
Received: 18 July 2020 Revised: 21 March 2021 Accepted: 22 March 2021

DOI: 10.1002/nla.2384

R E S E A R C H A R T I C L E

The Sherman–Morrison–Woodbury formula for generalized
linear matrix equations and applications

Yue Hao1 Valeria Simoncini2

1School of Mathematics and Statistics,
Lanzhou University, Lanzhou, PR China
2Dipartimento di Matematica and AM2,
Alma Mater Studiorum - Università di
Bologna and IMATI-CNR, Bologna, Italia

Correspondence
Valeria Simoncini, Dipartimento di
Matematica and AM2, Alma Mater
Studiorum - Università di Bologna and
IMATI-CNR, Bologna, Italia.
Email: valeria.simoncini@unibo.it

Funding information
Indam-GNCS, Grant AlmaIdea 2017-2020
- Università di Bologna, Grant/Award
Number: 2017-2020; China Scholarship
Council, Grant/Award Number: Contract
No. 201906180033; National Natural
Science Foundation of China,
Grant/Award Number: 11471150

Abstract
We discuss the use of a matrix-oriented approach for numerically solv-
ing the dense matrix equation AX +XAT +M1XN1 + … +M𝓁XN𝓁 =F, with
𝓁 ≥ 1, and Mi, Ni, i= 1, … ,𝓁 of low rank. The approach relies on the
Sherman–Morrison–Woodbury formula formally defined in the vectorized form
of the problem, but applied in the matrix setting. This allows one to solve
medium size dense problems with computational costs and memory require-
ments dramatically lower than with a Kronecker formulation. Application
problems leading to medium size equations of this form are illustrated and the
performance of the matrix-oriented method is reported. The application of the
procedure as the core step in the solution of the large-scale problem is also
shown. In addition, a new explicit method for linear tensor equations is pro-
posed, that uses the discussed matrix equation procedure as a key building
block.

K E Y W O R D S

linear matrix equations, linear tensor equations, Schur decomposition,
Sherman–Morrison–Woodbury formula, Sylvester equation

1 INTRODUCTION

We are interested in solving dense linear matrix equations in the form

AX + XAT + MXMT = F, (1)

where A,F ∈ Rn×n and M of rank s≪n. We assume that A has no eigenvalues 𝜆 such that 𝜆 = −𝜆, and that X can be
uniquely determined.

Equation (1) is a simplified version of the following more general linear equation (see, e.g., References 1, [2, ch. 12]),

AX + XAT + M1XN1 + … + M𝓁XN𝓁 = F, (2)

with Mi,Ni ∈ Rn×n, i= 1, … ,𝓁 not necessarily symmetric, having rank sMi , sNi ≪ n, respectively. These matrix equations
are characterized by the presence of a Lyapunov operator X →AX +XAT and of extra terms

∑𝓁
i=1 MiXNi, which make

the closed form of the solution hard to formulate solely in terms of the given coefficient matrices. In particular, even

This version is dated February 26, 2021.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Numerical Linear Algebra with Applications published by John Wiley & Sons Ltd.

Numer Linear Algebra Appl. 2021;28:e2384. wileyonlinelibrary.com/journal/nla 1 of 25
https://doi.org/10.1002/nla.2384

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-0795-5865
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnla.2384&domain=pdf&date_stamp=2021-05-06

2 of 25 HAO and SIMONCINI

in the simplest case (1) of three terms, that is 𝓁 = 1, no closed-form based on the Schur decomposition exists, which is
instead the case for 𝓁 = 0. Solvability conditions associated with the relative roles of the two operators X →AX +XAT and
X →

∑𝓁
i=1 MiXNi and geometry properties of the solutions are studied, for example, in Reference [3, sec.3.4].

This type of equation classically arises in Control, for instance as the Gramian equations of bilinear dynamical sys-
tems; see, for example, Reference 4. The problem has been recently attacked in the large-scale case, which provides
additional challenges.3,5–7 Multiterm equations in the form (2) may also arise in discretizing elliptic equations using
a matrix-oriented approach,8,9 or in parametric and time-dependent problems.10,11 In all these settings, the low-rank
framework depends on the problem hypotheses.

For large-scale matrix equations with sparse data, a small number of methods is available in the literature, and they are
based on the efficient matrix-oriented application of standard vector iterative methods; these are, for example, References
5–7,12,13, alternating least squares,14 subspace projection [5, sec. 5.2],.15 In general, these methods all rely on the possibil-
ity of determining a good low-rank approximation to the solution, and this problem is analyzed, for instance, in Reference
5. Methods that implicitly exploit the Kronecker form of the problem have also been analyzed,16–18 and these are close to
the method we are going to discuss.

We aim at analyzing a strategy for solving dense or banded small and medium size problems of type (1), and generalizing
it to (2); we do not make any rank assumption on the sought after numerical solution. As we will see, the approach can
then be used as a building block for large-scale projection-type methods, or for solving linear tensor equations.

The problem in (1) can be stated in a more familiar form using the Kronecker version of the problem. Given two
matrices A= (Ai,j) and B= (Bi,j), the Kronecker product is defined in block form as

A ⊗ B =
⎡⎢⎢⎢⎣

A1,1B … A1,nB
⋮ ⋱ ⋮

An,1B … An,nB

⎤⎥⎥⎥⎦ .
This matrix operator satisfies

vec(AXB) = (BT ⊗ A)vec(X), (3)

where vec(X) stacks the columns of X one below the other. Using this property in (1) with = A ⊗ I + I ⊗ A,
f = vec(F), and M =UV T so that we can define = U ⊗ U, = V ⊗ V , the matrix equation can be written in vector-
ized form as (+T)x = f , with x = vec(X) and rank() = s2 = rank(). Note that = [u1, … ,us2] with ut =uk ⊗ui
where t = (k− 1)s+ i. If s2 is still much lower than n, the vector x can be effectively determined by means of the
Sherman–Morrison–Woodbury (SMW) formula19–21 as follows

x = (+T)−1f = −1f −−1 (I + T−1)−1T−1f . (4)

Hager22 described many properties of this formula and illustrated a variety of applications where the low-rank update
naturally arises, such as statistics, matrix partitioning, networks, linear programming, discretization of partial differential
equations (PDEs), physics. In particular, this formula is a building block of many numerical linear algebra methods, such
as preconditioning and quasi-Newton methods, see, for example, References 23–25, [26, sec.6.1]. It has been classically
used in bordering, partitioning, tearing, and modifications of sparse linear systems,27 [28,29, sec.11.6], among others.
In general, the formula is quite appealing every time the modification T destroys some computationally convenient
structure of , which can still be exploited in the SMW formula. Classical notes of caution regarding the use of the SMW
formula, however, state that the updating method (4) cannot be expected to be numerically stable in all cases. In particular,
problems will arise when the initial problem is more ill-conditioned than the modified one. In other words, 𝜅() could be
significantly larger than 𝜅(+T), hence possible worse accuracy is known to be expected in some cases when using
the SMW formula. In the following, we will assume that the method is stable, that is, all the steps associated with the
application of the formula are stable.30 Indeed, in our treatment we are mainly interested in devising an implementation
of the SMW formula that takes into account the matrix equation structure, assuming the whole computation is stable.

The use of the Kronecker form within the SMW formula has a serious computational drawback, which makes the
formula hard to apply. The matrix has very large dimensions even for moderate n, since is n2 ×n2. In particular, if
A is not sparse, the matrix is going to be rather full, and thus impossible to store online. Fortunately, the solution X

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 3 of 25

can be directly obtained by only relying on the original matrices A, U, V , and F in (1) by maintaining and exploiting their
structure as much as possible. The SMW formula is still employed but at the matrix level, with great advantages both in
terms of memory consumption and computational costs. A possibly first description of a general procedure that avoids
the Kronecker product in the symmetric case can be found in Reference 31. In there, however, there is no explicit deriva-
tion of the SMW formula associated with a possibly low-rank structure as in our setting. Nonetheless, it is acknowledged
that the overall cost can be significantly lower than that of the vectorized form as long as the rank of U, V is moderate.
In Reference 32 a generalization to systems of matrix equations stemming from Control applications is given. These pro-
cedures target small size problems, for which dense computations can be carried out. A later work by Damm16 explicitly
focuses on the symmetric version of (2), that is Ni = MT

i , in a way that the use of the SMW formula becomes apparent.
The implementation differs from ours, and we provide a computational cost comparison showing the benefits of a full
matrix-oriented implementation. Finally, more recently, the authors of Massei et al.17 have developed the same imple-
mentation that we are going to discuss, however, their focus is on (very) large problems (1) with the highly structured
symmetric matrix A, and the role of s is not analyzed (in fact, s= 1 is used); the computational cost of the overall method
is not discussed. A similar procedure is employed in Reference 18 for preconditioning purposes, without a specialized
analysis, and in Reference 33 for a related problem.

We aim to provide a detailed analysis of the matrix-oriented implementation of the SMW formula for solving dense
or structured (e.g., banded A) equations of type (2), with particular attention to the role of the ranks si and the number 𝓁
of terms. We also discuss how this implementation can be used as a building block for methods to solving more complex
problems.

This methodology can be extended in a straightforward manner to the case when the Lyapunov operator
X →AX +XAT is replaced by the Sylvester operator X →AX +XB with no major change in the algorithm. On the other
hand, dealing with the Lyapunov operator allows us to lighten the presentation, by using a single matrix A. We refrain
from repeating our same arguments for the Sylvester operator, and we directly use this variant whenever needed.

The synopsis of the article is as follows. In Section 2 we discuss the SMW formula in matrix form for solving the small
and medium size linear matrix equation, and then extend it to the general problem in Section 3. Considerations on stability
are briefly discussed in Section 4. In Section 5, some numerical experiments are given to illustrate the performance of
our strategy on generally random data, while in Section 6 we illustrate the applicability of this strategy to moderate size
matrices stemming from the discretization of certain PDEs. More general numerical linear algebra problems where this
methodology can be effectively employed are discussed in subsequent sections. In particular, in Section 7 we consider
using this approach for solving the reduced problem associated with a Galerkin projection method for the large-scale
multiterm linear equation. Moreover, in Section 8 we illustrate the applicability of our scheme to a new solution strategy
for linear tensor equations. Finally, a brief conclusion is given in Section 9.

2 THE SMW FORMULA IN MATRIX FORM

The standard SMW formula (4) in vectorized form is applied using the following sequence of computations,

Algorithm 0.

