard surfaces or steps or use various
supports to evaluate movements such as transitioning from sitting to standing. While these
tests are valuable, they have limitations, particularly in their inability to account for the
real-world challenges that patients encounter outside the clinical environment.

An example of this limitation in current clinical approaches, as highlighted in other
areas, is the difficulty in diagnosing and objectively correlating the functional instability of a
joint with its laxity when assessed using different methods in an outpatient setting [18]. This
is partly because these tests are often conducted with the patient in a static position—either
lying down or sitting—far removed from the dynamic situations where instability mani-
fests. Additionally, this approach excludes the evaluation of secondary stabilizers, such
as muscular strength, neuromuscular control, and capsuloligamentous laxity, which are
critical for maintaining joint stability during dynamic activities.

In this context, the emergence and widespread use of wearable devices, which can
potentially be worn by the patient 24 h a day, allow for the expansion of these evaluations
into activities outside the clinical setting and in a manner that is highly personalized for
each patient. The potential of these devices lies in both supporting and validating the
scores currently collected in clinical settings and in helping to gather data that could be
used to develop new indices for a more quantitative and qualitative assessment of a specific
therapy (Figure 1).

Wearable sensors, in particular inertial measurement units (IMUs), allow the objective
assessment of quantitative outcomes during functional tests, some of which are already
validated, such as the timed up and go test [19]. Good reliability has been seen in the
literature in healthy patients, patients with Parkinson’s disease, older adults at risk of
falling, and cognitively impaired patients [19–23]. Some spatiotemporal parameters, such
as gait velocity, step length, and step time recorded during the timed up and go test
and 6 min walk test with IMUs, were significantly correlated with some crucial scales
such as the Expanded Disability Status Scale (EDSS) score, the Multiple Sclerosis Walking
Scale-12 score, the revised amyotrophic lateral sclerosis functional rating scale (ALSFRS-R),
and the Addenbrooke’s Cognitive Examination Revised (ACE-RACE-R score) [13,22,24].
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3. Assessment of Foot and Ankle Joint Range of Motion

The measurement of foot and ankle joint range of motion (ROM) is a critical indicator
of joint function and is commonly used to assess and quantify a patient’s progress in a
rehabilitation program or to identify limitations in joint movement. Traditionally, ROM has
been evaluated using a manual goniometer, which has limitations due to the challenge of
consistently locating anatomical landmarks across different individuals and the difficulty of
measuring ROM during activities that truly test these variables, such as walking, jumping,
or running.

In recent decades, new digital instruments for measuring ROM have been developed
based on various technologies: gyroscopes, which provide angular velocity around three
orthogonal axes; magnetometers, which measure orientation relative to the Earth’s mag-
netic field; and accelerometers [25,26]. The use of wearable technology for measuring joint
angles was developed to overcome the limitations of the manual universal goniometer,
which is considered time-consuming and challenging to use for obtaining repeatable mea-
surements [27,28]. Alongside the development of these technologies, alternative types of
goniometers have emerged in clinical practice, incorporating various technologies such
as digital inclinometers or even mobile apps, which, although potentially having a higher
margin of error, offer the advantage of easy accessibility and availability while also demon-
strating good reliability [29–32].

3.1. Assessment of Gait and Posture in People with Foot and Ankle Disorders

Foot and ankle problems, particularly foot pain, can impair balance and functional abil-
ity and have been associated with frailty level [33,34]. Routinely assessing and managing
foot problems using wearable technology holds the potential to enable the early detection
of issues and identify deteriorations in balance and physical activity. This early intervention
could help preserve motor function by alleviating the fear of falling among patients with
foot and ankle conditions. Ultimately, this approach may contribute to healthier aging and
a reduced susceptibility to frailty [35].

Balance is a crucial parameter for identifying individuals at risk of falls or injury
and can be assessed using various tools. Wearable devices have shown moderate to good
intra-trial reliability and a strong correlation with postural sway measures on a force plate,
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which is considered the gold standard. IMUs can provide valuable insights for targeted
interventions [36], with observations made in both the medio-lateral and antero-posterior
directions whether the eyes are open or closed [37]. Foot orthoses have demonstrated
effectiveness in improving balance and reducing pain and disability in elderly women with
osteoporosis [38], serving as an adjunctive approach to enhancing balance and preventing
falls in these patients [38,39].

