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Summarization and Visualization of
Multi-Level and Multi-Dimensional Itemsets

Matteo Francia, Matteo Golfarelli, Stefano Rizzi∗

DISI — University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

Abstract

Frequent itemset (FI) mining aims at discovering relevant patterns from sets of

transactions. In this work we focus on multi-level and multi-dimensional data,

which provide a rich description of subjects through multiple features each at

different levels of detail. Summarization of FIs has been only marginally ad-

dressed so far with specific reference to multi-level and multi-dimensional FIs.

In this paper we fill this gap by proposing SUSHI, a framework for summariz-

ing and visually exploring multi-level and multi-dimensional FIs. Specifically,

SUSHI is based on (i) a similarity function for FIs which takes into account

both their extensional (support-based) and intensional (feature-based) natures;

(ii) theoretical results concerning antimonotonicity of support and similarity

in multi-level settings, which allow us to propose an efficient clustering algo-

rithm to generate hierarchical summaries; and (iii) two integrated approaches

to summary visualization and exploration: a graph-based one, which highlights

inter-cluster relationships, and a tree-based one, which emphasizes the rela-

tionships between the representative of each cluster and the other FIs in that

cluster. SUSHI is evaluated using both a real and a synthetic dataset in terms

of effectiveness, efficiency, and understandability of the summary, with refer-

ence to three different strategies for choosing cluster representatives. Overall,

SUSHI shows to outperform previous approaches and to be a valuable tool to
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expedite the analysis of FIs. Besides, one of the three strategies for choosing

cluster representatives shows to be the most effective one.

Keywords: Frequent itemset mining, Hierarchical clustering, Itemset

summarization, Itemset visualization

1. Introduction

Frequent itemset (FI) mining is an unsupervised mining technique used in

descriptive analytics to uncover frequent correlations in (possibly huge) trans-

actional datasets [2]. In its initial formulation for market basket analysis, items

correspond to products and a transaction corresponds to a set of products

bought together by a customer; a set of items that appear together in many

transactions is said to be frequent. More recently FI mining has been applied

to other contexts, where items are not necessarily homogeneous (as is the case

for plain products) but, aimed at providing a richer description of subjects and

events, they are modeled as multi-dimensional and multi-level objects. In a

multi-dimensional item [22, 9] an event is described by multiple features (e.g.,

product and customer age); an item is multi-level [22, 5] if it can be described

using a hierarchy with different levels of details (e.g., products and product

types). The mining of multi-dimensional and multi-level items is now well un-

derstood and extends traditional FI mining with the possibility of aggregating

infrequent specific itemsets into frequent generic itemsets [22, 5].

The exponential nature of FIs —n items may lead to 2n FIs— makes it

difficult for analysts to explore their information content. Figure 1 gives a qual-

itative picture of the containment lattice for itemsets [22]; itemsets in the upper

part of the lattice appear more frequently together in transactions. To effectively

explore the lattice, data analysts normally define a frequency threshold (or even

a frequency range) to cut irrelevant itemsets. Setting a low threshold (Figure

1(a)) gives a broad picture of the correlations, but the FIs selected are too many

for a well-focused analysis. On the other hand, setting a high threshold (Figure

1(b)) gives a strong focus on the most frequent FIs but may lead to missing
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(a) (b) (c)

Figure 1: Itemset lattice, with dark itemsets being more frequent: FI mining with a low
frequency threshold (a) and a high frequency threshold (b); summarization, with big dots
corresponding to cluster representatives

interesting correlations. Besides, in both cases, the FIs selected are very similar

to each other, so most of them do not really give useful information to the an-

alyst. In [48], the authors highlight the need for summaries to overcome these

problems. Summarization selects a minimal subset of representative FIs that

describe the entire population while maximizing the diversity of these represen-

tatives (Figure 1(c)). Some approaches to summarization have been proposed

in the past (e.g., [9, 35]), however most of them do not consider the multi-level

and multi-dimensional natures of FIs and do not provide user-friendly ways to

explore summaries.

In this paper we propose SUSHI (SUmmarization and viSualization of Hi-

erarchical Itemsets), a comprehensive framework for analyzing multi-level and

multi-dimensional FIs based on original techniques for summarization and vi-

sual exploration. In SUSHI, summarization operates in synergy with FI mining

to empower and simplify analysis: indeed, it makes the approach more robust

with reference to the frequency threshold and enables both specific and gen-

eral patterns to be discovered. On top of that, visual exploration unveils and

highlights hidden information, supports the process of understanding and deci-

sion making, and allows analysts to focus their attention on what is important.
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Figure 2: A functional architecture of SUSHI

Note that some visual representations for FIs have been previously proposed

(e.g., [27, 7]); however, none of them enables an in-depth and multi-resolution

navigation of summaries.

Our work is inspired by a compelling case study focused on customer pro-

filing starting from the tracking of daily GPS trajectories. Each transaction

describes a mall customer by means of several features (e.g., where she lives,

where she works, how much she earns), and each feature is described at differ-

ent, hierarchically-organized levels of details (e.g., she lives close to the Whitney

Museum, which is located in the Greenwich Village district, which belongs to

Manhattan). In this context, a FI describes the profile of a group of people

sharing the same features/behavior. Multi-level and multi-dimensional FIs en-

able a rich representation of the behavior of customer groups; however, the huge

number of mined FIs encourages the adoption of effective summarization and

visualization techniques to provide decision makers with useful information for

marketing and advertising.

As shown in Figure 2, SUSHI works independently of the algorithm applied

for generating the FIs taken in input (e.g., Apriori [2], FP-Growth [23]). The

summarization and the visualization components work jointly to show analysts

the relevant information at multiple levels of detail; analysts iteratively create

and visualize new summaries that better meet their needs by adjusting a set of

parameters, and navigate them to get insights over summarized data.

In a preliminary paper [17] we have proposed an extension of the definition of

containment to multi-level itemsets and a similarity function for FIs which takes

into account both their extensional (support-based) and intensional (feature-

based) natures. Relying on that background, in this work we offer the following
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original contributions:

(i) a clustering algorithm that uses this similarity function to create a hierar-

chical summary to shrink a set of FIs down to a set of relevant patterns; to

define the representative FI of each cluster, we discuss different strategies;

(ii) theoretical results concerning antimonotonicity of support and similarity

in multi-level settings; these results allow the reduction of the search space

for the clustering algorithm;

(iii) an evaluation of the search space and of the computational complexity of

the clustering algorithm;

(iv) two integrated approaches to summary visualization and exploration: a

graph-based one, which highlights inter-cluster relationships, and a tree-

based one, which emphasizes the relationships between the representative

of each cluster and the other FIs in that cluster;

(v) a comprehensive set of tests for evaluating the efficiency and effectiveness of

our approach against others in the literature; we also made some tests with

data science students to evaluate how well SUSHI enhances the analysts’

capabilities in discovering relevant patterns.

The remainder of the paper is organized as follows. After discussing the re-

lated approaches to summarization and visualization in Section 2, in Section 3

we provide a formal background for multi-level and multi-dimensional itemsets.

Then, in Section 4 we propose a definition of itemset similarity. Section 5 de-

scribes our approach to building summaries of FIs, while Section 6 explains how

we visualize them. Finally, Section 7 presents the results of the experimental

tests and Section 8 concludes the paper.
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2. Related work

2.1. Mining and summarization of FIs

FI mining has been applied to multiple fields and types of items [21]. Items

can be either binary (e.g., product purchases in market basket analysis) or cate-

gorical (e.g., IP addresses in a network table). Besides, they can be homogeneous

(items from a single dimension at the same abstraction level, e.g., products) or

multi-dimensional (items taken from multiple dimensions, e.g., products and

customers), and they can be multi-level (items described at different levels of

abstraction, e.g., products and product categories).

Since the application of the Apriori algorithm in market basket analysis [2],

scholars defined many performant algorithms to extract FIs [30]; among them,

FP-Growth [23] and very recently CBPM [14] and GMiner [10]. FI mining is

currently witnessing a plethora of declinations [30], among them: high-utility

itemsets (i.e., the extraction of FIs whose utility is higher than a given score

[33]); colossal itemset mining (i.e., the extraction of FIs in datasets with few

transactions containing even millions of items [40]); and frequent trajectory

mining (i.e., the extraction of common routes in urban areas [46]). Given the

possibility to mine FIs at different granularities [22], external knowledge can be

used to generalize infrequent (specific) itemsets into frequent (generic) itemset

[5]. For instance, two distinct products milk and beer can be grouped together

into a generic FI only knowing that they both have type beverage [5]. While

these algorithms address the mining of either flat or multi-dimensional and

multi-level itemsets, they do not provide any form of summaries.

