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ARTICLE INFO ABSTRACT
Keywords: Guided wave testing (GWT) is a non-destructive testing (NDT) technique extensively used for in-
Machine Learning service testing of pipes that allows the inspection of tens of metres of pipe in either direction from
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a single sensor position. The aims are to identify and locate all physical features found along the
pipe in the axial direction, and in particular the presence of defects, such as cracks or corrosion
patches. However, the signals output by GWT of pipes are complex to interpret, making the
quality of inspection highly dependent on the operator skills. Due to such signal complexities, at
present there is a lack of automated procedures that can help operators in this task. Some of the
recently developed machine learning (ML) algorithms are expected to possess the modelling
capabilities required to address such a classification task, though they would typically need
hundreds if not thousands of labelled input data for their training. This amount of experimental
data is seldom available in the NDT field, particularly with regards to the damage cases. The main
purpose of this article is to investigate whether, and how, it is possible to augment an available set
of labelled experimental data with a synthetic dataset having characteristics that are similar but
still distinct from the real ones. This is studied by training three different ML models with various
combinations of actual and simulated data pertaining to GWT of pipes, the goal being the
automated detection of reflections from pipe features within the inspection traces. The results
demonstrate that when there is scarce availability of experimental data, substantial detection
improvements can be achieved by pre-training the chosen ML model with synthetic data, before
fine-tuning it on actual inspection data. In particular, the ML algorithm that is found to perform
best for this task is a VGG-Net model, which is shown to yield false positive rates in the order of
~1.5 to 4 % at the fixed true positive rate of 99.7 %.

1. Introduction

Guided wave testing (GWT) is a well-established method used to perform non-destructive testing of pipes. By exciting an axially-
propagating ultrasonic guided wave in the pipe, a full section of a pipeline at a range of up to 50 m can be inspected from a single access
point [1,2]. This is a major time-saving and economically advantageous opportunity compared to performing many localised in-
spections with bulk ultrasound, especially when applied to buried or insulated pipes [3,4]. Guided wave inspection is typically per-
formed by a qualified inspector who places the transducer ring [5] on the pipeline, performs the inspection and analyses the results,
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flagging all pipe features (PFs), such as welds, bends and defects. If any PFs of concern are flagged, they are further inspected using one
of the other Non-Destructive Testing (NDT) modalities (usually conventional ultrasonic testing or electromagnetic testing). This
analysis requires a significant time commitment from trained personnel and may suffer from inconsistencies between the performance
of different operators. As a result, it would be beneficial to develop a method for automated PF detection, which could help to alleviate
the impact of possible human errors within the process.

One of the modern methods of automation of classification tasks is machine learning (ML). It involves the creation of an algorithm
which maps the inputs to outputs imitating the human approach of learning on representative data [6]. In the most commonly
envisioned NDT scenario, the input is either raw inspection data or extracted features thereof. The output is the classification as either a
structural feature of interest or a non-feature. The machine learning model approximates the distribution of the training data in
feature-space and uses it to classify new data. It is therefore necessary to provide sufficient data to accurately capture the underlying
distribution and for the training data to belong to the same distribution (or at least a sufficiently similar distribution) as the intended
use case. This leads to the main issue in ML for NDT, the scarcity of good quality data [7].

To solve any identification problem using ML, there is a need to gather data belonging to the distributions to be identified. In the
NDT context the input data can be divided into the positive class, including samples containing a structural feature of interest, and
negative, corresponding to all the other samples. Gathering both classes of data is effort intensive, as it is necessary to physically
perform an inspection, but the difficulty is compounded in the case of the data containing defects, due to their rarity and that it only
becomes clear that a defect is present after the inspection is complete. In similar scenarios in other domains, such as medical screening
for tumours, the issue is somewhat less pronounced thanks to the systems that have been set up to ensure the continuity and share-
ability of the data [8], whereas in NDT much of the inspection data is proprietary and not available to researchers. Furthermore, there
is no framework for gathering and sharing inspection data, despite initiatives such as DICONDE [9]. To combat that, much of the
previous work has taken one of three approaches. The first approach is using simulated data, such as that generated by finite element
modelling [10,11]. This has the advantage of being able to quickly generate large amounts of data, but it can suffer from difficulties in
fully reflecting the intricacies of real-world scenarios [12]. In fact, an inspection can suffer from many sources of noise which are
difficult to estimate and model, such as the effects of transducer coupling to the test piece, temperature variations, non-uniform
mechanical properties of the sample and, for pipes, their contents [13]. As a result, data simulated using current approaches is
often a poor representation of the true distribution. The second method is to use data measured from artificially manufactured defects
[14,15]. In this way some of the noise sources (e.g. transducer coupling or temperature variations) are present, but there is still no
guarantee that all the characteristics of real-life signals exist in the manufactured specimen. Additionally, the number of test-cases that
can be produced by this approach is necessarily limited since manufacturing representative defects is costly. The third method is an
attempt to employ transfer learning methods to adjust the training process, so the model can take the information out of the simulated
data and apply it to the real dataset, bridging the so-called sim2real gap [16]. This approach acknowledges the differences between
simulations and real data and builds the algorithm or pre-processes the data so that the model performs just as well on the real as on the
simulated data. Transfer learning has been successfully applied to guided wave problems in the area of full wavefield reconstruction,
where it has enabled generating large numbers of realistic wavefield simulations [17 18]. It has also been applied to defect localisation
and severity assessment using guided waves [19 20]. However, in these works artificial defects rather than damage found on actual in-
service inspections were considered. Finally, Zhang et al. presented an algorithm that can be trained to detect a defect using GWT in
one structure and that can later be fine-tuned to work on a structure with a different material or geometry [21].

