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Abstract

We study generalised linear regression and classi�cation for a synthetically generated dataset encom-
passing di�erent problems of interest, such as learning with random features, neural networks in the lazy
training regime, and the hidden manifold model. We consider the high-dimensional regime and using the
replica method from statistical physics, we provide a closed-form expression for the asymptotic general-
isation performance in these problems, valid in both the under- and over-parametrised regimes and for a
broad choice of generalised linear model loss functions. In particular, we show how to obtain analytically
the so-called double descent behaviour for logistic regression with a peak at the interpolation threshold,
we illustrate the superiority of orthogonal against random Gaussian projections in learning with random
features, and discuss the role played by correlations in the data generated by the hidden manifold model.
Beyond the interest in these particular problems, the theoretical formalism introduced in this manuscript
provides a path to further extensions to more complex tasks.

1

ar
X

iv
:2

00
2.

09
33

9v
2 

 [
m

at
h.

ST
] 

 2
0 

A
ug

 2
02

0



Contents

1 Introduction 3
1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions and related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Main analytical results 6
2.1 Generalisation error from replica method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Replicated Gaussian Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Applications of the generalisation formula 9
3.1 Double descent for classi�cation with logistic loss . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Random features: Gaussian versus orthogonal . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 The hidden manifold model phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A De�nitions and notations 14
A.1 The dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.2 The task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B Gaussian equivalence theorem 15
B.1 Gaussian equivalence theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
B.2 Replicated Gaussian equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C Replica analysis 17
C.1 Gibbs formulation of problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C.2 Replica computation of the free energy density . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C.3 Evaluating Ψw for ridge regularisation and Gaussian prior . . . . . . . . . . . . . . . . . . . . 22
C.4 Gaussian equivalent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D Saddle-point equations and the generalisation error 24
D.1 Generalisation error as a function of the overlaps . . . . . . . . . . . . . . . . . . . . . . . . . 24
D.2 Training loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
D.3 Solving for the overlaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D.4 Taking β →∞ explicitly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E Numerical Simulations 28

2



1 Introduction

One of the most important goals of learning theory is to provide generalisation bounds describing the quality
of learning a given task as a function of the number of samples. Existing results fall short of being directly
relevant for the state-of-the-art deep learning methods [1, 2]. Consequently, providing tighter results on the
generalisation error is currently a very active research subject. The traditional learning theory approach to
generalisation follows for instance the Vapnik-Chervonenkis [3] or Rademacher [4] worst-case type bounds, and
many of their more recent extensions [5]. An alternative approach, followed also in this paper, has been pursued
for decades, notably in statistical physics, where the generalisation ability of neural networks was analysed for
a range of “typical-case” scenario for synthetic data arising from a probabilistic model [6, 7, 8, 9, 10, 11, 12, 13, 14].
While at this point it is not clear which approach will lead to a complete generalisation theory of deep learning,
it is worth pursuing both directions.

The majority of works following the statistical physics approach study the generalisation error in the
so-called teacher-student framework, where the input data are element-wise i.i.d. vectors, and the labels
are generated by a teacher neural network. In contrast, in most of real scenarios the input data do not span
uniformly the input space, but rather live close to a lower-dimensional manifold. The traditional focus onto i.i.d.
Gaussian input vectors is an important limitation that has been recently stressed in [15, 14]. In [14], the authors
proposed a model of synthetic data to mimic the latent structure of real data, named the hidden manifold
model, and analysed the learning curve of one-pass stochastic gradient descent algorithm in a two-layer neural
network with a small number of hidden units also known as committee machine.

Another key limitation of the majority of existing works stemming from statistical physics is that the
learning curves were only computed for neural networks with a few hidden units. In particular, the input
dimension is considered large, the number of samples is a constant times the input dimension and the number
of hidden units is of order one. Tight learning curves were only very recently analysed for two-layer neural
networks with more hidden units. These studies addressed in particular the case of networks that have a
�xed �rst layer with random i.i.d. Gaussian weights [12, 13], or the lazy-training regime where the individual
weights change only in�nitesimally during training, thus not learning any speci�c features [16, 17, 18].

In this paper we compute the generalisation error and the corresponding learning curves, i.e. the test error
as a function of the number of samples for a model of high-dimensional data that encompasses at least the
following cases:

• generalised linear regression and classi�cation for data generated by the hidden manifold model (HMM)
of [14]. The HMM can be seen as a single-layer generative neural network with i.i.d. inputs and a rather
generic feature matrix [19, 14].

• Learning data generated by the teacher-student model with a random-features neural network [20],
with a very generic feature matrix, including deterministic ones. This model is also interesting because
of its connection with the lazy regime, that is equivalent to the random features model with slightly
more complicated features [16, 12, 13].

We give a closed-form expression for the generalisation error in the high-dimensional limit, obtained
using a non-rigorous heuristic method from statistical physics known as the replica method [21], that has
already shown its remarkable e�cacy in many problems of machine learning [6, 22, 8, 23], with many of its
predictions being rigorously proven, e.g. [24, 25]. While in the present model it remains an open problem to
derive a rigorous proof for our results, we shall provide numerical support that the formula is indeed exact in
the high-dimensional limit, and extremely accurate even for moderately small system sizes.

1.1 The model

We study high-dimensional regression and classi�cation for a synthetic dataset D = {(xµ, yµ)}nµ=1 where
each sample µ is created in the following three steps: (i) First, for each sample µ we create a vector cµ ∈ Rd as

cµ ∼ N (0, Id) , (1.1)

3



(ii) We then draw θ0 ∈ Rd from a separable distribution Pθ and draw independent labels {yµ}nµ=1 from a
(possibly probabilistic) rule f0:

yµ = f0

(
1√
d
cµ · θ0

)
∈ R . (1.2)

(iii) The input data points xµ ∈ Rp are created by a one-layer generative network with �xed and normalised
weights F ∈ Rd×p and an activation function σ : R→ R, acting component-wise:

xµ = σ

(
1√
d

F>cµ
)
. (1.3)

We study the problem of supervised learning for the dataset D aiming at achieving a low generalisation error
εg on a new sample xnew, ynew drawn by the same rule as above, where:

εg =
1

4k
Exnew,ynew

[
(ŷw(xnew)− ynew)2

]
. (1.4)

with k = 0 for regression task and k = 1 for classi�cation task. Here, ŷw is the prediction on the new label
ynew of the form:

ŷw(x) = f̂ (x · ŵ) . (1.5)

The weights ŵ ∈ Rp are learned by minimising a loss function with a ridge regularisation term (for λ ≥ 0)
and de�ned as

ŵ = argmin
w

 n∑
µ=1

`(yµ,xµ ·w) +
λ

2
||w||22

 , (1.6)

where `(·, ·) can be, for instance, a logistic, hinge, or square loss. Note that although our formula is valid for
any f0 and f̂ , we take f0 = f̂ = sign, for the classi�cation tasks and f0 = f̂ = id for the regression tasks
studied here. We now describe in more detail the above-discussed reasons why this model is of interest for
machine learning.

Hidden manifold model: The dataset D can be seen as generated from the hidden manifold model in-
troduced in [14]. From this perspective, although xµ lives in a p dimensional space, it is parametrised by a
latent d-dimensional subspace spanned by the rows of the matrix F which are "hidden" by the application of a
scalar non-linear function σ. The labels yµ are drawn from a generalised linear rule de�ned on the latent d-
dimensional subspace via eq. (1.2). In modern machine learning parlance, this can be seen as data generated by
a one-layer generative neural network, such as those trained by generative adversarial networks or variational
auto-encoders with random Gaussian inputs cµ and a rather generic weight matrix F [26, 27, 19, 28].

Random features: The model considered in this paper is also an instance of the random features learning
discussed in [20] as a way to speed up kernel-ridge-regression. From this perspective, the cµs ∈ Rd are
regarded as a set of d-dimensional i.i.d. Gaussian data points, which are projected by a feature matrix
F = (fρ)

p
ρ=1 ∈ Rd×p into a higher dimensional space, followed by a non-linearity σ. In the p→∞ limit of

in�nite number of features, performing regression on D is equivalent to kernel regression on the cµs with a
deterministic kernel K(cµ1 , cµ2) = Ef

[
σ(f · cµ1/

√
d) · σ(f · cµ2/

√
d)
]

where f ∈ Rd is sampled in the same
way as the rows of F. Random features are also intimately linked with the lazy training regime, where the
weights of a neural network stay close to their initial value during training. The training is lazy as opposed
to a “rich” one where the weights change enough to learn useful features. In this regime, neural networks
become equivalent to a random feature model with correlated features [16, 29, 30, 31, 17, 18].
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1.2 Contributions and related work

The main contribution of this work is a closed-form expression for the generalisation error εg, eq. (2.1), that is
valid in the high-dimensional limit where the number of samples n, and the two dimensions p and d are large,
but their respective ratios are of order one, and for generic sequence of matrices F satisfying the following
balance conditions:

1
√
p

p∑
i=1

wa1i w
a2
i · · ·w

as
i Fiρ1Fiρ2 · · · Fiρq = O(1), (1.7)

where {wa}ra=1 are r independent samples from the Gibbs measure (2.7), and ρ1, ρ2, · · · , ρq ∈ {1, · · · , d},
a1, a2, · · · , as ∈ {1, · · · , r} are an arbitrary choice of subset of indices, with s, q ∈ Z+. The non-linearities
f0, f̂ , σ and the loss function ` can be arbitrary. Our result for the generalisation error stems from the replica
method and we conjecture it to be exact for convex loss functions `. It can also be useful for non-convex loss
functions but in those cases it is possible that the so-called replica symmetry breaking [21] needs to be taken
into account to obtain an exact expression. In the present paper we hence focus on convex loss functions ` and
leave the more general case for future work. The �nal formulas are simpler for nonlinearities σ that give zero
when integrated over a centred Gaussian variable, and we hence focus on those cases.

An interesting application of our setting is ridge regression, i.e. taking f̂(x) = x with square loss, and
random i.i.d. Gaussian feature matrices. For this particular case [13] proved an equivalent expression. Indeed,
in this case there is an explicit solution of eq. (1.6) that can be rigorously studied with random matrix theory.
In a subsequent work [32] derived heuristically a formula for the special case of random i.i.d. Gaussian feature
matrices for the maximum margin classi�cation, corresponding to the hinge loss function in our setting, with
the di�erence, however, that the labels yµ are generated from the xµ instead of the variable cµ as in our case.