Since the number of FIs is exponential [2], summarization is necessary to sup-

port an effective data analysis [3]. Itemset summarization enables an effective

explorations of large datasets by replacing groups of similar FIs with their repre-

sentatives. Classical approaches to summarization reduce the exploration space

by limiting the retrieved FIs to maximal-covered [20], closed-covered [34], and

δ-covered [39] FIs. However, these approaches do not consider the exponential

cardinality of the summary, its pertinence with respect to the exploration focus,
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and the diversity of the FIs retrieved in the summary, which are indeed well-

known driving criteria for data condensation [8]. To overcome these limitations,

among the summarization techniques that have been well surveyed in [3], two

approaches are well-known. In BUS [9], summarization exploits the definition

of itemset contaiment (i.e., a FI can be summarized into another if the latter

is a superset of the former) to uncover clusters of FIs by the greedy optimiza-

tion of compaction gain and information loss metrics. BUS has been extended

to MBUS [24] by the retrieval of interesting and intelligible itemset represen-

tatives. Further summarization techniques have been achieved by generalizing

similar FIs belonging to sets [41, 1] or hyperrecatangles [42]; by computing

an optimal number of probability vectors for cluster partitions [44, 35]; or by

minimizing the restoration error [25]. In [49], the authors propose a summariza-

tion suitable only for high-utility itemsets; when itemsets are considered with

equal utility, the summarization criterion boils down to the itemset containment

used in [9, 24]. Overall, these contributions consider neither multi-dimensional

nor multi-level FIs, nor they provide summary visualization and navigation. A

schematic comparison between SUSHI and the summarization approaches for

FIs is shown in Table 1.

As representative FIs are elected in place of a group of similar FIs, a key issue

in summarization lies in the definition of itemset similarity. Similarity has been

defined in terms of itemset intersection (e.g., [9, 24]) and support (i.e., the fre-

quency of two itemsets within the dataset [43, 29]). However, these approaches

do not exploit multi-level knowledge to aggregate FIs in intensionally-coherent

groups.

From the computational point of view, summarization (seen as the problem

of finding the minimal set approximating a given collection) is a NP-hard prob-

lem [1]. In SUSHI we adopt a greedy strategy based on a similarity function

accounting for both the extensional and intensional natures of FIs. We also

exploit the mathematical properties of our similarity function (specifically, its

antimonotonicity) to sensibly prune the algorithm search space.

With respect to the above-mentioned contributions, in SUSHI we (i) intro-
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Table 1: Approaches to FI summarization classified by similarity function, representative
cluster element, clustering type (E=Exclusive, O=Overlapping, T=Total, P=Partial), multi-
dimensional (MD) and multi-level (ML) data, and presence of summary visualization

Appr. Similarity function Representative Type MD ML Vis

[1] Maximum coverage FI E, P 7 7 7

[44] Kullback-Leibler divergence Probab. profile E, T 7 7 7

[41] Maximum coverage FI O, T 7 7 7

[9] Compaction, inf. loss FI E, T 7 7 7

[24] Compaction, inf. loss, inter-

estingness

FI E, T 7 7 7

[25] Restoration error FI E, T 7 7 7

[35] Compressible profile Probab. profile E, T 7 7 7

[42] Coverage cost function Hyperrectangle E, T 7 7 7

[29] Support FI E, T 7 7 7

SUSHI Support, relevance FI E, T X X X

duce a novel similarity function based on the concepts of relevance and itemset

containment, properly extended to deal with multi-dimensional and multi-level

itemsets; (ii) introduce multiple strategies to shrink the exponential number of

FIs to a meaningful hierarchical summary; (iii) provide a theoretical foundation

to exploit the antimonotonicity of our similarity function to prune the algorith-

mic space; and (iv) propose an end-to-end framework supporting the navigation

of the produced hierarchical summary. Finally, our contribution differs from

approaches such as top-k (e.g., [50]) and minimum description length (i.e., com-

pressing a dataset by exploiting regularities among data as in [31]), as our goal

is not only to reduce and summarize the FIs but also to ensure an in-depth

summary exploration. Furthermore, while a research branch close to FI mining

is association rule mining, the summarization of association rules (e.g., [13])

relies on metrics (e.g., confidence, lift) that cannot be mapped to FIs.

2.2. Visual exploration

To be useful, a summary should give data analysts an overview of salient

information and enable in-depth explorations of FI groups. This goal is not

achievable by just displaying a plain list of FIs, nor by arranging all the avail-

able FIs in space. Visual techniques have high potential impact on dataset

exploration [26], and should not require complex skills from decision makers.
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Scholars have addressed the curse of FI and association rule cardinality

by providing visualizations based on polylines [27], circular graph layout [7],

treemaps [38], and parallel coordinates reflecting the item taxonomy [45]. The

analyst is also included in the loop to visually mine FIs and association rules

[28] by providing a visual representation of the algorithm search space and by

enabling an interactive pruning. However, with increasing numbers of FIs, the

proposed visualizations hardly scale up to human-understandable visualizations,

and prevent analysts from perceiving itemset similarity at first sight.

In SUSHI, consistently with the graph visualization proposed in [16] and

abiding by the “overview first, zoom and filter, then details-on-demand” mantra

[37], we complement summarization with a hierarchical visualization enabling

user-friendly and multi-resolution explorations of summaries.

3. Formal background

In this work we deal with multi-level itemsets, so we start by defining concept

hierarchies as in classic multi-dimensional modeling [19].

Definition 1 (Hierarchy). A hierarchy H is defined by (i) a set LH of cat-

egorical levels, (ii) for each level l ∈ LH , a domain Dom(l) including a set of

values, (iii) a roll-up partial order �H of LH , and (iv) a part-of partial order

≥H of
⋃
l∈LH

Dom(l). Exactly one level dim(H) ∈ LH , called dimension, is

such that dim(H) �H l for each other l ∈ LH . The part-of partial order is

such that, for each couple of levels l and l′ such that l �H l′ and for each value

v ∈ Dom(l), there is exactly one value v′ ∈ l′ such that v ≥H v′.

Definition 1 allows information to be provided at a level coarser than the one

of dimensions. In practice, hierarchies can be incomplete, i.e., some levels may

be missing in the part-of partial order. In this case, the techniques proposed in

[19] can be used to balance hierarchies by filling the missing values.

The itemsets we consider are also multi-dimensional, i.e., they describe

events along different features (e.g., worksIn). Each feature corresponds to a
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Manhattan

Harlem GreenwichVillage

Queens

FlushingAstoria

Borough 

Neighborhood 

Amenity

College Store

Tourism

Museum Zoo

Category 

Type 

Location CityCollege WhitneyMuseum Macy’s QueensZooMuncanFood

Range 

Income 

Low

below10 10to35

High

35to60 over60

Figure 3: Hierarchies (right) and values (left) for the Profiling domain schema; in red, the
level-domain mappings

hierarchy (e.g., Location) and defines the semantics carried by an item at one

specific level of that hierarchy.

Definition 2 (Domain Schema). A domain schema is a triple D = (H, E , µ)

where H is a set of hierarchies, E is a set of features, and µ is a function

mapping each feature onto one hierarchy.

Example 1. Our working example relies on the Profiling domain schema, which

describes the customers who regularly visit a mall and includes two hierarchies

as shown in Figure 3. One hierarchy is rooted in the Location dimension and

has two branches that describe locations from the geographical point of view and

based on their characteristics, respectively. The roll-up partial order states, for

instance, that Neighborhood �Location Borough; the part-of partial order states

that Harlem ≥Location Manhattan. The second hierarchy is rooted in the Income

dimension and classifies incomes based on their ranges. The features of Pro-

filing are worksIn, frequents, and earns; specifically µ(worksIn) = µ(frequents) =

Location, µ(earns) = Income.

We are now ready to define an item as a couple of a feature and a value taken

from the domain of one of the levels of the corresponding hierarchy. Itemsets

are non-redundant sets of items, i.e., two items in an itemset cannot be de-

fined on values related in the part-of partial order (e.g., GreenwichVillage and
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Manhattan). Finally, transactions are itemsets whose items are all defined on

dimension values, i.e., at the top level of a hierarchy (e.g., Macy’s).

Definition 3 (Itemset and Transaction). Given domain schema D = (H, E , µ),

an item of D is a couple i = (f, v) where f ∈ E, v ∈ Dom(l), and l is a level

of hierarchy µ(f). An itemset I of D is a set of distinct items of D where, for

each i, i′ ∈ I such that i = (f, v) and i′ = (f, v′), it is v 6≥µ(f) v
′ and v′ 6≥µ(f) v.

We call a transaction an itemset only including items defined over dimensions

of H.

Example 2. With respect to the Profiling multi-dimensional and multi-level do-

main, examples of an itemset I and a transaction T are:

I = {(worksIn,Harlem), (frequents,Museum), (frequents,Macy’s), (earns,High)}

T = {(worksIn,CityCollege), (frequents,WhitneyMuseum),

(frequents,Macy’s), (earns, 35to60)}

Note that, for semantic reasons, some features are actually disjunctive, meaning

that they cannot realistically take two or more values at the same time; for

instance, this is the case for earns. Others are not; for instance, a person can

frequent several places. In practice it is not necessary to model this property

of features, since real (correct) transactions will always have at most one single

value for a disjunctive feature, so the same will hold for all FIs as well.