Despite the large body of research into the application of machine learning to ultrasonic inspections (see e.g. [22,10,23]), to the
authors’ knowledge this effort has not yet yielded any routine industrial application. This work aims to bridge the gap between
research and industrial deployment by investigating the impact of the amount of real and simulated data to aid the ML training process
in order to improve the performance on actual site data. In particular, the focus of the work is on the automated detection of PFs in
guided wave testing of pipes, and the classification performance offered by three ML algorithms that are considered representative of
the progress in deep learning research is evaluated. Namely, these are the Multilayer Perceptron (MLP) [24], here considered as the
“basic” deep learning architecture, VGG-Net [25], a well-established network designed to analyse spatially dependent data, and U-Net
[26], a state of the art image processing architecture. Other than shedding the light on the usefulness of simulated data for ML training,
the specific industrial goal of the ML strategy developed in this work is to act as a filter in order to significantly limit the amount of pipe
inspection data presented to qualified inspectors for the classification of PFs.

This paper is structured as follows: section 2 provides the information on the background of GWT of pipes and introduces the
experimental design. It then describes the proposed ML architectures, the design of the ML training procedure and the metrics that are
used to assess the performances. Section 3 summarizes the main results of the work by first comparing the performance offered by the
employed algorithms at various sizes of simulated and real training data, and by then investigating which data samples are most often
misclassified. Finally, Section 4 draws the salient conclusions of the study.

2. Background and Methodology
2.1. Guided wave testing of pipes

GWT is a modality of ultrasonic testing that follows much of the same principles as standard bulk wave ultrasound. It uses stress
waves excited in the test sample and analyses the echoes resulting from the wave interaction with local acoustic impedance changes

caused by PFs of interest. For pipe testing, frequencies in the order of 10 s of kHz are used to excite stress waves that are subject to the
boundary conditions of the inner and outer surfaces of the pipe [27]. This results in a finite number of solutions for the wave equation
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at any given frequency [28] with the number rising with frequency. These solutions are known as guided wave modes, which
propagate through the waveguide material via a prescribed shape. It is typically advantageous to use non-dispersive axisymmetric
modes [29] such as the fundamental torsional mode T(0, 1) and the second longitudinal mode L(0, 2), which ensure lower dissipation
of wave energy allowing for a significantly longer inspection range, and which simplify the interpretation of echoes in the measured
signals. At present, the vast majority of pipe inspection systems in the market use the T(0, 1) mode since it offers a number of ad-
vantages over L(0, 2) [29].

Fig. 1 presents the schematic of a typical experimental setup for GWT of pipes, where an incident torsional wave generated by the
transducer ring interacts with a non-axisymmetric defect, such as a corrosion patch. The resulting reflection is a mixture of axisym-
metric and non-axisymmetric modes which are received by the ring. It should be noted that in pipe GWT it is possible to control the
direction of both the transmitted wave and sensitivity to any received modes using multiple rings and suitable phase shifting [29].
While not perfect, this will greatly suppress the presence of reflections from the unwanted direction; this approach will be used
throughout this paper.

Fig. 2 shows the typical data resulting from one such guided wave test performed with Guided Ultrasonics Ltd. (GUL) equipment
[31], which transmits the T(0, 1) mode and receive both T(0, 1) (black traces in Fig. 2) and the first pipe flexural mode F(1, 2) (red
traces in Fig. 2), which is non-axisymmetric. The probing mode is reflected by axisymmetric PFs (such as welds) as the same T(0, 1)
axisymmetric mode (Fig. 2a), while the interaction with a non-axisymmetric PF causes the reflection to comprise both T(0, 1) and F(1,
2) as seen in Fig. 2b. For the purposes of practical inspections, the reflected T(0, 1) data is related to the percentage of cross-sectional
area change (CSC) of the waveguide, while F(1, 2) gives an indication of the degree of circumferential localisation of the change [32].

Typically, this data is presented to a trained inspector, who assesses the traces and differentiates between noise, benign PFs, and
defects. The operator first needs to set and apply a distance-amplitude correction (DAC) curve [2] (dashed black trace in Fig. 3) to the
data by using reflectors of known strength, which are typically welds. The data traces can be rescaled by dividing them by the cor-
responding DAC value, such that at any axial location along the pipe, a T(0, 1) reflection from a complete cut perpendicular to the axis
would have a 100 % amplitude. The operator then sets a “defect call level” (dashed blue line in Fig. 3) on the T(0, 1) mode, above which
a pulse would be considered a potential defect and identified for further investigation, whose exact value also depends on the
background noise in the analysed traces.

Finally, the operator would make use of their experience to examine and classify all reflections exceeding the call level. In
particular, they would consider the amplitude of T(O, 1), the ratio between that and F(1, 2), as well as the shape and frequency de-
pendency of the reflection. The inherent risk in this procedure is that setting the call level too high can lead to some PFs being missed,
while setting it too low requires the operator to manually analyse a vast amount of data. For this reason, the goal of this study is to
develop a machine learning algorithm that can be fed with raw T(0, 1) and F(1, 2) traces and that can select all segments of such traces
that could possibly contain a PF reflection. This information would then be given to the operator who would then classify the detected
PFs.

