
11 January 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Herrera, J.L., Galan-Jimenez, J., Foschini, L., Bellavista, P., Berrocal, J., Murillo, J.M. (2022). QoS-Aware Fog
Node Placement for Intensive IoT Applications in SDN-Fog Scenarios. IEEE INTERNET OF THINGS JOURNAL,
9(15), 13725-13739 [10.1109/JIOT.2022.3143948].

Published Version:

QoS-Aware Fog Node Placement for Intensive IoT Applications in SDN-Fog Scenarios

Published:
DOI: http://doi.org/10.1109/JIOT.2022.3143948

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/905040 since: 2024-05-07

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/JIOT.2022.3143948
https://hdl.handle.net/11585/905040

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000 1

QoS-Aware Fog Node Placement for Intensive IoT
Applications in SDN-Fog Scenarios

Juan Luis Herrera, Jaime Galán-Jiménez, Luca Foschini, Paolo Bellavista, Javier Berrocal, and Juan M. Murillo

Abstract—The advent of the Internet of Things (IoT) paradigm
to intensive domains, such as industry, is a key enabler for the
automation of critical, real-world processes. The strict Quality of
Service (QoS) requirements of these domains make low-latency
computing paradigms, such as fog computing, very attractive for
meeting these requirements. Moreover, the requirements of scal-
ability and flexibility in the underlying network communications
motivate the use of Software-Defined Networking (SDN) in the
infrastructure. To enable these fog-SDN environments, fog nodes
that have both computing and SDN capabilities can be deployed,
thus easing the deployment of fog in SDN networks. However,
the exact placement of these fog nodes is key to the latency of the
hosts that make use of them, and thus, must be carefully assessed
to meet the stringent QoS requirements of critical, time-strict
IoT applications. This paper focuses on this fog node placement
problem by formalizing it and solving it through both optimal
and approximated methods, including comparisons with state-of-
the-art benchmarks. In particular, we analyze the performance of
each of these methods in terms of latency and execution time in
both SDN Internet topologies and Industrial IoT infrastructures.
Our proposed heuristic provides placements with near-optimal
latencies, with smaller optimality gaps than the benchmark, and
computes them in tractable times.

Index Terms—Fog computing, Internet of Things (IoT),
software-defined network (SDN), Quality of Service (QoS)

I. INTRODUCTION

THE POTENTIAL for real-world process automation
brought by the Internet of Things (IoT) paradigm has

caught the interest of intensive domains, such as industrial
manufacturing, leading to the integration of IoT in industrial
processes, termed the Industrial Internet of Things (IIoT) [1].
However, the transition of these domains towards IoT is not
simple, as these applications have very high Quality of Service
(QoS) requirements, such as low latency and short response

Manuscript received January 00, 0000; revised January 00, 0000; accepted
January 00, 0000. Date of publication January 00, 0000; date of current
version January 00, 0000. This work was partially funded by the project
RTI2018-094591-B-I00 (MCI/AEI/FEDER,UE), by the 4IE+ Project (0499-
4IE-PLUS-4-E) funded by the Interreg V-A España-Portugal (POCTEP) 2014-
2020 program, by the Department of Economy, Science and Digital Agenda of
the Government of Extremadura (GR18112, IB18030), by the Valhondo Calaff
institution, and by the European Regional Development Fund. (Corresponding
author: Juan Luis Herrera.)

J.L. Herrera, J. Galán-Jiménez, J. Berrocal and J.M. Murillo are with
the Department of Computer Science and Communications Engineering,
University of Extremadura, Spain (e-mail: [jlherrerag, jaime, juanmamu,
jberolm]@unex.es).

L. Foschini and P. Bellavista are with the Dipartamento di Informatica-
Scienza e Ingegneria, University of Bologna, Italy (e-mail: [paolo.bellavista,
luca.foschini]@unibo.it)

Digital Object Identifier 00.000/JIOT.0000.0000000

times [1]. These strict QoS requirements directly clash with
some of the architectures applied on consumer-grade IoT.
Cloud computing, the most popular deployment architecture
for IoT applications [2], features the use of cloud servers in
the core of the network. However, the large distance between
the end IoT devices and the network core complicates the
achievement of the low latencies required by these applica-
tions [3]. This issue has motivated the emergence of new
paradigms, such as fog computing, that propose bringing some
computing resources, the so-called fog nodes, closer to the
edge [4]. Thus, fog computing closes the edge-cloud gap in
the cloud continuum, lowering the latency between the IoT
devices and the fog nodes running their services.

Nonetheless, the location of the servers is not the only
factor that affects the QoS of IoT applications, the network
infrastructure that connects them together is key, because
the impact of server location on QoS heavily depends on
the network QoS. When traffic moves through the network
fabric, latency increases as longer links and more switches
are traversed. While using the least latency path may seem
as a good option, the constrained capacity of the network
links enforces to apply traffic engineering techniques [5],
allowing the network to use alternative paths, even whenever
the least latency-influenced path is congested. For this reason,
the interest on the use of Software-Defined Networking (SDN)
is increasing, in particular in IoT fog infrastructures, where this
increase has been experienced in the research community in
the recent years [6]. SDN decouples the data plane, which
is on charge of forwarding, from the control plane, which
takes into more complex network tasks such as routing.
SDN controllers, which embody the control plane, can be
programmed, enabling for network programmability and, thus,
for traffic engineering to be performed [5]. Furthermore, these
intensive domains have requirements such as infrastructure
scalability and flexibility [1], [6], which can also be met by
using SDN.

Therefore, the integration of both fog computing and SDN
allows to achieve the requirements of intensive IoT applica-
tions. In [7], some of the authors of this work proposed a
fog node (FN), specifically designed as an enabler for IIoT
applications: a single hardware box combining a SDN switch
with fog computing resources. The interest of FNs in intensive
IoT scenarios is the ease of migration: an already existing
SDN network can be fog-enabled by replacing existing SDN
switches with FN boxes, in a similar way than in the case of
IP to SDN migration [8]. Nonetheless, FN placement affects
the QoS of the applications deployed on the FNs [7], [9]–[12].

0000–0000/00$00.00 © 2021 IEEE

2 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

Thus, the placement of a FN within the infrastructure is not
to be chosen arbitrarily, and instead, it must be assessed in
order to obtain the required QoS. Furthermore, the computing
resources from FNs are finite, a phenomenon exhibited by FNs
having a limited throughput [10]. Thus, it may not be possible
to offload all the tasks from all the IoT devices directly into
a single FN. This further complicates QoS optimization, as
having multiple FNs requires not only assessing the optimal
placement for each of the FNs, but also the assignment of
which IoT devices offload their tasks to each of the FNs.
Moreover, the routing of the traffic between each IoT device
and the FN is also key for the QoS obtained, and hence,
it must also be optimized in order to achieve the best QoS
possible. This optimization can also have different objectives:
in very constrained scenarios, it must be ensured that all
IoT devices are able to meet the QoS requirement, and thus,
maximum latency must be minimized. On the other hand,
in less constrained scenarios in which the guarantee that all
IoT devices meet the objective QoS is easier to obtain, the
optimization can be aimed at minimizing the average latency
instead, enhancing the overall QoS.

Some of the authors of the present work also defined in [10]
the problem of placing a set of FNs in an infrastructure,
assigning IoT devices to FNs and routing the traffic between
them to achieve optimal QoS, that they call the Fog Node
Placement Problem (FNPP). FNPP is a NP-hard problem [9],
as it is a concrete case of a mathematical NP-hard problem,
the Capacitated Facility Location Problem [13]. Different
objectives for the FNPP can be considered. Nonetheless, [10]
only proposes a formulation-based solution that scales poorly,
and only considers average latency as an optimization ob-
jective. Thus, the main differences between [10] and this
paper include: i) the implementation of a new formulation-
based FNPP solution that minimizes the maximum latency
among all traffic flows, ii) the design and implementation
of a heuristic solution for the FNPP based on unsupervised
machine learning algorithms, iii) a more extensive evaluation,
including larger scenarios in both Internet SDN topologies
and IIoT-like scenarios, and iv) a comparison of the defined
solutions with a state-of-the-art benchmark.

Considered all the above challenges, the main contributions
of this paper are:

• The formalization of the FNPP as a Mixed-Integer Linear
Programming (MILP) optimization problem, including
two FNPP solutions based on MILP solvers.

• A heuristic algorithm that assesses solutions to the FNPP
based on unsupervised machine learning techniques and
graph algorithms.

• A performance evaluation of these methods to solve the
FNPP in Internet SDN networks, as well as IIoT sce-
narios, with topologies of varying sizes and considering
multiple scenarios.

• A comparison of all the proposed methods by contrasting
our solutions with other state-of-the-art ones.

The remainder of this paper is structured as follows. Sec. II
presents the system model for the FNPP. Sec. III details the
formulation of the FNPP’s optimal solutions, while Sec. IV

Figure 1: Topology for the example model: IIoT factory
automation.

presents our proposed heuristic. An evaluation of FNPP solu-
tions is presented in Sec. V, and Sec. VI compares the FNPP
to alternative models proposed in related literature. Finally,
Sec. VII concludes our work.