1. Solve w = f
2. Solve pj = uj where = [u1, … ,us2] to give = [p1, … ,ps2];
3. Compute H = I + T ∈ Rs2×s2

4. Solve Hg = Tw
5. Compute x = w − g.

We next illustrate that all computations associated with n2-long vectors can be transformed into matrix-matrix
operations of size n throughout the whole procedure. The first step satisfies

w = −1f ⇔ AW + WAT = F, (5)

that is, a Lyapunov equation of size n×n can be solved to obtain W such that w= vec(W). A Schur decomposition-based
method such as the Bartels–Stewart algorithm can be used to this end if A is dense and of moderate size.34

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 25 HAO and SIMONCINI

Regarding step 2, for each uj, j= 1, … , s2, noticing that uj = vec(uiuT
k) for k, i such that j= (k− 1)s+ i, we have

pj = −1uj ⇔ APj + PjAT = uiuT
k , pj = vec(Pj). (6)

Therefore, once again a sequence of small dense Lyapunov equations can be solved.
The third step determines H = I + T−1 = I + T = I + T[p1, … ,ps2], which can equivalently be computed

by using

vT
j

−1ut = vT
i Ptvk, j = (k − 1)s + i.

Analogously, the solution of the s2 × s2 linear system Hg = Tw requires computing the right-hand side. This can be
obtained in terms of the original data and of (5) as follows

T−1f =

⎡⎢⎢⎢⎢⎢⎣

vT
1 Wv1

vT
2 Wv1

⋮

vT
s Wvs

⎤⎥⎥⎥⎥⎥⎦
. (7)

The final step can equivalently be obtained as X = W −
∑s2

j=1 Pj(g)j, although the vectorized version x = w − g may give
better efficiency.

The complete procedure is summarized in Algorithm 1.

Algorithm 1. Sherman–Morrison–Woodbury formula for (1)

1: INPUT: A,F ∈ Rn×n, U,V ∈ Rn×s

2: OUTPUT: Numerical solution X ∈ Rn×n to AX + XAT + UV TX(UV T)T = F
3: Compute Schur decomposition of A: A = QRQ∗

4: Change of basis for F, U and V wrto Q
5: Solve AW + WAT = F for W using Q, R
6: For k, i = 1,… , s solve APj + PjAT = uiuT

k , j = (k − 1)s + i for pj = vec(Pj), using Q, R
7: For k, i = 1,… , s compute the component (d)j = vT

i Wvk and

Hj,t = eT
j et + vT

j
−1ut = eT

j et + vT
i Ptvk,

with j = (k − 1)s + i, t = 1,… , s2, and ej the jth column of the identity matrix.
8: Solve Hg = d for g
9: Compute X = W −

∑s2

j=1 Pj(g)j

We explicitly observe that the computations within each cycle in steps 6 and 7 are completely independent, and can be
performed in parallel. In step 6, the procedure requires the solution of s2 Lyapunov equations, together with the solution
of a Lyapunov equation in step 5. This computation can be significantly accelerated by first performing a single (real)
Schur decomposition of the matrix A: the right-hand side is written in terms of the Schur orthogonal basis, and only
backward substitutions with quasi-triangular matrices need to be carried out to solve the Lyapunov/Sylvester equation.
This step is particularly efficient whenever A is normal, since in this case the Schur decomposition leads to a diagonal
matrix, so that all remaining computations can be performed elementwise. Indeed, the matrix equations to be solved in
the orthogonal basis have the form

RY + YR∗ = G. (8)

Matrix R is diagonal for A normal, and upper quasi-triangular when A is nonnormal, so different solvers are adopted. For
R diagonal, it holds

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 5 of 25

T A B L E 1 Computational cost of Algorithm 1 Step Computational cost

Schur decomposition of A 25n3

Computation H s2(2n3 +n2)+ s4(2n2 +n− 1)+ 4n2s+ s2 − 2ns

Computation d 6n3 + 2s2n2 + s2n− 2n2 − s2

Computation g 2
3

s6

Computation X (2s2 − 2)n2 + 4n3

Y = G ⊘ (r1T + 1rT), r = [R11, … ,Rnn]T , (9)

where a⊘ b denotes element-by-element division, and 1 is the vector of all ones. When R is upper quasi-triangular, a
recursive triangular solver can be used; see, for example, Reference 35 and its references*.

The main computational costs of Algorithm 1 are summarized in Table 1, giving a total of

(35 + 2s2)n3 + (2s4 + 5s2 + 4s − 4)n2 + (s4 + s2 − 2s)n + 2
3

s6 − s4 (10)

floating-point operations for determining the final solution. The cost for computing the Schur decomposition of A can be
significantly alleviated if A has further structure. For instance, this cost becomes (n2) if A is symmetric and tridiagonal.
We numerically experimented with different matrix structures to show the impact of this computation on the overall pro-
cedure. Moreover, additional sparsity of some of the quantities, such as in Ui, V i may be exploited during the computation.
These are clearly problem-dependent issues and are not taken into account in the general (worst case) cost description.
In the actual implementation, the Lyapunov equation solution for all ui, uk is split into different stages, and the matrix H
is generated during the solution of these Lyapunov equations in the eigenvector basis, so that the actual costs are spread
through the algorithm. In Appendix A we report a typical implementation, pointing to the most expensive steps.

The algorithm leading cost is associated with the solution of s2 Lyapunov equations with the same matrix A, and
different right-hand sides. For s = (1) this cost is largely dominant, and it may be convenient to simplify the algorithm
and just use the vectorized form (Algorithm 0 above), limiting the exploitation of the matrix structure in step 2 to the
solution of the s2 Lyapunov equations instead of the large system with . Indeed, taking into account the underlying
structure of appears to be irrelevant for s = (1). We refer to this simplified implementation as a hybrid version. For
this reason, in our experimental analysis we consider larger values of s, for which a fully matrix-oriented version becomes
relevant. The same occurs when more than one low-rank term appears in (2), that is 𝓁 > 1, in which case the dimensions
of , , and thus that of H, quickly increase, as it will be discussed in the following section.

Remark 1. Though we mainly focus on solving (2) for dense and moderate size problems, it is of interest to linger over
the large-scale case. For large A, the low rank of the right-hand side terms uiuT

k allows one to employ powerful recently
developed iterative methods.15 Since s2 + 1 such equations need to be solved, however, this cost is affordable as long as
s = (1), and in this case the hybrid approach could be used. In Section 7, we explore an ad hoc large-scale approach for
(2) based on the projection onto a single approximation space, that uses the SMW formula as a core solver for an occurring
small size problem.

We conclude this cost analysis by reporting on the comparison with a similar implementation proposed by Damm,16

whose algorithm is reported in Appendix B, together with the computational costs of the main floating-point operations.
For a fair comparison, we only considered the operations marked with ⋆, since the remaining ones handle nongeneric
situations. The leading total cost of the implementation proposed by Damm is given by

(45 + 10s2)n3 + 2(s4 + s2 − 4)n2 + 2
3

s6 − s4 − s2,

which differs from ours mainly in the coefficient of the n3 term. Figure 1 shows typical cost curves of the two approaches
as s (left) and n (right) vary. The factors in n3 are dominant for s small, thus being in favor of our implementation, whereas

*In our Matlab implementation we did not exploit this more efficient version, we simply used the lyap function with triangular coefficient matrices.

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 25 HAO and SIMONCINI

5 10 15 20 25 30 35 40 45 50

rank s

0

0.5

1

1.5

2

2.5

3

3.5

4
10 12 costs as s varies, n=400

Damm
Alg. 2.1

50 100 150 200 250 300 350 400 450 500

dimension n

0

2

4

6

8

10

12

14
10 10 costs as n varies, s=10

Damm
Alg. 2.1

F I G U R E 1 Floating point computations for the implementation in algorithm B1 and in Algorithm 1 as s and n vary. Left: n= 400.
Right: s= 10

for large values of s the costs for the two implementations become more comparable, also due to the presence of similar
factors in high powers of s.

3 THE SMW FORMULA FOR THE GENERAL CASE

The strategy in Section 2 can be extended to the following nonsymmetric problem with more than three linear terms in X ,

AX + XAT + U1V T
1 X(U2V T

2)
T + U3V T

3 X(U4V T
4)

T = F, (11)

where Ui = [u(i)
1 , … ,u(i)

si
],Vi = [v(i)1 , … , v(i)si

] ∈ Rn×si , of rank si, for i= 1, … , 4; we notice the change of notation for the
rank, to adhere to the adopted notation for the low-rank matrices UiV T

i . The considered procedure is also applicable to
the case of even more terms, and it is effective as long as the total rank of the Uis and the V is remains moderate with
respect to n. To pass to the Kronecker form of the problem, we define

 = [U2 ⊗ U1,U4 ⊗ U3] and = [V2 ⊗ V1,V4 ⊗ V3], (12)

so that (11) can be written as

(+T)x = f , (13)

where and f are defined as in Section 2, with = [u1, … ,us1s2+s3s4] and = [v1, … ,vs1s2+s3s4]. Thus, the problem
(13) goes back to the problem (4). The matrix-oriented strategy proceeds as follows.

1. Solve (5) to get W ;
2. For i= 1, … , s1 and k= 1, … , s2, solve APj + PjAT = u(1)

i (u(2)
k)T , j= (k− 1)s1 + i for pj = vec(Pj);

3. For i= 1, … , s3 and k= 1, … , s4, solve APj + PjAT = u(3)
i (u(4)

k)T , j= (k− 1)s3 + i+ s1s2 for pj = vec(Pj);
4. For i= 1, … , s1 and k= 1, … , s2, compute the entries (d)j = (v(1)i)TWv(2)k and

Hj,t = eT
j et + vT

j
−1ut = eT

j et + (v(1)i)TPtv(2)k ,

for j= (k− 1)s1 + i, t = 1, … , s1s2 + s3s4;

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 7 of 25

5. For i= 1, … , s3 and k= 1, … , s4, compute the entries (d)j = (v(3)i)TWv(4)k and

Hj,t = eT
j et + vT

j
−1ut = eT

j et + (v(3)i)TPtv(4)k ,

for j= (k− 1)s3 + i+ s1s2, t = 1, … , s1s2 + s3s4;
6. Solve Hg= d for g;
7. Compute X = W −

∑s1s2+s3s4
j=1 Pj(g)j.

A Matlab36 implementation of this algorithm is reported in Appendix A for completeness†.

4 CONSIDERATIONS ON STABILITY

It is well known that using the SMW formula in the vectorized case may have disastrous stability effects depending on the
choices of , ;22 Yip30 gives suggestions on how these two low-rank matrices could be selected to lower these effects, in
case these matrices can be tuned.