2.2. Experimental design

2.2.1. Data

Machine learning is highly dependent on access to good quality data. Two sets of data are used in this study: a batch of experimental
data acquired by inspecting many pipes in the field, and artificial data generated using finite element modelling (FEM) simulations. All
real and simulated time-traces are split into segments each containing 128 values for T(0, 1) and F(1, 2), with such length corre-
sponding to 1.0432 m two-way propagation distance at the T(0, 1) velocity, given the sampling rate of 200 kHz This value is chosen as
a compromise between the need for spatial resolution, the ability to encompass the full reflection from a single PF, and the

Incident axisymmetric
torsional wave Non-axisymmetric defect

Transducer ring

—

Reflected mixed axisymmetric
torsional and non-axisymmetric
flexural wave

Fig. 1. Schematic of a guided wave test of a pipe. The incident torsional wave (black) is reflected by the non-axisymmetric defect. The reflected
wave is a mixture of torsional and flexural (red) modes. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)



M. Mroszczak et al. Mechanical Systems and Signal Processing 224 (2025) 112007

Q § i A (a) T
'g § - reflection of
= mode 90nverted / incident mode
E g - reflection
j
83 1mode converted . (b)
ERS flecti reflection of
= retlectio incident mode
g3
8.5
=
N : ; T — AT
4+“—>
05m

Fig. 2. Examples of signals collected via GWT of pipes. (a) shows the reflection from an axisymmetric PF. (b) shows the reflection from a non-
axisymmetric PF such as a defect. Black and red traces correspond to T(0, 1) and F(1, 2) modes, respectively. Courtesy of [23]. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Inspection of a generally corroded pipe. Black and red solid traces correspond to T(0, 1) and F(1, 2) modes, respectively. Weld DAC, call level
and detection threshold (not discussed in here) are the dashed black, blue and green traces, respectively [28]. The sensor ring is at 0 m, while the
feature at 15 m is a weld. The plot uses logarithmic scale on the y-axis. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

computational requirements, which rise with larger input data. Each of these segments corresponds to a single “data sample” (this is
simply referred to as “sample” in the reminder of the article) that is used as input to the ML algorithms. In particular, each sample has
the shape of (128, 2, 2), where the first dimension corresponds to time of acquisition, the second to T(0, 1) and F(1, 2) modes, and the
third to enveloped and RF data. RF data is the raw amplitude of T(0, 1) or F(1, 2) time-trace, while the envelope is the magnitude of the
analytic signal, which is the sum of the original RF signal, and its Hilbert transform multiplied by the imaginary number. Note that
inspectors typically only use enveloped data, though the enveloping process necessarily removes the underlying frequency informa-
tion. Since the amplitude of the unprocessed experimental data is meaningless, each numerical or experimental sample was normalised
between —1 and 1 based on the maximum of the envelope of the T(0, 1) trace within the sample itself. This was done to ensure that
each sample impacts the training of the neural network proportionally. In fact, if the amplitude variation between the samples is
significant (as is the case in the unprocessed dataset), the training would likely overfit to high amplitude samples at the cost of low
amplitude ones. Note that while it would likely be advantageous to normalise the data using the specific DAC curve, this is set manually
by an inspector after some PFs are first detected and classified, hence it is not available at the first processing stage where the algorithm
resulting from this research would be employed.

The real data was provided by GUL [31]. This consisted of traces collected over 55 inspections performed between the years of 2005
and 2012 on pipe diameters ranging from 4 to 36 in. Most of the inspections have been performed in a two-directional mode from the
sensor position, resulting in two traces per inspection. Due to the complexity and uniqueness of the real-world pipe inspections, there is
not much commonality in the data. The excitation frequency varies between 14 kHz and 50 kHz. The equipment used was either solid
or inflatable transducer rings [34] working on 8 transducer channels. The inspected pipes included clean, buried, coated, and generally
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corroded ones, and contained a wide range of PFs (634 in total as detailed in Table 1), as annotated by qualified inspectors at time of
testing. All inspection data is first processed using WavePro software [33] in order to export the T(0, 1) axisymmetric mode, the F(1, 2)
non-axisymmetric mode, and the list of annotated PFs. The samples for the positive class of ML training are drawn by centring a
rectangular window on each PF and shifting it by a small random number. The shifting is done to ensure that the PF is not always
located at the midpoint of the sample and hence that the network performance is not dependent on the exact location of the PF in the
sample. In fact, at time of testing the PF locations are clearly unknown and hence each PF is randomly positioned within its window.
Also note that each PF only appears in a single sample to form the positive dataset. The negative class is drawn by selecting the
segments of traces not containing PFs and thus composed solely of the background coherent and incoherent noise. Since the number of
negative samples was significantly larger than the number of available PFs, the vast majority of those samples were discarded to
achieve a class balance of roughly 3:1 ratio. This resulted in a “real” dataset size of 2400 samples, split between 634 positives and 1766
negatives. It is worth noting that such dataset contains a mixture of all excitation frequencies.

Simulated data is generated using the Pogo FEM package [35]. A 5 m-long section of an 8 mm-thick 8-inch steel pipe is simulated
using 2.67 mm cubic brick elements, therefore discretising the pipe cross-section via 3 elements through the wall thickness and 240
elements in the circumferential direction. By setting the Courant number to 0.3, a time step of 0.132 ps was selected. 0.5 m-long
absorbing boundaries using the stiffness reduction method [36] are applied at the ends of the modelled pipe in order to minimise any
reflection from the ends of the pipes, such that the model effectively becomes a finite section of an infinite pipe. 24 nodes equally
spaced around the external circumference of the pipe and at a distance of 1 m from one end of the model are selected to simulate
transducers. The nodes exert circumferential forces in order to excite a 5-cycle Hann-windowed T(0, 1) wave at a centre frequency of
17, 21, 25.5, 31 or 35 kHz, and record the tangential displacement throughout the simulated inspection. For each simulation, the
amplitudes of the forces excited by the various nodes are randomly unbalanced in order to introduce some realistic coherent noise
[37]. The transducer readings are reduced to groups of three, resulting in eight channels, to mimic the process followed in the real data
processing. Next, the axisymmetric and non-axisymmetric modes traveling in both directions from the simulated sensor ring are
extracted using the angular spectrum method [38], and only the data pertaining to the 4 m-long pipe direction is retained. Finally, the
data is down sampled to 200 kHz using MATLAB resample function [39] in order to match the sampling used in the real data.