II. SYSTEM MODEL

To explain the FNPP model in detail, an example model
of an IIoT application is leveraged in this section. In our
IIoT example, a factory automation application is going to
be deployed on a SDN network topology. For simplicity’s
sake, this topology consists of five IIoT devices and five
SDN switches, arranged as depicted in Fig. 1. The factory
automation application that will be deployed has very strict
latency requirements [1], and thus, the factory owner has
decided to transform the SDN topology into a SDN-fog
infrastructure. To enable this transformation, the factory owner
makes use of FNs that follow the model from [7]: hardware
boxes that include a SDN switch and a computing device,
that will substitute existing SDN switches. These hardware
boxes support container-based virtualization, and thus enable
for the execution of IIoT services (such as data analysis or
computing services) along with performing the function of a
SDN switch. To facilitate the understanding of the example,
we assume that all links have the same latency, and thus,
latencies can be transformed into a number of hops (i.e.,
traversed links). Therefore, the factory automation application
imposes a specific QoS requirement: the maximum latency for
the application is one hop (i.e., any path longer than one hop
results in an invalid deployment). Based on this situation, we
propose two example scenarios for the FNPP: the placement
of a single FN (Fig. 2), which is the simplest case of the FNPP,
and the more generic placement of multiple FNs (Fig. 3).

In the first scenario, the factory owner will replace a single
SDN switch with a FN. The topology has five SDN switches,
hence, there are five possible placements for the FN. However,
not all placements are equally valid. For instance, let the FN be
placed in switch 1, as depicted in Fig. 2a. Assuming a shortest
path routing for all devices, we find that IIoT devices A, B,
C and E are all able to reach the FN in one hop. However, it
is impossible for IIoT device D to reach it in less than two
hops. Similarly, if the FN is placed on switch 2, IIoT device
C is unable to reach it in one hop. This pattern, in which one

HERRERA et al.: QOS-AWARE FOG NODE PLACEMENT FOR INTENSIVE IOT APPLICATIONS IN SDN-FOG SCENARIOS 3

IIoT device cannot reach the FN in an acceptable number of
hops, appears in all placements except for switch 5. Thus, the
solution to the FNPP is to place the FN in switch 5, which is
shown in Fig. 2b. Moreover, to obtain a valid deployment, it
is also key that traffic is routed in a specific manner. While
it is simple to solve the FNPP in small topologies, such as
the example one, manually testing all placements and routing
possibilities in networks with hundreds of switches, different
latencies in each link and constrained link capacities is not
as simple. Therefore, there is a need for an automatic method
that solves the FNPP.

In the second scenario, rather than a single FN, the factory
owner is willing to replace two SDN switches with FNs.
However, these FNs are less powerful than the FN from
scenario one and, therefore, each of these FNs can only process
the traffic of up to three IIoT devices. Thus, placing the FNs is
slightly different from the previous scenario: placing a single
FN in switch 5 only guarantees that up to three IIoT devices
will be able to reach it in one hop or less. Furthermore, now
there is an additional decision to be taken: which IIoT devices
should be served by each FN, meeting the capacity constraints
of the FNs. This is extremely important, since a bad decision
can result in an invalid deployment. For instance, let one FN
be placed in switch 5, and the other FN be placed in switch
2, such as represented in Fig. 3a. If IIoT devices A, B, and E
are selected to be assigned to the FN in switch 5, that leaves
IIoT devices C and D for the one in switch 2. However, while
IIoT device D can reach switch 2 in one hop, IIoT device
C cannot reach it in less than two. This deployment is, thus,
invalid. Nonetheless, if IIoT devices A, C and E are assigned
to the FN in switch 5, and therefore IIoT devices B and D
are assigned to the FN in switch 2, the deployment becomes
valid. This assignment option can be seen in Fig. 3b. The main
conclusion to draw from this scenario is that placing multiple
FNs adds FN-IIoT device assignments to the complexity of the
problem. Even in this trivial scenario, there are 10 possible
placement combinations for 2 FNs, each of them with 20
possible assignments, for a total of 200 possible solutions,
not accounting for the additional combinations that differ in
routing. In larger and more realistic scenarios, in which each
IIoT device produces a different amount of traffic, each link
has a different latency, link capacities are constrained, and
there are hundreds of switches and IIoT devices, solving the
FNPP manually is infeasible.

III. PROBLEM FORMULATION

The FNPP takes place in a network topology. We model
this network topology as an undirected graph G = {V,L},
with V vertices1 and L edges. Each of the edges represents
a link, e.g., the link from vertex i to vertex j is modeled as
lij ∈ L. Each link also has a capacity, i.e., Cij ; as well as
a transmission latency, βij . On the other hand, each vertex
v ∈ V can either be an IoT device (also called host), or a
SDN switch. Thus, we can split V into two disjoint subsets:

1We use the term vertex/vertices to avoid confusion between nodes and fog
nodes/FNs.

Table I: List of formulation notations.

Parameter Meaning
G Graph that represents the network
L Set of links of the network
V Set of vertices of the network
H Set of hosts (i.e. IoT devices) of the network
S Set of SDN switches of the network
Cij Capacity of link lij
ϕh Traffic generated by host h
α Maximum traffic that can be processed by a FN per

unit of time
βij Propagation latency of link lij
βS Processing latency of a SDN switch
L(h) Latency between host h and its mapped FN
θ Number of FNs to be placed

Decision variable Meaning
Xs Boolean to determine if a FN is placed in switch s
Yhs Boolean to determine if host h is mapped to the FN

located in switch s
fh
ij Boolean to determine if traffic generated by host h

is routed through link lij

V = H ∪ S;H ∩ S = ∅: H . S contains all SDN switches,
whereas H contains all the hosts.

Starting with S, the objective of the FNPP is to replace a
given number of SDN switches with FNs. We call this number
of FNs θ. Furthermore, each SDN switch s ∈ S is a potential
location for a FN. We assume that all FNs to be set in a
network have a capacity α for processing traffic. Moreover,
switches route the network’s traffic, and thus, they have a
processing latency of βS . Continuing with H , hosts generate
an amount of traffic that must be processed at a FN. We do not
assume that this traffic distribution is uniform, i.e, each host
can produce a different amount of traffic. Thus, the traffic
generated by a host is labeled as ϕh. It is key to understand
that both ϕh and α must be in the same unit (e.g., Gbps, Mbps,
Kbps).

Starting with traffic routing, in the FNPP, we have a set of
traffic flows, one per host, of volume ϕh. One key character-
istic of the FNPP is that we know the source of the traffic
flow (the host), but the destination (i.e., the FN assigned to
said host) is part of the FNPP solution. Thus, flows need to be
modeled based only on their source: let fh

ij∀h ∈ H; lij ∈ L be
a binary variable that takes a value of 1 if the traffic sent by
host h traverses link lij and 0 otherwise. These variables allow
the FNPP solution to route traffic, one of the required outputs.
Moreover, FNs need to be placed, and therefore, let Xs, s ∈ S
be a binary variable that is 1 if a FN is placed on switch s
and 0 otherwise. The final decision that must be taken is the
assignment between hosts and FNs. Let Yhs, h ∈ H; s ∈ S be
a binary variable that becomes 1 if host h is assigned to the
FN placed in switch s and 0 otherwise.

The objective of the FNPP is to minimize the latency
between hosts and FNs. To simplify further calculations, we
define the latency from a host h as the sum of the latencies
of the links that its traffic flow needs to traverse, plus the
processing latencies of the intermediate switches, if any. Math-
ematically, L(h) = (

∑
lij∈L fh

ij(βij+βS))−βS . Nonetheless,
there are two possible objectives for latency minimization.
In our previous works, e.g., [9], [10], we only consider the
average latency from all hosts to all switches. However, there

4 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

(a) FN placement in 1 (b) FN placement in 5

Figure 2: First scenario.
(a) First assignment option. (b) Second assignment option.

Figure 3: Second scenario.

are cases in which, although the average latency is low enough
to use the application, the hosts with the highest latencies do
not meet the QoS objective [14]. This is exactly the example
presented in Sec. II: despite the average latency in Fig. 2a
meets the objective (one hop), there is an IIoT device (D) that
is unable to use the application, because its latency is higher. In
constrained cases in which minimizing the average latency is
not enough to meet the QoS objective in every host, it is more
desirable to minimize the maximum latency instead. Thus,
one of the improvements of this work is the consideration
of another objective for latency minimization: the maximum
latency among all hosts.

Finally, we also provide a summary table of all the notations
used throughout this section in Table I for easy reference.

Therefore, given the previous definitions, the FNPP can be
formulated as either (1) or (2):

min
1

|H|
∑
h∈H

L(h) (1)

minmax
h∈H

L(h) (2)

subject to:

i ∈ V, h ∈ H :
∑
j∈V

fh
ij − fh

ji =

{
1 if i = h

−Yhi otherwise.
(3)

∀lij ∈ L :
∑
h∈H

fh
ijϕh ≤ Cij (4)

∑
s∈S

Xs ≤ θ (5)

∀s ∈ S :
∑
h∈H

ϕhYhs ≤ αXs (6)

∀h ∈ H :
∑
s∈S

Yhs = 1 (7)

∀h ∈ H, s ∈ S, lij ∈ L : Xs, Yhs, f
h
ij ∈ {0, 1} (8)

If (1) is chosen as an objective, the formulation will
minimize the average latency. On the other hand, if (2) is
chosen instead, the objective will be minimizing the maximum
latency. Furthermore, (3) represents the classic flow constrains,
and allows traffic to behave as expected (i.e., each host is the
source of a traffic flow, the assigned FN to said host is the
destination of the flow, and all the SDN switches along the
path are neither sources or destinations, only route the traffic).