4. Working with itemsets

Working with multi-dimensional and multi-level items requires classic defi-

nitions related to FI mining to be extended. We start by defining a notion of

containment between itemsets that generalizes set containment taking hierar-

chies into account; based on itemset containment we can then define the support

of itemsets, which in turn is necessary to select FIs out of the set of all itemsets.
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{Manhattan} {Queens} {Tourism} {Low}{Amenity} {High}



{Amenity,
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{Macy’s}

{College}

{CityCollege} {Amenity,10to35}{College,Low}{College,Store}

{Amenity,

Manhattan}

{Amenity,

High}

{Amenity,

Queens}

{Amenity,

Tourism}

Figure 4: A portion of the containment lattice for the Profiling; itemsets in gray are partially
expanded

Definition 4 ((Multi-Level) Itemset Containment). Given two itemsets

I and I ′, we say that I is contained in I ′ (denoted I v I ′) if for each item

i ∈ I, i = (f, v), there is an item i′ ∈ I ′, i′ = (f, v′) such that v′ ≥µ(f) v.

Given a set F of itemsets, an itemset I ∈ F is directly contained in I ′ ∈ F

with reference to F (denoted Iv̇FI ′) if there is no other itemset I ′′ ∈ F such

that I v I ′′ v I ′.

Let I denote the set of all items of a schema domain and 2I denote the

set of all itemsets as in Definition 3. The containment relationship is reflexive,

antisymmetric, and transitive, and for each pair of itemsets in I there are a least

upper bound and a greatest lower bound; so relationship v induces a lattice on

2I , whose top and bottom elements are the empty itemset and I, respectively.

Given two itemsets I and I ′, we denote with lub(I, I ′) and glb(I, I ′) their least

upper bound (i.e., the least element in 2I that is greater than or equal to both

I and I ′) and greatest lower bound (i.e., the greatest element in 2I that is less

than or equal to both I and I ′) in the lattice.

Example 3. Figure 4 shows a portion of the containment lattice for the Profil-

ing domain schema; for simplicity we focus on features frequents and earns and

denote items by their value only. For instance, for frequents it is {Amenity} v

{College,Store} and {Amenity}v̇2I{College}. Intuitively, {Store} and {College}

arise by describing {Amenity} at a higher level of detail; {Amenity,Manhattan}

arises from a branch of the Location hierarchy; and {Amenity,Low} arises by
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extending {Amenity} with the additional item {Low}.

We say that transaction T supports itemset I if I v T . For instance, in

Example 2, T supports I. Given a set of transactions T , the set of transactions

that support I is denoted by TI ⊆ T . At this stage we can introduce a numerical

property of itemsets, their support.

Definition 5 (Itemset Support). Given itemset I, its support sup(I) within

a set of transactions T is defined as sup(I) = |TI |/|T |.

An itemset I is called frequent if its support is greater or equal to a given

threshold. Since the containment relationship induces a lattice on the set 2I of

all possible itemsets, it also induces a partial order over the set F ⊆ 2I of FIs.

Thus, from now on we will say that F is a partially ordered set (POS).

A valuable property of the support for non-hierarchical itemsets is antimono-

tonicity along the containment relationship: for each I, I ′ such that I ⊆ I ′ it

clearly is sup(I) ≥ sup(I ′) [2]. Remarkably, this property also holds for our

hierarchical itemsets along the multidimensional containment relationship in-

troduced in Definition 4, as proved by the following theorem.

Theorem 1 ((Multi-Level) Antimonotonicity of Support). Given two item-

sets I and I ′ such that I v I ′, for all sets of transactions it is TI′ ⊆ TI and

sup(I) ≥ sup(I ′).

Proof: To prove that TI′ ⊆ TI it is sufficient to prove that for each transaction

T that supports I ′, T also supports I (for Definition 5). For Definition 3, if

T supports I ′ then for each item i′ ∈ I ′, i′ = (f, v′), there is at least one

item i0 ∈ T , i0 = (f, v0), such that v0 ≥µ(f) v
′. But since I v I ′, we know

by Definition 4 that for each item i ∈ I, i = (f, v), there is an item i′ ∈ I ′,

i′ = (f, v′) such that v′ ≥µ(f) v. The part-of partial order ≥µ(f) is transitive,

so v0 ≥µ(f) v; then we obtain that for each i ∈ I there is at least one item

i0 ∈ T such that v0 ≥µ(f) v
′, in other words that T supports I. From here, it

immediately follows that sup(I) ≥ sup(I ′). �
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Note that, due to this result, the transactions supporting I ′ also support I.

In Section 5 we will compute summaries using clustering, which clearly re-

quires the definition of a similarity function to measure how “close” two FIs are.

To this end, we start by introducing feature-based similarity, which increases

with the number of features (i.e., semantics) shared by two FIs. Clearly, if two

FIs include two distinct groups of transactions, feature-based similarity is not

meaningful, so it is associated with a support-based similarity which increases

with the percentage of transactions supporting both FIs. There is no obvious

correlation between these two aspects of similarity; for instance, support-based

similarity can be low even if feature-based similarity is high when non-shared

features are rare and supported by a small fraction of transactions.

In a multi-level and multi-dimensional domain, defining feature-based simi-

larity only by counting the common items between two FIs would be reductive;

in fact, the informative value carried by these items in terms of level of detail

should be considered as well. For instance, knowing that a person frequents

Macy’s is more relevant than knowing that she frequents a generic amenity. In-

tuitively, an FI is more relevant than another if it includes a larger number of

distinct features; in turn, the relevance of a feature increases with the level of

detail at which it is expressed.

Definition 6 (Itemset Relevance). Given itemset I, its relevance is

rel(I) =
∑

f∈Feat(I)

rel(f) +
∑

l∈Levf (I)

rel(l)


where Feat(I) is the set of distinct features of the items in I, Levf (I) is the

set of levels of the values coupled with feature f in the items of I, rel(f) is the

relevance of f , and rel(l) is the relevance of level l.

Assuming that higher levels of detail carry more informative content and rel-

evance, means assuming that rel(l) ≥ rel(l′) if l �µ(f) l
′. As a consequence,

given any two itemsets such that I v I ′, we always have rel(I ′) ≥ rel(I).
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We can now define the similarity between two itemsets as a linear combina-

tion of a support-based and a feature-based similarity.

Definition 7 (Itemset Similarity). Given a set of transactions T , a POS of

FIs F , two FIs I and I ′ supported by T , and a coefficient λ ∈ [0..1], the similar-

ity of I and I ′ is defined as sim(I, I ′) = λsimsup(I, I
′) + (1 − λ)simfea(I, I ′),

where

simsup(I, I
′) =


sup(glb(I,I′))

sup(I)+sup(I′)−sup(glb(I,I′)) , if glb(I, I ′) ∈ F

0, otherwise

(1)

simfea(I, I ′) =


rel(lub(I,I′))
rel(glb(I,I′)) , if lub(I, I ′), glb(I, I ′) ∈ F

0, otherwise

(2)

Both simsup and simfea range in [0..1]; they can be explained as follows:

• simsup is the ratio between the number of transactions that support both

I and I ′ and the number of transactions that support either I or I ′. The

higher the portion of transactions supporting both I and I ′, the higher

simsup as requested by the the support-based principle.

• simfea is the ratio between the relevances of the lub() and glb() of the two

FIs. When the features belonging to the two FIs I, I ′ are dissimilar, (i)

the relevance of the lub(I, I ′) will be low since most of the features in I,

I ′ will be dropped or their level will be less detailed; (ii) the relevance of

the glb(I, I ′) will be high since most of the features in I ′ must be added

to those in I. This behavior satisfies the feature-based principle.

Clearly, since the lub and glb operators are commutative, it is always sim(I, I ′) =

sim(I ′, I).

Example 4. With reference to the hierarchies of Figure 3, let the POS of FIs

F be the one shown in Figure 5, restricted to features frequents and earns. We

assume that (i) for each feature f it is rel(f) = 1, and (ii) relevance increases
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{Low}
sup 0.6, rel 1.0

{Amenity}
sup 0.7, rel 1.0
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{Store}
sup 0.5, rel 1.1

{Macy’s}
sup 0.5, rel 1.2

{College}
sup 0.3, rel 1.1

{College,Store}
sup 0.1, rel 1.2

{Amenity,Low}
sup 0.5, rel 2.0

{Store,Low}
sup 0.4, rel 2.1

{Macy’s,Low}
sup 0.2, rel 2.2

Figure 5: The POS F of FIs for Examples 4, 5, and 7 (each FI is annotated with its support
and relevance)

by 0.1 for each level of detail. Given FIs I = {(frequents,Store))} and I ′ =

{(frequents,Amenity), (earns,Low)}, it is lub(I, I ′) = {(frequents,Amenity)},

glb(I, I ′) = {(frequents,Store), (earns,Low)}, and sim(I, I ′) = 0.57.