Our main technical contribution is thus to provide a generic formula for the model described in Section 1.1
for any loss function and for fairly generic features F, including for instance deterministic ones.

The authors of [14] analysed the learning dynamics of a neural network containing several hidden units
using a one-pass stochastic gradient descent (SGD) for exactly the same model of data as here. In this online
setting, the algorithm is never exposed to a sample twice, greatly simplifying the analysis as what has been
learned at a given epoch can be considered independent of the randomness of a new sample. Another motivation
of the present work is thus to study the sample complexity for this model (in our case only a bounded number
of samples is available, and the one-pass SGD would be highly suboptimal).

An additional technical contribution of our work is to derive an extension of the equivalence between the
considered data model and a model with Gaussian covariate, that has been observed and conjectured to hold
rather generically in both [14, 32]. While we do not provide a rigorous proof for this equivalence, we show
that it arises naturally using the replica method, giving further evidence for its validity.

Finally, the analysis of our formula for particular machine learning tasks of interest allows for an analytical
investigation of a rich phenomenology that is also observed empirically in real-life scenarios. In particular

• The double descent behaviour, as termed in [33] and exempli�ed in [34], is exhibited for the non-
regularized logistic regression loss. The peak of worst generalisation does not corresponds to p = n as
for the square loss [13], but rather corresponds to the threshold of linear separability of the dataset. We
also characterise the location of this threshold, generalising the results of [11] to our model.

• When using projections to approximate kernels, it has been observed that orthogonal features F perform
better than random i.i.d. [35]. We show that this behaviour arises from our analytical formula, illustrating
the "unreasonable e�ectiveness of structured random orthogonal embeddings”[35].

• We compute the phase diagram for the generalisation error for the hidden manifold model and discuss
the dependence on the various parameters, in particular the ratio between the ambient and latent
dimensions.

5



0 1 2 3 4 5

p/n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

or

Theory
Simulation
Gaussian equivalent

Figure 1: Comparison between theory (full line), and simulations with dimension d = 200 on the original
model (dots), eq. (1.3), with σ = sign, and the Gaussian equivalent model (crosses), eq. (2.10), for logistic loss,
regularisation λ=10−3, n/d = 3. Labels are generated as yµ=sign

(
cµ · θ0

)
and f̂ = sign. Both the training

loss (green) and generalisation error (blue) are depicted. The theory and the equivalence with the Gaussian
model are observed to be very accurate even at dimensions as small as d = 200.

2 Main analytical results

We now state our two main analytical results. The replica computation used here is in spirit similar to the one
performed in a number of tasks for linear and generalised linear models [36, 6, 37, 38], but requires a signi�cant
extension to account for the structure of the data. We refer the reader to the supplementary material Sec. C for
the detailed and lengthy derivation of the �nal formula. The resulting expression is conjectured to be exact
and, as we shall see, observed to be accurate even for relatively small dimensions in simulations. Additionally,
these formulas reproduce the rigorous results of [13], in the simplest particular case of a Gaussian projection
matrix and ridge regression task. It remains a challenge to prove them rigorously in broader generality.

2.1 Generalisation error from replica method

Let F be a feature matrix satisfying the balance condition stated in eq. (1.7). Then, in the high-dimensional limit
where p, d, n→∞ with α = n/p, γ = d/p �xed, the generalisation error, eq. (1.4), of the model introduced
in Sec. (1.4) for σ such that its integral over a centered Gaussian variable is zero (so that κ0 = 0 in eq. (2.10)) is
given by the following easy-to-evaluate integral:

lim
n→∞

εg = Eλ,ν
[
(f0(ν)− f̂(λ))2

]
, (2.1)

where f0(.) is de�ned in (1.2), f̂(.) in (1.5) and (ν, λ) are jointly Gaussian random variables with zero mean
and covariance matrix:

Σ =

(
ρ M?

M? Q?

)
∈ R2 (2.2)

with M? = κ1m
?
s , Q? = κ2

1q
?
s + κ2

?q
?
w. The constants κ?, κ1 depend on the nonlinearity σ via eq. (2.10), and

q?s , q
?
w,m

?
s , de�ned as:

ρ =
1

d
||θ0||2 q?s =

1

d
E||Fŵ||2 q?w =

1

p
E||ŵ||2 m?

s =
1

d
E
[
(Fŵ) · θ0

]
(2.3)
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The values of these parameters correspond to the solution of the optimisation problem in eq. (1.6), and can be
obtained as the �xed point solutions of the following set of self-consistent saddle-point equations:



V̂s =
ακ21
γV Eξ

[∫
R dy Z (y, ω0) (1− ∂ωη (y, ω1))

]
,

q̂s =
ακ21
γV 2Eξ

[∫
R dy Z (y, ω0) (η (y, ω1)− ω1)2

]
,

m̂s = ακ1
γV Eξ

[∫
R dy ∂ωZ (y, ω0) (η (y, ω1)− ω1)

]
,

V̂w = ακ2?
V Eξ

[∫
R dy Z (y, ω0) (1− ∂ωη (y, ω1))

]
,

q̂w = ακ2?
V 2 Eξ

[∫
R dy Z (y, ω0) (η (y, ω1)− ω1)2

]
,



Vs = 1
V̂s

(1− z gµ(−z)) ,
qs = m̂2

s+q̂s
V̂ 2
s

[
1− 2zgµ(−z) + z2g′µ(−z)

]
− q̂w

(λ+V̂w)V̂s

[
−zgµ(−z) + z2g′µ(−z)

]
,

ms = m̂s
V̂s

(1− z gµ(−z)) ,

Vw = γ

λ+V̂w

[
1
γ − 1 + zgµ(−z)

]
,

qw = γ q̂w
(λ+V̂w)2

[
1
γ − 1 + z2g′µ(−z)

]
,

−γ m̂2
s+q̂s

(λ+V̂w)V̂s

[
−zgµ(−z) + z2g′µ(−z)

]
,

(2.4)

written in terms of the following auxiliary variables ξ ∼ N (0, 1), z = λ+V̂w
V̂s

and functions:

η(y, ω) = argmin
x∈R

[
(x− ω)2

2V
+ `(y, x)

]
,

Z(y, ω) =

∫ dx√
2πV 0

e−
1

2V 0 (x−ω)2δ
(
y − f0(x)

)
(2.5)

where V = κ2
1Vs +κ2

?Vw , V 0 = ρ− M2

Q , Q = κ2
1qs +κ2

?qw , M = κ1ms, ω0 =
(
M/
√
Q
)
ξ and ω1 =

√
Qξ. In

the above, we assume that the matrix FF> ∈ Rd×d associated to the feature map F has a well behaved spectral
density, and denote gµ its Stieltjes transform.

The training loss on the dataset D = {xµ, yµ}nµ=1 can also be obtained from the solution of the above
equations as

lim
n→∞

εt =
λ

2α
q?w + Eξ,y [Z (y, ω?0) ` (y, η(y, ω?1))] (2.6)

where as before ξ ∼ N (0, 1), y ∼ Uni(R) and Z, η are the same as in eq. (2.5), evaluated at the solution of the
above saddle-point equations ω?0 =

(
M?/

√
Q?
)
ξ, ω?1 =

√
Q?ξ.

Sketch of derivation — We now sketch the derivation of the above result. A complete and detailed account
can be found in Sec. C of the supplementary material. The derivation is based on the key observation that
in the high-dimensional limit the asymptotic generalisation error only depends on the solution ŵ ∈ Rp of
eq. (1.5) through the scalar parameters (q?s , q

?
w,m

?
s) de�ned in eq. (2.3). The idea is therefore to rewrite the

high-dimensional optimisation problem in terms of only these scalar parameters.
The �rst step is to note that the solution of eq. (1.6) can be written as the average of the following Gibbs

measure

πβ(w|{xµ, yµ}) =
1

Zβ
e
−β
[
n∑
µ=1

`(yµ,xµ·w)+λ
2
||w||22

]
, (2.7)

in the limit β →∞. Of course, we have not gained much, since an exact calculation of πβ is intractable for
large values of n, p and d. This is where the replica method comes in. It states that the distribution of the
free energy density f = − logZβ (when seen as a random variable over di�erent realisations of dataset D)
associated with the measure µβ concentrates, in the high-dimensional limit, around a value fβ that depends
only on the averaged replicated partition function Zrβ obtained by taking r > 0 copies of Zβ :

fβ = lim
r→0+

d
dr lim

p→∞

[
−1

p

(
E{xµ,yµ}Zrβ

)]
. (2.8)
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Interestingly, E{xµ,yµ}Zrβ can be computed explicitly for r ∈ N, and the limit r → 0+ is taken by analytically
continuing to r > 0 (see Sec. C of the supplementary material). The upshot is that Zr can be written as

E{xµ,yµ}Zrβ ∝
∫

dqsdqwdms e
pΦ

(r)
β (ms,qs,qw) (2.9)

where Φβ - known as the replica symmetric potential - is a concave function depending only on the following
scalar parameters:

qs =
1

d
||Fw||2, qw =

1

p
||w||2, ms =

1

d
(Fw) · θ0

for w ∼ πβ . In the limit of p → ∞, this integral concentrates around the extremum of the potential Φ
(0)
β

for any β. Since the optimisation problem in eq. (1.5) is convex, by construction as β → ∞ the overlap
parameters (q?s , q

?
w,m

?
s) satisfying this optimisation problem are precisely the ones of eq. (2.3) corresponding

to the solution ŵ ∈ Rp of eq. (1.5).
In summary, the replica method allows to circumvent the hard-to-solve high-dimensional optimisation

problem eq. (1.5) by directly computing the generalisation error in eq. (1.4) in terms of a simpler scalar
optimisation. Doing gradient descent in Φ

(0)
β and taking β →∞ lead to the saddle-point eqs. (2.4).

2.2 Replicated Gaussian Equivalence

The backbone of the replica derivation sketched above and detailed in Sec. C of the supplementary material
is a central limit theorem type result coined as the Gaussian equivalence theorem (GET) from [14] used in
the context of the “replicated” Gibbs measure obtained by taking r copies of (2.7). In this approach, we need
to assume that the “balance condition” (1.7) applies with probability one when the weights w are sampled
from the replicated measure. We shall use this assumption in the following, checking its self-consistency via
agreement with simulations.