Similarly, (4) enforces the capacity of each of the links in the
infrastructure. No more FNs than θ, may be placed, as per (5),
and (6) guarantees that the capacity of each FN is limited to
α. Each host can only be assigned to a FN, a constraint that
(7) guarantees. Finally, (8) ensures all the defined variables
are binary.

As a mathematical problem, the FNPP is a concrete case
of the Capacitated Facility Location Problem (CFLP) [13]. In
the CFLP, a set of facilities with limited capacities must be
placed in a graph to meet the demands of users, minimizing
the accumulated link weight of the paths between users and
facilities. The FNPP follows the same approach: placing
capacitated FNs to meet traffic demands coming from IoT
devices, in a manner that minimizes the latencies between IoT
devices and FNs. The CFLP is a problem proven to be NP-
hard [13]. Therefore, the FNPP, which can be reduced to the
CFLP, is also NP-hard.

The FNPP formulation presented in this section allows
for two solutions to appear: one that minimizes the average
latency (labeled MinMeanLat, Minimize Mean Latency), and
a completely novel one that minimizes the maximum latency
(MinMaxLat, Minimize Maximum Latency). MinMaxLat is
preferred in constrained scenarios (e.g., with a small number
of FNs, or very limited capacities), as it will make every
host meet the QoS objective if possible. However, in less
limited scenarios in which the QoS objective can be met
more easily, it is more desirable to find a better performing
solution in average. For those cases, MinMeanLat should be
used instead. Both MinMeanLat and MinMaxLat are able to
be parameterized, and hence, they can be applied to different
scenarios: multiple network topologies, number of FNs to be
placed, link capacities, FN capacities, traffic distributions, etc.
The application of MILP guarantees that the formulation yields
results that are, in fact, optimal. However, while these solutions
are valid methods to solve the FNPP, MILP solvers tend to
require a very high amount of resources (i.e., RAM, execution
time) [15]. Furthermore, these methods do not tend to scale
well with the problem size, generally increasing their resource
consumption in an exponential manner [15]. Thus, there is also
a need for heuristic solutions that are able to scale better and
solve the problem with fewer resources.

IV. HEURISTIC DESCRIPTION

In this section, we present an heuristic for the solution of the
FNPP. This heuristic is motivated by the NP-hardness of the
problem, which results in a high amount of time and resources
required by the MILP-based solutions, along with their poor

HERRERA et al.: QOS-AWARE FOG NODE PLACEMENT FOR INTENSIVE IOT APPLICATIONS IN SDN-FOG SCENARIOS 5

Algorithm 1: Midpoint selection of initial centroids

1 Input: S: set of SDN switches;
2 θ: number of FNs to place;
3 Output: centroids: initial centroids;
4 begin
5 interval := |S|

θ ;
6 first := 0;
7 last := interval;
8 centroids := ∅;
9 for i := 0 to θ do

10 candidates := S[first:last];
11 centroid := candidates[|candidates|2];
12 centroids := centroids ∪ {centroid};
13 first := last;
14 last := last+interval;
15 if first = last then
16 last := last + 1;
17 end
18 end
19 end

scalability. Thus, the objective of the heuristic is to be a fast,
lightweight, scalable, near-optimal method to solve the FNPP.

The presented heuristic can be structured as four main
algorithms that are executed sequentially. Nonetheless, to
understand the role of each of the algorithms, it is necessary
to understand a part of its core basis first. The heuristic is
based on an unsupervised machine learning algorithm named
k-medoids [16]. While the specifics of k-medoids will be
explained later, it can be understood as a method that, starting
from some initial FN placements called centroids, will move
FNs towards placements that have low latencies. Thus, the
initial FN placements need to be assessed before being able
to make use of k-medoids. It is crucial to understand that
these FN placements are merely initial, and rarely FNs stay
in their initial positions. Despite this behavior, the initial
centroids fed to k-medoids do affect its outcome. Our heuristic
supports three criteria for initial centroid assessment: mid-
point selection, highest betweenness centrality, and random.
While the two latter lack a description, since they are self-
explanatory, midpoint selection is detailed in Algorithm 1. The
computational complexity of Algorithm 1, similarly to the rest
of the algorithms used for initial centroid selection, it simply
needs to iterate over the number of FNs to place. Therefore,
the worst-case complexity of centroid selection is O(θ). While
random and midpoint selection have been used in related
literature to place FNs [11], the application of graph metrics
such as betweenness centrality to initial centroid assessment
is novel.

Once initial centroids are assessed, k-medoids can be lever-
aged. This algorithm is an unsupervised learning clustering al-
gorithm: given a data structure, k-medoids divides the structure
into clusters of data points, so that points in the same cluster
are as similar as possible to each other, and as dissimilar as
possible to points in other clusters. We have implemented our

own version of k-medoids, which uses latency as the similarity
metric and is described in Algorithm 2. Conceptually, k-
medoids splits the network into θ partitions (i.e., subsets of
vertices that are closest to each other), and places a FN in the
vertex of each partition with lowest latencies compared to the
rest. Internally, k-medoids assumes a set of initial centroids
(I), and creates a set of vertices associated to each centroid,
which is called the centroid’s cluster (lines 5-19). To do so,
k-medoids calculates, for each vertex in the infrastructure, that
vertex’s latency to each centroid (lines 9-12). Each vertex is
then added to the cluster of the centroid with minimal latency
to it (lines 13-19). Thus, k-medoids is able to generate a
network partition per centroid, which contains all the vertices
with minimal latency to the centroid, i.e., its cluster. Then, for
each of these partitions, k-medoids calculates which vertex in
the partition has the minimal average latency to the rest, i.e.,
which vertex is, considering latency as distance, the center
of the partition (lines 20-38). This vertex will become the
centroid of the partition. Two scenarios can appear at this
step: either the newly-calculated centroids may be the same
as the old centroids (line 35 is never executed), or at least
one centroid has changed (line 35 is executed). In the first
case, k-medoids is said to converge, and hence, the centroids
are the final placement for FNs. However, any change in the
centroids indicates that the placement can be enhanced: even
assuming clusters tailored for each centroid, there is another
vertex in the cluster that is a better centroid. Thus, k-medoids
is executed again, and the newly-calculated centroids are the
initial centroids for this new iteration (lines 39-41). The recur-
siveness of k-medoids guarantees that the process is repeated
until convergence is reached. Regarding the complexity of
the k-medoids algorithm, lines 20-38 in Algorithm 2 are the
most significant. In line 27, the shortest path is calculated
using Dijkstra’s algorithm, which is known to have a worst-
case complexity of O(|V | log |V |) [17]. This procedure call is
performed inside a triple-nested loop, giving these lines a total
complexity of O(θ|V |3 log |V |). However, since k-medoids is
recursive, this is repeated until convergence. Thus, Algorithm 2
has a total complexity of O(citθ|V |3 log |V |), where cit is the
number of iterations required for convergence.

The third main algorithm of the heuristic is the assignment
algorithm, which decides, for each host, which FN should
it send its traffic to. To do so, the heuristic first sorts the
hosts, in ascending order, using the size of their traffic flows
as the criteria (line 9). Thus, smaller flows are assigned first
to minimize the average latency: smaller flows are given
priority, so more flows can have smaller latencies, and hence,
average latency also shrinks. Then, for each of the hosts, the
algorithm finds the FN with minimal latency that has enough
remaining capacity to process its traffic flow (lines 10-18).
This FN is then assigned to the host. The behavior is detailed
in Algorithm 3. Complexity-wise, the most costly part of the
algorithm is line 11. In this line, FNs are sorted using the
shortest path’s distance as criterion. If this sort was performed
using TimSort, the default algorithm in languages such as
Python, the worst-case complexity of the sorting algorithm
would be O(θ log θ) [18]. Furthermore, using the shortest path
as a criterion entails using Dijkstra’s algorithm to calculate it,

6 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

Algorithm 2: Modified k-medoids

1 Input: G: topology graph;
2 I: set of initial centroids;
3 Output: F : placement for FNs;
4 begin
5 C := dictionary();
6 for i ∈ I do
7 Ci := ∅;
8 end
9 for v ∈ G.V do

10 minDist := ∞;
11 for i ∈ I do
12 centDist := shortestPathDistance(v, i, G);
13 if centDist < minDist then
14 minDist := centDist;
15 minCentroid := i;
16 end
17 end
18 CminCentroid :=CminCentroid ∪ v;
19 end
20 F := ∅;
21 changes := 0;
22 for i ∈ I do
23 minDist := ∞;
24 for v1 ∈ Ci do
25 totalDist := 0;
26 for v2 ∈ Ci − {v1} do
27 totalDist := totalDist +

shortestPathDistance(v1, v2, G);
28 end
29 if totalDist < minDist then
30 totalDist := minDist;
31 newCentroid := v1;
32 end
33 end
34 if newCentroid ̸= i then
35 changes := changes + 1;
36 end
37 F := F∪ {newCentroid};
38 end
39 if changes > 0 then
40 F := modifiedKMedoids(G, F);
41 end
42 end

with its own complexity of O(|V | log |V |) [17]. Therefore, the
complexity of Algorithm 3 is of O(θ|V | log θ log |V |).