To decrease the complexity of summary creation, in Section 5 we will leverage

on the properties of itemset similarity and containment. First of all, Theorem 2

proves that itemset similarity is antimonotonic.

Theorem 2 (Antimonotonicity of Itemset Similarity). Given three FIs I,

I ′, and I ′′ such that I v I ′ v I ′′, for all sets of transactions and all λ ∈ [0..1]

it is sim(I, I ′) ≥ sim(I, I ′′).

Proof: Support-based similarity is antimonotonic along the containment rela-

tionship. This can be easily proved by considering that, in Equation 1, since

I v I ′ v I ′′ it is glb(I, I ′) = I ′ and glb(I, I ′′) = I ′′, and by recalling that func-

tion sup is antimonotonic. Similarly, feature-based similarity is antimonotonic

along the containment relationship. This can be easily proved by considering

that, in Equation 2, since I v I ′ v I ′′ it is lub(I, I ′) = lub(I, I ′′) = I, and by

recalling that rel(I ′) ≤ rel(I ′′) by assumption. But then, sim is antimonotonic

for any λ in that it is a linear combination of antimonotonic functions. �

The next property, formalized by Theorem 3, states that direct itemset con-

tainment (see Definition 4) always entails higher similarity, i.e., in case an item-

set I ′ is directly contained in an itemset I ′′′, the similarity between I ′ and I ′′′ is
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greater than the similarity of I ′ to any other itemset I ′′ that does not directly

contain I ′. To prove this result we rely on the following lemma.

Lemma 1. Given a POS of FIs F and three FIs I ′, I ′′, I ′′′ ∈ F such that

I ′′′ = glb(I ′, I ′′), I ′ 6v I ′′, I ′′ 6v I ′, for all sets of transactions and all λ ∈ [0..1]

it is sim(I ′, I ′′′) ≥ sim(I ′, I ′′) and sim(I ′′, I ′′′) ≥ sim(I ′, I ′′).

Proof: We prove the thesis by contradiction, assuming that sim(I ′, I ′′) >

sim(I ′, I ′′′). We consider simsup first:

sup(glb(I ′, I ′′))

sup(I ′) + sup(I ′′)− sup(glb(I ′, I ′′))
>

sup(glb(I ′, I ′′′))

sup(I ′) + sup(I ′′′)− sup(glb(I ′, I ′′′))

From here, recalling that glb(I ′, I ′′′) = I ′′′, we get

sup(I ′′′)

sup(I ′) + sup(I ′′)− sup(I ′′′)
>
sup(I ′′′)

sup(I ′)

Since sup(I ′′) ≥ sup(I ′′′) because of Theorem 1, this inequality admits no so-

lution. This also holds for the relevance component of the similarity function,

simfea. Let I = lub(I ′, I ′′):

rel(lub(I ′, I ′′))

rel(glb(I ′, I ′′))
>
rel(lub(I ′, I ′′′))

rel(glb(I ′, I ′′′))
⇔ rel(I)

rel(I ′′′)
>

rel(I ′)

rel(I ′′′)

But since I v I ′, for Definition 6 we have rel(I ′) ≥ rel(I), then the inequality

admits no solution and we have a contradiction. From the two contradictions

it follows that sim(I ′, I ′′′) ≥ sim(I ′, I ′′) and sim(I ′′, I ′′′) ≥ sim(I ′, I ′′). �

Theorem 3. Given a POS of FIs F and any two FIs I ′, I ′′ ∈ F , for each

I ′′′ ∈ F such that I ′v̇FI ′′′, it is sim(I ′, I ′′) ≤ sim(I ′, I ′′′).

Proof: The proof comes by applying Theorem 2 to the result of Lemma 1. �

This theorem allows to sensibly reduce the summarization space in Section 5,

narrowing the number of cluster comparisons down to the pairs of clusters whose

representatives are directly contained into one another (i.e., it prevents an all-

against-all comparison).
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5. Summarizing frequent itemsets

Since SUSHI supports interactive exploration and navigation, it gives sum-

maries a hierarchical organization to let them be analyzed at different levels of

detail. To create summaries we adopt an agglomerative hierarchical clustering

technique, which progressively merges couples of clusters starting from single-

tons until one single cluster is obtained. The result of hierarchical clustering

is commonly represented using a dendrogram, i.e., a binary tree structure con-

taining a k-block set partition for each 1 ≤ k ≤ n, where n is the number of

objects to be clustered [11]. In our context, due to the constraints we pose on

mergeability, in some cases it is impossible to merge all the FIs into one single

cluster, so the dendrogram will actually not be a tree but a forest of trees.

5.1. Summaries and representatives

Definition 8 (H-Summary and Summary). Given a POS of FIs F , a hi-

erarchical summary (briefly, h-summary) of F is a (directed) forest HS where

each node is a cluster c ⊆ F and each leaf is a singleton cluster. Each node

c is labeled with the similarity sim(c) of the representatives of the two clusters

that were merged to obtain c (conventionally, sim(c) = 1 for singleton clusters).

A summary S of HS is any set of clusters in HS that define a (complete and

disjoint) partition of F .

Among all possible summaries for HS, the one including all and only the roots

of HS is denoted as min(HS) and called minimum summary (see Figure 6).

Note that, while traditional dendrograms are typically cut at a given sim-

ilarity level to produce a clustering, in our definition a summary can include

clusters at different similarity levels. This is to allow analysts to interactively

choose which cluster they want to analyze in more detail during visualization

(see Section 6).

In a summary, each cluster is represented by a single FI. To define the

representative rep(c) of cluster c, we provide three different strategies:

• Top: the representative is the most general FI in c, rep(c) v I,∀I ∈ c
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Figure 6: A simple h-summary with three possible summaries, including the minimum one

• Bottom: the representative is the most specific FI in c, I v rep(c),∀I ∈ c

• Medoid : the representative is the cluster “center”, rep(c) = med(c)

The Top strategy is the one most commonly used in the literature [9], while

Bottom is related to the notion of maximal FI (i.e., a FI for which none of

its immediate supersets is frequent [20]). As confirmed by both our tests and

assessment with real users (see Section 7), Top often lacks in properly character-

izing the clusters. The reason for this is that, as the cluster cohesion decreases,

one or more features appearing in some of the cluster FIs may disappear from

the representative, which leads to very low relevance. Conversely, when the

Bottom representative is adopted, all the features appearing in at least one FI

of the cluster are included. Obviously, both Top and Bottom are extreme repre-

sentatives of clusters, thus they often do not show high similarity with the other

FIs in the the cluster. To overcome this problem, we alternatively propose the

Medoid strategy; to the best of our knowledge, no previous approach relies on

medoid representatives for FIs. A medoid is defined as follows:

Definition 9 (Medoid). Given a summary HS and a cluster c ∈ HS, a FI

I ∈ c is a candidate medoid of c if, for each other FI I∗ ∈ c, it is sim(I, I∗) > 0

and
∑
I∈c

sim(I, I) ≥
∑
I∈c

sim(I∗, I). If c has at least one candidate medoid, then

the medoid of c, denoted med(c), is the one with the highest relevance and, at

the same relevance, with the highest support.

Given two clusters c′, c′′, computing the medoid of c′ ∪ c′′ requires all the
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pairwise similarities between the FIs to be estimated. This entails the compu-

tation of a quadratic number of similarities in the cardinality of c′ ∪ c′′ (each FI

against all the others), which can be unfeasible for large datasets:

med(c) = argmaxĪ∈c′∪c′′
∑

I∈c′∪c′′
sim(Ī , I)

To cut this complexity down to linear, while merging two clusters we can ap-

proximate the optimal medoid based on the cluster representatives:

med∗(c′, c′′) = argmaxĪ∈c′∪c′′sim(Ī , rep(c′)) · |c′|+ sim(Ī , rep(c′′)) · |c′′|

' argmaxĪ∈c′∪c′′
∑
I∈c′

sim(Ī , I) +
∑
I∈c′′

sim(Ī , I) = med(c′ ∪ c′′)

Thanks to the last step, for each candidate medoid Ī we can replace the sum of

the similarities between Ī and all other FIs with the similarity between Ī and

the two representative medoids.

Depending on the strategy adopted for picking cluster representatives, differ-

ent mergeability constraints arise. Indeed, two clusters can actually be merged

only if the resulting cluster is well-formed, i.e., if it has a representative itself.

Note that, for a singleton cluster c = {I}, it is rep(c) = I for all strategies.

Definition 10 (Mergeability). Two clusters c and c′ are mergeable (denoted

c ↔ c′) if: rep(c) v rep(c′) or rep(c′) v rep(c), in case of Top or Bottom

strategies; the union of c and c′ has a medoid, in case of Medoid strategy.