It is interesting to observe that, when applying the GET in the context of our replica calculation, the
resulting asymptotic generalisation error stated in Sec. 2.1 is equivalent to the asymptotic generalisation error
of the following linear model:

xµ = κ01 + κ1
1√
d

F>cµ + κ? z
µ , (2.10)

with κ0 = E [σ(z)], κ1 ≡ E [zσ(z)], κ2
? ≡ E

[
σ(z)2

]
− κ2

0 − κ2
1, and zµ ∼ N (0, Ip). We have for instance,

(κ0, κ1, κ?) ≈
(

0, 2√
3π
, 0.2003

)
for σ = erf and (κ0, κ1, κ?) =

(
0,
√

2
π ,
√

1− 2
π

)
for σ = sign, two cases

explored in the next section. This equivalence constitutes a result with an interest in its own, with applicability
beyond the scope of the generalised linear task eq. (1.6) studied here.

Equation (2.10) is precisely the mapping obtained by [13], who proved its validity rigorously in the particular
case of the square loss and Gaussian random matrix F using random matrix theory. The same equivalence arises
in the analysis of kernel random matrices [39, 40] and in the study of online learning [14]. The replica method
thus suggests that the equivalence actually holds in a much larger class of learning problem, as conjectured as
well in [32], and numerically con�rmed in all our numerical tests. It also potentially allows generalisation of
the analysis in this paper for data coming from a learned generative adversarial network, along the lines of
[41, 28].

Fig. 1 illustrates the remarkable agreement between the result of the generalisation formula, eq. (2.1) and
simulations both on the data eq. (1.3) with σ(x) = sign(x) non-linearity, and on the Gaussian equivalent
data eq. (2.10) where the non-linearity is replaced by rescaling by a constant plus noise. The agreement is
�awless as implied by the theory in the high-dimensional limit, testifying that the used system size d = 200 is
su�ciently large for the asymptotic theory to be relevant. We observed similar good agreement between the
theory and simulation in all the cases we tested, in particular in all those presented in the following.
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Figure 2: Upper panel: Generalisation error evaluated from eq. (2.1) plotted against the number of random
Gaussian features per sample p/n = 1/α and �xed ratio between the number of samples and dimension
n/d = α/γ = 3 for logistic loss (red), square loss (blue). Labels are generated as yµ = sign

(
cµ · θ0

)
, data as

xµ = sign
(
F>cµ

)
and f̂ = sign for two di�erent values of regularisation λ, a small penalty λ = 10−4 (full

line) and a value of lambda optimised for every p/n (dashed line). Lower panel: The training loss corresponding
to λ = 10−4 is depicted.

3 Applications of the generalisation formula

3.1 Double descent for classi�cation with logistic loss

Among the surprising observations in modern machine learning is the fact that one can use learning methods
that achieve zero training error, yet their generalisation error does not deteriorate as more and more parameters
are added into the neural network. The study of such “interpolators” have attracted a growing attention over
the last few years [9, 34, 33, 42, 12, 13, 43, 44], as it violates basic intuition on the bias-variance trade-o� [45].
Indeed classical learning theory suggests that generalisation should �rst improve then worsen when increasing
model complexity, following a U-shape curve. Many methods, including neural networks, instead follow a
so-called "double descent curve" [33] that displays two regimes: the "classical" U-curve found at low number
of parameters is followed at high number of parameters by an interpolation regime where the generalisation
error decreases monotonically. Consequently neural networks do not drastically over�t even when using much
more parameters than data samples [46], as actually observed already in the classical work [45]. Between the
two regimes, a "peak" occurs at the interpolation threshold [47, 22, 9, 34]. It should, however, be noted that
existence of this "interpolation" peak is an independent phenomenon from the lack of over�tting in highly
over-parametrized networks, and indeed in a number of the related works these two phenomena were observed
separately [47, 22, 9, 45]. Scaling properties of the peak and its relation to the jamming phenomena in physics
are in particular studied in [43].

Among the simple models that allow to observe this behaviour, random projections —that are related to
lazy training and kernel methods— are arguably the most natural one. The double descent has been analysed
in detail in the present model in the speci�c case of a square loss on a regression task with random Gaussian
features [13]. Our analysis allows to show the generality and the robustness of the phenomenon to other tasks,
matrices and losses. In Fig. 2 we compare the double descent as present in the square loss (blue line) with the
one of logistic loss (red line) for random Gaussian features. We plot the value of the generalisation error at
small values of the regularisation λ (full line), and for optimal value of λ (dashed line) for a �xed ratio between
the number of samples and the dimension n/d as a function of the number of random features per sample p/n.
We also plot the value of the training error (lower panel) for a small regularisation value, showing that the
peaks indeed occur when the training loss goes to zero. For the square loss the peak appears at 1/α=p/n=1
when the system of n linear equations with p parameters becomes solvable. For the logistic loss the peak
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Figure 3: Generalisation error of the logistic loss at �xed very small regularisation λ = 10−4, as a function of
n/d = α/γ and p/n = 1/α, for random Gaussian features. Labels are generated with yµ = sign

(
cµ · θ0

)
,

the data xµ = sign
(
F>cµ

)
and f̂ = sign. The interpolation peak happening where data become linearly

separable is clearly visible here.

instead appears at a value 1/α∗ where the data D become linearly separable and hence the logistic loss can
be optimised down to zero. These values 1/α∗ depends on the value n/d, and this dependence is plotted in
Fig. 4. For very large dimension d, i.e. n/d→ 0 the data matrix X is close to iid random matrix and hence the
α∗(n/d = 0) = 2 as famously derived in classical work by Cover [48]. For n/d > 0 the α∗ is growing (1/α∗
decreasing) as correlations make data easier to linearly separate, similarly as in [11].

Fig. 2 also shows that better error can be achieved with the logistic loss compared to the square loss, both for
small and optimal regularisations, except in a small region around the logistic interpolation peak. In the Kernel
limit, i.e. p/n→∞, the generalization error at optimal regularisation saturates at εg(p/n→∞) ' 0.17 for
square loss and at εg(p/n→∞) ' 0.16 for logistic loss. Fig. 3 then depicts a 3D plot of the generalisation
error also illustrating the position of the interpolation peak.

3.2 Random features: Gaussian versus orthogonal

Kernel methods are a very popular class of machine learning techniques, achieving state-of-the-art performance
on a variety of tasks with theoretical guarantees [49, 50, 51]. In the context of neural network, they are the
subject of a renewal of interest in the context of the Neural Tangent Kernel [17]. Applying kernel methods
to large-scale “big data” problems, however, poses many computational challenges, and this has motivated a
variety of contributions to develop them at scale, see, e.g., [50, 52, 53, 54]. Random features [20] are among the
most popular techniques to do so.

Here, we want to compare the performance of random projection with respect to structured ones, and
in particular orthogonal random projections [35] or deterministic matrices such as real Fourier (DCT) and
Hadamard matrices used in fast projection methods [55, 56, 57]. Up to normalisation, these matrices have the
same spectral density. Since the asymptotic generalisation error only depends on the spectrum of FF>, all
these matrices share the same theoretical prediction when properly normalised, see Fig. 5. In our computation,
left- and right-orthogonal invariance is parametrised by letting F = U>DV for U ∈ Rd×d, V ∈ Rp×p two
orthogonal matrices drawn from the Haar measure, and D ∈ Rd×p a diagonal matrix of rank min(d, p). In
order to compare the results with the Gaussian case, we �x the diagonal entries dk = max(

√
γ, 1) of D such

that an arbitrary projected vector has the same norm, on average, to the Gaussian case.
Fig. 5 shows that random orthogonal embeddings always outperform Gaussian random projections, in line

with empirical observations, and that they allow to reach the kernel limit with fewer number of projections.
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)
and f̂ = sign. The red line is with Gaussian

random features, the blue line with orthogonal features. We see that for linear separability we need smaller
number of projections p with orthogonal random features than with Gaussian.
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Figure 5: Generalisation error against the number of features per sample p/n, for a regression problem (left) and
a classi�cation one (right). Left (ridge regression): We used n/d = 2 and generated labels as yµ = cµ · θ0,
data as xµ = sign

(
F>cµ

)
and f̂(x) = x. The two curves correspond to ridge regression with Gaussian

(blue) versus orthogonal (red) projection matrix F for both λ = 10−8 (top) and optimal regularisation λ
(bottom). Right (logistic classi�cation): We used n/d = 2 and generated labels as yµ = sign

(
cµ · θ0

)
, data

as xµ = sign
(
F>cµ

)
and f̂ = sign. The two curves correspond to a logistic classi�cation with again Gaussian

(blue) versus orthogonal (red) projection matrix F for both λ = 10−4 and optimal regularisation λ. In all cases,
full lines is the theoretical prediction, and points correspond to gradient-descent simulations with d = 256.
For the simulations of orthogonally invariant matrices, we results for Hadamard matrices (dots) and DCT
Fourier matrices (diamonds).

Their behaviour is, however, qualitatively similar to the one of random i.i.d. projections. We also show in
Fig. 4 that orthogonal projections allow to separate the data more easily than the Gaussian ones, as the phase
transition curve delimiting the linear separability of the logistic loss get shifted to the left.
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n/p against the ratio of the latent and data dimension d/p, for a classi�cation task with square loss on labels
yµ = sign

(
cµ · θ0

)
and data xµ = erf

(
F>cµ

)
for the optimal values of the regularisation λ.

3.3 The hidden manifold model phase diagram

In this subsection we consider the hidden manifold model where p-dimensional x data lie on a d-dimensional
manifold, we have mainly in mind d < p. The labels y are generated using the coordinates on the manifold,
eq. (1.2).