A total of 12,000 different simulations are solved, half of which include either a simulated defect or weld, while other types of PFs,
such as supports or flanges, are not considered for the simulations. The defects are represented as through-thickness cracks of varying
circumferential extents, as detailed in Table 2. A weld is represented as a circumferentially-uniform local increase in thickness
described by a quadratic function of axial distance from the centre line of the weld as shown in Fig. 4. The thickness function is defined
as:

. 2
wallThickness = 1 + ((deCapHelght)

weldAxialSpan *(weldAxialSpan® — (x — weldCentre)2)>

The size of the weld in terms of span and cap thickness is selected randomly within the ranges given in Table 2. The resultant simulated
positive dataset contains 4500 defects and 1500 welds, with each sample coming from a single simulation, for a total of 6000 positive
samples. The simulated negative dataset also includes 6000 samples, again each of which being drawn from a single simulation.

Fig. 5 shows a few examples of the samples available in the experimental (plots (a, c, e, g, h)) and simulated (plots (b, d, f)) datasets.
Plots (a) and (b) are drawn from the negative class. Both T(0, 1) and F(1, 2) in this class are typically at noise level, though the
normalisation amplifies the small random oscillations as seen in figure. Plot (c) shows the reflections from an internal pitting defect
causing wall thickness loss of about 30 %, while plot (d) is drawn from the simulation of a defect removing 13 % of the pipe CSC. Their
reflections are both characterised by an F(1, 2) amplitude being very close to that of T(0, 1), as would be expected for a PF with small
circumferential extent. Plots (e) and (f) correspond to welds, which are strong axisymmetric reflectors, thus the expected signature is a
large T(0, 1) reflection with a very low F(1, 2) contribution. Plot (g) shows a flange signature, which is typically symmetrical with a
smaller F(1, 2) contribution. Finally, plot (h) shows a bend signature. The bend is welded at its two ends, therefore one would expect to
see two separate weld reflections, the first one being significantly stronger than the second one since T(0, 1) gets mode-converted as it
propagates through the bend itself, and some relatively high F(1, 2) content due to the mode conversion.

Table 1
PFs included in the available experimental dataset.
Pipe Feature Type Number  Brief Explanation Example of
Signature
Weld 293 Weld that joins two pipe sections Fig. 5(e)
Support 164 Element that transfers the load from a pipe to the supporting structures -
Defect 58 Damage such as a crack or a corrosion patch Fig. 5(c)
Bend 41 Curved pipe section Fig. 5(h)
Flange 36 Mechanical part used to join two pipe sections Fig. 5(g)
False echo 28 Signal signature due to the imperfect removal of reflections originating from a PF located on the other — —
direction of testing
Unidentified 10 Signature noted in the signal that does not correspond to an evident physical PF or to a false echo -
anomaly
Entrance into earth 4 Section where a pipe enters into ground (e.g., for road crossing) -
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Table 2

FEM simulation parameters.
Simulation Parameter Value
Model pipe length 5m
Pipe thickness 8 mm

Pipe external Diameter
Element Shape

Element Size

Number of Elements

Courant Number

Time Step

Time-length of simulated inspection
Absorbing boundaries
Excitation frequency
Excitation shape

Number of transducers
Material properties

Shear wave speed in the model
Defect type

Defect size

Weld size

203.2 mm (8 in.)

8-noded cubic element with 1 integration point
2.67 mm

8,089,920

0.3, using bulk longitudinal wave speed of 6055.3 m/s
0.132 ps

0.0285 s

0.5 m, each side

[17, 21, 25.5, 31, 35] kHz

5-cycle Hann-windowed

24 excitation nodes, every 3 adjoining grouped
E = 210 GPa, G = 80 GPa, p = 8000 kg/m>
3162.3 m/s

Through thickness crack

[3.6-18 %]

[25-35] mm span, [3-3.5] mm cap thickness

& 50 100 150
\&\ Axial Location

Fig. 4. Axial cross-section of a pipe wall containing a weld. The centre line in location 100 is marked with a red dashed line and the thickness of the
weld is 40 % of wall thickness, marked between two blue lines. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

2.2.2. Thresholding

As discussed above, at present there is no standard procedure to automate the detection of PFs in guided wave-based inspection of
pipes; instead, this relies on the experience of trained inspectors that would assess the absolute and relative enveloped amplitudes of
both T(0, 1) and F(1, 2) modes. In particular, typically PFs are characterised either by a high T(0, 1) component (for axisymmetric PFs)
or a high F(1, 2) to T(0, 1) ratio (for non-axisymmetric PFs). An attempt is made to mimic such a procedure, in order to form a baseline
performance against which to assess the ML algorithms developed in this work. To this scope, thresholding on three different
enveloped signal amplitudes are considered, namely on (Th1) T(0, 1) only, (Th2) the F(1, 2) to T(0, 1) ratio, and (Th3) on the following
linear combination of T(0, 1) and F(1, 2): 0.7 x T(0, 1) + 0.3 x (F(1, 2)/T(0,1)). Note that the linear combination of Th3 is an arbitrary
attempt to combine both information of Th1 and Th2 based on the experience of the authors on this subject. Also note that such
thresholding methods are applied to the same ~1-meter-long segments in which the experimental traces are split, as explained in the
previous section, though in this case only the enveloped, non-normalised, DAC-corrected traces are used.

