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1 

DYNAMIC RISK-MAPS FOR TOURISM DURING EMERGENCIES  1 

 2 

1. Introduction 3 

Tourism locations can be subject to emergencies that negatively affect tourism as people are afraid 4 

for their safety (Ritchie and Jiang 2019). Past studies have addressed the impact of risk perception 5 

on travel behavior and decision-making (e.g., Zenker and Kock 2020). They found that the majority 6 

of tourists is risk-adverse and over-estimates tourism-related risks (Wang et al. 2019). Thus, tourists 7 

change travel intentions and behavior to avoid risks, for instance, deferring travel (Wiliams and 8 

Balaz 2015). The COVID-19 pandemic provides a global example that is going on for several 9 

months now (Karabulut et al., 2020), with multi-billion losses.  10 

This paper shows how to develop extremely detailed dynamic probability-density maps that represent 11 

an area's actual risk. They can help realign the risk perceptions of anyone visiting the region or 12 

residing there, but might apply in particular to tourists, as these maps allow to plot risk-levels around 13 

specific landmarks, like tourist attractions. Thus, they can contribute to containing the negative effects 14 

of an emergency by helping tourists and policy-makers identify which attractions are safe to visit and 15 

through which routes. As a consequence of implementing these maps, destinations can support 16 

tourism even during an emergency without compromising people's health and safety, rather than 17 

stopping tourisms tout-court. Such outcome could help both government and tourism managers 18 

(Ritchie & Jiang, 2019).  19 

In the following, we show how to develop a probability-density risk-map of COVID-19 contagion 20 

for London. London was chosen as it is one of the main global destinations before the pandemic, 21 

with approximately 16.38 million overseas tourists in 2019 alone (Statista 2020). We map the main 22 

tourist attractions scattered across the city and each area's risk level, square-foot by square-foot. 23 

Then, we provide examples of how prospective tourists react to the map.  24 

 25 

2. Dynamic probability-density risk-maps 26 
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Since individuals are dynamic entities, we need to model their behavior considering their (probable) 27 

movements in space, which impacts contact risk with infected/contagion. 28 

First, we need to identify the mathematical function (f) characterizing our space (London). We call 29 

S the space (London), and 𝑟  the attractions. To place the attractions (𝑟) on the map of the space (S), 30 

we envision each attraction as a vector of two Real numbers, corresponding to its latitude and 31 

longitude. Thus:   32 

𝑓: 𝑆 → ℝ;  𝑟 ∈ 𝑆 ↦ 𝑓(𝑟) ∈ ℝ (1) 33 

In this application, we map attractions with at least 15,000 reviews on TripAdvisor (at the time of 34 

data collection), which corresponds to the highest reviews rank. This led to the identification of 18 35 

attractions, reported in Table 1.  36 

Secondly, we define mathematically the probability of meeting an infected while visiting an 37 

attraction:  38 

𝑓(𝑟) ≥ 0 ∀𝑟 ∈ 𝑆 and ∬ 𝑓(𝑟) 𝑑𝑟 = 1
𝑆

 (2). 39 

London (S) is organized into 33 local authority districts (boroughs) (Σ). Formally:  Σ ⊆ S. Hence, 40 

the probability of meeting an infected in a specific borough is: 41 

𝑃(Σ) = ∬ 𝑓(𝒓) 𝑑𝒓
Σ

, 42 

Also, 𝑓(𝒓) = 𝑙𝑖𝑚Σ⟶𝒓  
𝑃(Σ)

|Σ|
 , where |Σ| is Lebesgue's measure of Σ (3). 43 

 44 

Third, density correlates with contacting: the more infects in a place, the more likely contact becomes 45 

(Bertacchini et al., 2020). Although other factors besides density could play a role (e.g., open vs. 46 

closed spaces), density is considered the dominant factor to explain contagion probability (e.g., 47 

Castorina et al., 2020; Godio et al., 2020). Thus, the contact risk with an infect in borough Σ correlates 48 

with the number of infects in that borough and rises contagion risk.  49 
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Because the data about the number of infected in each of the 33 boroughs of London (Σ1 to Σ33) are 50 

cumulative and not homogeneous, we split the model for each borough. The total number of infects 51 