In Fig. 6 we plot the generalisation error of classi�cation with the square loss for various values of the
regularisation λ. We �x the ratio between the dimension of the sub-manifold and the dimensionality of the
input data to d/p = 0.1 and plot the learning curve, i.e. the error as a function of the number of samples per
dimension. Depending on the value of the regularisation, we observe that the interpolation peak, which is
at α = 1 at very small regularisation (here the over-parametrised regime is on the left hand side), decreases
for larger regularisation λ. A similar behaviour has been observed for other models in the past, see e.g. [47].
Finally Fig. 6 depicts the error for optimised regularisation parameter in the black dashed line. For large
number of samples we observe the generalisation error at optimal regularisation to saturate in this case at
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εg(α→∞)→ 0.0325. A challenge for future work is to see whether better performance can be achieved on
this model by including hidden variables into the neural network.

Fig. 7 then shows the generalisation error for the optimised regularisation λ with square loss as a function
of the ratio between the latent and the data dimensions d/p. In the limit d/p� 1 the data matrix becomes
close to a random iid matrix and the labels are e�ectively random, thus only bad generalisation can be reached.
Interestingly, as d/p decreases to small values even the simple classi�cation with regularised square loss is able
to “disentangle” the hidden manifold structure in the data and to reach a rather low generalisation error. The
�gure quanti�es how the error deteriorates when the ratio between the two dimensions d/p increases. Rather
remarkably, for a low d/p a good generalisation error is achieved even in the over-parametrised regime, where
the dimension is larger than the number of samples, p > n. In a sense, the square loss linear classi�cation
is able to locate the low-dimensional subspace and �nd good generalisation even in the over-parametrised
regime as long as roughly d . n. The observed results are in qualitative agreement with the results of learning
with stochastic gradient descent in [14] where for very low d/p good generalisation error was observed in the
hidden manifold model, but a rather bad one for d/p = 0.5.
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Appendix

A De�nitions and notations

In this section we recall the models introduced in the main body of the article, and introduce the notations
used throughout the Supplementary Material.

A.1 The dataset

In this work we study a series of regression and classi�cation tasks for a dataset {xµ, yµ}nµ=1 with labels
yµ ∈ R sampled identically from a generalised linear model:

yµ ∼ P 0
y

(
yµ
∣∣∣cµ · θ0

√
d

)
, (A.1)

where the output-channel P 0
y (·) is de�ned as:

P 0
y

(
yµ
∣∣∣cµ · θ0

√
d

)
=

∫
dξµP (ξµ) δ

(
yµ − f0

(
cµ · θ0

√
d

; ξµ
))

(A.2)

for some noise ξµ and for data points xµ ∈ Rp given by:

xµ = σ

 1√
d

d∑
ρ=1

cµρfρ

 . (A.3)

The vectors cµ ∈ Rd is assumed to be identically drawn from N (0, Id), and θ0 ∈ Rd from a separable
distribution Pθ . The family of vectors fρ ∈ Rp and the scalar function σ : R→ R can be arbitrary.

Although our results are valid for the general model introduced above, the two examples we will be
exploring in this work are the noisy linear channel (for regression tasks) and the deterministic sign channel
(for classi�cation tasks):

yµ =
cµ · θ0

√
d

+
√

∆ ξµ ⇔ P 0
y

(
y
∣∣∣cµ · θ0

√
d

)
=

n∏
µ=1

N
(
yµ;

cµ · θ0

√
d

,∆

)
(A.4)

yµ = sign
(
cµ · θ0

√
d

)
⇔ P 0

y

(
y
∣∣∣cµ · θ0

√
d

)
=

n∏
µ=1

δ

(
yµ − sign

(
cµ · θ0

√
d

))
(A.5)

where ξµ ∼ N (0, 1) and ∆ > 0.
This dataset can be regarded from two di�erent perspectives.

Hidden manifold model: The dataset {xµ, yµ}µ=1,··· ,n is precisely the hidden manifold model introduced
in [14] to study the dynamics of online learning in a synthetic but structured dataset. From this perspective,
although xµ lives in a p dimensional space, it is parametrised by a latent d < p-dimensional subspace
spanned by the basis {fρ}ρ=1,··· ,d which is "hidden" by the application of a scalar nonlinear function σ
acting component-wise. The labels yµ are then drawn from a generalised linear rule de�ned on the latent
d-dimensional space.

Random features model: The dataset {xµ, yµ}µ=1,··· ,n is tightly related to the Random Features model
studied in [20] as a random approximation for kernel ridge regression. In this perspective, cµ ∈ Rd is regarded as
a collection of d-dimensional data points which are projected by a random feature matrix F = (fρ)

p
ρ=1 ∈ Rd×p

into a higher dimensional space, followed by a non-linearity σ. In the limit of in�nite number of features
d, p→∞ with �xed ratio d/p, performing ridge regression of xµ is equivalent to kernel ridge regression with
a limiting kernel depending on the distribution of the feature matrix F and on the non-linearity σ.
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A.2 The task

In this work, we study the problem of learning the rule from eq. (A.1) from the dataset {(xµ, yµ)}µ=1,··· ,n
introduced above with a generalised linear model:

ŷµ = f̂ (xµ · ŵ) (A.6)

where the weights w ∈ Rp are learned by minimising a loss function with a ridge regularisation term:

ŵ = min
w

 n∑
µ=1

`(yµ,xµ ·w) +
λ

2
||w||22

 . (A.7)

for λ > 0.
It is worth stressing that our results hold for general `, f̂ and f0 - including non-convex loss functions.

However, for the purpose of the applications explored in this manuscript, we will be mostly interested in the
cases f̂(x) = f0(x) = x for regression and f̂(x) = f0(x) = sign(x) for classi�cation, and we will focus on
the following two loss functions:

`(yµ,xµ ·w) =

{
1
2(yµ − xµ ·w)2, square loss
log
(
1 + e−y

µ(xµ·w)
)
, logistic loss

(A.8)

Note that these loss functions are strictly convex. Therefore, for these losses, the regularised optimisation
problem in (A.7) has a unique solution.

Given a new pair (xnew, ynew) drawn independently from the same distribution as {(xµ, yµ)}nµ=1, we
de�ne the success of our �t through the generalisation error, de�ned as:

εg =
1

4k
Exnew,ynew (ynew − ŷnew)2 (A.9)

where ŷnew = f̂(xnew · ŵ), and for convenience we choose k = 0 for the regression tasks and k = 1 for
the classi�cation task, such that the generalisation error in this case counts misclassi�cation. Note that for a
classi�cation problem, the generalisation error is just one minus the classi�cation error.

Similarly, we de�ne the training loss on the dataset {xµ, yµ}nµ=1 as:

εt =
1

n
E{xµ,yµ}

 n∑
µ=1

` (yµ,xµ · ŵ) +
λ

2
‖ŵ‖22

 . (A.10)

Finally, all the results of this manuscript are derived in the high-dimensional limit, also known as thermodynamic
limit in the physics literature, in which we take p, d, n → ∞ while keeping the ratios α = n/p, γ = d/p
�xed.

B Gaussian equivalence theorem

In this section we introduce the replicated Gaussian equivalence (rGE), a central result we will need for our
replica calculation of the generalisation error in Sec. 2.1 of the main body. The rGET is a stronger version of
the Gaussian equivalence theorem (GET) that was introduced and proved in [14]. Previously, particular cases
of the GET were derived in the context of random matrix theory [58, 39, 59, 40]. The gaussian equivalence has
also been stated and used in [13, 32].
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B.1 Gaussian equivalence theorem

Let F ∈ Rd×p be a �xed matrix, wa ∈ Rp, 1 ≤ a ≤ r be a family of vectors, θ0 ∈ Rd be a �xed vector and
σ : R→ R be a scalar function acting component-wise on vectors.

Let c ∈ Rd be a Gaussian vector N (0, Id). The GET is a statement about the (joint) statistics of the
following r + 1 random variables

λa =
1
√
p
wa · σ(u) ∈ R, ν =

1√
d
c · θ0 ∈ R. (B.1)

in the asymptotic limit where d, p→∞with �xed p/d and �xed r. For simplicity, assume that σ(x) = −σ(−x)
is an odd function. Further, suppose that in the previously introduced limit the following two balance conditions
hold:

Condition 1:

1√
d

d∑
ρ=1

FiρFjρ = O(1), (B.2)

for any ρ.
Condition 2:

Sa1,...,akρ1,...,ρq =
1
√
p

p∑
i=1

wa1i w
a2
i · · ·w

ak
i Fiρ1Fiρ2 · · ·Fiρq = O(1), (B.3)

for any integers k ≥ 0, q > 0, for any choice of indices ρ1, ρ2, · · · , ρq ∈ {1, · · · , d} all distinct from each
other, and for any choice of indices a1, a2, · · · , ak ∈ {1, · · · , r}. Under the aforementioned conditions, the
following theorem holds:

Theorem 1. In the limit d, p→∞ with �xed p/d, the random variables {λa, ν} are jointly normal, with zero
mean and covariances:

E
[
λaλb

]
=
κ2
?

p
wa ·wb +

κ2
1

d
sa · sb, E

[
ν2
]

=
1

d
||θ0||2

E [λaν] =
κ1

d
sa · θ0 (B.4)

where:

sa =
1
√
p
Fwa ∈ Rd, a = 1, · · · , r (B.5)

and

κ0 = Ez [σ(z)] , κ1 = Ez [zσ(z)] , κ2
? = Ez

[
σ(z)2

]
− κ2

0 − κ2
1 (B.6)

where z ∼ N (0, 1).

B.2 Replicated Gaussian equivalence

Note that the GET holds for a �xed family {wa}ra=1 and matrix F ∈ Rd×p satisfying the balance condition
from eq. (B.3). In the replica setting, we will need to apply the GET under an average over r samples (refered
here as replicas) of the Gibbs distribution µβ , introduced in eq. 2.7 on the main. We therefore shall require the
assumption that the balance condition eq. (B.3) holds for any sample of µβ . We refer to this stronger version
of the GET as the replicated Gaussian equivalence (rGE). Although proving this result is out of the scope of the
present work, we check its self-consistency extensively with numerical simulations.
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C Replica analysis

In this section we give a full derivation of the result in Sec. 2 in the main manuscript for the generalisation error
of the problem de�ned in Sec. A. Our derivation follows from a Gibbs formulation of the optimisation problem
in eq. (A.7) followed by a replica analysis inspired by the toolbox of the statistical physics of disordered
systems.