An example of application of the proposed thresholding approaches is given with the aid of Fig. 6, which shows a fabricated set of T
(0, 1) and F(1, 2) traces including three PFs at the positions indicated by the red dashed vertical lines. The leftmost PF has a high T(0, 1)
component, the middle one has both T(0, 1) and F(1, 2) components at rather high levels, while the third PF has a weaker T(0, 1)
reflection, though with a F(1, 2) component nearly at the same level as T(0, 1). Only as a matter of example, when the threshold is set to
0.6 (shown with a dotted black horizontal line in figure), the use of T(0, 1) alone (i.e., of Th1) would not detect the small rightmost PF,
while the use of the F(1, 2) to T(0, 1) ratio (i.e., of Th2) would be insensitive to the large symmetric leftmost PF. The proposed linear
combination of T(0, 1) and F(1, 2) (i.e., of Th3) shown in green would instead detect all three PFs at the considered threshold.

2.2.3. Machine learning

2.2.3.1. Architectures. Three neural network architectures are considered to perform the task considered in this study, namely MLP,
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Fig. 5. Examples of the data samples used for training the ML models. (a) Experimental pristine, (b) simulated pristine, (c) experimental pitting-type
corrosion defect, (d) simulated defect, (e) experimental weld, (f) simulated weld, (g) experimental flange and (h) experimental bend.
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Fig. 6. Example of application of thresholding on a fabricated dataset of T(0, 1) and F(1, 2) traces. The locations of three PFs are indicated with red
dashed lines and a tentative threshold is shown as a black dotted line. Thresholding is performed independently on the enveloped signals shown as
black, blue and green solid lines. A successful detection occurs when any of these signals exceeds the threshold in the vicinity of a PF. Crossing the
threshold away from PFs is a false positive, not crossing it in the vicinity is a false negative. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

VGG-Net, and U-Net. MLP is the traditional fully-connected neural network [24], therefore it is considered as the benchmark. The
hyperparameters of the MLP network were tuned by sequentially increasing its complexity while assessing the performance, and the
final implementation is given in Fig. 7. As the input data is three-dimensional: time, T(0, 1)/F(1, 2) and RF/envelope, it is first flattened
to be input into a series of four dense layers, which are followed by a 40 % dropout layer and two additional dense layers. The
activation function is ReLU [40]at all layers except from the output, where it is sigmoid.

VGG-Net is a convolutional neural network comprised of blocks of convolutional layers connected with Max Pooling layers [25].
Fig. 8 shows its final implementation, with the “feature extractor” section of the network only consisting of three blocks of two
convolutional layers with input sizes sequentially reduced by a factor of 2, since deeper networks tended to overfit to the training set.
The “classifier” portion is then similar to that used for MLP, with the addition of a flattening layer that makes the inputs compatible
with fully connected layers.

U-Net was first introduced in 2015 for biomedical image segmentation [26], and was then used in a variety of contexts including
non-destructive testing [41,42,43], the discriminator parts of generative adversarial networks [44,45], image denoising [46] or speech

Dense
InputLayer Flatten
relu
input: I output: 1 input: I output: - >
input: I output:
[(None, 128, 2, 2)] I [(None, 128, 2, 2)] (None, 128, 2, 2) I (None, 512)
(None, 512) | (None, 256)
Dense Dense Dense
relu relu relu
input: | output: input: I output: input: | output: i
(None, 256) | (None, 128) (None, 128) | (None, 64) (None, 64) [ (None, 32)
Dense Dense
Dropout
relu sigmoid
—» input: l output: »— -
input: output: input: | output:
(None, 32) | (None, 32)
(None, 32) | (None, 100) (None, 100) I (None, 2)

Fig. 7. MLP implementation utilised in this work. The first two rows represent the feature extractor section of the network, while the third row is
the classifier head.
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Fig. 8. VGG-Net architecture implemented for this work. Rows 1-3 represent the feature extractor section of the network, while row 4 is the
classifier head.

enhancement [47]. The architecture is based on a contraction path followed by a symmetric expansion path. Given n layers in the
contraction-expansion section of the architecture, the shapes of layers 1 and n, 2 and n-1... are identical which allows for the
introduction of additive skip connections between them. This allows the architecture to maintain the feature extraction capability of a
deep neural network while keeping the information directly contained in the raw data, such as the amplitude. In the original work by
Ronneberger et al. the architecture design was motivated by its need to be trained on small number of annotated images [26], tackling
the problem of segmentation. As the task required in this work is classification rather than segmentation, U-Net is used as the feature
extraction element of the full architecture and that is followed by a set of fully connected layers to perform classification. In particular,
the implemented contraction path for U-Net was identical to the VGG-Net presented in Fig. 8. That was followed first by the corre-
sponding symmetric expansion path, then by the classification head, which again was identical to that used for VGG-Net and shown in
Fig. 8.