Example 5. With reference to the POS of FIs F in Figure 5, let the follow-

ing clusters be given: c1 = {{College}, {College,Store}}, c2 = {{Amenity}},

c3 = {{Low}}. According to the Top strategy, it is rep(c1) = {College}; c1
can be merged with c2 but not with c3 since {College} 6v {Low} and {Low} 6v

{College}. According to the Bottom strategy, it is rep(c1) = {College,Store};

c1 can be merged with c2 but not with c3 since {College,Store} 6v {Low} and

{Low} 6v {College,Store}. According to the Medoid strategy, it is rep(c1) =

{College,Store}; c1 can be merged with c2 but not with c3 since glb({College,Store},
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{Low}) 6∈ F , hence, sim({College,Store}, {Low}) = 0 and c1 ∪ c3 has no can-

didate medoids.

5.2. Search space for multi-dimensional and multi-level FIs

Hierarchical clustering on a set F of FIs entails |F|(|F| − 1)/2 comparisons

between FIs; so, reasoning about the cardinality of F is crucial. The actual

cardinality of F clearly depends on the number of transactions in the dataset

and on the frequency threshold. To discuss the impact of the multi-dimensional

and multi-level setting on |F| in general terms, we consider the worst possible

case, in which F = 2I because there is a transaction for each possible itemset

and the threshold is 1 (all itemsets are frequent).

When working with mono-dimensional and mono-level items, the total num-

ber of possible (non-empty) itemsets is |2I | = 2n − 1, where n = |I| is the total

number of items. In the multi-dimensional case these n items are not homoge-

neous, i.e., they are picked from the domains of multiple dimensions. If ν is the

cardinality of these domains, which we assume for simplicity to be constant, the

number of possible itemsets cuts down to

|2I | =
n/ν∑
k=1

(
n/ν

k

)
· νk = (ν + 1)n/ν − 1 (3)

where n/ν is the number of dimensions (assuming for simplicity that all fea-

tures are disjunctive). Finally, in the multi-level case, some meta-knowledge

of part-of relationships between items is available and expressed in the form

of hierarchies as in Definition 2, so some more combinations of items become

unfeasible: indeed, we recall from Definition 3 that there cannot be any part-

of relationship between the values of the items included in an itemset (e.g.,

{(worksIn,Harlem), (worksIn,Manhattan)} is not an itemset). In this case, the

number of possible itemsets is further reduced to

|2I | =
n/(ν|L|)∑
k=1

(
n/(ν|L|)

k

)
· |L|k · νk = (ν|L|+ 1)n/(ν|L|) − 1 (4)
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Figure 7: (a) Search space measured as the number of itemsets in function of the number of
levels; (b) number of comparisons at the first iteration in function of the number of levels

where |L| is the number of levels in each hierarchy (assumed for simplicity to

be the same for all hierarchies) and n/(ν|L|) = |H| is the number of hierarchies.

Clearly, if |L| = 1 (flat hierarchies), Formula 4 boils down to Formula 3.

Figure 7(a) shows how the number of itemsets computed with Formula 4

changes when the number of levels |L| changes from 1 (mono-level items) to 4

(multi-level items), with n = 160 and ν = 10. As a reference, also the number

of itemsets in the case of mono-dimensional and mono-level items is plotted.

Clearly, when dimensions are structured in hierarchies the number of FIs is

significantly smaller than in the “flat” case.

Even if |F| is significantly smaller for multi-level items than for mono-level

ones, executing all |F|(|F| − 1)/2 comparison would be expensive. Fortunately,

this is not the case in our approach due to Theorem 3 that allows to compare

only the couples of clusters whose representatives are directly contained into

one another with reference to the set of all clusters representatives. The most

expensive iteration for agglomerative hierarchical clustering algorithm is the

first one, when all clusters are singleton so there are |F| clusters. Assuming for

simplicity that all hierarchies are linear (i.e., no diamond-like hierarchies are

present), an itemset including k items has exactly k fathers in the containment

lattice. The total number of comparisons required at this stage is:

] comparisons =

n/(ν|L|)∑
k=1

(
n/(ν|L|)

k

)
· |L|k · νk · k = n(ν|L|+ 1)n/(ν|L|)−1
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Figure 7(b) plots this formula for increasing numbers of hierarchy levels, distin-

guishing whether the antimonotonicity of the similarity function is considered

or not. Besides the reduction of the number of comparisons due to antimono-

tonicity exploitation, the plot, as in Figure 7(a), also emphasizes how multi-level

containment further reduces the number of comparisons. In the subsequent iter-

ations of the clustering algorithm, the number of comparisons varies depending

on the actual shape of the hierarchies and on the strategy chosen for cluster rep-

resentatives, but it is always smaller than the first one since (i) the number of

clusters decreases at each iteration, and (ii) not all pairs of clusters can actually

be merged due to the mergeability constraints.

Example 6. Given n = 120, l = 3, v = 10 and a null support threshold (i.e.,

all itemsets are frequent) it is |2I | = |F| = 923520. The number of comparisons

is 36 · 105, that is less than the number of required comparisons required by

mono-dimensional and mono-level itemset clustering, |F|(|F|−1)/2 = 43 ·1010.

�

5.3. Building h-summaries

In this section we explain how h-summaries can be efficiently computed by

agglomerative clustering. Considering the drastic reduction in the number of

useful comparisons enabled by the antimonotonicity of the similarity function

and by mergeability constraints, the efficiency of the agglomerative clustering

algorithm can be greatly improved by storing the set of useful comparisons at

each iteration within a graph UC = (C,M), where C is the current set of

clusters and M stores an arc for each couple of clusters whose comparison is

actually useful. Keeping the arcs in M sorted by decreasing similarity values

ensures that the most similar couple of clusters can be found in constant time.

The pseudocode for summarizing FIs is shown in Algorithm 1. HS stores

the h-summary being built by agglomerative hierarchical clustering. Graph

UC = (C,M) keeps track of cluster mergeability: at each iteration C is the

set of clusters in the minimum summary min(HS) (clearly, min(HS) changes
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at each iteration as clusters are progressively merged and HS is expanded),

while M stores an arc for each couple of candidate mergeable clusters, i.e.,

clusters with direct containment (Line 2). We recall that safely restricting to

consider direct containment is possible thanks to Theorem 3; indeed, at each

step, Algorithm 1 merges the two most similar clusters, which are necessarily two

clusters related by direct containment. We use the term candidate since, while

with the Top and Bottom strategies mergeability is ensured by the building rules

of UC, the Medoid strategy requires a further check since the changes occurred

in the cluster composition may affect mergeability.

The algorithm starts by initializing HS with singleton clusters, one for each

FI (Line 3); this can be seen as a degenerate h-summary since no merge took

place so far. At Line 4 we initialize UC = (C,M): C is the set of singleton clus-

ters, while M stores the couples of singletons whose FIs are directly contained

into one another with reference to F .

Then, while the cardinality of min(HS) is above the target cardinality k and

some pairs of mergeable clusters exist (Line 5), we pick the pair of mergeable

clusters c′ and c′′ whose representatives have maximum similarity (Line 6); since

the arcs in M are sorted by descending similarity, this simply means getting the

first arc. These two clusters are then merged into cluster c (Line 8) and the

h-summary HS is updated by adding the c as the father of c′ and c′′ (Line 9).

Finally, at Line 10, UC is updated as described by Algorithm 2.

Algorithm 2 updates UC according to the representative strategy adopted.

Figure 8 shows which arcs are kept and which ones are dropped when c′ and c′′

are merged. Note that arc (ĉ, c′) cannot belong to M since otherwise it would be

rep(ĉ) v rep(c′) v rep(c′′), but then (ĉ, c′′) would not be a direct containment

(with reference to the set of all cluster representatives), which is impossible by

construction (see Line 12). Symmetrically, the same holds for (č, c′′). Arc (c′, c′′)

is dropped in all the strategies; moreover: in Top, arc (ĉ, c′′) is dropped since

with this strategy the representative of c is the representative of c′ (i.e., the most

general one), thus ĉ and c are not mergeable since rep(c) = rep(c′) 6v rep(ĉ);

Bottom is the dual case of Top; in Medoid, containment of representatives is
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Algorithm 1 Create H-Summary
Input F : POS of FIs, k: number of clusters, strat representative strategy

Output HS: h-summary

1: C = {{I} s.t. I ∈ F} . Set of singleton clusters, one for each FI

2: M ← {(c′, c′′) s.t. c′ ∈ C ∧ c′′ ∈ C ∧ rep(c′)v̇Frep(c
′′)} . Couples of clusters with direct

containment

3: HS ← C . HS is initialized

4: UC ← (C,M) . UC is initialized

5: while (M 6= ∅) ∧ (|min(HS)| > k) do . While the h-summary is expandable...

6: (c′, c′′)← argmax{(c′,c′′)∈M}sim(rep(c′), rep(c′′)) . ...find the pair of candidate

mergeable clusters with most similar representatives;

7: if c′ ↔ c′′ then . if they are actually mergeable according to strat...