C.1 Gibbs formulation of problem

Given the dataset {xµ, yµ}nµ=1 de�ned in Section A.1, we de�ne the following Gibbs measure over Rp:

µβ(w|{xµ, yµ}) =
1

Zβ
e
−β
[
n∑
µ=1

`(yµ,xµ·w)+λ
2
||w||22

]
=

1

Zβ

n∏
µ=1

e−β`(y
µ,xµ·w)

︸ ︷︷ ︸
≡Py(y|w·xµ)

p∏
i=1

e−
βλ
2
w2
i

︸ ︷︷ ︸
≡Pw(w)

(C.1)

for β > 0. When β →∞, the Gibbs measure peaks at the solution of the optimisation problem in eq. (A.7) -
which, in the particular case of a strictly convex loss, is unique. Note that in the second equality we de�ned
the factorised distributions Py and Pw, showing that µβ can be interpreted as a posterior distribution of w
given the dataset {xµ, yµ}, with Py and Pw being the likelihood and prior distributions respectively.

An exact calculation of µβ is intractable for large values of n, p and d. However, the interest in µβ is that
in the limit n, p, d→∞ with d/p and n/p �xed, the free energy density associated to the Gibbs measure:

fβ = − lim
p→∞

1

p
E{xµ,yµ} logZβ (C.2)

can be computed exactly using the replica method, and at β →∞ give us the optimal overlaps:

qw =
1

p
E||ŵ||2 qx =

1

d
E||Fŵ||2 mx =

1

d
E
[
θ0 · Fŵ

]
(C.3)

that - as we will see - fully characterise the generalisation error de�ned in eq. (A.9).

C.2 Replica computation of the free energy density

The replica calculation of fβ is based on a large deviation principle for the free energy density. Let

fβ({xµ, yµ}) = −1

p
logZβ (C.4)

be the free energy density for one given sample of the problem, i.e. a �xed dataset {xµ, yµ}nµ=1. We assume
that the distribution P (f) of the free energy density, seen as a random variable over di�erent samples of the
problem, satis�es a large deviation principle, in the sense that, in the thermodynamic limit:

P (f) ' epΦ(f) , (C.5)

with Φ a concave function reaching its maximum at the free energy density f = fβ , with Φ(fβ) = 0. This
hypothesis includes the notion of self-averageness which states that the free-energy density is the same for
almost all samples in the thermodynamic limit.

The value of fβ can be computed by computing the replicated partition function

E{xµ,yµ}Zrβ =

∫
df ep[Φ(f)−rf ] , (C.6)

and taking the limit

fβ = lim
r→0+

d
dr lim

p→∞

[
−1

p

(
E{xµ,yµ}Zrβ

)]
(C.7)
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Although this procedure is not fully rigorous, experience from the statistical physics of disordered systems
shows that it gives exact results, and in fact the resulting expression can be veri�ed to match the numerical
simulations.

Using the replica method we need to evaluate:

E{xµ,yµ}Zrβ =

∫
dθ0 Pθ(θ

0)

∫ r∏
a=1

dw Pw (wa)×

×
n∏
µ=1

∫
dyµ Ecµ

[
P 0
y

(
yµ
∣∣cµ · θ0

√
d

) r∏
a=1

Py

(
yµ|wa · σ

(
1√
d

F>cµ
))]

︸ ︷︷ ︸
(I)

(C.8)

where Pw and Py have been de�ned in (C.1). In order to compute this quantity, we introduce, for each point µ
in the database, the r + 1 variables

νµ =
1√
d
cµ · θ0 , (C.9)

λaµ = wa · σ
(

1√
d

F>cµ
)
. (C.10)

Choosing cµ at random induces a joint distribution P (νµ, λ
a
µ). In the thermodynamic limit p, d→∞ with

�xed p/n, and for matrices F satisfying the balance condition in eq. (B.3), the replicated Gaussian equivalence
introduced in Section B.2 tells us that, for a given µ, the r + 1 variables {νµ, λaµ}ra=1 are Gaussian random
values with zero mean and covariance given by:

Σab =

(
ρ Ma

Ma Qab

)
∈ R(r+1)×(r+1) (C.11)

The elements of the covariance matrix Ma and Qab are the rescaled version of the so-called overlap parameters:

ρ =
1

d
||θ0||2, ma

s =
1

d
sa · θ0, qabs =

1

d
sa · sb, qabw =

1

p
wa ·wb, (C.12)

where sa = 1√
pFwa. They are thus given by:

Ma = κ1m
a
s , Qab = κ2

?q
ab
w + κ2

1q
ab
s . (C.13)

where κ1 = Ez [zσ(z)] and κ2
? = Ez

[
σ(z)2

]
− κ2

1 as in eq. (B.6). With this notation, the asymptotic joint
probability is simply written as:

P (νµ, {λaµ}ra=1) =
1√

det (2πΣ)
e
− 1

2

r∑
a,b=0

zaµ(Σ−1)
ab
zbµ

(C.14)

with z0
µ = νµ and zaµ = λaµ for a = 1, · · · , r. The average over the replicated partition function (C.8) therefore

reads:

E{xµ,yµ}Zrβ =

∫
dθ0 Pθ(θ

0)

∫ r∏
a=1

dw Pw (wa)
n∏
µ=1

∫
dyµ×

×
∫

dνµ P 0
y (yµ|νµ)

∫ r∏
a=1

dλaµ P (νµ, {λaµ})
r∏

a=1

Py
(
yµ|{λaµ}

)
. (C.15)

18



Rewriting as a saddle-point problem

Note that after taking the average over x, the integrals involved in the replicated partition function only
couple through the overlap parameters. It is therefore useful to introduce the following Dirac δ-functions to
unconstrain them, introducing the decomposition:

1 = d−(r+1)2
∫

dρ δ
(
dρ− ||θ0||2

) ∫ r∏
a=1

dma
s δ
(
dma

s − sa · θ0
)
×

×
∫ ∏

1≤a≤b≤r
dqabs δ

(
dqabs − sa · sb

)∫ ∏
1≤a≤b≤r

dqabw δ
(
pqabw −wa ·wb

)

= d−(r+1)2
∫ dρdρ̂

2π
e−iρ̂(dρ−||θ

0||2)
∫ r∏

a=1

dma
sdm̂a

s

2π
e
−i

r∑
a=1

m̂as(dmas−sa·θ0)
×

×
∫ ∏

1≤a≤b≤r

dqabs dq̂abs
2π

e
−i

∑
1≤a≤b≤r

q̂abs (dqabs −sa·sb)
∫ ∏

1≤a≤b≤r

dqabw q̂abw
2π

e
−i

∑
1≤a≤b≤r

q̂abw (pqabw −wa·wb)
.

(C.16)
Introducing the above in eq. (C.15) and exchanging the integration order allows to factorise the integrals over
the d, p, n dimensions and rewrite:

E{xµ,yµ}Zrβ =

∫ dρdρ̂
2π

∫ r∏
a=1

dma
sdm̂a

s

2π

∫ ∏
1≤a≤b≤r

dqabs dq̂abs
2π

dqabw dq̂abw
2π

epΦ
(r) (C.17)

where the integrals over the variables ma
s , qabs and qabw run over R, while those over m̂a

s , q̂abs and q̂abw run over
iR. The function Φ(r), a function of all the overlap parameters, is given by:

Φ(r) = −γρρ̂− γ
r∑

a=1

ma
sm̂

a
s −

∑
1≤a≤b≤r

(
γqabs q̂

ab
s + qwq̂w

)
+ αΨ(r)

y

(
ρ,ma

s , q
ab
s , q

ab
w

)
+ Ψ(r)

w

(
ρ̂, m̂a

s , q̂
ab
s , q̂

ab
w

)
(C.18)

where we recall that α = n/p, γ = d/p, and we have introduced:

Ψ(r)
y = log

∫
dy
∫

dν P 0
y (y|ν)

∫ r∏
a=1

[dλaPy (y|λa)]P (ν, {λa})

Ψ(r)
w =

1

p
log

∫
dθ0Pθ(θ

0)e−ρ̂||θ
0||2
∫ r∏

a=1

dwa Pw(wa)e

∑
1≤a≤b≤r

[q̂abw wa·wb+q̂abs sa·sb]−
r∑
a=1

m̂ass
a·θ0

(C.19)

Note that sa = 1√
pFwa is a function of wa, and must be kept under the wa integral. In the thermodynamic

limit where p→∞ with n/p and d/p �xed, the integral in eq. (C.17) concentrates around the values of the
overlap parameters that extremize Φ(r), and therefore

f = − lim
r→0+

1

r
extr

{ρ,ρ̂,mas ,m̂as}
{qabs ,q̂abs ,qabw ,q̂abw }

Φ(r). (C.20)

Replica symmetric Ansatz

In order to proceed with the r → 0+ limit, we restrict the extremization above to the following replica
symmetric Ansatz:

ma
s = ms m̂a = m̂s for a = 1, · · · , r

qaas/w = rs/w q̂aas/w = −1

2
r̂s/w for a = 1, · · · , r

qabs/w = qs/w q̂abs/w = q̂s/w for 1 ≤ a < b ≤ r (C.21)
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Note that, in the particular case of a convex loss function with λ > 0, the replica symmetric Ansatz is justi�ed:
the problem only admitting one solution, it a fortiori coincides with the replica symmetric one. For non-convex
losses, solutions that are not replica symmetric (also known as replica symmetry breaking) are possible, and
the energy landscape of the free energy needs to be carefully analysed. In the practical applications explored
in this manuscript, we focus on convex losses with ridge regularisation, and therefore the replica symmetric
assumption is fully justi�ed.

Before proceeding with the limit in eq. (C.20), we need to verify that the above Ansatz is well de�ned - in
other words, that we have not introduced a spurious order one term in Φ that would diverge. This means we
need to check that lim

r→0+
Φ = 0.