(T) in the 33 boroughs are: 52 

𝑇 = {Σ𝑖, 𝑖 = 1,2, … , 𝑛 ∶  Σ𝑖 ⊂ Σ,∪ Σ𝑖 = 𝑆 𝑎𝑛𝑑 Σ𝑖 ∩ Σ𝑗 = 0 𝑖𝑓 𝑖 ≠ 𝑗} (4). 53 

 54 

The UK Government publishes daily data (D) regarding the number of COVID-19 contagions (mi) 55 

in London's 33 boroughs: 𝐷 = {(𝑚𝑖, Σ𝑖), 𝑖 = 1,2, … 𝑛}. Where 𝑚𝑖 ∈ ℕ is the number of infects in 56 

any given borough Σ𝑖. The association between each borough Σ𝑖, the number of infects 𝑚𝑖 and the 57 

attractions 𝒓𝑖𝑗 in the borough is:  58 

Σ𝑖 ↦ {𝒓𝑖𝑗 ∈ Σ𝑖|𝑗 = 1,2, … 𝑚𝑖 } (5). 59 

 60 

Four, assuming a homogeneous distribution of the 𝑚𝑖 infected persons of a borough, 𝑚𝑖 can be 61 

assumed to be distributed randomly. Thus, mi follows a normal bivariate distribution with mean in 62 

𝑠𝑖, where 𝑠𝑖 is the geo-localization associated with the specific borough Σ𝑖. Consequently, si 63 

represents a point in the borough and can be interpreted as the smallest space unit, like the square 64 

feet where one is standing. In other words, the map shows the probability density function of 65 

meeting an infected for the whole of London, borough by borough, and the smallest fraction inside 66 

each borough. This level of spatial detail is not only unprecedented, but also functional, as infected 67 

might move around (unless hospitalized or quarantined).   68 

Five, the probability of contacting an infected while visiting a tourist attraction in a borough, can be 69 

evaluated through the probability function based on the Density Kernel Estimator Method (Botev et 70 

al. 2010). This is a non-parametric estimate for the dynamic probability-density function of a 71 

random variable in space (in this case, the probability of meeting an infected precisely there) and is 72 

usually employed for data smoothing on finite data samples. Applying the Density Kernel Estimator 73 

Method, we obtain:  74 



 

 

4 

𝑝𝑐(𝑦) =
1

𝑐 ℎ
∑ 𝐾 (

𝑦−𝑦𝑖

ℎ
)𝑐

𝑖=1  (6). 75 

Where 𝑌 = {𝑦𝑖, 𝑖 = 1,2, … 𝑐: 𝑦𝑖 ∈ 𝑆} is the sets of all points (the infected) in space S, (London); 𝑦 ∈76 

𝑆 is the spatial variable 𝐾, smooth and symmetric, the kernel function for the probabilistic 77 

prediction model; ℎ is the bandwidth parameter.  78 

 79 

3. Results 80 

 81 

3.1. The dynamic probability-density risk-map for London 82 

We accessed the data published by the UK Government on the 1st of July 2020 83 

(https://coronavirus.data.gov.uk). We used Wolfram Mathematica to develop the risk-map. The 84 

software allowed obtaining 𝑌𝑖 points in London, each representing an infected, distributed through 85 

the Montecarlo Method (Rubinstein and Kroese 2016) proportionally to the infects. The points 86 

(infects) were distributed in the 33 areas of 0.2 grades (one for each borough). A smaller grade 87 

value would have been mathematically possible yet meaningless in practice. A larger grade value 88 

would have led, instead, to a rougher approximation. The 33 areas representing the 33 London's 89 

boroughs were each centered on the geo-localization of 𝑠𝑖.  90 

Table 1 reports the density probability for each Londoner attraction, with the normalized 91 

probability's corresponding value. The higher the number associated with an attraction, the higher 92 

the risk of meeting an infected there.  93 

 94 

Attraction Normalized Risk value Dynamic probability-density value 

National Gallery 1.504262 7.702237 

Churchill War Rooms 1.492284 7.400447 

St James's Park 1.489627 7.33479 

British Museum 1.529626 8.373883 

https://coronavirus.data.gov.uk/
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Victoria and Albert 