2.2.3.2. Training design. This work is designed to test whether the addition of simulated data in the process of training any of the ML
algorithms discussed above improves its performance for the detection of PFs in actual pipe inspection data. To this end, a transfer
learning procedure between simulated and experimental data is implemented by devising the ML training as a two-stage process in
which each architecture is first pre-trained on simulated data and is then fine-tuned on experimental data, with the model retained at
the end of each training stage being that giving the lowest validation loss. The final trained network is then evaluated on a testing set
formed by randomly selecting 480 experimental samples (i.e., 20 % of the full real dataset) among those not used for training or
validation, and with a prescribed class balance of approximately 3:1 between negative and positive samples (355 and 125,
respectively).

In order to assess the impact of the amount of real and simulated training data on the performance achieved by each algorithm, all
architectures are trained on 16 different combinations of real and simulated dataset sizes, as detailed in Table 3 where each combi-
nation is denoted “ID”, and are evaluated on the same testing set. For each ID, the training is repeated 5 times on different randomly
selected simulated and real training sets (always excluding the real samples used in the testing set), with the validation sets drawn at
random as 20 % of their respective training sets, in the attempt to incorporate the effects of random factors affecting the training
procedure, such as the influence of the specific training set being used and of the random initialisation of all parameters.

Table 4 lists some additional training parameters that are kept constant across all ML training. The numbers of epochs set for
training on both simulated and real datasets are selected as to be sufficiently large for the training and validation loss curves to plateau
for the largest datasets used in the study. Binary cross-entropy is used as a standard loss function for binary classification problems
[48]. Adam optimiser [49] is selected as it is used in the majority of the novel ML research (over 320 times more prevalent than

Table 3

Combinations of real (nReal) and simulated (nSims) training dataset sizes used in this study.
D nReal nSim D nReal nSim ID nReal nSim D nReal nSim
1 0 0 5 270 0 9 810 0 13 1800 0
2 0 900 6 270 900 10 810 900 14 1800 900
3 0 2700 7 270 2700 11 810 2700 15 1800 2700
4 0 10,000 8 270 10,000 12 810 10,000 16 1800 10,000
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Table 4
ML training parameters.
Parameter Value
Number of epochs on simulation set 30
Number of epochs on real set 30
Loss function Binary Cross-entropy [48]
Optimiser Adam [49]
Learning rate 5e-5 initially, exponentially decaying
Kernel Size (60, 2)

Adafactor, the second most common optimiser [50]). Adam is a self-tuning optimiser, therefore the user only needs to select an initial
learning rate before that is tuned internally during training. The initial learning rate is set to 5e-5 after some trial and error. Finally, the
kernel size is set to (60, 2). The second dimension is set to 2 so T(0, 1) and F(1, 2) are considered for each convolution, while the length-
dimension of 60 proved to perform best experimentally in the 10-100 range.

2.3. Metrics

The metrics used for the evaluation of the performance of a binary classifier vary widely. The ones used in this work are Area Under
Receiver Operating Curve (AUROC) and False Positive Rate (FPR) at 99.7 % True Positive Rate (TPR), which in the remainder of the
article is referred to as FPR@1TPR. The Receiver Operating Curve (Fig. 9) plots TPR vs FPR while sweeping the detection threshold
[51]. As such, it has a monotonic trend between points (0, 0) and (1, 1), corresponding to a threshold that classifies every sample as
negative and a threshold that classifies every sample as positive, respectively. The point corresponding to a perfect classifier is (0,1).
Note that both FPR and TPR can be either expressed in the O to 1 range or, equivalently, in percentage between 0 and 100 %. AUROC as
a metric has the advantage of being agnostic to the selected threshold, as well as taking into consideration both TPR and FPR, both of
which are of interest in a defect detection problem. However, as explained in the Section “Guided wave testing of pipes”, the objective
of this study is to achieve a very high TPR value, i.e., to only miss very few true PFs, such that virtually all data related to pipe PFs
would be detected and shown to a human inspector. This motivated the choice of using FPR@1TPR as an additional metric. It must be
noted that since the experimental testing set only includes a small number of positive samples, the FPR@1TPR value obtained from any
trained algorithm is highly dependent on the smallest value assigned to a positive sample.

3. Results
3.1. Performances of the proposed algorithms

The performance offered by the three thresholding approaches and by the three ML architectures when trained with various sizes of
simulated and real data is discussed below. Table 5 gives AUROC and FPR@1TPR when thresholding is applied to all available 2400

Perfect
classifier
)

True positive rate

1.0

False positive rate

Fig. 9. Schematic description of Receiver Operating Curves.
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experimental data samples. The best results overall are obtained when using Thl, i.e., when thresholding on T(0, 1) only. However,
despite its relatively high AUROC sized at 0.9912, the FPR@1TPR at 0.4246 essentially indicates that there exist some PFs giving low T
(0, 1) reflections which can only be flagged by thresholds that would also call an excessively large number of false positives, i.e., almost
one false positive for every two negative samples. The extremely poor performance of Th2 shows that the sole use of F(1, 2) cannot
reliably discriminate between positive and negative samples. This is expected, since all axisymmetric PFs such as welds do not produce
significant non-axisymmetric reflections. Finally, the attempt to combine the amplitudes of T(0, 1) and F(1, 2) into a single parameter
via Th3 did not yield improvements over the sole use of T(0, 1), as both AUROC and FPR@1TPR for Th3 are slightly worse than those of
Th1. These results essentially suggest that the experience of trained operators on the analysis of signals acquired by GWT of pipes
cannot be replaced by an approach that only makes use of the amplitudes of T(0, 1) and F(1, 2) time-traces, and that their shapes should
also be considered.