The final algorithm takes the only remaining decision:
routing. The heuristic uses a common method for routing: k-
shortest path. In the classic k-shortest path, k paths between
each host and its assigned FN are calculated, and sorted in
ascending order according to their latency. Then, for each of
the paths, the capacity of the links traversed by the path is
checked. If all the links have enough capacity to route the
traffic, the path will be chosen as the definitive one between
the host-FN pair, and the size of the traffic flow will be

Algorithm 3: Host-FN assignment

1 Input: G: topology graph;
2 F : placement for FNs;
3 α: FN capacity;
4 ϕ: vector of traffic flows. ϕh is the size of the traffic

flow of host h;
5 Output: A: assignments, in dictionary form. Ah is the

FN assigned to host h;
6 begin
7 A := dictionary();
8 remainingCap = dictionary(keys=F , values=α);
9 sortedH := ascendingSort(H , criteria=ϕ);

10 for h ∈ sortedH do
11 FNCandidates := ascendingSort(F ,

criteria=shortestPathDistance(h, G));
12 for f ∈ FNCandidates do
13 if ϕh ≤ remainingCapf then
14 Ah := f ;
15 remainingCapf :=

remainingCapf − ϕh;
16 break;
17 end
18 end
19 end
20 end

deducted from the remaining capacity of the links. Otherwise,
the next path is selected. The heuristic computes these paths
lazily: it copies the original graph (line 10), and calculates the
shortest path between the host and the FN (line 12). If link
capacity holds (lines 14-19), it is decided to be the path for
the host-FN pair (line 21). If link capacity does not hold, all
the links without enough remaining capacity are removed from
the graph’s copy (line 18), and the shortest path is calculated
again (lines 11-21). This process is repeated until either there
are no paths between the FN and the host, or a suitable path
is found. The details of the routing algorithm can be found
in Algorithm 4. The complexity of this routing algorithm is
mainly line 12’s, which is O(|V | log |V |) [17]. However, the
shortest path is recalculated every time the capacity constraints
are not met. At worst, a single link will be removed from the
graph on every iteration, and therefore, it will be re-calculated
|L| times. As the paths need to be calculated for every host, the
worst-case complexity of Algorithm 4 is O(|H||L||V | log |V |).

The heuristic makes use of all the algorithms described in
this section, in the same order they have been presented: first,
it generates an initial set of centroids, using either midpoint,
HBC or random selection. That initial set of centroids is
fed to the modified k-medoids, which yields the placement
for the FNs. With this placement, the information about the
size of the traffic flows and the capacity of the FNs, the
heuristic assigns hosts to FNs. And finally, based on these
assignments, it routes each of the traffic flows. However,
simply pipelining the algorithms in this manner may lead to
feasibility problems, as each step cannot undo the decisions
taken by previous steps. This is something common in greedy

HERRERA et al.: QOS-AWARE FOG NODE PLACEMENT FOR INTENSIVE IOT APPLICATIONS IN SDN-FOG SCENARIOS 7

Algorithm 4: Routing algorithm

1 Input: G: topology graph;
2 ϕ: vector of traffic flows. ϕh is the size of the traffic

flow of host h;
3 A: assignments, in dictionary form. Ah is the FN

assigned to host h;
4 Output: R: routes, in dictionary form. Rh is the path

from h to its assigned FN;
5 begin
6 sortedH := descendingSort(H , criteria=ϕ);
7 R := dictionary();
8 for h ∈ sortedH do
9 finalPath := 0;

10 G′ := copy(G);
11 while finalPath ≤ 0 do
12 route := shortestPath(h, Ah, G′);
13 finalPath:= 1;
14 for lij ∈ route do
15 cap = capacity(lij , G′);
16 if cap < ϕh then
17 finalPath := 0;
18 removeLink(lij , G′);
19 end
20 end
21 end
22 Rh := route;
23 end
24 end

algorithms [11], such as the ones used in this heuristic, but
leads to possible feasibility problems, as each decision affects
all the following ones. Although the sorting in Algorithms 3
and 4 try to avoid these situations, sometimes the heuristic
may not find a solution. Nonetheless, it is key to understand
that such case does not mean that there is no solution: rather,
it means some traffic flows must be offloaded to the cloud,
rather than to the fog, as [11] explains. However, the QoS-
strict IoT applications treated in the FNPP may not properly
work with cloud offloading. Hence, this heuristic adds a retry
system to minimize these situations, up to a given number of
retries, which is a parameter for the heuristic on its own. To
guarantee that the solutions are different, and thus, that each
retry will find a different solution, the heuristic makes use of
all three criteria for finding the initial centroids. First, it tries
to use midpoint selection, as it has shown the best results.
On the next retry, it uses highest betweenness centrality,
which normally allows the heuristic to find feasible results,
although with higher latencies than midpoint. If this criteria
fails, random selection is used for the rest of the retries,
as it guarantees different initial centroids on each retry. The
end user can also select the initial criteria if they want to
skip to highest betweenness centrality or random directly on
the first retry. This behavior and pipelining is represented
in Fig. 4. Out of all the modules of the heuristic, the most
complex one is Algorithm 2, k-medoids. Within the final
heuristic, k-medoids needs to be re-executed on every retry,

Figure 4: Heuristic behavior diagram.

and therefore, the worst-case complexity of the heuristic is
O(Rcitθ|V |3 log |V |), where R is the number of retries. In
conclusion, the heuristic’s complexity depends the most on
the topology size in terms of vertices, the number of FNs to
place, the number of iterations k-medoids requires to converge
and the number of retries selected.

An interesting feature that stems from the modular nature
of the heuristic is its ability to adapt itself to dynamic
environments. In the FNPP, each FN is a hardware box, and
therefore, changing the placement of FNs in real time is
not feasible. Nonetheless, the host-FN assignments and the
paths followed by traffic can be changed in real time. To
do so, whenever a change is detected, such as an IoT node
moving from one part of the network to another, new IoT
devices being added to the network, or a change in the traffic
demands, the heuristic can be triggered to recalculate host-
FN assignments and routing. This recalculation is performed
by feeding the current FN placements as F to Algorithm 3,
and using the output of the recalculation for Algorithm 4. This
sort of execution guarantees that the FNs will not change their
placement, and lowers the complexity to O(|H||L||V | log |V |),
as the first two algorithms are skipped and there is no need to
perform retries because none of the remaining algorithms have
random components. However, the MILP-based solutions do
not support this partial execution, only the proposed heuristic
supports it.

V. PERFORMANCE EVALUATION

In this section, we present the evaluation of the FNPP
solution methods. Scenarios in 5 topologies have been tested
with 6 methods for solving the FNPP each: placement through
highest betweenness centrality (HBC), placement through
highest closeness centrality (HCC), our proposed heuristic, the
proposed heuristic of Maiti et al. [11] (which is used as a
benchmark), the MILP-based optimal solution that minimizes
the mean latency of all hosts (MinMeanLat), and the MILP-
based optimal solution that minimizes the maximum latency
among all hosts (MinMaxLat). The objective of comparing
our solutions with HBC and HCC is to evaluate the difference
between specifically designed FNPP solutions and simple
placement criteria. We assume that, without knowing about
the FNPP, a network administrator would place FNs following
either HBC or HCC, and thus, our aim is obtaining better
results than both criteria. The benchmark, which is thoroughly
described in [11], is another heuristic for solving the FNPP
proposed in related literature. The benchmark also uses a
version of k-medoids to place FNs in the network, although
it lacks assignment and routing algorithms compared to the
heuristic proposed in this paper.

8 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

It is important to note that HBC, HCC and the bench-
mark only feature a node placement algorithm. Therefore,
assignment is made in a similar manner to the heuristic, in
order to have a fair comparison between methods. Routing is
performed using k-shortest path, although the weight of links
is not their latency, but the inverse of their remaining capacity.
This choice for the links’ weight setting is used because, in
some cases, some of the methods are unable to find a fog-
only deployment (e.g., their strategy assigns host to FNs in
such a manner that they run out of free capacity to satisfy
all hosts). In these cases, the unsatisfied hosts would have
to offload their demands to the cloud instead, similar to the
approach presented in [11]. Using their remaining capacity for
routing minimizes the amount of cases in which these methods
require sending data to the cloud, hence enabling for a more
clear and fair comparison between FN placement methods.
Moreover, to maintain a fair comparison between all methods,
and to ease on the visualization of the results, these cases are
reported as if the method was unable to find a solution: if the
method requires to make use of the cloud, its results are not
depicted in the graphics. Despite this lack of visualization, it is
important to note that the methods never fail to find solutions,
rather, they fail to find a solution that does not make use of
the cloud.

A. Evaluation setup

The scenarios used for testing these methods can be divided
into two categories of experiments: i) SDN deployment, and
ii) IIoT deployment scenarios. The the first category includes
SDN deployment scenarios, which have tested the FNPP under
four topologies: Abilene, GEANT, Germany-50 and Brain.
Their information, including topology details, link capacities,
latencies and traffic matrices have been obtained from [19].
The objective of SDN scenarios is to evaluate the performance
of the FNPP over real, SDN networking scenarios. A host is
considered to be connected to each switch in order to be the
source of the information to be processed at a FN.