The stability considerations in Reference 30 focus on the conditioning of the matrix I + T , which in turn also
depends on the stability properties of the equation associated with . Our computation differs from the vectorized
approach for the use of Sylvester/Lyapunov matrix equations instead of algebraic (vector) systems to determine . Higham
[37, chapter 15] gives a thorough account of the accuracy and stability properties associated with the solution of linear
matrix equations. Let AX +XB=C be the matrix equation to be solved, and assume that a perturbation on the data occurs.
Let

𝜖 = max
{||ΔA||||A|| ,

||ΔB||||B|| ,
||ΔC||||C||

}
,

where || ⋅ || denotes the Frobenius norm. In Reference [37, section 15.3] it is shown that the solution is perturbed by ΔX
satisfying

||ΔX||||X|| ≤
√

3Ψ𝜖,

and the bound is sharp, as first-order bound in 𝜖; here, in our notation,

Ψ = ||−1[||A||(XT ⊗ I), ||B||(I ⊗ X),−||C||Imn]||2∕||X|| ,
and = I ⊗ A + BT ⊗ I. The quantity Ψ plays the role of the condition number for the Sylvester equation.

A weaker bound, which actually corresponds to applying standard perturbation theory to the Kronecker form of the
problem, is given by Higham [37, section 15.3].

||ΔX||||X|| ≤
√

3Φ𝜖, Φ = ||−1||2 (||A|| + ||B||)||X|| + ||C||||X|| .

Hence, comparing Ψ and Φ corresponds to measuring the relative solution sensitivity with respect to the input data,
associated with using either the vector or the matrix approaches for the problem with . It was shown in Reference
[37, section 15.3] that Φ and Ψ “can differ by an arbitrary factor.” That is, although from their definition we have Ψ ≤ Φ
and they have in general similar magnitude, it may happen that Ψ≪ Φ. Thus, the analysis seems to favor the matrix
equation approach. An alternative analysis could be performed that makes use of the sep function.35,37 These results
provide insights into the different behavior of the two formulations under perturbations in the data. It would be interesting
to analyze whether similar differences carry over in finite precision arithmetic computations. A thorough analysis remains
an open problem.

†The general Matlab code will be made available by the authors on their webpages.

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 25 HAO and SIMONCINI

We next linger over the effect of computational perturbations on the final solution accuracy. Let xf = −1f + ef be
the numerical solution obtained with the chosen method to solve x = f , and analogously, x = −1 + E . Then the
numerical solution to (+T)x = f can be written as

x̃ = −1f + ef − (−1 + E)(I + T(−1 + E))−1T(−1f + ef),

where we assume that sums and products among matrices and vectors in the formula are exact. Note that both ||ef || and||E || are related to the accuracy of the method used to solve the Sylvester equation with A.
Let He = I + T(−1 + E) and H = I + T−1 . Then, assuming for simplicity that the system with H or He is

solved exactly, we can write

x − x̃ = −−1 (H−1 − H−1
e)T−1f − ef + E H−1

e T−1f
+−1H−1

e Tef + E H−1
e Tef

= −−1H−1TE H−1
e T−1f + E H−1

e T−1f
+−1H−1

e Tef + E H−1
e Tef − ef

Hence,

||x − x̃|| ≤ ||(I −−1H−1
e T)ef || + ||(I −−1H−1T)E H−1

e T−1f || + (u2),

where we assumed that ||ef || ≤ c1u, ||E || ≤ c2u, in which u is the machine precision and the constants c1, c2 depend on
the data. The two matrices (I −−1H−1

e T) and (I −−1H−1T) in the bound above are related to the quality of the
data, and the conditioning of the obtained He and H, respectively. Some calculations would recover a bound similar to
that by Yip30 for (I −−1H−1

e T) and (I −−1H−1T).

5 NUMERICAL EXPERIMENTS WITH DENSE OR STRUCTURED DATA

In this section, we illustrate the performance of Algorithm 1 when using dense and banded random data. This random
setting provides a frame of reference for the computational costs associated with the methods in the worst scenario, that
of dense data. All considered methods can also appropriately exploit sparsity whenever available, in different ways, and
this will be explored in later sections. In all displayed tables we report the CPU time, and the relative error and residual
norms

Err ∶= ||X − X⋆||||X⋆|| , Res ∶= ||F − (X)||||F|| , (14)

where X⋆ is our “true” solution, computed as a random matrix with uniform elements in the interval (0, 1), so that
the right-hand side is determined explicitly: for instance, for (1) it is given as F ∶= (X⋆) with (X) ∶= AX + XAT +
UV TX(UV T)T . Computational comparisons are principally performed among the matrix-oriented and vectorized forms
of the SMW formula. For the sake of completeness and as a reference target, in all our tables we also report on the per-
formance of a direct method for explicitly solving (+T)x = f (backslash in Matlab); we notice that this is a built-in
(compiled) code, which is expected to be (much) faster than an interpreted code implemented within Matlab. In spite of
this, our results show that the matrix-oriented method is able to outperform the direct solver in practically all cases, and
in some instances with orders of magnitude better CPU times, both in the dense and sparse cases.

Example 1. Symmetric and dense matrix A for various s’s. We consider the problem

AX + XA + U1V T
1 XV1UT

1 + U3V T
3 XV3UT

3 = F

with the symmetric matrix A = A0 + AT
0 where A0 is full and it has random entries uniformly distributed in (0,1); U1, V 1

and U3, V 3 are also random matrices from the same distribution. Due to the symmetry of A, the eigendecomposition of
A was computed once at the beginning and the Lyapunov equations solved as described in Section 2. The computational

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 9 of 25

T A B L E 2 Example 1

Direct Matrix form Vectorized form

n s1/s3 CPU Res Err CPU Res Err CPU Res Err

40 3/5 0.08 1.2e-15 3.7e-12 0.02 1.2e-14 2.1e-11 0.23 1.2e-13 3.5e-11

4/6 0.08 2.2e-15 5.2e-12 0.02 6.5e-15 1.8e-11 0.29 1.0e-12 4.8e-11

5/7 0.10 1.1e-15 5.7e-11 0.02 1.1e-14 1.2e-10 0.37 4.9e-12 2.2e-10

80 3/5 2.01 3.4e-15 3.3e-11 0.02 5.7e-15 4.6e-11 6.14 8.3e-13 9.4e-10

4/6 2.05 2.3e-15 2.8e-10 0.02 3.3e-15 1.4e-10 8.19 3.9e-12 6.6e-10

5/7 2.00 2.7e-15 7.2e-11 0.03 5.7e-14 2.0e-10 10.6 1.5e-12 1.8e-09

160 3/5 85.6 9.2e-15 1.5e-10 0.04 2.4e-14 3.9e-10 168 1.6e-13 9.6e-09

4/6 86.4 9.0e-15 1.4e-09 0.05 7.4e-14 5.3e-09 211 3.1e-11 7.9e-08

5/7 86.9 6.4e-15 3.0e-10 0.08 8.6e-14 2.3e-09 257 2.7e-12 2.0e-07

Note: Symmetric and dense matrix A, U1, V 1 and U3, V 3 for various s1, s3.

T A B L E 3 Example 2

Direct Matrix form Vectorized form

U1, U3 n CPU Res Err CPU Res Err CPU Res Err

nonorth 40 0.08 9.1e-16 3.8e-12 0.02 4.8e-14 1.9e-11 0.04 1.5e-12 1.1e-10

80 1.94 1.1e-15 5.8e-10 0.02 3.0e-14 2.3e-10 0.22 1.7e-11 2.6e-09

160 85.1 5.9e-15 9.2e-09 0.04 2.5e-13 1.9e-08 1.24 1.5e-10 7.4e-08

320 – – – 0.08 1.4e-12 5.0e-08 6.64 8.3e-11 4.8e-06

orth 40 0.08 3.2e-15 8.9e-14 0.02 1.8e-15 1.1e-14 0.04 2.6e-16 9.9e-15

80 1.88 6.0e-15 3.2e-13 0.02 1.7e-15 2.1e-14 0.18 1.8e-16 2.2e-14

160 84.8 1.7e-14 2.7e-12 0.03 1.7e-15 1.6e-13 1.32 2.5e-15 3.2e-12

320 – – – 0.07 2.0e-15 3.9e-13 6.81 1.6e-15 1.3e-12

Note: Symmetric and pentadiagonal matrix A; U1, V 1 and U3, V 3 with different geometric properties. Here, s1 = 3 and s3 = 5. “–” stands for
excessive computational time.

results for increasing n and s1, s3 are reported in Table 2, and show the great advantages of the matrix setting, gaining
several orders of magnitude in CPU time, while maintaining at least the same accuracy as with the vectorized approach.

Example 2. Symmetric and banded matrix A. For the same matrix equation as in Example 1, we first consider A a random
and symmetric pentadiagonal matrix, and U1, V 1 and U3, V 3 random matrices with s1 = 3, s3 = 5 columns, respectively.

The method performance is reported in Table 3. We also slightly modified the problem, by imposing that the Uis and
V is have orthonormal columns. This latter setting showed better accuracy of the obtained solution, as reported in the
bottom results in Table 3; this is in full agreement with the results in Reference 30.

Example 3. Random, nonsymmetric and dense matrix A. Let A, U1, V 1 and U3, V 3 be random matrices for the same
problem as in Example 1. The numerical results are listed in Table 4. As we expected, the vectorized form pays the price of
a fully populated and nonsymmetric matrix. The nonsymmetry also affects the performance of the matrix method, since
the full Schur form needs to be used, and Lyapunov equations with triangular matrices solved in all instances. The total
costs remain very modest, though.

Example 4. Dense A and four term equations. We consider the equation

AX + XAT + U1V T
1 X(U2V T

2)
T + U3V T

3 X(U4V T
4)

T = F,

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 25 HAO and SIMONCINI

T A B L E 4 Example 3

Direct Matrix form Vectorized form

n s1/s3 CPU Res Err CPU Res Err CPU Res Err

40 3/5 0.09 9.9e-16 1.8e-11 0.08 1.4e-13 3.9e-09 0.24 9.5e-12 4.3e-09

4/6 0.08 1.4e-15 8.8e-12 0.09 3.9e-14 9.7e-11 0.33 9.5e-13 7.9e-10

5/7 0.09 5.1e-16 8.9e-11 0.12 3.5e-14 5.9e-10 0.35 4.1e-12 1.2e-09

80 3/5 2.05 2.8e-15 3.2e-10 0.15 2.5e-13 2.6e-09 4.98 1.1e-12 1.0e-08

4/6 2.16 3.0e-15 4.2e-10 0.18 6.9e-13 9.3e-10 6.56 1.9e-12 1.5e-08

5/7 2.02 3.8e-15 7.1e-10 0.22 1.7e-13 8.5e-09 7.48 1.5e-11 1.9e-08

160 3/5 83.3 8.8e-15 1.2e-09 0.48 2.6e-12 1.3e-08 205 3.0e-12 1.0e-07

4/6 84.3 7.8e-15 1.8e-09 0.69 1.2e-12 1.5e-08 199 2.0e-12 2.5e-07

5/7 100.4 1.2e-14 2.1e-09 0.84 1.0e-11 4.1e-08 278 3.9e-11 4.2e-07

Note: Numerical results for nonsymmetric and dense matrix A, U1, V 1 and U3, V 3 for various s1, s3 columns, respectively.