Balance impairments leading to falls are a significant symptom of Parkinson’s disease
(PD). Telerehabilitation using wearable technology has become a common practice for
patients with PD [40,41]. Virtual assessment and treatment are essential for the efficacy
of telerehabilitation in this patient population [42]. It is crucial to measure changes in
performance over time when continuously and passively monitoring. Previous studies
have used wearable technology to measure gait and turning during daily activities, finding
a link to falls and cognition [43,44]. However, further research is needed to understand the
impact of telerehabilitation on daily life mobility. This will contribute to the development of
a comprehensive virtual balance assessment and evidence-based treatments to aid patients
with balance impairments.

Gait analysis also allows for the examination of other critical parameters in assessing
patients at risk, especially older adults. Numerous studies have investigated its corre-
lation with adverse health outcomes such as disability, dementia, hospitalization, and
mortality [45–47]. Key spatiotemporal parameters, including gait speed, stride length, and
cadence, are often linked to these negative outcomes [48]. Older adults with slower gait
and reduced stride length are considered at increased risk. Specifically, a gait speed below
0.8 m/s is a reliable indicator of an elevated disability risk, while a stride length of 0.64 m
is a strong predictor of serious events like physical disability, falls, institutionalization, and
mortality [49,50].

Gait analysis offers significant potential in young and athletic individuals, too. Some
authors have successfully demonstrated in a double-blind study the ability to identify and
differentiate individuals with syndesmotic injury from those with isolated lateral ankle
ligament injury in cases of chronic lateral ankle instability using a shoe-integrated sensor
system [51]. The results were promising, indicating potential improvements in diagnostic
accuracy and the possibility of reducing future reliance on radiological methods while
simultaneously optimizing treatment plans.

Finally, some authors have attempted to integrate the diagnostic capabilities of footwear
sensors, used for gait analysis, with an interventional component aimed at preventing ankle
sprains [52–54]. In particular, the system proposed by Attia [53] is based on a gait analysis
sensor designed to collect kinematic variables of ankle motion through an inertial motion
unit. In real time, acceleration and angular velocity around the foot axis are measured using
an accelerometer and gyroscope, respectively. Potentially harmful movements that could
lead to an ankle sprain are identified and used to trigger a commercial electrical stimulation
device positioned over the peroneal muscles. With a response time of 7 milliseconds and
the proven effectiveness of this muscle group in preventing such injuries [55], this approach
shows promise and potential for further development.

3.2. Gait Analysis Assessment for Post-Treatment Evaluation

The use of gait analysis and motion sensors in post-operative evaluation is becom-
ing increasingly widespread, providing surgeons with valuable tools to guide treatment
decisions for individual patients. The literature presents various examples of their appli-
cation. Some authors have described using these technologies to analyze the outcomes of
conservative therapies in athletes with foot disorders, evaluating and comparing the effects
of different orthoses [56]. Other potential applications include the use of inertial sensors
and baropodometric platforms to assess patients who have undergone surgical procedures
like total ankle replacement, allowing for the evaluation of how surgeries that significantly
impact proprioception affect the gait cycle post-operatively [57]. Additionally, as proposed
by Zhao et al., these tools can help identify the most suitable candidates for specific sur-
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gical interventions [58]. In their study, they found that excision of the anterior half of the
peroneus longus tendon significantly affected specific gait parameters. The strength of this
approach lies in its ability to detect subtle differences that may not be noticeable during
normal short walks but could become more pronounced under higher physical demands.
Therefore, the authors recommended that the decision to sacrifice the anterior half of the
peroneus longus tendon as a harvest site for other procedures should be based on the
patient’s athletic demands: it may be suitable for those with low athletic requirements
but should be approached with caution for sports enthusiasts or athletes. Evaluations like
these would have been nearly impossible to objectify in a simple post-operative clinical
assessment, whereas the accuracy and extended wearability of these devices now offer
increasingly significant potential.