The second category, instead, is the IIoT deployment cate-
gory, which contains a single fog topology. The objective of
IIoT deployment scenarios is to validate the FNPP solution
in a large IIoT scenario based on a topology with a dense
edge. Concretely, we aim to use a real, pre-existing topology,
so the evaluation is performed in a topology that has been
designed using a real rationale. Hence, this topology is a
modified version of Brain, a real topology with a dense edge.
In this version, the 152 switches at Brain’s edge, concretely
those with numbers in their labels, are treated as hosts, while
the remaining 9 are left as SDN switches. However, Brain is
a Germany-wide topology, rather than an industrial facility-
wide one. Thus, Brain has been resized (i.e., the length of
the links has been shortened) through linear interpolation,
so that it is the same size as the Boeing Everett Factory,
because it is the largest industrial factory in the world [20].
This resizing affects the latency of the links, as information is
sent within the industrial facility rather than across a country.
Furthermore, IIoT scenarios have their link capacity limited
to analyze the effect of link capacity limits. These scenarios

are labeled Light Capacity Limit (LCL) and Heavy Capacity
Limit (HCL). In LCL, the link capacities are set to a maximum
of an 125% of the heaviest demand using linear interpolation:
after routing the heaviest demand, the links still have capacity
left (concretely, a 25% of said demand) to route other traffic
flows. In HCL, link capacity is set to a maximum of the
heaviest demand instead: links used to route the heaviest
demand cannot be used to route any other traffic. The LCL
scenarios are also divided into scaled (i.e., α varies with θ so
that the aggregate α of all FNs stays constant) and unscaled
(i.e., α is a fixed, constant value) to assess which one, link or
FN capacity, is more restrictive, while HCL does not have this
objective and is always unscaled. Finally, an additional IIoT
deployment scenario featuring all 161 switches and scaled FN
capacities has also been used to evaluate the effect of topology
size and complex placement decisions on the average latency.

To assess traffic, we obtained the traffic matrices from [19],
and obtained the peak matrix. We label this as traffic matrix
5. Then, we scale traffic matrix 5 by multiplying it by 0.4,
0.5, 0.7 and 0.9, generating traffic matrices 1, 2, 3 and
4, respectively [5]. These matrices are used to simulate an
increasing amount of traffic in the network. In the following
subsections, we show the results of the evaluation, first on
SDN deployment scenarios, and then on IIoT deployment
ones. Moreover, we have performed emulations on Mininet for
some of the SDN deployment scenarios. In these emulations,
we have created a series of hosts that send their traffic to their
assigned FNs using iperf, while they assess their latency as
half of the round trip time obtained with ping. The Mininet
emulations have been performed on an Amazon Web Services
t2.large instance.

The objectives of this evaluation are to assess the impact of
the number of placed FNs (i.e., θ), FN capacity (i.e., α), traffic
and link capacity in the latencies experienced by flows in the
network, as well as in the time required to obtain a solution.
Thus, four metrics are used to evaluate the solutions: the mean
latency from all hosts to their assigned FNs, the maximum FN-
host latency throughout all hosts, the statistical distribution
of the latencies and the time required to find a solution.
The first three metrics are QoS-related, and thus, allow for
a user to make a choice on a solution based on the QoS
requirements of their concrete use case (e.g., picking a method
with lower maximum latency, even if it has higher average
latency, because the scenario complicates guaranteeing that all
devices can meet the QoS requirements). The latter, although
not directly related to the QoS of the application, allow users to
also consider scalability and resource consumption to choose
a method. Moreover, we aim at comparing the effects of all
these parameters in each of the six FN placement methods
previously mentioned, in experiments involving both Internet
and IIoT-oriented fog SDN topologies.

B. Performance analysis - SDN deployment

The first analysis consists on assessing the impact of the
number of FNs to be placed in the network (θ), and each
placement method’s performance, w.r.t. average latency. Fig. 5
depicts the results of the analysis in the Abilene topology.

HERRERA et al.: QOS-AWARE FOG NODE PLACEMENT FOR INTENSIVE IOT APPLICATIONS IN SDN-FOG SCENARIOS 9

1 2 3 4
θ

1.5

2.0

2.5

3.0

3.5

4.0
Av

er
ag

e
la
te
nc
y
(m

s)
HBC
HCC

Heuristic
Benchmark

MinMaxLat
MinMeanLat

Figure 5: Average latencies in Abilene.

The main conclusion is that the correlation between θ and
average latency is inverse. In the case of optimal placement,
the correlation is similar to a harmonic progression. This is
caused by the fact that, in the best case, the latency achieved
with a single FN is divided by the number of FNs placed (i.e.,
with 2 FNs, the latency will be at best 1

2 of the original, with
3 FNs it will be 1

3 , etc.). The decreasing trend is mimicked by
every method except HBC and HCC, which have an slightly
increasing trend instead. Method-wise, the optimal solution
is always MinMeanLat, generally followed by MinMaxLat.
The heuristic is the third best method, after which comes
the benchmark, and finally HBC and HCC yielding the worst
results. It is also important to note that the benchmark requires
a cloud deployment in θ = 3. Finally, the performance
gap between the heuristic and the optimal solution tends to
decrease in higher θ values, with a 1 ms gap with θ = 2 and
merely 0.0005 ms of difference with θ = 4. The difference
between the heuristic and the benchmark depends on the value
of θ: with θ = 1, they yield the same solution, as they use
the same method to place the single FN. Nonetheless, as more
FNs need to be placed, the different assignment methods show
a difference of up to 0.34 ms in θ = 2. In θ = 3, since
the benchmark requires cloud usage, this gap increases to
approximately 45 ms.

Fig. 6 shows the average latencies in larger topologies:
GEANT (Fig. 6a), Germany-50 (Fig. 6b) and Brain (Fig. 6c).
Performance-wise, we can see in general that HBC and HCC
yield the highest latencies, followed by MinMaxLat, which
highly varies in this performance metric, raising from the 4th
place to the 2nd in most high θ scenarios. The benchmark and
the heuristic yield similar results, but the benchmark tends
to require the cloud with higher values of θ such as 3 and
4, whereas the heuristic can successfully make use of fog-
only deployments in all cases. Finally, MinMeanLat is the
optimal method, and hence, always yields the best average
latencies. In more detail, in GEANT, we find that all methods
except HBC and HCC follow a decreasing trend, similar to
the results in Fig. 5. Nonetheless, this trend is not as quick
to decrease as it was in Abilene. This is mainly related to
the shape and distribution of vertices in the infrastructure:
while Abilene is a more sparse topology, with all vertices
separated by similar distances within the USA, GEANT has a
dense core in central Europe, along with some sparse vertices

separated by much longer distances (e.g., London-New York).
Hence, to have a quickly decreasing trend, FNs must be
placed in such a manner that the dense core has very low
latencies, and the vertices far away from the core have FNs
placed in them. As MinMeanLat shows, this does not yield
optimal average latencies, hence, the trend does not decrease as
quickly as before. This also applies to the rest of the methods,
which exhibit similar trends. Continuing with Germany-50,
the trends of MinMeanLat, MeanMaxLat and the heuristic
are all decreasing. The heuristic decreases less sharply, while
MinMaxLat starts higher than the heuristic. On the other hand,
HBC and HCC exhibit a large difference in this topology: HCC
yields better latencies (approximately 1 ms lower) than HBC.
Moreover, the benchmark exhibits the opposite behaviour,
with its latency raising as θ increases. Finally, in the Brain
topology, we find a trend with sharper decreases than in the
previous topologies, due to the density of the topology. All the
methods, except HBC and HCC, exhibit a decreasing trend.
Most interestingly, the heuristic and MinMeanLat are almost
parallel, with an optimality gap of approximately 0.27 ms. The
benchmark could fall into this category as well if it did not
depend on the cloud for θ = 3 and 4. Overall, we conclude
that the trends followed by average latencies as the number
of FNs increases depend on topology density, and that the
heuristic tends to perform in a similar manner to MinMeanLat,
and does not require for the cloud as often as the benchmark.

Fig. 7 depicts the cumulative distribution function (CDF) of
the latencies experimented by each of the flows in the emulated
Mininet environment, in a situation with θ = 4. MinMeanLat
rises quickly, with a 25% of the flows staying under 64 ms
of latency. Nonetheless, there is a 20 ms gap to the remaining
75%, which steadily rises from 81 to 97 ms. Overall, we
find a behaviour in which there is a clear separation between
low-latency flows and high-latency flows. MinMaxLat and the
heuristic exhibits a very similar behaviour, the heuristic rising
faster, but MinMaxLat having lower latencies in the highest
latency flows (106 ms with MinMaxLat, 109 ms with the
heuristic). Nonetheless, both rise in a very steady manner,
only exhibiting a gap on the higher quarter. The benchmark
exhibits higher latencies at both the lowest latency flows and
the highest latency flows, while those in the middle are similar
to the heuristic and the MILP-based solutions. Finally, both
HBC and HCC yield very bad results, with a clear gap of 20
ms after the lower 10% of the flows, and with a latency of
approximately 1.5 times the one achieved by the heuristic and
MILP-based solutions.

The execution time analysis is depicted in Fig. 8. This
analysis makes use of the largest θ value to maintain fair-
ness and compare all solutions in a worst-case scenario for
execution time, since their execution time is directly related
to the value of θ. This analysis allows for a study of the
scalability of each of the methods, which may be key for their
usage in larger topologies. The main conclusion that is drawn
from this figure is that MinMaxLat does not scale well: it
is the slowest method on every case, and the gap between
MinMaxLat and the rest of the methods becomes extremely
large in topologies with 50 nodes or more (e.g., Germany-50,
Brain). In the worst-case scenario, MinMaxLat takes about 12

10 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

(a) GEANT (22 switches, 36 links). (b) Germany-50 (50 switches, 88 links). (c) Brain (161 switches, 166 links).