T A B L E 5 Example 4

Direct Matrix form Vectorized form

n si CPU Res Err CPU Res Err CPU Res Err

40 2/3/4/5 0.09 1.6e-15 1.7e-11 0.08 9.6e-14 1.6e-10 0.20 3.5e-13 7.2e-10

4/5/6/7 0.09 1.2e-15 9.6e-12 0.10 9.8e-14 5.7e-11 0.34 1.2e-12 2.1e-10

6/7/8/9 0.09 1.6e-15 1.9e-11 0.14 3.0e-13 2.1e-10 0.58 4.0e-12 9.2e-10

80 2/3/4/5 1.94 4.2e-15 1.0e-10 0.12 1.6e-13 1.1e-09 4.41 6.2e-12 3.1e-09

4/5/6/7 1.93 2.1e-15 9.7e-10 0.19 2.7e-13 1.7e-09 7.10 3.9e-12 1.8e-08

6/7/8/9 1.94 4.1e-15 6.5e-10 0.32 2.5e-13 1.8e-08 10.6 8.8e-11 7.5e-09

160 2/3/4/5 76.4 9.3e-15 7.9e-10 0.40 5.7e-13 4.5e-09 248 1.6e-12 3.1e-08

4/5/6/7 74.6 6.1e-15 1.3e-09 0.80 1.2e-12 1.3e-08 268 1.8e-11 4.7e-08

6/7/8/9 77.3 8.6e-15 2.3e-08 1.38 1.5e-12 1.1e-07 266 3.0e-11 8.3e-07

Note: Numerical results for a random nonsymmetric problem.

with Ui, V i random matrices with si columns, and A a random matrix (all uniformly distributed in (0, 1)). The results are
reported in Table 5. The results are consistent with our previous findings, also when several terms occur.

6 APPLICATION TO DISCRETIZED PDES

In this section, we report on the computational solution of the small-scale problem (2) in the context of matrix-oriented
discretization of PDEs, and in problems naturally described in terms of multiterm matrix equations including low-rank
coefficient matrices. In all cases, the coefficient matrices are sparse, and all methods have been implemented so as to
make the best use of sparsity. Once again, the solution with the (sparse) direct method is reported as a reference, taking
into account that CPU time comparisons are biased by the different implementation settings (see the related discussion
in Section 5).

Our first example was discussed in Reference [5, sec.6.2] in the equation solving context, and then employed for
comparison purposes in Reference 7 in the large-scale case.

Example 5. A nonlinear RC circuit. The data stems from the model reduction of a nonlinear system, representing a
scalable RC ladder with k resistors, with an exponential dependence on the voltage-current, giving rise to the problem

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 11 of 25

T A B L E 6 Example 5

Direct Matrix form Vectorized form

n Rank of U1 CPU Res CPU Res CPU Res

110 1 0.82 1.3e-16 0.03 1.4e-15 1.52 2.9e-16

3 1.06 1.7e-16 0.07 1.8e-15 1.77 5.4e-16

5 0.97 3.0e-16 0.11 1.8e-15 2.17 2.9e-16

10 0.92 1.4e-16 0.35 1.3e-15 3.81 7.3e-16

156 2 4.49 2.4e-16 0.08 1.5e-15 7.70 4.5e-16

4 7.45 8.0e-17 0.15 1.5e-15 8.23 1.6e-16

6 4.54 1.1e-16 0.30 1.5e-15 10.1 2.5e-16

12 6.05 2.6e-16 1.04 1.5e-15 18.5 5.1e-16

240 2 28.1 5.9e-17 0.15 2.3e-15 62.9 1.7e-16

5 32.8 8.4e-17 0.75 2.3e-15 72.1 1.0e-16

7 31.1 2.1e-16 1.48 2.4e-15 82.1 5.7e-16

15 32.2 2.4e-16 7.05 2.2e-15 159.0 1.2e-15

Note: CPU time and residual norms as the problem dimension and the rank of U1 vary.

of type (1) of dimension n= k(k+ 1) with N1 = MT
1 and 𝓁 = 1. The matrix M1 = U1V T

1 has rank s= k. To explore how
the performance depends on the rank, in our experiments we considered portions of these matrices by taking the first
r1 columns of U1, V 1, with r1 up to k. Our numerical results are listed in Table 6 and illustrate the effectiveness of the
matrix-oriented approach with respect to the vector settings, at a comparable residual accuracy.

The next examples stem from the discretization of two-dimensional convection-diffusion equations on rectangular
domains, with homogeneous Dirichlet boundary conditions. The matrix-oriented discretization of this class of PDEs was
treated in Reference 9 for separable coefficient functions. Here, we show that the matrix setting described in (2) can be
obtained, for instance, when some of the coefficient functions have a small nonzero support in the given domain, both in
the separable and nonseparable cases. To the best of our knowledge, the reported treatment in the nonseparable case is
new.

Example 6. Separable coefficients. We consider the linear PDE

−Δu + 𝜔(x, y)uy = 1, (x, y) ∈ Ω, (15)

with Ω = (0, 1) × (0, 1) and

𝜔(x, y) =

{
(x + 1)(2y + 1) (x, y) ∈ Ω1,

0 otherwise,
(16)

where Ω1 is a small square centered at (x, y) = (1
2
,

1
2
) and 2rs + 1 grid points on each side. Finite difference discretization

of this problem9 leads to the linear system

AX + XA + M1X(BN0) = F,

where A = (n + 1)2tridiag(−1, 2,−1) ∈ Rn×n, B = (n+1)
2

tridiag(1, 0,−1) ∈ Rn×n, while M1 and N0 are diagonal matrices
containing the nonzero values of the functions 𝜙(x) = (x + 1), 𝜓(y) = (2y + 1), respectively, for (x, y) ∈ Ω1, and zero else-
where, where the grid nodes are ordered lexicographically.9 Due to the small function support, the only nonzero entries
are those corresponding to the ith entries, with (n

2
− rs ≤ i ≤ n

2
+ rs). The parameter rs allows us to control the rank of the

matrices M1, N1 =BN0 in our numerical experiments. Note that the matrices U1, V 1 in M1 = U1V T
1 can be determined at

no computational cost, since they correspond to the nonzero columns and scaled rows of the nonzero diagonal elements

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 of 25 HAO and SIMONCINI

T A B L E 7 Example 6

Direct Matrix form Vectorized form

n Rank of Ui CPU Res CPU Res CPU Res

100 5 0.03 1.7e-13 0.02 1.5e-12 0.05 2.7e-13

7 0.03 1.7e-13 0.02 1.5e-12 0.05 2.7e-13

9 0.03 1.7e-13 0.02 1.4e-12 0.07 2.7e-13

200 9 0.12 6.6e-13 0.05 7.3e-12 0.23 1.1e-12

11 0.12 6.7e-13 0.08 7.4e-12 0.34 1.1e-12

13 0.13 6.6e-13 0.09 7.4e-12 0.43 1.1e-12

300 9 0.30 1.5e-12 0.09 1.3e-11 0.51 2.4e-12

17 0.30 1.4e-12 0.30 1.3e-11 1.74 2.5e-12

25 0.30 1.5e-12 0.61 1.3e-11 3.81 2.4e-12

Note: CPU time and residual norms as the problem dimension and the rank of M1, N1 vary.

of M1. The numerical results are reported in Table 7, and show that the matrix-oriented version of the SMW formula is
very attractive, when compared with the vectorized one. In spite of the problem high sparsity, the reference (compiled)
direct method is not superior to the matrix-oriented method except for the largest dimension and rank.

In the following we consider the case where the coefficient 𝜔(x, y) is not a separable function. For the sake of the
description, we work with the linear PDE −Δu + 𝜔(x, y)u = f . The finite difference discretization of the zero-order term
𝜔(x, y)u(x, y) on a rectangular grid leads to an addend in the matrix equation of the form C ◦U, where ◦ denotes the ele-
mentwise (Hadamard) product. Here, (C)i,j = 𝜔(xi, yj) where (xi, yj) are the grid nodes, hence the entries of C are nonzero
only at the grid points included in the support of 𝜔. In the vectorized case we would obtain vec(C ◦U)= diag(c)vec(U),
where the vector c would contain all values of 𝜔(x, y) at the nodes. The discretization of the given PDE yields the matrix
equation

AX + XAT + C◦X = F. (17)

The inclusion of the uncommon Hadamard product term makes the solution of the matrix equation more challenging; see,
for example, Reference 8. Nonetheless, the high sparsity of C allows us to efficiently employ the matrix-oriented SMW for-
mula. Matrix C can be written as C =GHT with G, H of rank 𝓁 ≤n, such that G, H maintain the sparsity of C. For instance,
G can collect the nonzero columns of C, while H is a selection of the identity matrix columns corresponding to the nonzero
columns of C. Let G= [g1, … , g𝓁] and H = [h1, … , h𝓁], for 𝓁 ≤n. Using the following property of the Hadamard product

(GHT)◦X =
𝓁∑

i=1
diag(gi)Xdiag(hi), (18)

we can rewrite Equation (17) as

AX + XAT +
𝓁∑

i=1
diag(gi)Xdiag(hi) = F.