Fig. 10 gives the performances of the three ML architectures evaluated on the same, randomly selected testing set of 480 exper-
imental samples and across the 16 combinations of training and testing set sizes (IDs), as given in Table 3. For each ID, the metrics
obtained from the 5 separate training instances are summarized in a boxplot where the central mark indicates the median, while the
bottom and top edges indicate the 25th and 75th percentiles, respectively. Fig. 10(a and b) show that MLP does not possess the required
modelling capabilities to reliably characterise true and negative samples, and despite the expected general improvement as more
simulated and real input data are employed for its training, its best overall performance remains significantly inferior to that of Th1 in
terms of both AUROC and FPR@1TPR. It is worth emphasizing here that the input to MLP and the other ML architectures significantly
differ to that of thresholding, as in the latter case samples are not normalised.

Fig. 10(c and d) shows that when VGG-Net is solely trained on simulated data (i.e., IDs 1 to 4), the performance on experimental
data is extremely poor. When, instead, a relatively low number of 270 real samples are used for fine-tuning (IDs 5 to 8), both AUROC
and FPR@1TPR gradually improve as the amount of simulated data is increased. Then, once a more substantial number of real samples
are available, the benefit of pre-training the model with simulated data starts to fade. In fact, the performance at IDs 13 to 16, where
1800 real samples are used, is essentially flat as the number of simulated samples is increased from 0 to 10000. Such performance is
significantly superior to that offered by thresholding on T(0, 1) (i.e., Th1), with AUROC surpassing 99.8 % and FPR@1TPR yielding 2.1
%. In order to investigate whether this overall behaviour and quality of performance are specific to the particular testing set used to
produce Fig. 10, the same procedure is repeated in five more instances by randomly selecting five additional testing sets, and the
resulting FPR@1TPR are displayed in the left column of Fig. 11. All plots confirm the conclusions drawn above. It is also worth noting
that for each of the six testing sets depicted in Fig. 10(c and d) and in the left column of Fig. 11, when 1800 real samples are used for
training (IDs 13 to 16) the use of simulated data has a negligible effect, whereby when only up to 810 real samples are available, the
performance of the classifier can be improved by the addition of simulated samples. This is particularly evident in Fig. 11(c). Un-
surprisingly, the plots also show that the FPR@1TPR varies as different testing sets are evaluated, and it ranges between ~1.5 and ~4
% when 1800 real samples are used for training.

Finally, Fig. 10(e and f) shows that the employed U-Net algorithm struggles to yield a consistent performance, which, on average,
unexpectedly deteriorates as the number of real samples used for the fine-tuning of the model is increased. This is confirmed by the
results shown in the right column of Fig. 11, where U-Net is tested on the same five additional testing sets described above. Only in one
instance, i.e., the case of Fig. 11(j), the expected behaviour is obtained, and a similar performance as VGG-Net is achieved. This
unpredictable behaviour of U-Net was extensively investigated as the hyperparameters of the model were sequentially varied, though
the investigation remained inconclusive and VGG-Net was chosen to carry out the study described in the next section. It is worth
noting, however, that U-Net provides the overall best performance when only simulated data are used (i.e., IDs 1 to 4).

3.2. Investigation on misclassified pipe features

It is of practical interest to investigate which PFs are more difficult to identify correctly using the VGG-Net model trained with the
largest sets of real and simulated data considered in this work (i.e., on the scenario indicated as ID = 16). In order to make this study
statistically more relevant, training and testing on VGG-Net at ID = 16 was performed for 44 additional randomly selected testing sets.
Again, for each testing set the training was repeated five times. The full database obtained by adding these additional results to those
described in the previous section consists of 50 different testing sets, each including 125 PFs selected at random among the available
634, with Table 6 giving statistics on the numerosity of the various types of PFs included in each testing set. Since each testing set is
evaluated by five independently trained models, this equates to 31,250 real positive samples being tested. A study on the composition
of this ensemble of experimental samples shows that each of the 634 PFs appears at least 20 times.

The rule that is used to determine the threshold against which to mark the false negatives in each of the 250 sets of results (as
obtained from the 50-by-5 VGG-Net training and testing instances) is to set it to the value giving a FPR of 2 % in the specific set.
Following this procedure, a total of 784 positive samples (~2.5 % of 31250) are misclassified as negative, with 32 out of the total 634
PFs (~5 %) being misclassified at least once. The composition of this set of 32 PFs is given in Table 7, where PFs are listed in descending

Table 5
Performance of the three proposed thresholding approaches across all 2400 experimental data samples.
Thl Th2 Th3
AUROC 0.9912 0.2769 0.9662
FPR@1TPR 0.4246 0.9927 0.4732
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Fig. 10. AUROC of MLP (a), FPR@1TPR of MLP (b), AUROC of VGG-Net (c), FPR@1TPR of VGG-Net (d), AUROC of U-Net (e), FPR@1TPR of U-Net
(f). On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the "+’
marker symbol.

order according to the ratio between misclassified cases and their total number. The table shows that false echoes, defects and supports
are the PFs that are most liable to be misclassified based on their signatures on T(0, 1) and F(1, 2) signals. This can be easily explained,
as false echoes are often marked by operators based on the presence of large PF reflections in the time-traces propagating in the other
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Fig. 11. FPR@1TPR as VGG-Net (a, ¢, g, e, i) and U-Net (b, d, f, h, j) are evaluated on five different testing sets. The same testing set is used in each
row of plots. Boxplots are as in Fig. 9.
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Table 6