Figure 6: Average latencies in other topologies

60 80 100 120 140 160 180
Average latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F(
Av

er
ag

e
la
te
nc
y)

MinMaxLat
HBC
HCC
Heuristic
MinMeanLat
Benchmark

Figure 7: CDF of emulated latency in Abilene, θ = 4

Figure 8: Optimization times for all topologies, θ = 4.

minutes to optimize, a value extremely large compared to the
rest of the methods, that take less than a minute. In order not
to occlude the rest of the methods because of the results of
MinMaxLat, the color palette has been adjusted for the rest
of the methods (i.e., between 0 and 40 seconds). Continuing
with MinMeanLat, its scalability is not good either: despite
being a fairly competitive method in smaller topologies such
as Abilene or GEANT, solving the FNPP in 0.24 to 0.51
seconds, the times in Germany-50 (7.28 seconds) and Brain
(35.22 seconds) rise extremely fast. Concretely, we find that

1 2 3 4 5 76
θ

1

2

3

Av
er
ag

e
la
te
nc
y
(m

s)

Benchmark
HBC

HCC
Heuristic

MinMaxLat
MinMeanLat

Figure 9: Average latencies in LCL-scaled.

duplicating the topology size brings with it an increase of
approximately 14 times the execution time. This is common
in MILP solving, which normally has exponential temporal
complexity [15]. Thus, although 35 seconds is still a short
time, it may increase heavily on larger topologies. All the
remaining methods have very good scalabilities: HCC is the
fastest method ranging from 0.003 to 0.45 seconds, with HCC
following it (0.005 seconds to 1 second). The benchmark also
scales well (0.03 to 1.49 seconds), and the heuristic is also
very close (0.01 to 1.96 seconds). Considering the previously
analyzed results, we find that, despite the MILP optimization
is able to solve the FNPP in tractable time in topologies with
tenths or hundreds of nodes, it may be prohibitive in topologies
with thousands of nodes. Therefore, we recommend the usage
of the heuristic in such topologies.

C. Performance analysis - IIoT deployment

The first analysis to be performed in the IIoT deployment
scenarios is the average latency analysis. Very similar to the
average latency analyses performed in the SDN deployment
scenarios (Figs. 5, 6), these allow for the assessment of the
average performance of a flow.

The first IIoT analysis, performed in the LCL-scaled sce-
nario and depicted in Fig. 9, aims at assessing the effect of
θ in average latency. While LCL-scaled does feature a more
stringent link capacity limit, we find out that FN capacity (α)
is much more impacting. This is mainly because stringent
link capacity limits give a larger window for algorithms to
maneuver after setting a path, by using alternative paths for
newer flows. However, stringent FN capacity limits make each

HERRERA et al.: QOS-AWARE FOG NODE PLACEMENT FOR INTENSIVE IOT APPLICATIONS IN SDN-FOG SCENARIOS 11

1 2 3 4 5
Traffic matrix

1.0

1.5

2.0

2.5

Av
er
ag

e
la
te
nc
y
(m

s)

Benchmark
HBC

HCC
Heuristic

MinMaxLat
MinMeanLat

Figure 10: Average latencies in HCL, θ = 4.

assignment decision vital, especially for algorithms without a
retrying system, since finding an alternative FN-host assign-
ment after making an inefficient decision can be impossible.
Despite this fact, we still find the effect of traffic and link
capacity in Fig. 9. First, HBC and HCC exhibit the worst
results, followed by the benchmark, which is unable to yield
fog-only deployments any further than θ = 2, MinMaxLat, the
heuristic, and MinMeanLat being the best method. Moreover,
we also find that HBC and HCC fail to find a fog-only
deployment after θ = 4. This result comes from FN capacity
limits: LCL-scaled reduces the FN capacity with higher θ, so
that the aggregated capacity from all FNs remains constant.
Hence, since neither HBC or HCC have a retry system either,
a series of inefficient decisions lead them to requiring cloud
usage. Furthermore, latencies are more differentiated in θ = 1
than in other scenarios: MinMeanLat yields an average latency
0.2 ms lower than the rest of the methods, which also exhibit
a gap, although smaller (0.05 ms). This difference comes from
routing algorithms: the benchmark, HBC and HCC share very
similar latencies because they share a routing algorithm. The
heuristic makes use of a different algorithm, that allows it
to reduce the average in 0.05 ms, and MinMaxLat exhibits
slightly different (0.01 ms) results as well. Finally, the heuristic
has an average optimality gap of 0.26 ms.

The final average latency analysis is performed in the HCL
scenario, and its results are shown in Fig. 10. The scenario with
θ = 4 was chosen because it shows most clearly the effects of
traffic over average latency. The methods still follow a similar
order: HBC and HCC have the same results, yielding the worst
latencies among all methods (between 2.4 and 2.7 ms). Next,
the benchmark yields much better results (between 1 and 1.4
ms), being the fourth best method. The third best, very close to
the benchmark, is the MinMaxLat method (between 1 and 1.3
ms). The second best method is the heuristic (between 1 and
0.9 ms), with a small optimality gap (an average of 0.07 ms
w.r.t. MinMeanLat). The optimal method is the MinMeanLat
formulation (0.85 ms). The general trend in most methods,
most notably in the benchmark and the heuristic, is to have
average latency rise with higher traffic. This is a consequence
of the link capacity limits: since HCL imposes very strict
limits on link capacity, higher demands quickly fill up the
links of the infrastructure. Therefore, each routing algorithm is
forced to find alternative paths, which normally have a higher

1 2 3 4 5 6 7
θ

2

4

6

8

10

12

M
ax

im
um

 la
te
nc

y
(m

s)

Benchmark
HBC

HCC
Heuristic

MinMaxLat
MinMeanLat

Figure 11: Maximum latencies in HCL.

latency, and thus, overall latency rises as a consequence. This
behaviour is not exhibited by MinMeanLat or MinMaxLat,
precisely because these methods do not have a conventional
routing algorithm, and instead, route traffic based on MILP.
Thus, it consistently chooses routes that minimize the overall
or maximum latency, as opposed to using routing algorithms
based on k-shortest path. Moreover, we find that HBC and
HCC are unable to find a solution for traffic matrix 5, precisely
because their routing decisions in the initial steps leave no
room for later flows to find alternative routes.

In order to analyze maximum latency, Fig. 11 depicts the
maximum latencies among all flows the HCL scenario, with
the objective to analyze the effects of θ. As it can be seen,
the trend is the exact opposite: a higher θ is directly related
with a lower maximum latency. Dissecting this analysis by
methods, we find again HBC and HCC consistently yielding
the worst results. Moreover, the trend for both methods is
completely flat: adding more FNs does not imply a better
maximum latency if they are used. This phenomenon, which
appears also in LCL-unscaled, is related to how they manage
FN capacity: since they have a FN with enough capacity to
meet all traffic demands, they direct all the traffic towards said
FN. Thus, it is irrelevant whether more FNs are placed in the
infrastructure. The next method is the benchmark, which yields
the same results as HBC/HCC for under 3 FNs. However, as
more FNs are added, the maximum latencies achieved by the
benchmark decrease, until reaching an optimal result in θ = 7.
Overall, the gap between the benchmark and the methods with
smaller latencies is very large unless a very high number of
FNs is placed, and thus, obtaining good maximum latencies
with it can be very costly. The heuristic is next, with an
average optimality gap of only 1 ms. In general, the heuristic
tends to closely follow the optimal solutions, and, despite
needing a high number of FNs to become optimal, this number
is significantly smaller than the benchmark. Finally, once
again, both formulations yield optimal maximum latencies.
Furthermore, there is an interesting phenomenon in these
methods: there is a cap at 2 ms. After reaching this cap
with 3 FNs, not even duplicating their number will decrease
the maximum latency. This appears because FNs cannot be
placed infinitely closer to hosts, and thus, once all FNs are
placed very close to their assigned hosts, maximum latencies
are minimal, and more FNs will not decrease it further. In

12 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

Benchm
ark HBC HCC Heurist

ic
MinMax

Lat
MinMea

nLat
0

1

2

3

4

5

6

Ho
st
 to

 F
N
la
te
nc

y
(m

s)
θ

2
4
7

Figure 12: Latency box plot for LCL-unscaled.

conclusion, placing more FNs tends to lead to lower maximum
latencies, until a certain limit is achieved.