Museum 

1.450535 6,421557 

Tower Bridge 1.519243 8.093494 

Tower of London 1.525181 8.252911 

Westminster Abbey 1.489354 7.328068 

Natural History Museum 1.445969 6.321143 

Saint Paul's Cathedral 1.534369 8.504517 

Royal Opera House 1.517524 8.047818 

The Shard 1.515375 7.990988 

London Eye 1.500887 7.616228 

Hyde Park 1.464095 6.727383 

House of Parliament 1.490322 7.351912 

Borough Market 1.517162 8.038224 

Sky Garden 1.531034 8.412491 

Camden Market 1.533886 8.491138 

Table 1. Density probability for the main London attractions 95 

 96 

Figure 1 shows the probability-density function f (6), where the "peaks" and "valleys" represent -97 

respectively- a higher and lower probability of meeting infects. The three axes represent the latitude, 98 

longitude, and probability of meeting an infect. 99 
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 100 

Figure 1: The dynamic probability-density function 𝑓. 101 

 102 

Superimposing on Figure 1 the geographical map of London, we obtain the risk map in Figure 2. It 103 

can be zoomed in/out at will. Risk is shown with colors, from blue (lowest) to red (highest) instead 104 

of peaks. 105 

 106 

Figure 2: London dynamic probability-density risk-map for COVID-19 contagion (July 2020). 107 
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 108 

 109 

3.2 Tourists' reaction to the risk-map 110 

We run an online survey on 200 prospective Italian tourists (50% females, mean age = 25) from a 111 

Market Research company. Italy was the first country in Europe to lift travel restrictions, and about 112 

2.50 million Italians yearly visit London, according to the UK National Tourism Agency.  113 

Respondents saw either a normal geographical map or the risk map (randomized between-subjects). 114 

Both maps were 30cmx30cm (11x11 inches) with 300dpi resolution and could be explored (scrolling 115 

and zooming in/out).  Respondents stated their perceived risk of traveling to London and travel 116 

intention in the near future. Then, they all saw the risk-map and stated their attitude toward the risk-117 

map and perceived usefulness.  118 
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The risk map significantly lowered risk perception (Meannormal-map = 4.83 vs. Meanrisk-map = 3.48; F = 119 

54.63(1, 191), p < .001) and heightened travel intention (Meannormal-map = 3.13 vs. Meanrisk-map = 4.20; 120 

F = 16.21(1, 191), p < .001). Perceived usefulness and attitude toward the map scored high 121 

(Usefulness: Mean = 5.10 St.Dev = 1.72, Median = 5.00; Attitude: Mean = 5.17, St.dev = 1.55, 122 

Median = 5.30).  123 

In-depth, semi-structured interviews were run on with randomly extracted respondents with an 124 

introspective approach to explore reactions to the map, following McCracken (1988). They quickly 125 

converged after 20 interviews. Respondents revealed they opted for close rather than international 126 

destinations due to a lack of such information to minimize contagion risk. They stated the risk-map 127 

did not make them rule out traveling to London, and suggested them to avoid those attractions that 128 

were in boroughs at risk of contagion.  129 

Overall, this example shows that the map influences respondents, supporting their decision-making.  130 

 131 

4. Conclusion 132 

This research provides a new procedure to map risk. The results lead to a high-resolution, extremely 133 

detailed map, where tourists' attractions are mapped together with the dynamic probability-density 134 

function of being exposed to health risks. These risk map apply to anyone visiting the region, and to 135 

residents, but are of particular interest for tourists, as they allow plotting risk-levels on a 136 

geographical map while highlighting specific landmarks, like tourist attractions (as shown in figure 137 

2), and associate them with the punctual probability of contagion.  138 

These maps can contribute to the research on COVID-19 effects on the tourism industry (Karabulut 139 

et al. 2020; Zenker and Kock 2020), and can also be applied to different risks (i.e., other diseases, 140 

terrorism, etc.). They show that, even where the overall risk is high, risk can change from area to area 141 

and from time to time. Thus, they allow enforcing safe routes for tourists, rather than shutting the 142 

whole area down. Especially for those areas with high income from tourism, this would greatly impact 143 

the local tourism industry's survival by avoiding tourism bans and closure of all attractions.   144 
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In a nutshell, the use of dynamic probability-density risk-maps can be framed in the broader topic of 145 

technology helping tourism destinations (Park, 2000), represent a predictive model to formulate 146 

new tourism scenarios, and answer recent calls for new tools to protect tourists against health risks 147 

(Wang et al. 2019; Wolff et al. 2019).  148 

 149 
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