4. Data Collection Methods

Data collection using WT follows a strict protocol to ensure accuracy. The positioning
of sensors is crucial, as improper placement can result in unreliable data due to placement
errors, and the effectiveness of the algorithms used can vary depending on the target
cohort and environment [59–61]. Generally, placing sensors on the sacrum, lower anterior
thigh, middle lateral shank, and heel is recommended, as these locations tend to produce
relatively low error rates [62,63]. Several authors have shown good to excellent validity
and reliability of measurements such as step length, stance time, and stride length across
various sensor placements (e.g., back, shank, foot) [64,65]. While no specific IMU placement
has been proven superior, the pelvis is the most commonly used body location [66]. It is
also important to note that novel calibration methods have been recently developed to
reduce the need for user movements during sensor placement and alignment with human
body segments, further enhancing data accuracy [67–70].

5. Different Types of WT Available

Over the past decade, wearable technology has advanced significantly, becoming
lighter, more affordable, and equipped with longer-lasting batteries and increasingly di-
verse functionalities. Under the umbrella of “WT”, there is a wide range of devices,
including shoes, watches, and smart glasses (Figure 2).
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A potential issue with wearable sensors is user compliance. However, in the fu-
ture, this limitation could be mitigated by embedding inertial measurement units (IMUs)
into everyday clothing or commonly used devices, making them more user-friendly and
seamlessly integrated into daily life [71].

5.1. Smartwatches

Smartwatches, often equipped with accelerometers and gyroscopes, have emerged as
the most popular form of wearable technology due to their practicality, enjoyment, and user-
friendliness. They offer clinicians the ability to monitor patients outside of clinical settings,
particularly those who have difficulty accessing clinics due to gait disorders [72]. These
devices can track gait speed and count steps, making them potentially useful for identifying
physical frailty [73–75]. Additionally, smartwatches have demonstrated high accuracy in
identifying gait abnormalities, with reported figures of 88.9% accuracy, 90.6% sensitivity,
and 86.2% specificity, indicating their promising future in clinical applications [76]. More-
over, their widespread accessibility allows individuals to independently purchase them
and to monitor various physiological parameters without requiring clinician intervention.
Despite being worn on the upper limbs, smartwatches can effectively and accurately predict
step length, swing time, and stance time using machine learning algorithms. Wrist-based
IMUs in smartwatches are also employed for gait recognition, freezing of gait detection in
Parkinson’s disease, fall detection, and estimating spatiotemporal features [77].

5.2. Smartphone

Smartphones have become integral to healthcare and telemedicine, facilitating remote
health monitoring of patients [78]. These devices offer continuous, interactive communica-
tion from any location, computational power for multimedia applications, and real-time
monitoring through wireless sensing technologies. Their role in gait analysis is increasingly
prominent across various clinical domains. Smartphones provide a cost-effective means
to collect extensive gait data in natural settings. Typically, smartphones are mounted on
a sacroiliac belt. However, using looser pants with larger pockets may compromise data
quality due to increased movement of the device. Thus, securing the smartphone with a
sacroiliac belt is currently regarded as the most reliable approach [79].

5.3. Smart Glasses

Smart glasses, though a more recent and less prevalent technology compared to other
devices discussed, show significant promise for tracking disease progression in neurological
patients [80]. They have demonstrated reliability as an alternative to traditional motion
capture systems for gait measurement in healthy adults. Data on head acceleration during
walking is particularly valuable for assessing fall risk, underscoring the benefits of head-
mounted devices [81,82]. However, the effectiveness of sensor-based gait analysis can be
influenced by the wear location, target population, and environment [81]. While smart
glasses have proven effective in laboratory and clinical settings for healthy individuals, they
face challenges in accurately measuring turning and step parameters [83]. These limitations
may stem from discrepancies between the reference sources used by smart glasses and
body-worn sensors [84].

5.4. Smart Insoles

Sensor-equipped insoles offer versatility and can be applied in various contexts, includ-
ing sports performance analysis and injury prevention for the foot and ankle. Developing
precise and efficient wearable insoles is essential. Several research initiatives have aimed at
creating and validating insole systems, such as the “Pedar”, “OpenGo”, and various gait
analysis systems like “wi-GAT”, “eSHOE”, and “Medilogic”, which have demonstrated
strong validity and reliability [85–87]. These devices are now available for a wide range
of age groups, including pediatric populations, with models such as “PediaSole” [88].
Recent studies have focused on parameters such as step count, cadence, vertical force, and



Sensors 2024, 24, 7059 7 of 12

spatiotemporal gait characteristics. For instance, the Smart Insole can analyze step count,
step pace, swing time, and center-of-pressure (COP) shifting velocity. These metrics offer
valuable insights into walking balance and fall risk in real-world scenarios. Nevertheless,
battery life remains a significant concern for daily use [89].