With this definition of G and H, the number of nonzero columns in C gives the number 𝓁 of summation terms. A different
selection strategy for G, H can be considered if C is known to have rank lower than the number of its nonzero columns.
From now on we can proceed as it was done in the case of a separable function case, except that 𝓁 ≥ 1. We observe that
in our setting G, H are very sparse, so that diag(gi) and diag(hi) are diagonal matrices of very low rank. Therefore, setting
diag(gi) = UL,iV T

L,i and diag(hi) = UR,iV T
R,i we have

AX + XAT +
𝓁∑

i=1
UL,iV T

L,iX(UR,iV T
R,i)

T = F. (19)

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 13 of 25

T A B L E 8 Example 7 for 𝜔1(x, y)

Direct Matrix form Vectorized form

n s CPU Res Err dim(H) CPU Res Err CPU Res Err

100 4 0.08 2.1e-16 4.3e-15 16 0.03 2.7e-15 1.7e-13 0.04 3.9e-16 3.3e-14

6 0.08 2.1e-16 3.1e-15 36 0.04 2.8e-15 1.8e-13 0.05 4.1e-16 3.5e-14

8 0.08 2.1e-16 4.0e-15 64 0.06 2.9e-15 1.9e-13 0.07 4.1e-16 3.1e-14

10 0.08 2.1e-16 6.2e-15 100 0.07 2.7e-15 1.9e-13 0.09 4.0e-16 3.1e-14

200 4 0.32 2.1e-16 7.1e-15 16 0.04 3.6e-15 1.3e-12 0.16 4.7e-16 6.9e-13

6 0.31 2.1e-16 1.2e-14 36 0.06 3.6e-15 1.3e-12 0.20 4.7e-16 7.0e-13

8 0.30 2.1e-16 3.9e-15 64 0.09 3.6e-15 1.3e-12 0.28 4.7e-16 7.0e-13

10 0.31 2.1e-16 6.7e-15 100 0.12 3.6e-15 1.3e-12 0.38 4.8e-16 6.9e-13

300 4 0.79 2.0e-16 9.6e-15 16 0.08 3.7e-14 1.5e-12 0.39 4.0e-16 9.4e-14

6 0.80 2.1e-16 2.2e-14 36 0.12 3.7e-15 1.5e-12 0.50 4.1e-16 1.3e-13

8 0.77 2.1e-16 1.4e-14 64 0.17 3.8e-15 1.5e-12 0.59 4.1e-16 1.0e-13

10 0.83 2.1e-16 8.9e-15 100 0.24 3.7e-15 1.4e-12 0.87 4.1e-16 9.3e-14

400 4 1.79 2.1e-16 1.1e-14 16 0.13 4.4e-15 2.8e-12 0.78 4.4e-16 2.3e-12

6 1.80 2.1e-16 2.8e-14 36 0.21 4.4e-15 2.6e-12 1.00 4.4e-16 2.3e-12

8 1.68 2.1e-16 1.2e-14 64 0.30 4.4e-15 2.7e-12 1.29 4.4e-16 2.3e-12

10 1.69 2.1e-16 1.7e-14 100 0.45 4.4e-15 2.6e-12 1.89 4.4e-16 2.3e-12

Note: CPU time, error and residual norms as the problem dimension and the rank vary. dim(H) reports the final rank of the matrix H used in Algorithm 1,
step 8.

The new notation U*,i, V *,i is only used here to emphasize the description generality.
In the following we will employ the derivation above to discretize a linear PDE with a convective term, hence the extra

factor B will appear, as in Example 6.

Example 7. We consider the same Equation (15) as in Example 6, where this time the derivatives were discretized with
a fourth-order finite difference formula, leading to a pentadiagonal structure in A and B, and we employed a different
function𝜔(x, y). LetΩh be a uniform discretization ofΩ = (0, 1) × (0, 1), with nodes (xi, yj), i, j= 1, … , n, and h = 1

n+1
. Let

Ω1 =
[(3n

4
+ 1

)
h,
(3n

4
+ s

)
h
]
×
[(n

2
+ 1

)
h,
(n

2
+ s

)
h
]
, Ω2 = [h, sh] ×

[(n
4
+ 1

)
h,
(n

4
+ s

)
h
]
.

We consider two distinct cases for 𝜔(x, y):

𝜔1(x, y) =

{
(x − n

4
h)2 + y2 + 2 (x, y) ∈ Ω1,

0 otherwise,
𝜔2(x, y) =

⎧⎪⎨⎪⎩
(x − n

4
h)2 + y2 + 2 (x, y) ∈ Ω1,

x2 + (y − n
4

h)2 + 2 (x, y) ∈ Ω2,

0 otherwise.

Repeating the described derivation in the presence of the Hadamard term, we obtain the following linear matrix equation,

AX + XAT +
𝓁∑

i=1
UL,iV T

L,iXB(UR,iV T
R,i)

T = F. (20)

We note that 𝜔2 yields a larger value of 𝓁 than 𝜔1, and thus a larger final rank in the SMW formula, as reported in our
tables. The numerical results are listed in Table 8 (for 𝜔1) and in Table 9 (for 𝜔2). All results consistently report the good
performance of the matrix-oriented version of the SMW formula with respect to the vectorized one, with comparable
error and residual norms. The approach also compares rather well with the compiled sparse direct method.

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 of 25 HAO and SIMONCINI

T A B L E 9 Example 7 for 𝜔2(x, y)

Direct Matrix form Vectorized form

n s CPU Res Err dim(H) CPU Res Err CPU Res Err

100 4 0.08 2.1e-16 4.5e-15 32 0.03 2.8e-15 1.8e-13 0.05 4.0e-16 3.2e-14

6 0.08 2.1e-16 3.4e-15 72 0.06 2.8e-15 1.7e-13 0.08 4.1e-16 3.7e-14

8 0.08 2.1e-16 2.7e-15 128 0.08 2.7e-15 1.8e-13 0.10 4.0e-16 3.4e-14

10 0.08 2.1e-16 3.7e-15 200 0.12 2.7e-15 1.8e-13 0.16 4.0e-16 3.7e-14

200 4 0.32 2.1e-16 8.7e-15 32 0.06 3.6e-15 1.3e-12 0.19 4.7e-16 6.9e-13

6 0.32 2.1e-16 8.5e-15 72 0.10 3.6e-15 1.2e-12 0.30 4.8e-16 6.9e-13

8 0.32 2.1e-16 1.0e-14 128 0.16 3.6e-15 1.3e-12 0.45 4.7e-16 6.9e-13

10 0.32 2.1e-16 5.1e-15 200 0.25 3.6e-15 1.3e-12 0.67 4.8e-16 7.0e-13

300 4 0.80 2.0e-16 6.9e-15 32 0.10 3.7e-15 1.4e-12 0.45 4.0e-16 1.1e-13

6 0.80 2.1e-16 1.4e-14 72 0.17 3.7e-15 1.5e-12 0.73 4.1e-16 1.0e-13

8 0.81 2.1e-16 1.1e-14 128 0.29 3.7e-15 1.5e-12 1.01 4.1e-16 9.4e-14

10 0.83 2.1e-16 9.8e-15 200 0.44 3.7e-15 1.6e-12 1.56 4.1e-16 1.0e-13

400 4 1.80 2.1e-16 1.9e-14 32 0.21 4.4e-15 2.8e-12 0.94 4.4e-16 2.2e-12

6 1.78 2.1e-16 1.1e-14 72 0.34 4.4e-15 2.7e-12 1.45 4.4e-16 2.2e-12

8 1.80 2.1e-16 1.2e-14 128 0.61 4.4e-15 2.6e-12 2.22 4.4e-16 2.3e-12

10 1.86 2.1e-16 1.8e-14 200 0.84 4.4e-15 2.7e-12 3.20 4.4e-16 2.3e-12

Note: CPU time, error and residual norms as the problem dimension and the rank vary. dim(H) reports the final rank of the matrix H used in Algorithm 1,
step 8.

7 APPLICATION TO LARGE-SCALE EQUATIONS

In many applications Equation (1) has large dimensions, typically A and M are sparse and large, while F is very low
rank. In this setting, the SMW formula may be prohibitively expensive to be used, both in the vectorized and matrix
forms, unless 𝓁, si = (1), as performed in References 17,18. Indeed, the matrix-oriented formula, or its hybrid version
(see Remark 1), require solving at least as many Lyapunov equations as the number of columns of in Algorithm 0. So,
for instance, if 𝓁 = 1 and s1 = 15 (see Example 5), a total of s2 = 225 large-scale Lyapunov equations with nonsymmetric
right-hand side need to be solved to compute H = I + T−1 . Significantly larger dimensions of H may arise for 𝓁 > 1.

In this challenging context, the matrix-oriented approach may still be appealing as a core method within a projection
strategy to solve (1), whenever the rank of M is modest, say up to a few tens.

The Galerkin method is a general approximation methodology widely used in several analytical and numerical pro-
cedures such as in the variational characterization and discretization of PDEs, in algebraic linear systems and eigenvalue
problems, and more recently in linear matrix equations; see Reference 15 for a recent account concerning this last con-
text. In our setting the strategy proceeds as follows. For the sake of the presentation‡; see, for example, Reference 15.
Assume that F is symmetric and low rank, that is F = F1FT

1 . Given an approximation space V ⊂ Rn of dimension mk and a
matrix Vk ∈ Rn×mk whose orthonormal columns span V, we are interested in an approximation to X as X ≈ Xk = VkYkV T

k
where Y k is to be determined. The matrix Xk has rank at most mk and under certain hypotheses on the data, it may be a
good approximation to X ; see, for example, Reference 5. To determine Y k the following matrix orthogonality (Galerkin)
condition is imposed to the residual matrix Sk :=AXk +XkAT +MXkMT −F,

V T
k SkVk = 0,

that is, Sk is orthogonal to the approximation space, in the matrix inner product. Substituting Sk in this constraint equation
and recalling that V T

k Vk = I we get

‡In the nonsymmetric case, a left and a right projection space may be required, as in the standard Sylvester equation. In the case F is not low rank,
low-rank approximations can be considered

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 15 of 25

(V T
k AVk)Yk + Yk(V T

k ATVk) + (V T
k MVk)Yk(V T

k MTVk) − V T
k FVk = 0. (21)

The matrices Ak = (V T
k AVk), Mk = (V T

k MVk) and Fk = V T
k FVk have dimensions mk, so that the new equation is of the same

type as the original one, but it has much smaller dimension, as long as mk ≪n. For s<mk, where s is the rank of M, the
matrix Mk can again be written as the product of two low-rank matrices§, and our method can be applied to determine the
sought after reduced solution Y k. If the approximation is not good enough, the approximation space can be enlarged and a
new reduced solution Y k can be obtained. For the existence of Y k the reduced matrix equation must be solvable. This can
be obtained by requiring that the eigenvalues of the coefficient matrix in the Kronecker form of (21) are all contained in
one half of the complex plane. This last condition is satisfied if, for instance, the field of values of the coefficient matrix in
the Kronecker form of the original problem, that is of the matrix +T , is contained in one half of the complex plane.15

To complete the algorithm the approximation space must be selected. Given the expansion property outlined above,
a natural choice is to choose a nested space, that is Vk ⊆ Vk+1 where k indicates the iteration, so that the residual matrix
is enforced to lay into a smaller and smaller space as k grows. So far the procedure is very general and can be applied to a
variety of linear and quadratic matrix equations.15 However, to the best of our knowledge no Galerkin method has been
designed to directly attack the specific problem (1) of large dimension. To make the Galerkin methodology practical, the
space selection plays a crucial role.