Statistics on the numerosity of the various types of PFs included in each of the 50 testing sets.
Pipe Feature Type Mean Standard Deviation Maximum Minimum
Weld 59.08 6.01 69 45
Support 34.28 4.83 48 24
Defect 11.3 3.14 19 6
Bend 8.16 1.98 12 4
Flange 6.84 2.39 13 2
False echo 5.8 2.17 11 2
Unidentified anomaly 2.22 1.40 6 0
Entrance into earth 0.94 0.91 3 0

direction of test, information that is not given to VGG-Net. Similarly, often supports give very weak signal reflections, and they are
marked based on their physical presence as confirmed by visual inspections. Finally, reflections from very small defects can be barely
distinguishable from background noise, which may force an operator to conservatively flag an indication despite significant uncer-
tainty. On the other side, welds, bends, flanges and entrances into earth usually give very distinctive and significant reflections, hence
the low probability of VGG-Net missing any of them.

With regards to the 32 PFs that have been misclassified at least once, it is of interest to investigate those with a high prevalence rate
(i.e., the number of times a sample has been misclassified divided by the number of times it has been tested), since those with low
prevalence can be filtered out via ensemble methods [52] The attention here is devoted to defects, since they are the PFs of most
concern if missed. Of the 7 misclassified defects listed in Table 7, only two have prevalence rates exceeding 20 %, and their signatures
are shown in Fig. 12. Interestingly, they both come from the same inspection, whose WavePro [33] trace is displayed in Fig. 13. The
inspection of the original trace shows that the marked position of defect (a) (denoted as + F6 by the operator) is slightly off and most of
the major F(1, 2) signature of the defect is absent from the trace presented to the ML algorithms. Notably, when the windowing
segment labelled (a) in Fig. 13 is moved ~0.6 m to the left, and when such better-centred version of this defect is fed to all VGG-Net
models used in this investigation at the set thresholds corresponding to 2 % FPR, a 100 % true positive rate is obtained. More chal-
lenging, instead, is to find reasons for the consistent misclassification of the defect signature shown in Fig. 12(b) as well as in the red
box labelled (b) in Fig. 13, which is characterised by relatively similar levels of T(0, 1) and F(1, 2) reflections. This highlights one of the
fundamental issues plaguing virtually all ML algorithms currently used worldwide, i.e., their black-box nature, and therefore suggests
to focus on ML explainability [53] for future research.

4. Conclusion

This article has proposed a transfer learning framework that allows augmenting an experimental dataset collected via GWT of pipes
with synthetic data produced via FEM in order to train a ML algorithm to inspect the signals and to detect reflections from pipe
features. The transfer learning between synthetic and real data is achieved by first pre-training the chosen ML model on the simu-
lations, and then fine-tuning it via additional training on the set of experimental signals. In particular, three types of ML models have
been considered for the task, namely MLP, VGG-Net and U-Net, and their performances have been also compared to those given by
classical thresholding approaches. Unexpectedly, VGG-Net was found to yield more consistent results than U-Net, while they both
significantly outperformed MLP and thresholding. Restricting the analysis to the VGG-Net results, the investigation has shown that
when scarce amounts of real data are available, significant gains in the detection performance can be obtained by employing the
suggested pre-training approach. In particular, the performance monotonically improves and eventually plateaus as the synthetic
dataset is increased, at which point further improvements can only be obtained by enlarging the size of the experimental dataset.
However, once a sufficiently large number of real data are available for training, the benefit of pre-training the model on simulations
starts to fade. This was shown to occur for this particular application once 1800 data samples (roughly equivalent to 1800 m of
inspected pipes) are fed to the VGG-Net model, at which point false positive rates in the order of ~1.5 to 4 % at the fixed true positive
rate of 99.7 % are achieved. From a practical standpoint, the adoption of this model would greatly reduce the amount of data that needs

Table 7
Number and percentage of misclassified PFs according to the specific PF type, using the VGG-Net model trained with 10,000 simulated and 1800
experimental samples (i.e., the scenario indicated as ID = 16).

Misclassified cases Total number Percentage
(at least once) (%)
False Echo 4 28 14.3
Defect 7 58 12.1
Support 17 164 10.4
Weld 4 293 1.4
Bend 0 41 0
Flange 0 36 0
Unidentified anomaly 0 10 0
Entrance into earth 0 4 0
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Fig. 12. Samples of defects that are consistently misclassified as negative samples by VGG-Net (prevalence rates of 91 %(a) and 98 %(b)).
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Fig. 13. Portion of the original inspection trace containing the defects shown in Fig. 11. Defects are marked as + F6 and + F7 on the trace and they

are located at a distance of approximately 54 and 56 m from the sensor position. The segments of trace fed to the ML algorithms are highlighted in
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Reproduced from [25].

to be manually inspected by qualified operators for the classification of the detected pipe features. Future studies will focus on
automatising this subsequent classification step, although it is expected that additional experimental samples would be required to
better characterise the signatures of those pipe features that are less frequently found, such as flanges, bends, and, most importantly,
defects.

A further investigation was carried out to pinpoint specific pipe features that VGG-Net would consistently miss. They included two
of the 58 defects available in the experimental dataset, although it was later found that the position of one of the two had been
misreported by the inspector in the original inspection trace. Once that defect position was corrected, VGG-Net was actually able to
detect it. It is more concerning instead that all efforts devoted to understand why the other defect was left undetected remained
inconclusive. This highlights the importance of being able to explain the decisions made by any given ML model, therefore suggesting
to focus on ML explainability as a further potential avenue of future research in this project.
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