8: c← c′ ∪ c′′ . ...merge them,

9: AddFather(HS, c, c′, c′′) . update HS,

10: Update(UC, c, c′, c′′, strat) . and update UC

11: return HS

c
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Figure 8: Changes in UC when clusters c′ and c′′ are merged: before merging (a), after Top
merging (b), after Bottom merging (c), and after Medoid merging (d)

not necessary, so all clusters remain potentially mergeable and no more arcs are

removed.

Example 7. Here we show some steps of Algorithm 1 using the Bottom strat-

egy, with reference to the POS of FIs shown in Figure 5. The h-summary HS is

initialized with 9 singleton clusters (gray boxes in Figure 9(a)). Among the 11

pairs of mergeable clusters whose FIs are directly contained one into the other

with reference to F (the pairs connected by arrows in Figure 9(a)), the pair

({Store}, {Macy’s}) is the one with highest similarity (0.96). So these two clus-

ters are merged; the representative of the new cluster is FI {Macy’s} as shown

in Figure 9(b). At the second iteration, among the 8 pairs of mergeable clusters,

the one with highest similarity is ({Amenity,Low}, {Store,Low}) (Figure 9(b));

the representative of the merged cluster is {Store,Low}. After 7 iterations, two

clusters are obtained (shown in Figure 10(b)); since these two clusters are not

mergeable, the algorithm stops and returns an h-summary including these two
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Algorithm 2 Update
Input UC = (C,M): graph of useful comparisons, c′, c′′: clusters to be merged (with (c′, c′′) ∈M),

c: cluster resulting from the merge, strat: representative strategy

Output UC: updated graph of useful comparisons

1: C ← C ∪ c
2: switch strat do

3: case Top

4: M ←M ∪ {(c, c) s.t. (c′′, c) ∈M ∨ (c′, c) ∈M} . c inherits outgoing arcs of c′′ and c′

5: M ←M ∪ {(c, c) s.t. (c, c′) ∈M} . c inherits the incoming arcs of c′

6: case Bottom

7: M ←M ∪ {(c, c) s.t. (c, c′) ∈M ∨ (c, c′′) ∈M} . c inherits incoming arcs of c′ and c′′

8: M ←M ∪ {(c, c) s.t. (c′′, c) ∈M} . c inherits the outgoing arcs of c′′

9: case Medoid

10: M ←M ∪ {(c, c) s.t. (c, c′) ∈M ∨ (c, c′′) ∈M} . c inherits incoming arcs of c′ and c′′

11: M ←M ∪ {(c, c) s.t. (c′, c) ∈M ∨ (c′′, c) ∈M} . c inherits outgoing arcs of c′ and c′′

12: Clear(UC, c′, c′′) . Remove c′ and c′′ from C and all arcs in M that (i) involve c′ or c′′, (ii)

do not represent direct containment

13: return UC
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Figure 9: Clustering steps shown on graph UC using the bottom strategy; first (a) and second
(b) iterations (each cluster is shown by its representative, arrows represent cluster mergeability,
dashed boxes show the next couple of clusters to be merged)

roots. Figure 10 also shows the minimum summaries obtained using the Top

and Medoid strategies, emphasizing the differences between the composition and

the representative of the resulting clusters.

5.4. Complexity

The computational complexity of hierarchical clustering has a two-faceted

nature: initialization and iteration. While the initialization cost (Algorithm 1,

Line 2) has been discussed in Section 5.2, we now consider the iteration cost.

Note that the complexity of our algorithms does not depend on the number of

transactions in the dataset, but it depends on the number of FIs (i.e., on |F|).
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Figure 10: Minimum summaries obtained using the Top (a), Bottom (b), and Medoid (c)
strategies shown on F (gray areas represent clusters, their representatives are in bold)

For instance, in the case of colossal trajectory mining [40, 47], even only a few

dozens of transactions can produce a huge number of FIs.

By relying on a priority queue (Algorithm 1, Line 6), the worst-case com-

plexity of hierarchical clustering is O(|F|2log|F|) [12]: clustering requires |F|−1

merging steps, each of which requires |F| similarity computations to be stored

in the priority queue. Editing a priority queue has a log|F| complexity. How-

ever, merging two clusters entails different complexities according to the adopted

strategy. On the one hand, Bottom and Top require no validation for merged

cluster, so the actual complexity of clustering is O(|F|2log|F|). On the other

hand, the computation of a feasible medoid for two clusters c′ and c′′ has

quadratic complexity, resulting in a complexity O(|F|3)). Although medoid

approximations exist (e.g., [32, 4]), they require statistical assumptions that

are not know while merging the clusters1. Remarkably, the medoid approxima-

1The estimation of statistical parameters proved to produce “bad” medoids when the clus-
ter population was not sufficient to provide a precise estimation or when global parameters
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tion med∗ proposed in Section 5.1 has linear complexity, resulting in an overall

complexity O(|F|2log|F|).

Note that in our setting the worst-case scenario is actually quite unlikely,

since it requires that: (i) the goal is to aggregate all FIs into a single cluster;

(ii) only in the last iteration of the algorithm (when there is a single cluster) the

optimal and approximated medoid complexities are O(|F|3) and O(|F|2log|F|);

and (iii) no direct containment relationships between FIs are present, so that

the the antimonoticity of the similarity function cannot be used to prune the

search space.

As to space complexity, hierarchical clustering requires to store both the

graph of useful comparisons (UC in Algorithm 1) and the priority queue that

sorts the mergeability arcs. Storing UC requires to store both its set of nodes,

C, and its set of arcs, M . As to C, all the FIs in F (i.e., the initial singleton

clusters) are stored in memory; if f is the average space taken by an FI (f

depends on the size of each item and on the number of items per FI), storing C

requires |F| ·f bytes. As to M , each mergeability arc includes a reference to the

two clusters (8 bytes in total) and the similarity between their representatives

(4 bytes), yielding |M | ·12 bytes overall. Finally, the priority queue contains the

references to all mergeability arcs, overall |M | · 4 bytes. Thus, the total space

taken in memory is |F| · f + |M | · 16 bytes. Differently from the computational

time, this space does not depend on the summarization strategy as the clustering

process does not require to copy new objects in memory, but only to partition

graph UC (see Section 7).

6. Visualizing and exploring summaries

Though several summarization approaches have been devised as discussed

in Section 2, most of them do not provide user-friendly ways to visually explore

the summaries obtained. To make data analysis more effective, SUSHI builds

where extended even to small clusters.
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on an interactive visual interface (available at http://semantic.csr.unibo.

it/sushi) that enables analysts to unveil information hidden in summaries.

Initially, when visualizing an h-summary HS, an overview of the minimum

summary min(HS) is provided by showing the top k clusters sorted by car-

dinality. If |min(HS)| > k, to avoid scaling issues the remaining clusters are

grouped into a fictitious “other” cluster. SUSHI then provides two different

visual approaches that fulfill orthogonal requirements to navigate HS:

• The graph-based approach overviews the entire h-summary by always

showing a complete summary, as in the classical approaches to FI visu-

alization discussed in Section 2, and enables analysts to expand/collapse

clusters. This approach highlights inter-cluster relationships (e.g., in our

profiling case study, how common behaviors relate to each other).

• In the tree-based approach, the context of visualization is a single cluster,

shown with its children and grandchildren within the h-summary; thus,

the relationships between its representative and the other FIs in the cluster

are emphasized (e.g., in our profiling case study, how common a behavior

is). Analysts can zoom in and out one cluster.

These two approaches are pursued using well-known visualization layouts, re-

spectively, directed acyclic graphs (DAGs) [18] and treemaps [6]. In both ap-

proaches, colors code both the feature with the highest relevance of the cluster

representative (hue) and its support (saturation).

Both visualization approaches share two interaction possibilities (see Fig-

ure 11(c)):

• options: analysts are allowed to select the data source (e.g., a file contain-

ing the FIs), the representative strategy (Bottom, Top, or Medoid), the

desired number of clusters k, and the similarity coefficient λ;

• filter : the data source can be filtered by applying a support threshold and

by specifying the specific items the analyst is interested in (e.g., visualizing
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only the FIs that contain items (worksIn,Harlem) or (frequents,Museum)

with a support between 0.25 and 0.5).

However, as discussed in the following subsections, they differ in the primitives

enabling analysts to navigate h-summaries.

6.1. Graph-based visualization

DAGs gracefully represent inter-cluster relationships within a summary in

terms of direct containment between cluster representatives. At each itera-

tion, analysts can expand a thick-bordered cluster or collapse a cluster. Thin-

bordered clusters represents singleton clusters that cannot be further expanded.

At the maximum level of detail, i.e., when all clusters have been completely

expanded, the summary including all singleton clusters is displayed. More pre-

cisely, given the summary S currently displayed through the DAG and a cluster

c ∈ S: (i) the expansion of c replaces c with its k most similar descendants in

HS which completely and disjointly cover the FIs in c, so as to obtain a new

summary S′; (ii) the collapse of c undoes its expansion (similarly to the zoom-in,

extend, and zoom-out primitives in [37]).