6. Barriers and Limitations

While wearable sensing technologies offer the advantage of continuous gait moni-
toring beyond laboratory or clinical environments [55,56,69,90–93], they are not without
significant limitations. One primary concern is the limited research on the efficacy and
applicability of these technologies for gait and mobility assessment in clinical settings.
Despite the growing affordability and accessibility of wearable devices, there is a lack
of comprehensive studies evaluating their reliability and validity in real-world applica-
tions. This gap in research raises concerns about the accuracy of data collected by these
devices [94,95]. For example, certain wearables have been reported to provide inaccurate
estimates of activity metrics, such as step counts [96]. Such inaccuracies can compromise
the reliability of the data and limit the effectiveness of these devices for precise gait analysis.
Additionally, while wearable devices are often praised for their “objective” data due to
their physiological and behavioral measurements, the reality is that subjective decisions
significantly impact the development and performance of wearable technology and its
algorithms. These decisions affect data collection, management, and analysis, which in
turn can influence the accuracy and interpretation of the data presented to researchers.

Another limitation is the necessity for a consistent Bluetooth connection for data
transmission. Any instability in this connection can lead to data loss, further compromising
the reliability of the collected data. Moreover, WT may not be suitable for all populations.
Research suggests that individuals with severe motor impairments, those with cognitive
impairments, or the elderly may not benefit from wearable devices [97,98]. These groups
may face challenges with device usability and data accuracy, underscoring the need for
further clinical validation to assess the suitability of WT for these individuals.

A significant area not addressed in this manuscript is the integration of biometric
assessment tools, particularly those that leverage sensor-derived measures alongside data
analytics and machine learning models as primary endpoints in studies on movement
disorders. Future research should delve into the validation and evidence generation
surrounding these emerging endpoints, which could enhance both diagnostic precision
and patient monitoring.

The integration of WT offers substantial potential to improve patient outcomes and
streamline healthcare systems, yet the use of these devices raises notable privacy and data
security concerns. Protecting personal health information and ensuring device resilience
against cybersecurity threats are crucial steps in harnessing the potential of WT responsibly.
While such devices hold the promise of transforming healthcare by offering tailored insights
and advancing patient care, privacy risks remain a substantial hurdle. Many wearables
and health applications rely on third-party service providers for data storage, processing,
and analysis, which complicates oversight of data sharing practices and heightens risks to
data privacy.

Although companies adopt agreements to comply with GDPR regulations, privacy
breaches remain a possibility, particularly given inconsistencies in GDPR enforcement
across EU member states. Addressing these gaps and enforcing stringent, uniform regula-
tions will be critical in fostering public trust and facilitating the responsible integration of
WT in healthcare [99].

Overall, while wearable devices have considerable potential, their limitations in data
accuracy, usability, and applicability must be carefully considered and addressed through
ongoing research and development.
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7. Conclusions

WT can detect a range of outcome variables, including the ROM of foot and ankle
joints, as well as key spatiotemporal gait parameters such as gait speed, stride length,
cadence, and balance. These metrics are essential for evaluating post-surgical recovery,
the effectiveness of rehabilitation programs, and the risk of adverse health outcomes in
both clinical and real-world settings. Proper sensor placement, typically on areas like the
sacrum, thigh, shank, and heel, is vital for ensuring reliable measurements, and recent
advancements in calibration methods have further improved accuracy. The available
types of WT include smartwatches, smartphones, smart glasses, and smart insoles, each
offering unique functionalities for monitoring gait and balance, with applications spanning
remote health monitoring, fall risk assessment, and sports performance analysis. Future
advancements in wearable technology, data analytics, and AI hold the promise of enhancing
gait testing in clinical settings by making protocols simpler, more portable, and cost-
effective. Nonetheless, the lack of standardized methodologies and procedures remains a
significant barrier to widespread adoption.
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