To add to these analyses, a box plot of latency for the
LCL-unscaled scenario is depicted in Fig. 12. With this box
plot, it is possible to have additional information about each
method’s distribution on latency. The first analysis considers
θ = 2. Starting with the benchmark, the box plot shows that,
although the benchmark achieves good results, they have a
large spread. The Q1 is very low, starting nearly at 0 ms,
which implies that 25% of the hosts or more have near-zero
latency. However, its Q3 is nearly 4 ms, which implies its
IQR is 4 ms wide. Thus, a 75% of the hosts have latencies
that range from almost zero latency to 4 ms, which is a very
high spread considering how it compares to other methods.
Next, HBC and HCC have very similar results and spreads:
their Q1 is close to 2 ms while their Q3 is close to 4 ms,
hence having a smaller spread at the cost of overall higher
latencies. The heuristic shares its Q1 with the benchmark, and
its spread with HBC and HCC: its Q3 is at 2 ms, and thus,
75% of the hosts have under 2 ms latencies. However, its main
difference with the MILP solutions, which the heuristic shares
its IQR with, are the whiskers. Approximately, the remaining
25% of the hosts have latencies ranging between 2 and 4 ms
with the heuristic, hence the upper whisker. In MinMaxLat and
MinMeanLat, however, all hosts have under 2 ms of latency.
A final remark that should be considered are medians: all of
the methods share a 2 ms median, meaning that 50% of the
hosts will always have under 2 ms of latency, regardless of the
method. Nonetheless, depending on the method, the other 50%
will experience higher or lower latencies: with the heuristic
and MILP solutions, the other 50% will experience similar
latencies (i.e., the median and Q3 are very close), with HBC
and HCC, they will be significantly higher (i.e., the median
and Q1 are very close), and with the benchmark, they will
be higher, although lower than with HBC and HCC. Moving
on to θ = 4, we see that most methods simply enhance their
behaviour: the benchmark has a very similar behaviour to the
heuristic’s in θ = 2, although with a lower median. Similarly,
the heuristic behaves like MinMaxLat and MinMeanLat, with
a lower median as well. HBC and HCC do not improve,
and behave equally throughout all θ values. Finally, while
MinMaxLat behaves similarly with θ = 2 and θ = 4, we
find that MinMeanLat is able to have a lower median. This

θ
1 2 3 4 5 6 7 Tra

ffic
 ma

trix

1 2 3 4 5

Ex
ec
ut
io
n
tim

e
(s
)

2
4
6
8
10
12
14

HBC
HCC

Heuristic
Benchmark

MinMaxLat
MinMeanLat

Figure 13: Execution times for LCL-unscaled.

behaviour responds to the optimization objective: MinMaxLat
does not care about how many flows have a higher latency,
as long as the overall highest one is minimal. MinMeanLat,
on the other hand, prefers to have a higher number of flows
with minimal latency. Finally, in θ = 7, we find that all
methods except HBC and HCC behave very similarly: latency
is minimized, and both the box and whiskers are near 0.
Nonetheless, there is a clear outlier at 2 ms in all cases,
which represents the limit in which maximum latency cannot
be further minimized that Fig. 11 also shows.

The next analysis is related to the execution times needed
to place FNs, assign them to hosts and route the traffic, both
for comparing all of the methods and for showing the effects
of θ and traffic over them. Since these trends are followed
in all scenarios, LCL-unscaled is used as a benchmark, with
its results being depicted in Fig. 13. Comparing methods,
we find that HCC is the fastest method, followed by HBC.
The heuristic is next, significantly slower than both of them,
but not exceedingly so. The benchmark is the third slowest
method, although it can still be considered very fast. Finally,
both MILP formulations take the most time to optimize the
FN deployment, with a gap of approximately 500% w.r.t.
the previous four methods. Out of the two, MinMeanLat is
faster than MinMaxLat in almost every case. The effects of
traffic, as well as θ, depend on the exact method: HBC and
HCC are almost unaffected by these two parameters. The
heuristic and benchmark, however, are slightly affected by
traffic: more loaded matrices, such as 4 or 5, take more time
to optimize than lightweight matrices, such as 1. θ has a
more significant effect, as placing more FNs is more time-
consuming in both methods. Finally, the MILP formulations
do not show a general trend w.r.t. each of the parameters, and
instead, have difficulties on a case-by-case basis. MinMeanLat
only has a significant peak on the case with θ = 1 and
traffic matrix 1, staying stable throughout the rest of the cases.
MinMaxLat shares this peak, while also showing significantly
higher execution times in θ = 1 with traffic matrix 2, as well

HERRERA et al.: QOS-AWARE FOG NODE PLACEMENT FOR INTENSIVE IOT APPLICATIONS IN SDN-FOG SCENARIOS 13

9 switches,
 152 hosts

161 switches,
 161 hosts

0

2

4

6

8

10
Av

er
ag

e
la
te
nc
y
(m

s)

Benchmark Heuristic MinMeanLat

Figure 14: Average latencies in different topology sizes, θ = 7.

as θ = 2 with traffic matrices 3, 4 and 5. The conclusion
from this analysis is that, out of all the methods, the most
efficient one is the heuristic: it is consistently the second
to third best placement method, as well as the third fastest
one. The benchmark, however, obtains slightly worse solutions
in a slightly higher time. Finally, HBC and HCC, despite
fast, achieve the worst results overall. The opposite can be
said about MinMaxLat and MinMeanLat, which, although
being the best placement methods, they are also the slowest.
Nonetheless, the FNPP is a design-time problem and, as such,
even the highest times, such as the 14 seconds required by
MinMeanLat and MinMaxLat, can be considered tractable
times. However, in larger topologies, it is important to consider
the scalability of the solution, as seen in the SDN deployment
analysis and Fig. 8.

The final analysis assesses the impact of topology size and
placement complexity in the average IoT to FN latency. In
order to do so, the IIoT topology has been changed by not
converting any of the original switches into hosts, and rather
connecting a host to each switch. The result is a topology
with 161 switches and 161 hosts, which is compared with
the original IIoT deployment topology, featuring 9 switches
and 152 hosts, by placing 7 FNs. Furthermore, in order to
quantitatively compare our solution to the benchmark, cloud
latency is shown in the cases the benchmark requires for
cloud deployments. The results of this analysis are depicted in
Fig. 14. It is important to note that the change in size makes the
FN placement decisions much more complex, since

(
161
7

)
=

487, 444, 845, 680 possible combinations for FN placement
exist, rather than the original

(
9
7

)
= 36. Furthermore, the IoT

to FN mapping maintains a very high complexity, with 7161

possibilities instead of 7152. Only three methods are shown:
MinMeanLat, the heuristic, and the benchmark, because the
objective metric is average latency. As previously seen, Min-
MeanLat yields optimal latencies, followed by the heuristic,
and with the benchmark in third place. The heuristic scales
well, increasing its latency by a factor of 3.52 while the
topology itself is 16.8 times larger, with 1010 times more
possible placements and 108 times more possible assignments.
In the case of the benchmark, we find that some of the IoT
devices had to be assigned to the cloud, increasing the average
latency to 8.7 ms in the original topology and 9.33 ms in
the larger one. This makes the optimality gaps become very

large, at 8.21 ms (1, 677.7%) in the original topology and
6.84 ms (374.8%) in the larger one. Nonetheless, the cloud
latencies remain mostly stable in both topologies, which results
in stable, although high, average latencies. In conclusion,
larger topologies have a clear effect on the average latency
experienced. In the present experiment, the average latency
rises by between 2 and 3 ms, an amount relevant for very time-
strict services such as IIoT factory automation [1]. Moreover,
the complexity of FN placement and assignment can heavily
affect latency, as the benchmark shows, requiring for cloud
assignments and, thus, up to 16 times higher latencies.

VI. RELATED WORK

In order to meet the requirements of intensive IoT applica-
tions, latency is a crucial QoS dimension [1], and thus, it is key
to optimize it. The optimization of QoS through the placement
of equipment, especially in SDN and fog infrastructures, is a
research topic that is still currently active and tackled from
multiple points of view [11], [12], [14], [21], [22]. In this
section, we review some of the related endeavors for latency
and QoS optimization in SDN and fog environments.

On the one hand, we find that a component of latency in
SDN networks is control latency: since the control plane is
centralized in the figure of the SDN controller, SDN equipment
must communicate with the controller in order to perform their
tasks accordingly, and said communications have a certain
latency. Control latency depends on the placement of the SDN
controller or controllers relative to the SDN switches. Hence,
the problem for the optimization of control latency by placing
the SDN controller accordingly is known in research as the
SDN Controller Placement Problem [14] (CPP). The CPP
focuses on finding which SDN switches in the network are the
best to host a SDN controller as well, and therefore, the CPP
has a similar structure to the FNPP. Nonetheless, their focus is
different: the CPP optimizes control latency and affects all the
traffic of the SDN network [14], while the FNPP optimizes the
latency of the IoT application by also allowing the offloading
of computing tasks, only affecting the traffic directed towards
the application. Furthermore, the CPP is a generalized problem
in SDN networks, while the FNPP is a specific problem
of SDN-fog scenarios. Another placement problem in IoT
networks, and more concretely in wireless sensor networks,
is the placement of base stations [21]. This problem consists
on optimally placing a set of wireless base stations in a given
area, maximizing metrics such as the coverage area of the
wireless network or the network lifetime. Nonetheless, the
station placement problem and the FNPP are different. To
summarize the differences, the objective of wireless station
placement is to optimally locate a set of wireless base stations
at arbitrary points in a specified area to carry the information
from the sensors to an information sink [21], while the role of
the FNPP would precisely be to locate the information sinks
in specific points (i.e., SDN switches).

On the other hand, the optimization of latency in IoT
applications deployed on fog scenarios is often approached
from the application point of view. Modern IoT applications
are often divided into multiple services that may be deployed

14 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

on different machines, including fog and cloud nodes [22].
Since these services often need to interact with each other,
and can be requested by different IoT devices in different
locations, it is important to deploy the application services in a
manner that minimizes the overall IoT application latency. As
Brogi et al. surveyed in [22], the endeavor for finding optimal
deployments is an active research topic on its own. While
this line of research has the same objective, minimizing the
latency of intensive IoT applications, the optimization efforts
are meant to distribute software components in computing
devices, a fundamentally different approach from the FNPP,
which is meant to place the computing devices themselves.