Figure 11(a) shows an example of the DAG representing min(HS) (k = 10),

while Figure 11(b) shows how the graph changes when a cluster is expanded.

DAG visualization is based on the Graphviz open source library [15]. The DAG

should be examined from left to right; leftmost clusters have representatives with

low item cardinality (high support, low relevance), while rightmost clusters have

representatives with high item cardinality (low support, high relevance). This

helps analysts in finding containment paths between cluster representatives,

and is the reason for keeping FIs sorted in space due to the antimonotonic and

monotonic properties of sup() and rel(), respectively.

6.2. Tree-based visualization

Ordered treemaps are popular visualization tools for large hierarchical datasets,

and we use them to map h-summaries into 2D areas [36]. Figure 11(c) shows
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(a) (b)

(c)

Figure 11: Graph-based visualization, before (a) and after (b) the expansion of cluster
{(worksIn,Bologna), (worksIn, close)}; tree-based visualization (c)
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a treemap (drawn using the D3 library) in which the visualization area is par-

titioned into k = 10 (plus one “others”) rectangles, each corresponding to a

cluster in min(HS). The area of rectangles is proportional to the cluster car-

dinality, hence, this visualization emphasizes the volume of FIs summarized by

each representative. Each rectangle is divided into sub-rectangles corresponding

to its k descendants with highest similarity sim(c) in HS. By hovering over

these sub-rectangles, analysts can get further details. Physical nesting is used

instead of arcs to represent inter-cluster relationships, so the visualization is

clearer and easier to interpret, and scalability is improved.

At each iteration, analysts can zoom-in or zoom-out a cluster c. More pre-

cisely, (i) a zoom-in of c displays its k most similar descendants in HS which

completely and disjointly cover FIs in c; (ii) a zoom-out of c undoes the last

zoom-in (similarly to the zoom-in, filter, and zoom-out primitives in [37]).

7. Experimental tests

Summarization can be evaluated in terms of (i) effectiveness (summary com-

paction, cohesion, information loss, and interestingness), (ii) efficiency (compu-

tational performance), and (iii) understandability of the summary. We evaluate

SUSHI using two datasets: a real one, called ProfilingDS, related to the Profiling

domain schema, and a synthetic one, called SyntheticDS.

• ProfilingDS describes the behavior of 20000 mall customers in the city

of Bologna (Italy). The profile of each customer is obtained from her

daily GPS trajectories, and modeled through a transaction set T using

multiple features (where she lives and works, the places she frequents,

and how much she earns). Transactions are then enriched with multi-

level and multi-dimensional knowledge from external open data sources,

namely, Open Street Map (https://www.openstreetmap.org/) and the

Italian Statistic Institute ISTAT (https://www.istat.it/); the classical

Apriori algorithm [2] is applied to extract the set of FIs F out of T .
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Table 2: Notation summary

Notation Meaning

|H| ∈ [3, 6] Number of hierarchies

|L| ∈ [2, 5] Number of levels per hierarchy

ν = 20 Number of values per level

λ ∈ [0, 0.6] Similarity constant

k = 10 Number of desired clusters

F Set of FIs

HS H-summary

min(HS) Minimum summary

|M | Number of mergeability comparisons

• SyntheticDS includes multiple POSs of FIs. While all these POSs share

the same number of hierarchies (|H| = 4) and values per level (ν = 20),

they have different cardinalities |F| and different hierarchy depths |L|.

Additional details will be given in Section 7.1.

Finally, for both dataset, F is summarized into an h-summaryHS. The notation

we adopt is summarized in Table 2.

7.1. Effectiveness of the summarization strategies

Effectiveness is evaluated from different perspectives: compaction gain, in-

formation loss, interestingness, and cluster cohesion. The first two have been

defined in [9] to evaluate a summary S of the set of FIs F , the third one in [24]2:

• Compaction gain: the reduction with respect to F ,

Gain(S) = |F|/|S|

• Information loss: the total amount of information missing from S,

Loss(S) =
∑
c∈S

∑
I∈c

∑
f∈Feat(I)

lossf (I, c)

2In [24], the authors also provide a metric for intelligibility which is not applicable to our
approach since it works on itemsets with a fixed schema, while we use schemaless itemsets.
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where lossf (I, c) counts the number of values for feature f that are present

in I but not in rep(c).

• Interestingness: how different the summary elements are (intuitively, the

more unbalanced the summary, the higher its interestingness):

Int(S) =
∑
c∈S

|c| · (|c| − 1)

|F| · (|F| − 1)

Compaction gain, information loss, and interestingness do not measure how

similar the elements of each cluster are to the cluster representative; for this

reason we complement them with the cohesion of the clusters in S, defined as:

Coh(S) =
1

|S|
∑
c∈S

∑
I∈c,I 6=rep(c)

sim(rep(c), I)

|c| − 1

Figure 12 compares —in terms of cohesion, compaction gain, information

loss, and interestingness — the minimum summaries min(HS) produced by the

Bottom, Medoid, and Top strategies of SUSHI for ProfilingDS. We comment

below the main outcomes:

• Bottom and Medoid outperform Top in terms of cohesion and information

loss as a direct consequence of how they are conceived. As to interesting-

ness, Medoid outperforms both other strategies, while Bottom achieves a

lower interestingness than Top as it produces more fragmented clusters.

• Higher cohesion values could be obtained by increasing the number of

clusters in the h-summary, |min(HS)|, which however might make the

summary very complex. Figure 13 compares the three strategies for in-

creasing numbers of clusters, showing that Medoid outperforms Top since

it produces higher cohesion and lower loss of information; additionally,

Medoid can be applied even for more compact summaries (i.e., for low

values of |min(HS)|). Conversely, Bottom shows its limitations: since the

number of maximal FIs is a lower bound to |min(HS)|, it always produces

a larger number of clusters.
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Figure 12: Comparison of the Bottom, Medoid, and Top strategies in terms of effectiveness
(with k = 20) for ProfilingDS

• SUSHI allows users to tune the relative weight λ of support-based and

feature-based similarity when computing itemset relevance. Indeed, as

claimed in Section 4, clusters with similar features but different support

might underlie different correlations (in ProfilingDS, different customer

behaviors). The impact of λ is more apparent for Medoid, while Top and

Bottom are less sensitive to it.

• As to information loss, for a fixed summary cardinality, Top and Bottom

are at the highest and lowest ends of the range. This is not surprising

since, intuitively, Top and Bottom tend to generalize and to preserve the
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Figure 13: Comparison of the Bottom, Medoid, and Top strategies in terms of effectiveness
(with |F| = 12000, λ = 0.3) for ProfilingDS

summarized information, respectively.

SUSHI explicitly keeps hierarchy into account, thus it is interesting to ana-

lyze how the hierarchy structure impacts on effectiveness. To this end we rely

on our synthetic dataset, SyntheticDS. First of all, in Figure 14 we compare

the three strategies on four POSs including 5000 FIs when the depth |L| of

the four hierarchies changes from 2 to 5. Medoid outperforms Bottom and Top

in terms of compaction gain and interestingness. For shallow hierarchies, Top

and Medoid provide the most compact summaries but, as expected, Medoid

produces more cohesive summaries. Conversely, Bottom produces clusters with

high cohesion and no information loss (by definition) at the cost of a lower com-

paction gain (i.e., several small clusters). Noticeably, Medoid —which is always

better than Top in terms of cohesion and information loss— also overcomes Top

in terms of gain for deep hierarchies since, in this case, each medoid is similar

to several FIs (see Definition 7).

The h-summaries returned by SUSHI are inherently hierarchical. While the

tests described above only analyze the properties of the minimum summary, it is

also interesting to analyze how the properties of summaries change when mov-

ing from large and very detailed ones to compact and less informative ones. To
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Figure 14: Comparison of the Bottom, Medoid, and Top strategies in terms of effectiveness
(with k = 20, λ = 0.3) for SynteticDS

do this, we analyze how the properties of the minimum summary change as Al-

gorithm 1 reduces its cardinality. In particular, Figure 15 shows how cohesion,

number |M | of mergeability comparisons, compaction gain, information loss,

and interestingness evolve for increasing iteration steps. Not surprisingly, Bot-

tom and Top prune more mergeability arcs than Medoid, with Bottom being the

strategy that requires less steps to conclude the algorithm. The three strategies

merge progressively less cohesive clusters as iterations proceed. While at early

iterations the three strategies merge small clusters, towards the end (approx-

imately after the first 5000 iterations) the pruning of mergeability arcs favors

the creations of larger clusters.

Overall, we can conclude that the Top strategy produces compact but not

cohesive summaries (because it tends to generalize), the Bottom strategy pro-

duces cohesive but not compact summaries (because it preserves details), while

the Medoid strategy achieves the best balance between compactness and co-

hesion. In the process of FI exploration, the three strategies provide different

insights: Top enables users to uncover general behaviors supported by a large FI

population; Bottom uncovers idiosyncratic behaviors supported by a population

of cohesive FIs; Medoid mitigates these effects, uncovering behaviors supported
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Figure 15: Comparison of the Bottom, Top, and Medoid strategies while building the h-
summary (k = 20, |F| = 12000, λ = 0.3) for ProfilingDS

by the most cohesive FIs.