Let M = U1V̂ T
1 . We propose to consider the column orthogonalization of V 0 = [F1, U1] as initial basis. If U1 is thin,

then V 0 has indeed few columns. Letting V 0 =V 1R be the reduced QR factorization of V 0, the columns of V 1 span V1.
The space is expanded with the two vectors

{(A − 𝜎kI)−1v, (A + M)−1v}; (22)

This choice is in agreement with similar selections for multiterm linear equations in the literature.10,11 Here, after k iter-
ations, v represents the kth vector in the already generated basis, which spans a space of dimension not smaller than k.
Due again to the SMW formula, the vector (A+M)−1v is a linear combination of A−1v and the columns of A−1U1 (com-
puted once for all at the beginning of the algorithm), hence after a number of iterations corresponding to the number of
columns of U1, this second vector in (22) will no longer be needed to expand the space, and only the vector (A − 𝜎kI)−1v
will be added. Nonetheless, we found that adding this term in the first few iterations was crucial for the overall conver-
gence. We stress that assuming the spectrum of A lay on one half of the complex plane, the shifts 𝜎k are computed so as
to be on the other half of the complex plane, so as to ensure that A − 𝜎kI is nonsingular. We refer the reader to Reference
15 for a general discussion on Galerkin type procedures for linear matrix equations, of which this is a typical example,
and on the shift selection. As opposed to other Galerkin projection methods for multiterm equations, here the space is
mainly based on the coefficient matrix A, since the terms involving M are dealt with explicitly.

The stopping criterion is based on the relative residual norm and it is given by

||Sk||||F|| < tol.

In our experiments we used tol= 10−6. The residual matrix should not be explicitly computed as it would require too many
memory allocations. We thus adopted a low-rank representation of the residual Sk as it is commonly done in this setting

Sk ∶=
[

AVk Vk MVk F1

] ⎡⎢⎢⎢⎢⎢⎣

0 Y 0 0
Y 0 0 0
0 0 Y 0
0 0 0 −I

⎤⎥⎥⎥⎥⎥⎦
[

AVk Vk MVk F1

]T
=∶ GPGT . (23)

Let

G =
[

Q1 Q2

][R̂1

0

]
= Q1R̂1

§A rank reduction is performed in practice, if Mk is found to be low rank, so as to exploit the matrix-oriented inner solver as soon as possible.

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

16 of 25 HAO and SIMONCINI

051001050
10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0
re

la
tiv

e
re

si
du

al
 n

or
m

n=100 2 , Pb Heat

n=100 2 , Pb L

n=200 2 , Pb Heat

n=200 2 Pb L

space dimension

F I G U R E 2 Convergence history of the Galerkin procedure
for Example 8 (𝛼 = 10, Pb L) and Example 9 (Pb Heat)

be the QR decomposition of G, then the norm of the residual Sk can be simplified as

||Sk|| = ||GPGT|| = ||Q1R̂1PR̂T
1 QT

1 || = ||R̂1PR̂T
1 || . (24)

The QR decomposition is not computed from scratch at each iteration, but updated as new basis columns are included.

Remark 2. Although the derivation of this section is focused on the symmetric case, the procedure can be easily general-
ized to the form (2) with matrices of large dimensions. The reduced problem to be solved will use the general approach
described in Section 3.

In the following, we report on two sets of numerical experiments we have performed. We consider symmetric matri-
ces, for which Algorithm 1 has shown its greatest effectiveness. We also compare with a state-of-the-art method, GLEK
in Reference 7, which is appropriate for any sparse M, not necessarily of very low rank. Being based on a matrix splitting
condition, it may have convergence problems on data that do not satisfy a certain matrix norm requirement; see Reference
[7, th. 3.1]. GLEK was shown to be competitive with respect to other methods for the same class of problems in Reference 7.

Example 8. We consider an academic example ¶ where A corresponds to the finite difference discretization of the oper-
ator (u) = +(exp(−xy)ux)x + (exp(xy)uy)y and M1 = −U1UT

1 in (0, 1)× (0, 1), with U1 = 𝛼[U11; 0], and U11 = [1⊗ I4], 1 is
the vector of all ones of length 10, so that U1 has four columns having a sequence of ones at different locations, and it has
orthogonal columns. Here, F1 is a vector with random entries uniformly distributed in (0, 1). The convergence history
of the Galerkin approach as the subspace dimension grows is reported in Figure 2 for n= 1002 and n= 2002. We notice
that the convergence is barely sensitive to the problem dimension, as it has been observed in other application problems
for rational Krylov subspaces. More details on the performance of the method are reported in Table 10, together with a
comparison with the method GLEK in Reference 7, as 𝛼 grows. For the large values of 𝛼 the Lyapunov operator becomes
less dominant, and the splitting-based method GLEK has convergence problems. The projection method converges for
all values of 𝛼, though its computational costs are higher# than GLEK, whenever the latter converges. Note also that the
performance of the new solver improves with 𝛼: for the larger values of 𝛼 this seems to be due to the fact that the more
dominant part is the portion of the problem that is solved explicitly by including U1 in the space.

Example 9. Heat equation from Reference 16. We consider the heat equation on the unit square, so that A is the dis-
cretization of the Laplace operator L(x) = Δx in Ω = (0, 1) × (0, 1). Robin conditions n ⋅ ∇(x) = 1

2
d ⋅ (x − 1) are used on a

small portion of the left domain boundary (corresponding to 10 nodes, so that U1 has 10 columns), while Dirichlet con-
ditions x = 0 are used on the rest of the boundary, yielding a single matrix N1(m= 1). The parameter d represents the

¶The numerical experiments for this example were ran on a different computer (a DELL Latitude with Core i7) than for the other examples.
#In a performance-oriented implementation, computational costs can be lowered by computing the reduced problem solution and checking
convergence only periodically (say every 5 iterations).

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 17 of 25

T A B L E 10 Example 8 GALERKIN GLEK

n 𝜶 # iter space dim CPU time space dim CPU time

10,000 1 70 78 4.64 79 0.85

40,000 1 105 109 31.46 86 3.30

10,000 2.5 61 69 3.34 103 2.53

40,000 2.5 73 81 22.79 93 4.87

10,000 5 48 56 2.56 – –

40,000 5 57 65 16.07 – –

10,000 10 37 45 1.79 – –

40,000 10 49 57 15.50 – –

Note: Numerical comparisons of the Galerkin projection and GLEK.

T A B L E 11 Example 9

GALERKIN GLEK

n d rank(U1) # iter space dim CPU time # iter space dim CPU time

2500 0.5 6 66 78 1.39 6 95 0.61

0.8 6 79 91 1.42 11 106 0.95

1.0 6 76 88 1.25 37 116 4.11

10,000 0.5 10 106 120 6.95 6 128 1.41

0.8 10 107 124 7.30 14 154 4.86

1.0 10 154 171 14.04 – – –

40,000 0.5 10 130 142 29.75 6 159 6.39

0.8 10 141 154 34.80 16 211 30.68

1.0 10 171 185 49.55 – – –

Note: Numerical comparisons of the Galerkin projection and GLEK.

control input and is problem dependent. This example was also reported in Reference [7, example 5.1], with a larger rank
U1. The numerical results are listed in Table 11 for d∈ {0.5, 0.8, 1}. As long as the Lyapunov operator remains dominant,
the method GLEK is superior to the Galerkin approach in terms of CPU time, while memory requirements are slightly
higher than with the projection method. As soon as the term involving the Robin boundary conditions becomes dominant,
problems for the splitting-based method arise, like in the previous example.

We conclude with a comment on this example, illustrating our Remark 1. The solution of each single Lyapunov
equation AP + PAT = uiuT

j for n= 40,000 and d= 0.5 requires about 3.3 s (2.6 s) to reach a relative residual norm less
than 10−7 in only 15 iterations (26 iterations), using the adaptive rational Krylov subspace method38 (using KPIK with
a prefactorized A39). If one were to use Algorithm 1 directly on the problem, the total time to approximate each of the
100 columns of would be largely over 200 s. A more advanced implementation might be able to reduce these large
timings and make the direct use of the SMW matrix-oriented approach directly applicable to the large-scale problem
for 𝓁 > 1.

8 APPLICATION TO LINEAR TENSOR EQUATIONS

Consider the tensor equation in the X tensor variable

(M1 ⊗ A1 ⊗ H + A2 ⊗ M2 ⊗ H + H3 ⊗ M3 ⊗ A3)vec(X) = b3 ⊗ b2 ⊗ b1 (25)

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

18 of 25 HAO and SIMONCINI

with H,H3,M3 nonsingular, and A1, M1 low rank. Here, the matrix H is in bold to emphasize that it is the same matrix
appearing in two different terms.

This tensor equation is representative of a large class of problems that can be described by means of tensors. This is
the case for instance for discretized three-dimensional PDEs when a tensor basis is used for the discretization; see, for
example, Reference [9, section 5] and references therein. More generally, tensor equations have become a key ingredient
in the numerical treatment of mathematical models dealing with uncertainty quantification and of parameter-dependent
model order reduction methodologies; the literature is quite vast, nonetheless we refer, for example, to References 40–47
and their references.

The analysis of tensors and the development of numerical methods have recently generated a large amount of liter-
ature. Different tensor representations have been analyzed, as discussed for instance in Reference 48; we also refer the
reader to the literature survey in Reference 49. In most cases, the authors have been interested in numerical methods
dealing with the presence of many summands and many Kronecker products in a sparse context, leading necessarily to
iterative approaches. Nonetheless, available explicit methods deriving the solution in some closed form with low memory
requirements are very scarce even for few summands. Here, we aim to contribute to filling this gap; we refer to Reference
50 for another contribution towards this aim for a tensor equation with different properties.

The following result yields a new procedure for computing the solution tensor X to Equation (25). To the best of our
knowledge, this is the first method that explicitly determines the solution in closed form, without using the Kronecker
form of the problem.

We recall that a tensor X ∈ Rn1×n2×n3 can be written using the mode-1 unfolding as (see, e.g., Reference 48).

X(1) = [X1,X2, … ,Xn3], Xj ∈ R
n1×n2 , j = 1, … ,n3;

The proof of this result is closely related to a proof that has been recently given for a slightly different class of three-mode
tensors in Reference 50.

Proposition 1. Let (H−1A3)T = QRQ∗ be the Schur decomposition of the given n1 ×n1 matrix. Then the solution can be
obtained as X(1) = ([ẑ1, … , ẑn1]Q

∗)T where ẑj = vec(Ẑj) are such that for j= 1, the matrix Ẑ1 solves

M−1
3 A1Ẑ1(H−1

3 M1)T + Ẑ1R1,1 + M−1
3 M2Ẑ1(H−1

3 A2)T = M−1
3 b2𝛾1(H−1

3 b3)T ,

while for j= 2, … , n1, the n2 ×n3 matrix Ẑj solves

M−1
3 A1Ẑj(H−1

3 M1)T + ẐjRj,j + M−1
3 M2Ẑj(H−1

3 A2)T = M−1
3 b2𝛾j(H−1

3 b3)T − Wj−1,

where Wj−1 = mat([ẑ1, … , ẑj−1]R1∶j−1,j) and [𝛾1, … , 𝛾n1] = bT
1 H−TQ.