Finally, other authors have also tackled latency optimization
from the same perspective. These works share the core idea
with the FNPP: to minimize the application latency by placing
FNs optimally within the scenario. One of the most recent
proposals is the fog network planning problem [12], which
is also based on the idea of strategically placing FNs to
reduce latency. The fog network planning problem differs
from the FNPP’s premises: rather than fog-enabling a SDN
network, Gilbert et al. try and place a set of FNs in different
areas, i.e., geographical clusters of IoT devices. The fog
network planning problem includes FN placement and FN-
IoT device assignment, but lacks routing considerations, in-
cluding the selection of communication technologies between
FNs instead. Another interesting research line is the one
of Maiti et al., who present FN placement as a relevant
problem for IoT applications [11], [23], [24]. This set of works
solves the problem of placing a given number of FNs in
a multi-tiered SDN-fog network infrastructure. Nonetheless,
there are important differences between the FNPP and this
research line: these works focus on optimal FN placement
in tree-shaped topologies, unlike the FNPP, which considers
arbitrarily-shaped topologies. Moreover, the proposals within
this research line do not consider IoT device to FN assignment
or traffic routing because they are not required in tree-shaped
network topologies. Thus, the main difference between these
works and the FNPP is that they focus exclusively in FN
placement, whereas the FNPP includes assignment and routing
considerations.

In conclusion, the FNPP is closely related to the research
topic of latency optimization in networks, although its focus on
the placement of computing equipment in a network topology
makes it conceptually different from the CPP, wireless base
station placement, or service placement. Furthermore, unlike
the most similar works, the FNPP supports arbitrarily-shaped
network topologies, and considers the IoT devices to FNs
assignment, as well as the routing of the traffic between them.

VII. CONCLUSIONS AND FUTURE WORK

The growth and development of the IoT paradigm has gen-
erated new possibilities of real world process automation and
management in intensive domains. Nonetheless, integrating
time-strict real world processes with IoT technology calls for
time-strict IoT applications, which complicate meeting their
QoS requirements in a cloud environment. While a combined
fog-SDN infrastructure eases the achievement of the QoS

objectives, the placement of FNs in the infrastructure plays
a key role on QoS. In this paper, we presented the FNPP: the
problem of placing FNs optimally in a fog-SDN infrastructure.
We have also developed three solutions for the FNPP, two
of which (heuristic and MinMaxLat) are completely novel.
Moreover, we have evaluated these solutions in both Internet
topologies and IIoT fog environments, comparing them to
alternatives such as HBC or HCC, as well as state-of-the-
art benchmarks [11]. Our heuristic solution provides near-
optimal results, with optimality gaps under 1 ms and nearly
the same latency distributions, and finds fog-only deployments
with more ease than the benchmark and similar scalability.
On the other hand, our MILP-based solutions provide optimal
results in tractable time for small topologies.

In the future, we expect to address other QoS objectives,
such as reliability or resilience, in the FNPP, allowing for
optimal placements in terms of their fault tolerance. Moreover,
we also expect to create multi-objective solutions for the
FNPP, able to target multiple QoS objectives at the same time.
In this field, we expect to create both MILP-based, multi-
objective solutions, as well as genetic algorithms able to yield
a Pareto front. Furthermore, the FN scheduling problem, based
around the migration of the containers or virtual machines used
by FNs at execution time to optimally place them, is also a key
future work. We expect to develop solutions for this problem,
enabling for FN migration in real time.

REFERENCES

[1] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A Survey on Industrial In-
ternet of Things: A Cyber-Physical Systems Perspective,” IEEE Access,
vol. 6, pp. 78 238–78 259, 2018.

[2] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty security
considerations for cloud-supported internet of things,” IEEE Internet of
things Journal, vol. 3, no. 3, pp. 269–284, 2015.

[3] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and
A. Zanni, “A survey on fog computing for the Internet of Things,”
Pervasive and Mobile Computing, vol. 52, pp. 71 – 99, 2019.

[4] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog computing
in industrial internet of things and industry 4.0,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, pp. 4674–4682, 2018.

[5] J. Galán-Jiménez, J. Berrocal, J. L. Herrera, and M. Polverini, “Multi-
objective genetic algorithm for the joint optimization of energy efficiency
and rule reduction in software-defined networks,” in 2020 11th Interna-
tional Conference on Network of the Future (NoF), 2020, pp. 33–37.

[6] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. V. Vasilakos,
“Software-defined industrial internet of things in the context of industry
4.0,” IEEE Sensors Journal, vol. 16, no. 20, pp. 7373–7380, 2016.

[7] I. Bedhief, L. Foschini, P. Bellavista, M. Kassar, and T. Aguili, “Toward
self-adaptive software defined fog networking architecture for IIoT and
industry 4.0,” in Proceedings of IEEE CAMAD 2019, 2019.

[8] J. Galán-Jiménez, “Legacy ip-upgraded sdn nodes tradeoff in energy-
efficient hybrid ip/sdn networks,” Computer Communications, vol. 114,
pp. 106–123, 2017.

[9] J. L. Herrera, L. Foschini, J. Galán-Jiménez, and J. Berrocal, “The
service node placement problem in software-defined fog networks,” in
IEEE Symposium on Computers and Communications, 2020, pp. 1–6.

[10] J. L. Herrera, P. Bellavista, L. Foschini, J. Galán-Jiménez, J. M. Murillo,
and J. Berrocal, “Meeting stringent qos requirements in iiot-based
scenarios,” in IEEE Global Communications Conference, 2020, pp. 1–6.

[11] P. Maiti, J. Shukla, B. Sahoo, and A. K. Turuk, “QoS-aware fog nodes
placement,” in Proc. 4th IEEE Int. Conf. Recent Adv. Inf. Technol. RAIT
2018, jun 2018, pp. 1–6.

[12] G. M. Gilbert, N. Shililiandumi, and H. Kimaro, “Evolutionary ap-
proaches to fog node placement in lv distribution networks,” Interna-
tional Journal of Smart Grid, vol. 5, no. 1, pp. 1–14, 2021.

[13] S. Melkote and M. S. Daskin, “Capacitated facility location/network
design problems,” European journal of operational research, vol. 129,
no. 3, pp. 481–495, 2001.

HERRERA et al.: QOS-AWARE FOG NODE PLACEMENT FOR INTENSIVE IOT APPLICATIONS IN SDN-FOG SCENARIOS 15

[14] T. Das, V. Sridharan, and M. Gurusamy, “A Survey on Controller
Placement in SDN,” IEEE Communications Surveys & Tutorials, pp.
472–503, 2019.

[15] J. T. Linderoth and A. Lodi, “Milp software,” Wiley encyclopedia of
operations research and management science, vol. 5, pp. 3239–3248,
2010.

[16] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids
clustering,” Expert systems with applications, vol. 36, no. 2, pp. 3336–
3341, 2009.

[17] M. Barbehenn, “A note on the complexity of dijkstra’s algorithm for
graphs with weighted vertices,” IEEE transactions on computers, vol. 47,
no. 2, p. 263, 1998.

[18] N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau, “On the worst-case
complexity of timsort,” arXiv preprint arXiv:1805.08612, 2018.

[19] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” in Proceedings of INOC 2007, apr
2007.

[20] Boeing, “Boeing: Future of Flight Aviation Center & Boeing
Tour - Background Information,” 2013. [Online]. Avail-
able: https://web.archive.org/web/20130313010544/http://www.boeing.
com/commercial/tours/background.html

[21] Y. Shi and Y. T. Hou, “Optimal base station placement in wireless sensor
networks,” ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 4,
pp. 1–24, 2009.

[22] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to place your apps in
the fog: State of the art and open challenges,” Software: Practice and
Experience, vol. 50, no. 5, pp. 719–740, 2020.

[23] P. Maiti, H. K. Apat, B. Sahoo, and A. K. Turuk, “An effective approach
of latency-aware fog smart gateways deployment for iot services,”
Internet of Things, vol. 8, p. 100091, 2019.

[24] P. Maiti, H. K. Apat, A. Kumar, B. Sahoo, and A. K. Turuk, “De-
ployment of multi-tier fog computing system for iot services in smart
city,” in 2019 IEEE International Conference on Advanced Networks
and Telecommunications Systems (ANTS). IEEE, 2019, pp. 1–6.

Juan Luis Herrera received a Bachelor’s degree
in software engineering from the University of Ex-
tremadura in 2019. He is a researcher in the Com-
puter Science and Communications Engineering De-
partment of the University of Extremadura. His main
research interests include the IoT, fog computing and
SDNs.

Jaime Galán-Jiménez received a Ph.D. in computer
science and communications from the University of
Extremadura in 2014, where he is now an Assistant
Professor. His main research interests are SDNs, 5G
network planning and design, and mobile ad hoc
networks.

Luca Foschini (Senior Member, IEEE) received a
Ph.D. degree in computer science engineering from
the University of Bologna in 2007, where he is
an Associate Professor of computer engineering.
His interests span from integrated management of
distributed systems and services to wireless perva-
sive computing and scalable context data distribution
infrastructures and context-aware services.

Paolo Bellavista (Senior Member, IEEE) received
a Ph.D. in computer science engineering from the
University of Bologna, Italy, where he is now a
full professor of distributed and mobile systems.
His research activities span from pervasive wireless
computing to edge cloud computing or middleware
for Industry 4.0 applications.

Javier Berrocal (IEEE Member) is a co-founder
of Gloin. His main research interests are software
architectures, mobile computing, and edge and fog
computing. Berrocal has a Ph.D. in computer science
from the University of Extremadura, where he is
currently an Associate Professor.

Juan M. Murillo (IEEE Member) is a co-founder
of Gloin and a Full Professor at the University of
Extremadura. His research interests include software
architectures, mobile computing, and cloud comput-
ing.