7.1.1. Optimal vs. approximated medoid

As described in Section 5.1, for the sake of scalability, we also implemented

an approximated version of the optimal medoid. At every merging step, the

percentage variation in cluster cohesion is less than 1% (i.e., even when the

approximated medoid is different from the optimal one, they are still highly

similar). However, following an iterative process, changing the representative of

even a few clusters might produce different summary results. Figure 16 shows

how the summaries produced by the approximated and optimal medoids af-

fect the Medoid strategy for increasing summary cardinalities. Noticeably, the

provided summaries have the same compaction gain. By obtaining summaries

with the same number of clusters and similar cluster medoids, the variation in

information loss is also minimal. The summary produced by the approximated
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Figure 16: Comparison of the optimal (Med) and approximated (Med∗) Medoid strategies in
terms of effectiveness (|F| = 12000, λ = 0.3) for ProfilingDS

strategy tends to be slightly more unbalanced as the medoid is not always cen-

tered in the cluster, resulting in higher interestingness (due to the quadratic

effect of cluster cardinality, small cardinality variations are amplified in the in-

terestingness metric). Due to unbalancing, the approximated medoid produces a

larger number of smaller clusters than the optimal medoid, resulting in a slightly

higher average cohesion (cohesion only differs by 0.05 in the worst case). We

can conclude that the approximated medoid does represent a valid alternative

to the optimal one.

7.2. Efficiency of the summarization strategies

We ran the tests on a machine equipped with Intel(R) Core(TM) i7-6700

CPU @ 3.40GHz CPU and 4GB RAM; all measures are in seconds. We empha-

size that we implemented SUSHI in a centralized and sequential architecture;

an implementation in a big data distributed solution is out of the paper scope.

As depicted in Figure 17-left and Figure 18-left, SUSHI runs in near-real

time even when thousands of FIs are considered. It is apparent that Medoid is

computationally heavier than Bottom and Top, due to the quadratic complexity

required to compute the medoids. Remarkably, when the approximated medoid
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Figure 18: Efficiency in function of (left) the number of FIs |F| and (right) the hierarchy
depth |L| (k = 20, λ = 0.3) for SyntheticDS

is used, the time for summarization is comparable to that of Top and Bottom.

The computational gap becomes larger as the average cluster size grows at the

different steps of Algorithm 1 (see Figure 17-right). Overall, the performances

of the summarization strategies are not sensible to the hierarchy structure (Fig-

ure 18-right).

As shown in Figure 19-left, the memory usage clearly increases with the

number of FIs, |F|. However, summarizing 105 FIs only requires 400MB. This

happens also in Figure 19-right by increasing the number of hierarchy levels

|L| and by keeping a fixed amount of itemsets, |F| = 5000: in fact, deeper

hierarchies produce more mergeability arcs in Algorithm 1. As anticipated in

Section 5.4, the memory usage does not depend on the summarization strategies

as all the produced summaries are hierarchical partitions of the existing F .
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Figure 19: Memory usage in function of (left) the number of FIs |F| and (right) the hierarchy
depth |L| (k = 20, λ = 0.3) for SyntheticDS

7.3. Comparison against BUS and MBUS

To the best of our knowledge, no previous approaches address the summa-

rization of multi-level and multi-dimensional FIs. The closest contribution to

SUSHI are [9] and its extension [24], in which the authors introduce the BUS

and MBUS algorithms to summarize transactions with a fixed schema. Before

performing a quantitative comparison, we report the key differences between

SUSHI and (M)BUS:

1. SUSHI relies on a multi-dimensional and multi-level similarity (Defini-

tion 7), while in (M)BUS similarity is expressed in terms of set contain-

ment (i.e., an FI I summarizes I ′ if I is a subset of I ′).

2. SUSHI relies on hierarchical summaries expressed as dendrograms, which

natively code containment and similarity relationships between clusters;

this allows to interactively navigate h-summaries (i.e., expansion/collapse

in Section 6.1 and zoom-in/zoom-out in Section 6.2) by following contain-

ment paths. Conversely, (M)BUS generates “flat” summaries (i.e., plain

sets of FIs); in (M)BUS, summary navigation requires multiple runs of the

algorithm with different values of |min(HS)|, which does not preserve the

relationships among clusters.

3. SUSHI implements three summarization strategies, while (M)BUS imple-

ments only the Top strategy.

Due to these differences, BUS and MBUS cannot be directly compared to
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Figure 20: Comparison of the Top strategy, BUS ,and MBUS in terms of effectiveness (with
k = 20, λ = 0.3) for ProfilingDS

SUSHI. Thus, to compare the three approaches in terms of effectiveness we

limit SUSHI to the Top strategy and only consider the minimum summaries it

produces. Figure 20 compares —in terms of cohesion, compaction gain, infor-

mation loss, and interestingness— the minimum summaries min(HS) produced

by the Top strategy of SUSHI and the summaries produced by BUS and MBUS.

Clearly, while the three approaches are comparable as to compaction gain, infor-

mation loss, and interestingness, SUSHI significantly outperforms the others in

terms of cohesion. This happens because the SUSHI similarity function captures

hierarchical similarity between FIs, while in (M)BUS similarity is limited to set

containment. So, for instance, in (M)BUS the two FIs I = {(frequents,Store)}

and I ′ = {(frequents,Macy’s)} have null similarity, hence, they cannot be clus-

tered together.

As to efficiency, Figure 21 shows that all three SUSHI strategies outperform

BUS and MBUS by orders of magnitude. The execution of the algorithms was

stopped when |F| = 1100, since obtaining larger numbers of FIs would require

hours. The dramatic improvement of SUSHI is strictly related to its capability

of reducing the number of comparisons between FIs by exploiting hierarchies,

as formally described in Section 5.2.
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To sum up, from the discussion above it clearly emerges that without a ded-

icated approach, such as SUSHI, the summarization of multi-level and multi-

dimensional FIs yields poor performances from both points of view of effective-

ness and efficiency.

7.4. Summary understandability

To assess the quality of the summary and the visual experience with SUSHI,

we conducted a set of tests with 15 users, mainly master students in data science

with basic or advanced knowledge of FI mining. After a 15-minutes introduc-

tion to SUSHI and to our profiling case study, the users were asked to answer 6

analytical questions in 6 minutes each, and finally to fill out a qualitative ques-

tionnaire. Of the 6 questions, two were answered using a spreadsheet software

with a plain CSV file, two using graph-based visualization, and two using tree-

based visualization; the dataset included 419 FIs (analyzing a larger dataset in

a plain file would have been too complex). Here is an example of question:

Which common behavior do the mall customers show among the following

ones?

1. {(livesIn,Bologna), (livesIn, close), (earns,Medium)}

2. {(livesIn,Bologna), (worksIn, far), (earns,High)}

3. {(livesIn,Bologna), (earns, 10to35), (frequents,HillsInBologna)}

Table 3 summarizes the quantitative results. From the comments made in

the questionnaire, it emerges that the spreadsheet is too dispersive and hardly
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Table 3: Outcome of user evaluation
Spreadsheet Graph-based Tree-based

Preferences 2 3 10

Complexity 7 6.7 5.8

Time (s) 262 308 231

Score 0.64 0.63 0.7

manageable for large datasets; graph-based visualization provides an intuitive

overview of the summary and well highlights FI relationships, though navigation

is difficult when several clusters are displayed; tree-based visualization gives an

intuitive overview of the summary, a focused navigation, and good readability.

Overall, users mostly appreciated tree-based visualization, which yields the

lowest complexity in understanding summaries, friendly in-depth navigation,

and the lowest time per answer. Both SUSHI visualizations provide intuitive

overviews of the summary, with tree-based visualization allowing the most fo-

cused navigation. The representativeness of the visualized FI with respect to

the FIs within the same group is also well perceived. Though the overall scores

are comparable, spreadsheet analysis is deemed to be too dispersive and not

effective for FI summarization. The longer answering time with graph-based

visualization with respect to spreadsheet is explained by considering that the

brief training made for SUSHI could not balance the previous experience of users

with spreadsheets.

8. Conclusion

The new applications emerging in the era of analytics and big data ask for

the study of new machine learning techniques as well as for revamping estab-

lished ones. In particular, our work has been inspired by a real profiling study

based on the tracking of GPS positions of people. Although multi-level and

multi-dimensional FIs are a perfect way to represent the behavior of clusters

of customers, the huge number of FIs mined hinders their effective analysis.

For this reason we proposed SUSHI, an original approach to FI summarization

and visualization based on an innovative similarity function. SUSHI turned out
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to outperform previous approaches both from the efficiency and effectiveness

points of view. Moreover, the proposed similarity and visualization techniques

were successful in the tests with real users, proving to be a valuable tool to

expedite the analysis of FIs.
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