Proof. For the unfolded tensor we have

HX(1)(A2 ⊗ M2 + M1 ⊗ A1)T + A3X(1)(H3 ⊗ M3)T = b1(b3 ⊗ b2)T

X(1)(A2 ⊗ M2 + M1 ⊗ A1)T(H3 ⊗ M3)−T + H−1A3X(1) = H−1b1(b3 ⊗ b2)T(H3 ⊗ M3)−T

X(1)(AT
2 H−T

3 ⊗ MT
2 M−T

3 + MT
1 H−T

3 ⊗ AT
1 M−T

3) + H−1A3X(1) = H−1b1(bT
3 H−T

3 ⊗ bT
2 M−T

3)

where we have used the properties of Kronecker product inverses and transpositions. Let us transpose both sides of the
last equation and set Y = (X (1))T . Then

(H−1
3 A2 ⊗ M−1

3 M2 + H−1
3 M1 ⊗ M−1

3 A1)Y + Y (H−1A3)T = (H−1
3 b3 ⊗ M−1

3 b2)bT
1 H−T .

Using (H−1A3)T = QRQ∗ and multiplying the equation by Q from the right, we can write

(H−1
3 A2 ⊗ M−1

3 M2 + H−1
3 M1 ⊗ M−1

3 A1)YQ + YQR = (H−1
3 b3 ⊗ M−1

3 b2)bT
1 H−TQ.

Let bT
1 H−TQ =∶ [𝛾1, … , 𝛾n1] and YQ =∶ [ẑ1, … , ẑn1]. Thanks to the upper triangular form of R, for the first column ẑ1 it

holds

(H−1
3 A2 ⊗ M−1

3 M2 + H−1
3 M1 ⊗ M−1

3 A1)ẑ1 + ẑ1R1,1 = (H−1
3 b3 ⊗ M−1

3 b2)𝛾1. (26)

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 19 of 25

For the subsequent columns j= 2, … , n1, taking into account once again the triangular form of R, we set wj−1 =
[ẑ1, … , ẑj−1]R1∶j−1,j so that

(H−1
3 A2 ⊗ M−1

3 M2 + H−1
3 M1 ⊗ M−1

3 A1)ẑj + ẑjRj,j = (H−1
3 b3 ⊗ M−1

3 b2)𝛾j − wj−1. (27)

Each column can be obtained in sequence by further unmaking the Kronecker product as follows. Let us reshape each ẑj
so that ẑj = vec(Ẑj). Using (26) for j= 1, we can write

M−1
3 A1Ẑ1(H−1

3 M1)T + Ẑ1R1,1 + M−1
3 M2Ẑ1(H−1

3 A2)T = M−1
3 b2𝛾1(H−1

3 b3)T ,

giving the first matrix equation. Analogously, for j= 2, … , n1 and letting Wj−1 = mat([ẑ1, … , ẑj−1]R1∶j−1,j), from (27) we
obtain

M−1
3 A1Ẑj(H−1

3 M1)T + ẐjRj,j + M−1
3 M2Ẑj(H−1

3 A2)T = M−1
3 b2𝛾j(H−1

3 b3)T − Wj−1,

with once again the desired form. ▪

The two matrix equations in Ẑj in the proposition statement already have a form that can exploit our setting since A1
and M1 have low rank. If either M2 or A2 is nonsingular, then the equation can be put into the “canonical form” in (2)
with 𝓁 = 1 as a Sylvester (rather than Lyapunov) operator plus a low-rank term. Indeed, for the sake of the description let
us take the first of the two equations|| in Proposition 1,

M−1
3 A1Ẑ1(H−1

3 M1)T + Ẑ1R1,1 + M−1
3 M2Ẑ1(H−1

3 A2)T = M−1
3 b2𝛾1(H−1

3 b3)T ,

and assume that M−1
3 M2 is invertible. Multiplying from the left by the inverse of this matrix we obtain

M−1
2 A1Ẑ1(H−1

3 M1)T + R1,1(M−1
3 M2)−1Ẑ1 + Ẑ1(H−1

3 A2)T = M−1
2 b2𝛾1(H−1

3 b3)T ,

which, after reordering the terms, is in the form

AẐ1 + Ẑ1B + U1V T
1 Ẑ1(U2V T

2)
T = F.

Here, U1V T
1 is the low-rank form of M−1

2 A1, obtained for instance by an SVD; in the same way, U2V T
2 is the low-rank form

of H−1
3 M1. The matrices A,B are readily defined.

The complete procedure is summarized in Algorithm 2.

Algorithm 2. Sherman–Morrison–Woodbury formula for tensor equations

1: INPUT: H,A3 ∈ Rn1×n1 , A1,M2,M3 ∈ Rn2×n2 , A2,M1,H3 ∈ Rn3×n3 , b1 ∈ Rn1 , b2 ∈ Rn2 , b3 ∈ Rn3

2: OUTPUT: Solution matrix X(1)
3: Do Schur decomposition (H−1A3)T ∶= QRQ∗

4: Compute bT
1 H−TQ ∶= [𝛾1,… , 𝛾n1]

5: Solve R1,1M−1
2 M3Z1 + Z1(H−1

3 A2)T + M−1
2 A1Z1(H−1

3 M1)T = M−1
2 b2𝛾1(H−1

3 b3)T for Z1 by Algorithm 1
6: For j = 2,… ,n1 solve Rj,jM−1

2 M3Zj + Zj(H−1
3 A2)T + M−1

2 A1Zj(H−1
3 M1)T = M−1

2 b2𝛾j(H−1
3 b3)T −

∑j−1
i=1 Ri,jM−1

2 M3Zi for Zj
by Algorithm 1

7: Compute X(1) =
(
[vec(Z1),… , vec(Zn1)]Q

∗)T

Example 10. We consider the problem (25) with n1 =n2 =n3 =n, and A1 = K1KT
2 , M1 = K3KT

4 with K1, K2 and K3, K4 ran-
dom matrices with s1 and s2 columns, respectively. All other matrices are random matrices (all with elements uniformly

||We stress that equations of the form A1XB1 + A2XB2 + 𝛼X = F with 𝛼 ≠ 0 are not solvable by the Schur decomposition-based approaches employed
for 𝛼 = 0, hence our approach becomes very relevant.

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

20 of 25 HAO and SIMONCINI

Vectorized form Matrix Form

n s1/s2 CPU time Res CPU time Res

20 2/3 2.41 3.485319e-11 0.03 1.102097e-12

3/5 2.46 6.372322e-11 0.06 3.401809e-12

40 2/3 – – 0.13 2.037035e-11

3/5 – – 0.25 5.789128e-11

80 2/3 – – 0.89 7.387216e-10

3/5 – – 1.83 4.095868e-10

160 2/3 – – 5.87 1.016724e-09

3/5 – – 11.94 5.948960e-10

Note: CPU time and residual norms for solving the tensor equation (25) as dimension and ranks vary.

T A B L E 12 Example 10

distributed in (0, 1)). The numerical results for increasing n and si, i= 1, 2 are reported in Table 12, where

Res = ||((A2 ⊗ M2 + M1 ⊗ A1)⊗ H + (H3 ⊗ M3)⊗ A3)x − (b3 ⊗ b2)⊗ b1||2||(b3 ⊗ b2)⊗ b1||2 .

The cost and residual when solving with Matlab backslash are also reported. Due to the high density of the problem, the
direct method could only be used for the smallest dimensional problem. On the other hand, the new approach can solve
the problem in a few seconds of CPU time, even in the largest considered case.

Under certain hypotheses on the data, the case of the tensor equation with more than three terms can be treated
similarly. As an example, we report the result for the equation with four terms.

Corollary 1. Consider the tensor equation

(M1 ⊗ A1 ⊗ H + A2 ⊗ M2 ⊗ H + H3 ⊗ M3 ⊗ A3 + A4 ⊗ M4 ⊗ H)vec(X) = b3 ⊗ b2 ⊗ b1 (28)

and let X(1) ∈ Rn1×n2n3 be its mode-1 unfolding solution. Let (H−1A3)T = QRQ∗ be the Schur decomposition of the given matrix.
Then X(1) = ([ẑ1, … , ẑn1]Q

∗)T, where ẑj = vec(Ẑj) and Ẑj solves the four term equations:

(i) For j= 1,

A1Z̃1MT
1 + M4Z̃1AT

4 + M2Z̃1AT
2 + M3R1,1Z̃1HT

3 = b2𝛾1bT
3 ;

(ii) For j= 2, … , n1,

A1Z̃jMT
1 + M4Z̃jAT

4 + M2Z̃jAT
2 + M3Rj,jZ̃jHT

3 = b2𝛾jbT
3 − W̃ j−1,

where W̃ j−1 = M3mat([z̃1, … , z̃j−1]R1∶j−1,j)HT
3 and [𝛾1, … , 𝛾n1] = bT

1 H−TQ.

Proof. The proof proceeds as that of the previous proposition, with the extra term A4 ⊗ M4 ⊗ H carried over. ▪

Each of the two matrix equations in Corollary 1 contains four terms. However, two of these terms can be collected
together under certain hypotheses on the data. For instance, if for instance A4 =H3, then the first matrix equation becomes

A1Z̃1MT
1 + (M4 + M3R1,1)Z̃1AT

4 + M2Z̃1AT
2 = b2𝛾1bT

3 ; (29)

Our methodology still applies to this generalized Sylvester equation once the canonical form can be recovered; this is the
case, for instance, for nonsingular M2 and A4. In addition, if A1, M1 are low rank, then the SMW formula can be employed.

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 21 of 25

T A B L E 13 Example 11 Direct method Matrix form

n Rank(Ui) CPU Res CPU Res

31 3 0.2 4.6e-14 0.02 6.5e-14

47 4 1.5 8.5e-14 0.04 1.8e-13

63 5 7.9 1.9e-13 0.11 3.3e-13

79 6 34.8 2.6e-13 0.25 6.0e-13

95 7 172.0 3.6e-13 0.76 8.3e-13

Note: CPU time and residual norms for solving the tensor equation (31) as dimension
and rank vary.

Example 11. Three-dimensional linear PDEs. We consider the PDE

−Δu + 𝜔(x, y, z)u = 1, (x, y, z) ∈ Ω, (30)

with homogeneous Dirichlet boundary conditions and Ω = (0, 1)3. We assume that 𝜔 = 𝜔(x, y, z) = 𝜔(x, y) is defined
similarly to Example 15, with Ω1 = [3

16
,

1
4
] × [3

16
,

1
4
] × (0, 1). Finite difference discretization gives the tensor problem

(M1 ⊗ A1 ⊗ I + T ⊗ I ⊗ I + I ⊗ T ⊗ I + I ⊗ I ⊗ T)vec(X) = 1⊗ 1⊗ 1, (31)

where T = (n + 1)2tridiag(−1, 2,−1) is again the n×n 3-point stencil discretization of the second-order operator in one
dimension, and I is the identity matrix of conforming size. In addition, M1, A1 are diagonal matrices with nonzero diagonal
entries only corresponding to the support grid values associated with Ω1 of the two functions 𝜙(x), 𝜓(y), respectively.
Using the formulation in (29), for j= 1 the equation for the transformed solution Z̃1 can be written as

A1Z̃1MT
1 + (T + R1,1I)Z̃1 + Z̃1T = 1𝛾11T , (32)

whose structure naturally adapts to our setting. For j> 1 the equation changes accordingly. The numerical results are
reported in Table 13 and illustrate the potential of the matrix approach for solving the tensor problem, compared with the
use of the sparse direct solver applied to the Kronecker version of the original tensor equation. Equation (32) could also
be solved with methods other than the matrix-oriented SMW formula. Comparisons similar to those reported in previ-
ous sections would arise, and we refrain from repeating this whole discussion. Here, we focus on the major advantages
obtained by unfolding the tensor problem.