First, with a bit of algebra one can check that, within our replica symmetric Ansatz:

lim
r→0+

Ψ(r)
y = 0. (C.22)

Therefore,

lim
r→0+

Φ(r) = −γρρ̂+ γ log

∫
R

dθ0 Pθ
(
θ0
)
eρ̂θ

02 (C.23)

where we have used the fact that Pθ is a factorised distribution to take the p→∞ limit. In order for this limit
to be 0, we need that ρ̂ = 0, which also �xes ρ to be a constant given by the second moment of θ0:

ρ = Eθ0
[
θ02
]

(C.24)

We now proceed with the limit in eq. (C.20). Let’s look �rst at Ψy . The non-trivial limit comes from the fact
that det Σ and Σ−1 are non-trivial functions of r. It is not hard to see, however, that Σ−1 itself has replica
symmetric structure, with components given by:(

Σ−1
)00

= ρ̃ =
R+ (r − 1)Q

ρ(R+ (r − 1)Q)− rM2
,

(
Σ−1

)aa
= R̃ =

ρR+ (r − 2)ρ Q− (r − 1)M2

(R−Q)(ρ R+ (r − 1)ρ Q− r M2)(
Σ−1

)a0
= M̃ =

M

r M2 − ρ R− (r − 1)ρ Q
,
(
Σ−1

)ab
= Q̃ =

M2 − ρ Q
(R−Q)(ρ R+ (r − 1)ρ Q− r M2)

(C.25)

where M , Q and R are the rescaled overlap parameters in the replica symmetric Ansatz, that is:

M = κ1ms, Q = κ2
?qw + κ2

1qs, R = κ2
?rw + κ2

1rs. (C.26)

This allows us to write:

Ψ(r)
y = log

∫
dy
∫

dν P 0
y (y|ν) e−

ρ̃
2
ν2
∫ r∏

a=1

dλaPy (y|λa) e
− Q̃

2

n∑
a,b=1

λaλb− R̃−Q̃
2

r∑
a=1

(λa)2−M̃ν
n∑
a=1

λa

− 1

2
log det (2πΣ) . (C.27)

In order to completely factor the integral above in the replica space, we use the Hubbard-Stratonovich trans-
formation:

e
− Q̃

2

r∑
a,b=1

λaλb

= Eξe
√
−Q̃ξ

r∑
a=1

λa

(C.28)

for ξ ∼ N (0, 1), such that

Ψ(r)
y = Eξ log

∫
dy
∫

dν P 0
y (y|ν) e−

ρ̃
2
ν2
[∫

dλPy (y|λ) e
− R̃−Q̃

2
λ2+

(√
−Q̃ξ−M̃ν

)
λ
]r

− 1

2
log det (2πΣ) . (C.29)
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Taking into account the r dependence of the inverse elements and of the determinant, we can take the limit to
get:

lim
r→0+

1

r
Ψ(r)
y = Eξ

∫
R

dy
∫ dν√

2πρ
P 0
y (y|ν) e

− 1
2ρ

ν2
log

∫ dλ√
2π

Py (y|λ)e
− 1

2
λ2

R−Q+

(√
Q−M2/ρ
R−Q ξ+

M/ρ
R−Q ν

)
λ

− 1

2
log (R−Q)− 1

2

Q

R−Q
(C.30)

Finally, making a change of variables and de�ning:

Z ·/0y (y;ω, V ) =

∫ dx√
2πV

e−
1
2V

(x−ω)2P ·/0y (y|x) (C.31)

allows us to rewrite the limit of Ψy - which abusing notation we still denote Ψy - as:

Ψy = Eξ
[∫

R
dy Z0

y

(
y;

M√
Q
ξ, ρ − M2

Q

)
logZy

(
y;
√
Qξ,R−Q

)]
. (C.32)

One can follow a very similar approach for the limit of Ψw, although in this case the limit is much simpler,
since there is no r dependence on the hat variables. The limit can be written as:

Ψw = lim
p→∞

1

p
Eξ,η,θ0 log

∫
Rd

ds Ps(s; η)e−
V̂s
2
||s||2+(

√
q̂sξ1d+m̂sθ0)

>
s (C.33)

for ξ, η ∼ N (0, 1), and we have de�ned:

Ps(s; η) =

∫
Rp

dw Pw(w)e−
V̂w
2
||w||2+

√
q̂wη1>p wδ

(
s− 1
√
p

Fw
)

(C.34)

and we have de�ned the shorthands V̂w = r̂w + q̂w and V̂s = r̂s + q̂s.

Summary of the replica symmetric free energy density

Summarising the calculation above, the replica symmetric free energy density reads:

f = extr
{
− γ

2
rsr̂s −

γ

2
qsq̂s + γmsm̂s −

1

2
rwr̂w −

1

2
qwq̂w

− αΨy(R,Q,M)−Ψw (r̂s, q̂s, m̂s, r̂w, q̂w)
}

(C.35)

with α = n
p , γ = d

p , and:

Q = κ2
1qs + κ2

?qw, R = κ2
1rs + κ2

?rw M = κ1ms. (C.36)

The so-called potentials (Ψy,Ψw) are given by:

Ψw = lim
p→∞

1

p
Eξ,η,θ0 log

∫
Rd

dsPs(s; η)e−
V̂s
2
||s||2+(

√
q̂sξ1d+m̂sθ0)

>
s (C.37)

Ψy = Eξ
[∫

R
dy Z0

y

(
y;

M√
Q
ξ, ρ − M2

Q

)
logZy

(
y;
√
Qξ,R−Q

)]
. (C.38)

where:

Ps(s; η) =

∫
Rp

dw Pw(w)e−
V̂w
2
||w||2+

√
q̂wη1>p wδ

(
s− 1
√
p

Fw
)

Z ·/0y (y;ω, V ) =

∫ dx√
2πV

e−
1
2V

(x−ω)2P ·/0y (y|x) (C.39)
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C.3 Evaluating Ψw for ridge regularisation and Gaussian prior

Note that as long as the limit in Ψw is well de�ned, the eq. (C.35) holds for anyPθ andPw . However, as discussed
in Sec. A.1, we are interested in θ0 ∼ N (0, Id) and ridge regularisation so that Pw = exp

(
−βλ

2 ||w||
2
)

. In
this case, we simply have:

P (s; η) =
e
p
2
η2q̂w
βλ+V̂w

(βλ+ V̂w)p/2
N (s;µ,Σ) (C.40)

with:

µ =

√
q̂wη

βλ+ V̂w

F1p√
p
∈ Rd, Σ =

1

βλ+ V̂w

FF>

p
∈ Rd×d. (C.41)

Therefore the argument of the logarithm in Ψw is just another Gaussian integral we can do explicitly:

Ese−
V̂s
2
||s||2+b>s =

e
p
2
η2q̂w
βλ+V̂w(

βλ+ V̂w

)p/2 e−
1
2
µ>Σ−1µ+ 1

2V̂s
||b+Σ−1µ||2√

det
(

Id + V̂sΣ
) e

− 1
2V̂s

(b+Σ−1µ)
>

(Id+V̂sΣ)
−1

(b+Σ−1µ) (C.42)

where we have de�ned the shorthand b =
(√
q̂sξ1d + m̂sθ

0
)
∈ Rd. Inserting back in eq. (C.37) and taking

the log,

Ψw = lim
p→∞

Eθ0,ξ,η
[

1

2

η2q̂w

βλ+ V̂w
− 1

2
log
(
βλ+ V̂w

)
− 1

2p
tr log

(
Id + V̂sΣ

)
− 1

2p
µ>Σ−1µ

+
1

2pV̂s
||b+ Σ−1µ||2 − 1

2pV̂s

(
b+ Σ−1µ

)> (Id + V̂sΣ
)−1 (

b+ Σ−1µ
)]

(C.43)

The averages over η, ξ,θ0 simplify this expression considerably:

Eη
[
µ>Σ−1µ

]
=

1

p

q̂w

(βλ+ V̂w)2
(F1p)>Σ−1 (F1p) = d

q̂w

βλ+ V̂w

Eη,ξ,θ0 ||b+ Σ−1µ||2 = d(m̂2
s + q̂s) +

1

p
q̂w tr

(
FF>

)−1

Eη,ξ,θ0
(
b+ Σ−1µ

)> (Id + V̂sΣ
)−1 (

b+ Σ−1µ
)

=
1

p
q̂w tr

[
FF>

(
Id + V̂sΣ

)−1
]

+ (m̂2
s + q̂s) tr

(
Id + V̂sΣ

)−1
(C.44)

Finally, we can combine the two terms:

tr
FF>

p
+ tr

[
FF>

p

(
Id + V̂sΣ

)−1
]

=
V̂s

βλ+ V̂w
tr
(

Id + V̂sΣ
)−1

, (C.45)

and write:

Ψw = −1

2
log
(
βλ+ V̂w

)
− 1

2
lim
p→∞

1

p
tr log

(
Id +

V̂s

βλ+ V̂w

FF>

p

)

+
m̂2
s + q̂s

2V̂s

γ − lim
p→∞

1

p
tr

(
Id +

V̂s

βλ+ V̂w

FF>

p

)−1


+
1

2

q̂w

βλ+ V̂w

1− γ + lim
p→∞

1

p
tr

(
Id +

V̂s

βλ+ V̂w

FF>

p

)−1
 (C.46)
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Note that Ψ only depends on the spectral properties of the matrix 1
pFF> ∈ Rd×d, and more speci�cally on its

resolvent in the asymptotic limit. A case of particular interest is when FF> has a well de�ned spectral measure
µ on the p, d→∞ limit with γ = d/p �xed. In that case, we can write:

lim
p→∞

1

p
tr

(
Id +

V̂s

βλ+ V̂w

FF>

p

)−1

= γ
βλ+ V̂w

V̂s
gµ

(
−βλ+ V̂w

V̂s

)
(C.47)

(C.48)

where gµ is the Stieltjes transform of µ, de�ned by:

gµ(z) =

∫ dµ(t)

t− z
. (C.49)

Similarly, the logarithm term can be expressed as the logarithm potential of µ - although for the purpose of
evaluating the generalisation error we will only need the derivative of these terms, and therefore only the
Stieltjes transforms and its derivative.

In what follows, we will mostly focus on two kinds of projection matrices F:

Gaussian projections: For F ∈ Rd×p a random matrix with i.i.d. Gaussian entries with zero mean and
variance 1, µ is given by the well-known Marchenko-Pastur law, and the corresponding Stieltjes transform is
given by:

gµ(z) =
1− z − γ −

√
(z − 1− γ)2 − 4γ

2zγ
, z < 0 (C.50)

Orthogonally invariant projection: For F = U>DV with U ∈ Rd×d and V ∈ Rp×p two orthogonal
matrices and D ∈ Rd×p a rectangular diagonal matrix of rank min(d, p) and diagonal entries dk , the empirical
spectral density µp is given by:

µd(λ) =
1

d

min(r,p)∑
k=1

δ(λ− λk) =

(
1−min

(
1,

1

γ

))
δ(λ) +

1

p

min(d,p)∑
k=1

δ(λ− d2
k) (C.51)

Therefore the choice of diagonal elements dk fully characterise the spectrum of FF>. In order for the ortho-
gonally invariant case to be comparable to the Gaussian case, we �x dk in such a way that the projected vector
Fw is of the same order in both cases, i.e.

d2
k =

{
γ for γ > 1

1 for γ ≤ 1
(C.52)

With this choice, the Stieltjes transform of µ reads:

gµ(z) =

{
−(1− 1

γ )1
z + 1

γ
1

γ−z for γ > 1
1

1−z for γ ≤ 1
(C.53)

C.4 Gaussian equivalent model

It is interesting to note that the average over the dataset {xµ, yµ}nµ=1 of the replicated partition function Zrβ
in eq. (C.15), obtained after the application of the GET, is identical to the replicated partition function of the
same task over the following dual dataset {x̃µ, yµ}nµ=1, where:

x̃µ = κ01p + κ1
1√
d

F>cµ + κ?z
µ (C.54)
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where zµ ∼ N (0, Ip), and the labels yµ ∼ Py are the same. Indeed, calling Z̃rβ the replicated partition function
for this equivalent dataset, and considering κ0 we have:

E{x̃µ,yµ}Z̃rβ =

∫
dθ0 Pθ(θ

0)

∫ r∏
a=1

dw Pw (wa)×

×
n∏
µ=1

∫
dyµ Ecµ,zµ

[
P 0
y

(
yµ
∣∣cµ · θ0

√
d

) r∏
a=1

Py

(
yµ|wa ·

(
κ1√
d

F>cµ + κ?z
µ

))]
︸ ︷︷ ︸

(I)

.

(C.55)

Rewriting (I):

(I) =

∫
dνµ P 0

y (yµ|νµ)

∫ r∏
a=1

dλaµ Py
(
yµ|λaµ

)
×

× Ecµ,zµ
[
δ

(
νµ −

1√
d
cµ · θ0

) r∏
a=1

δ

(
λaµ −

κ1√
d
wa · F>cµ + κ?w

a · zµ
)]

︸ ︷︷ ︸
≡P (ν,λ)

. (C.56)

It is easy to show that taking (κ0, κ1) to match those from eq. (B.6), the variables
(
νµ, {λaµ}

)
are jointly

Gaussian variables with correlation matrix given by Σ exactly as in eq. (C.11). This establishes the equivalence

Z̃rβ = Zrβ (C.57)

from which follows the equivalence between the asymptotic generalisation and test error of these two models.

D Saddle-point equations and the generalisation error

The upshot of the replica analysis is to exchange the p-dimensional minimisation problem for w ∈ Rp
in eq. (A.7) for a one-dimensional minimisation problem for the parameters {rs, qs,ms, rw, qw} and their
conjugate in eq. (C.35). In particular, note that by construction at the limit β →∞ the solution {q?s ,m?

s, q
?
w}

of eq. (C.35) corresponds to:

q?w =
1

p
||ŵ||2 q?s =

1

d
||Fŵ||2 m?

s =
1

d
(Fŵ) · θ0 (D.1)

where ŵ is the solution of the solution of eq. (A.7). As we will see, both the generalisation error de�ned in
eq. (A.9) and the training loss can be expressed entirely in terms of these overlap parameters.

D.1 Generalisation error as a function of the overlaps

Let {xnew, ynew} be a new sample independently drawn from the same distribution of our data {xµ, yµ}nµ=1.
The generalisation error can then be written as:

εg =
1

4k
Exnew,ynew

(
ynew − f̂

(
σ
(

F>cnew
)
· ŵ
))2

=
1

4k

∫
dy
∫

dν P 0
y (y|ν)

∫
dλ (y − f̂(λ))2Ecnew

[
δ
(
ν − cnew · θ0

)
δ
(
λ− σ

(
F>cnew

)
· ŵ
)]
. (D.2)

where for convenience, we normalise k = 0 for the regression task and k = 1 for the classi�cation task. Again,
we apply the GET from Sec. B to write the joint distribution over {ν, λ}:

P (ν, λ) =
1√

det (2πΣ)
e−

1
2
z>Σ−1z, (D.3)
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where z = (ν, λ)> ∈ R2 and Σ is given by

Σ =

(
ρ M?

M? Q?

)
, ρ =

1

d
||θ0||2 M? =

κ1

d
(Fŵ) · θ0, Q? =

κ2
1

d
||Fŵ||2 +

κ2
?

p
||ŵ||2. (D.4)

Inserting in eq. (D.2) gives the desired representation of the generalisation error in terms of the optimal overlap
parameters:

εg =
1

4k

∫
dy
∫

dν P 0
y (y|ν)

∫
dλ P (ν, λ)(y − f̂(λ))2 (D.5)

For linear labels y = c · θ0 in the regression problem, we simply have:

εg = ρ+Q? − 2M? (D.6)

while for the corresponding classi�cation problem with y = sign
(
c · θ0

)
:

εg =
1

π
cos−1

(
M?

√
Q?

)
(D.7)

which, as expected, only depend on the angle between Fŵ and θ0.

D.2 Training loss

Similarly to the generalisation error, the asymptotic of the training loss, de�ned for the training data
{xµ, yµ}nµ=1 as:

εt =
1

n
E{xµ,yµ}

 n∑
µ=1

` (yµ,xµ · ŵ) +
λ

2
‖ŵ‖22

 , (D.8)

can also be written only in terms of the overlap parameters. Indeed, it is closely related to the free energy
density de�ned in eq. (C.2). A close inspection on this de�nition tells us that:

lim
n→∞

εt = lim
β→∞

∂βfβ. (D.9)

Taking the derivative of the free energy with respect to the parameter β and recalling that p = αn, we can
then get:

lim
n→∞

εt =
λ

2α
lim
p→∞

E{xµ,yµ}
[
‖ŵ‖22
p

]
− lim
β→∞

∂βΨy. (D.10)

For what concerns the contribution of the regulariser, we simply note that in the limit of p→∞, the average
concentrates around the overlap parameter q?w . Instead, for what concerns the contribution of the loss function,
we can start by explicitly taking the derivative with respect to β of Ψy in eq. (C.32), i.e.:

∂βΨy = −Eξ

[∫
R

dy
Z0
y (y, ω?0)

Zy (y, ω?1)

∫ dx√
2πV ?

1

e
− 1

2V ?1
(x−ω?1)2−β`(y,x)

` (y, x)

]
, (D.11)

with Z ·/0y de�ned in eq. (C.31). At this point, as explained more in details in section D.4, we can notice that in
the limit of β →∞, it holds:

lim
β→∞

∂βΨy = −Eξ
[∫

R
dy Z0

y (y, ω?0) ` (y, η (y, ω?1))

]
, (D.12)

with η (y, ω?1) given in eq. (D.21). Combining the two results together we then �nally get:

lim
n→∞

εt →
λ

2α
q?w + Eξ

[∫
R

dy Z0
y (y, ω?0) ` (y, η (y, ω?1))

]
. (D.13)
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D.3 Solving for the overlaps

As we showed above, both the generalisation error and the training loss are completely determined by the
β → ∞ solution of the extremization problem in eq. (C.35). For strictly convex losses `, there is a unique
solution to this problem, that can be found by considering the derivatives of the replica potential. This leads to
a set of self-consistent saddle-point equations that can be solved iteratively:

r̂s = −2
ακ21
γ ∂rsΨy (R,Q,M)

q̂s = −2
ακ21
γ ∂qsΨy (R,Q,M)

m̂s = ακ1
γ ∂msΨy (R,Q,M)

r̂w = −2ακ2
?∂rwΨy (R,Q,M)

q̂w = −2ακ2
?∂qwΨy (R,Q,M)



rs = − 2
γ∂r̂sΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

qs = − 2
γ∂q̂sΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

ms = 1
γ∂m̂sΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

rw = −2∂r̂wΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

qw = −2∂q̂wΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

(D.14)

In the case of a F with well-de�ned spectral density µ, we can be more explicit and write:

Vs = 1
V̂s

(1− z gµ(−z))
qs = m̂2

s+q̂s
V̂ 2
s

[
1− 2zgµ(−z) + z2g′µ(−z)

]
− q̂w

(βλ+V̂w)V̂s

[
−zgµ(−z) + z2g′µ(−z)

]
ms = m̂s

V̂s
(1− z gµ(−z))

Vw = γ

βλ+V̂w

[
1
γ − 1 + zgµ(−z)

]
qw = γ q̂w

(βλ+V̂w)2

[
1
γ − 1 + z2g′µ(−z)

]
− γ m̂2

s+q̂s
(βλ+V̂w)V̂s

[
−zgµ(−z) + z2g′µ(−z)

]
(D.15)

where:

Vs/w = rs/w − qr/w V̂s/w = r̂s/w + q̂r/w z =
βλ+ V̂w

V̂s
(D.16)

We can also simplify slightly the derivatives of Ψy without loosing generality by applying Stein’s lemma,
yielding:

V̂s = −ακ21
γ Eξ

[∫
R dy Z0

y

(
y; M√

Q
ξ, ρ− M2

Q

)
∂ωfy

(
y;
√
Qξ,R−Q

)]
q̂s =

ακ21
γ Eξ

[∫
R dy Z0

y

(
y; M√

Q
ξ, ρ− M2

Q

)
fy
(
y;
√
Qξ,R−Q

)2]
m̂s = ακ1

γ Eξ
[∫

R dy Z0
y

(
y; M√

Q
ξ, ρ− M2

Q

)
f0
y

(
y; M√

Q
ξ, ρ− M2

Q

)
fy
(
y;
√
Qξ,R−Q

)]
V̂w = −ακ2

?Eξ
[∫

R dy Z0
y

(
y; M√

Q
ξ, ρ− M2

Q

)
∂ωfy

(
y;
√
Qξ,R−Q

)]
q̂w = ακ2

?Eξ
[∫

R dy Z0
y

(
y; M√

Q
ξ, ρ− M2

Q

)
fy
(
y;
√
Qξ,R−Q

)2]
(D.17)

with f
·/0
y (y;ω, V ) = ∂ω logZ ·/0y . For a given choice of spectral density µ (corresponding to a choice of

projection F), label rule P 0
y and loss function `, the auxiliary functions (Z0,Z) can be computed, and from them

the right-hand side of the update equations above. The equations can then be iterated until the convergence to
the �xed point minimising the free energy at �xed (α, γ, β). For convex losses and β →∞, the �xed point of
these equations gives the overlap corresponding to the estimator solving eq. (A.7).

D.4 Taking β →∞ explicitly

Although the saddle-point equations above can be iterated explicitly for any β > 0, it is envisageable to take
the limit β →∞ explicitly, since β is an auxiliary parameter we introduced, and that was not present in the
original problem de�ned in eq. (A.7).

26



Since the overlap parameters depend on β only implicitly through Zy and its derivatives, we proceed with
the following ansatz for their β →∞ scaling:

V∞s/w = βVs/w q∞s/w = qs/w m∞s = ms

V̂∞s/w =
1

β
V̂s/w q̂∞s/w =

1

β2
q̂s/w m̂∞s = m̂s. (D.18)

This ansatz can be motivated as follows. Recall that:

Zy(y;ω, V ) =

∫ dx√
2πV

e
−β
[
(x−ω)2
2βV

+`(x,y)

]
=

∫ dx√
2πV

e−βL(x). (D.19)

Therefore, letting V = µ2
1Vs + µ2

?Vw scale as V∞ = βV , at β →∞:

Zy(y;ω, V ) =
β→∞

e−βL(η) (D.20)

where:

η(y;ω, V ) = argmin
x∈R

[
(x− ω)2

2V∞
+ `(x, y)

]
. (D.21)

For convex losses ` with λ > 0, this one-dimensional minimisation problem has a unique solution that can
be easily evaluated. Intuitively, this ansatz translates the fact the variance of our estimator goes to zero as
a power law at β → ∞, meaning the Gibbs measure concentrates around the solution of the optimisation
problem eq. (A.7). The other scalings in eq. (D.19) follow from analysing the dependence of the saddle-point
equations in V .

The ansatz in eq. (D.18) allow us to take the β →∞ and rewrite the saddle-point equations as:

V̂∞s =
αµ21
γ Eξ

[∫
R dy Z0

y

(
1−∂ωη
V∞

)]
q̂∞s =

αµ21
γ Eξ

[∫
R dy Z0

y

(η−ω
V∞

)2]
m̂∞s = αµ1

γ Eξ
[∫

R dy ∂ωZ0
y

(η−ω
V∞

)]
V̂∞w = αµ2

?Eξ
[∫

R dy Z0
y

(
1−∂ωη
V∞

)]
q̂∞w = αµ2

?Eξ
[∫

R dy Z0
y

(η−ω
V∞

)2]
(D.22)



V∞s = 1
V̂∞s

(1− z gµ(−z))

q∞s = (m̂∞s )2+q̂∞s

(V̂∞s )
2

[
1− 2zgµ(−z) + z2g′µ(−z)

]
− q̂∞w

(λ+V̂w)V̂s

[
−zgµ(−z) + z2g′µ(−z)

]
m∞s = m̂∞s

V̂∞s
(1− z gµ(−z))

V∞w = γ

λ+V̂∞w

[
1
γ − 1 + zgµ(−z)

]
q∞w = γ q̂∞w

(λ+V̂∞w )2

[
1
γ − 1 + z2g′µ(−z)

]
− γ (m̂∞s )2+q̂∞s

(λ+V̂∞w )V̂∞s

[
−zgµ(−z) + z2g′µ(−z)

]
(D.23)

whereZ0
y (y;ω, V ) is always evaluated at (ω, V ) =

(
M∞√
Q∞

ξ, ρ− M∞2

Q∞

)
, η(y;ω, V ) at (ω, V ) =

(√
Q∞ξ, V∞

)
and z = λ+V̂∞w

V̂∞s
.

D.5 Examples

In this section we exemplify our general result in two particular cases for which the integrals in the right-hand
side of eq. (D.22) can be analytically performed: the ridge regression task with linear labels and a classi�cation
problem with square loss and ridge regularisation term. The former example appears in Fig. 5 (left) and the
later in Figs. 2 (blue curve), 6, 7 of the main.
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Ridge regression with linear labels: Consider the task of doing ridge regression `(y, x) = 1
2 (y − x)2,

λ > 0 on the linear patterns y = 1√
d

Cθ0 +
√

∆z, with z ∼ N (0, In) and θ? ∼ N (0, Id). In this case, we
have:

η(y;ω, V ) =
ω + yV

1 + V
(D.24)

and the saddle-point equations for the hat overlap read:

V̂∞s =
α

γ

κ2
1

1 + V∞
q̂0
s =

ακ2
1

γ

1 + ∆ +Q∞ − 2M∞

(1 + V∞)2 m̂s =
α

γ

κ1

1 + V∞

V̂∞w =
ακ2

?

1 + V∞
q̂∞w = ακ2

?

1 + ∆ +Q∞ − 2M∞

(1 + V∞)2 (D.25)

This particular example corresponds precisely to the setting studied in [32].

Classi�cation with square loss and ridge regularisation: Consider a classi�cation task with square loss
`(y, x) = 1

2 (y − x)2 and labels generated as y = sign
(

1√
d

Cθ0
)

, with θ0 ∼ N (0, Id). Then the saddle-point
equations are simply:

V̂∞s =
α

γ

κ2
1

1 + V∞
q̂∞s =

α

γ
κ2

1

1 +Q∞ − 2
√

2M∞√
π

(1 + V∞)2 m̂s =
α

γ

√
2

π

κ1

1 + V∞

V̂∞w =
ακ2

?

1 + V∞
q̂∞w = ακ2

?

1 +Q∞ − 2M∞√
π

(1 + V∞)2 (D.26)

E Numerical Simulations

In this section, we provide more details on how the numerical simulations in the main manuscript have been
performed.

First, the dataset {xµ, yµ}nµ=1 is generated according to the procedure described in Section 1.1 of the main,
which we summarise here for convenience in algorithm 1:

Algorithm 1 Generating dataset {xµ, yµ}nµ=1

Input: Integer d, parameters α, γ ∈ R+, matrix F ∈ Rd×p, vector θ0 ∈ Rd non-linear functions σ, f0 :
R→ R.
Assign p← bd/γc, n← bαpc
Draw C ∈ Rn×d with entries cµρ ∼ N (0, 1) i.i.d.
Assign y ← f0

(
Cθ0

)
∈ Rn component-wise.

Assign X← σ (CF) ∈ Rn×p component-wise.
Return: X,y

In all the examples from the main, we have drawn θ0 ∼ N (0, Id). For the regression task in Fig. 5 we have
taken f0(x) = x, while in the remaining classi�cation tasks f0(x) = sign(x). For Gaussian projections, the
components of F are drawn from N (0, 1) i.i.d., and in for the random orthogonal projections we draw two
orthogonal matrices U ∈ Rd×d, V ∈ Rp×p from the Haar measure and we let F = U>DV with D ∈ Rd×p a
diagonal matrix with diagonal entries dk = max(

√
γ, 1), k = 1, · · · ,min(n, p).

Given this dataset, the aim is to infer the con�guration ŵ, minimising a given loss function with a ridge
regularisation term. In the following, we describe how to accomplish this task for both square and logistic loss.
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Square Loss: In this case, the goal is to solve the following optimisation problem:

ŵ = min
w

1

2

n∑
µ=1

(yµ − xµ ·w)2 +
λ

2
||w||22

 . (E.1)

which has a simple closed-form solution given in terms of the Moore-Penrose inverse:

ŵ =


(
X>X + λIp

)−1 X>y, if n > p

X>
(
XXT + λIn

)−1
y, if p > n

(E.2)

Logistic Loss: In this case, the goal is to solve the following optimisation problem:

ŵ = min
w

 n∑
µ=1

log
(

1 + e−y
µ(xµ·w)

)
+
λ

2
||w||22

 . (E.3)

To solve the above, we use the Gradient Descent (GD) on the regularised loss. In our simulations, we took
advantage of Scikit-learn 0.22.1, an out-of-the-box open source library for machine learning tasks in Python
[60, 61]. The library provides the class sklearn.linear_model.LogisticRegression, which implements GD with
logistic loss and a further `2-regularisation, if the parameter ’penalty’ is set to ’l2’. GD stops either if the
following condition is satis�ed:

max{(∇w)i |i = 1, ..., p} 6 tol, (E.4)

with ∇w being the gradient, or if a maximum number of iterations is reached. We set tol to 10−4 and the
maximum number of iterations to 104.

In both cases described above, the algorithm returns the estimator ŵ ∈ Rp, from which all the quantities
of interest can be evaluated. For instance, the generalisation error can be simply computed by drawing a new
and independent sample {Xnew,ynew} using algorithm 1 with the same inputs F, σ, f0 and θ0 and computing:

εg(n, p, d) =
1

4kn
||ynew − f̂ (Xnewŵ) ||22 (E.5)

with f̂(x) = x for the regression task and f̂(x) = sign(x) for the classi�cation task.
The procedure outlined above is repeated nseeds times, for di�erent and independent draws of the random

quantities F,θ0, and a simple mean is taken in order to obtain the ensemble average of the di�erent quantities.
In most of the examples from the main, we found that nseeds = 30 was enough to obtain a very good
agreement with the analytical prediction from the replica analysis. The full pipeline for computing the
averaged generalisation error is exempli�ed in algorithm 2.
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Algorithm 2 Averaged generalisation error.

Input: Integer d, parameters α, γ, λ ∈ R+, non-linear functions σ, f0, f̂ and integer nseeds.
Assign p← bd/γc, n← bαpc
Initialise Eg = 0.
for i = 1 to nseeds do

Draw F, θ0.
Assign X,y ← Alg. 1.
Compute ŵ from eq. (E.1) or (E.3) with X,y and λ.
Generate new dataset Xnew,ynew from Alg. 1.
Assign Eg ← Eg + 1

4kn
||ynew − f̂ (Xnewŵ) ||22

end for
Return: εg =

Eg
nseeds
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