9 CONCLUSIONS

We have analyzed in detail a fully matrix-oriented procedure for solving general small and medium scale multiterm
linear matrix equations, when some of the terms have low rank. The procedure relies on a matrix-oriented use of the
classical vector SMW formula, while avoiding the generation of the large dense matrices necessary to deal with the original
formula. By means of a variety of small and medium size application problems, we have shown that the matrix-oriented
method can achieve order of magnitude CPU time improvements over the vectorized method, and can solve in a few
seconds dense problems that cannot be treated by the vectorized SMW formula.

We have shown how to employ this procedure in the large-scale case as the reduced equation solver within a Galerkin
projection method. Moreover, we have illustrated that the new procedure is a crucial ingredient for a new effective method
that explicitly solves a class of linear tensor equations.

ACKNOWLEDGMENTS
We would like to thank two anonymous reviewers for their many insightful comments and for pointing to important
references. Moreover, we thank Tobias Damm for helpful discussions and Leonardo Robol for sharing the Matlab code
associated with Reference 17. The first author is funded by the China Scholarship Council (Contract No. 201906180033)

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

22 of 25 HAO and SIMONCINI

and by the National Natural Science Foundation of China (Grant Nos. 11471150). Her work was performed during her visit
at the Università di Bologna, Italy. The second author is a member of Indam-GNCS. Its support is gratefully acknowledged.
Part of this work was also supported by the Grant AlmaIdea 2017–2020 - Università di Bologna.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

ORCID
Valeria Simoncini https://orcid.org/0000-0003-0795-5865

REFERENCES
1. Lancaster P. Explicit solutions of linear matrix equations. SIAM Rev. 1970;12(4):544–66.
2. Konstantinov M, Gu D, Mehrmann V, Petkov P. Perturbation theory for matrix equations. Studies in Computational Mathematics. Vol 9.

Amsterdam: Elsevier; 2003.
3. Benner P, Damm T. Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J Control

Optim. 2011;49(2):686–711.
4. Gray WS, Mesko J. Energy functions and algebraic gramians for bilinear systems. IFAC Proc Vols. 1998;31(17):101–6.
5. Benner P, Breiten T. Low rank methods for a class of generalized Lyapunov equations and related issues. Numer Math. 2013;124(3):441–70.
6. Breiten T, Damm T. Krylov subspace methods for model order reduction of bilinear control systems. Syst Control Lett. 2010;59(8):443–50.
7. Shank SD, Simoncini V, Szyld DB. Efficient low-rank solutions of generalized Lyapunov equations. Numer Math. 2016;134(2):327–42.
8. Hao Y, Simoncini V. Matrix equation solving of PDEs on regular domains. J Numer Math. 2020. https://hal.archives-ouvertes.fr/hal-

02902456.
9. Palitta D, Simoncini V. Matrix-equation-based strategies for convection-diffusion equations. BIT Numer Math. 2016;56:751–76.

10. Powell CE, Silvester D, Simoncini V. An efficient reduced basis solver for stochastic Galerkin matrix equations. SIAM J Sci Comput.
2017;39(1):A141–63.

11. Buenger A, Simoncini V, Stoll M. A low-rank matrix equation method for solving PDE-constrained optimization problems; 2020. arXiv
preprint arXiv:2005.14499.

12. Bouhamidi A, Jbilou K. A note on the numerical approximate solutions for generalized Sylvester matrix equations with applications. Appl
Math Comp. 2008;206:687–94.

13. Chehab JP, Raydan M. An implicit preconditioning strategy for large-scale generalized Sylvester equations. Appl Math Comput.
2011;217(21):8793–803.

14. Kressner D, Sirković P. Truncated low-rank methods for solving general linear matrix equations. Numer Linear Algebra Appl.
2015;22(3):564–83. https://doi.org/10.1002/nla.1973.

15. Simoncini V. Computational methods for linear matrix equations. SIAM Rev. 2016;58(3):377–441.
16. Damm T. Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations. Num Lin Alg Appl.

2008;15:853–71.
17. Massei S, Palitta D, Robol L. Solving rank-structured sylvester and Lyapunov equations. SIAM J Matrix Anal Appl. 2018;39(4):1564–90.

https://doi.org/10.1137/17M1157155.
18. Ringh E, Mele G, Karlsson J, Jarlebring E. Sylvester-based preconditioning for the waveguide eigenvalue problem. Linear Algebra Appl.

2018;542:441–63.
19. Golub G, Van Loan CF. Matrix computations. 4th ed. Baltimore: The Johns Hopkins University Press; 2013.
20. Henderson HV, Searle SR. On deriving the inverse of a sum of matrices. SIAM Rev. 1981;23(1):53–60.
21. Sherman J, Morrison WJ. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann Math Stat.

1950;21:124–7. https://doi.org/10.1214/aoms/1177729959.
22. Hager W. Updating the inverse of a matrix. SIAM Rev. 1989;31(2):221–39.
23. Malyshev A, Sadkane M. Using the Sherman-Morrison-Woodbury inversion formula for a fast solution of tridiagonal block Toeplitz

systems. Linear Algebra Appl. 2011;435:2693–2707.
24. Bru R, Cerdán J, Marín J, Mas J. Preconditioning sparse nonsymmetric linear systems with the Sherman–Morrison formula. Appl Math.

2003;11(25):701–15.
25. Li R, Saad Y. Divide and conquer low-rank preconditioners for symmetric matrices. SIAM J Sci Comput. 2013;35(4):A2069–95.
26. Nocedal J, Wright S. Numerical optimization. New York, NY: Springer; 1999.
27. Bunch JR, Rose DJ. Partitioning, tearing and modification of sparse linear systems. J Math Appl. 1974;48:574–93.
28. Duff IS, Erisman AM, Reid JK. Direct methods for sparse matrices. Oxford, UK: Clarendon Press; 1989.
29. Chan TF, Saad Y. Iterative methods for solving bordered systems with applications to continuation methods. SIAM J Sci Comput.

1985;6(2):438–51.
30. Yip EL. A note on the stability of solving a rank-p modification of a linear system by the Sherman-Morrison-Woodbury formula. SIAM

J Sci Stat Comput. 1986;7(2):507–13.
31. Richter S, Davis LD, Collins EG. Efficient computation of the solutions to modified Lyapunov equations. SIAM J Matrix Anal Appl. 1993

Apr;14(2):420–31.

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-0795-5865
https://orcid.org/0000-0003-0795-5865
https://hal.archives-ouvertes.fr/hal-02902456
https://hal.archives-ouvertes.fr/hal-02902456
https://doi.org/10.1002/nla.1973
https://doi.org/10.1137/17M1157155
https://doi.org/10.1214/aoms/1177729959

HAO and SIMONCINI 23 of 25

32. Collins EG, Hodel S. Efficient solution of linearly coupled Lyapunov equations. SIAM J Matrix Anal Appl. 1997 Apr;18(2):
291–304.

33. Kuzmanović I, Truhar N. Sherman-Morrison-Woodbury formula for Sylvester and T-Sylvester equations with applications. Int J Comput
Math. 2013;90(2):306–24.

34. Bartels RH, Stewart GW. Algorithm 432: solution of the matrix equation AX +XB = C. Commun ACM. 1972;15(9):820–6.
35. Jonsson I, Kågström B. Recursive blocked algorithms for solving triangular systems – Part I: one-sided and coupled Sylvester-type matrix

equations. ACM Trans Math Softw. 2002;28(4):392–415.
36. MATLAB 7; 2017.
37. Higham NJ. Accuracy and stability of numerical algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics; 1996.

http://www.ma.man.ac.uk/~higham/asna.html.
38. Druskin V, Simoncini V. Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst Control Lett. 2011;60:546–60.
39. Simoncini V. A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J Sci Comput. 2007;29(3):1268–88.
40. Gavrilyuk I, Khoromskij BN. Tensor numerical methods: actual theory and recent applications [editorial]. Comput Methods Appl Math.

2019;19(1):1–4. https://doi.org/10.1515/cmam-2018-0014.
41. Hackbusch W, Khoromskij BN, Tyrtyshnikov EE. Hierarchical Kronecker tensor-product approximations. J Numer Math.

2005;13(2):119–56.
42. Khoromskij BN. Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom Intell Lab Syst.

2012;110:1–19.
43. Kressner D, Kumar R, Nobile F, Tobler C. Low-rank tensor approximation for high-order correlation functions of Gaussian random fields.

SIAM/ASA J Uncertain Quant. 2015;3:393–416.
44. Oseledets IV. Tensor-train decomposition. SIAM J Sci Comput. 2011;33(5):2295–317.
45. Dolgov SV, Khoromskij BN, Oseledets IV. Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial

application to the Fokker–Planck equation. SIAM J Sci Comput. 2013;34(6):A3016–38.
46. Khoromskij BN, Schwab C. Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J Sci Comput.

2011;33(1):364–85.
47. Kressner D, Tobler C. Low-rank tensor Krylov subspace methods for parametrized linear systems. SIAM J Matrix Anal Appl.

2011;32(4):1288–316.
48. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev. 2009;51:455–500.
49. Grasedyck L, Kressner D, Tobler C. A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen.

2013;36(1):53–78.
50. Simoncini V. Numerical solution of a class of third order tensor linear equations. Boll UMI. 2020;13(3):429–39.

How to cite this article: Hao Y, Simoncini V. The Sherman–Morrison–Woodbury formula for generalized linear
matrix equations and applications. Numer Linear Algebra Appl. 2021;28:e2384. https://doi.org/10.1002/nla.2384

APPENDIX A

In this section, we report the Matlab implementation of the algorithm for solving (2) with dense data of modest dimensions
and 𝓁 = 2. The implementation for 𝓁 > 2 follows exactly the same lines.

function [X] = SMW_matrix_general(U1,V1,U2,V2,U3,V3,U4,V4,A,F)
%function [X] = SMW_matrix_general(U1,V1,U2,V2,U3,V3,U4,V4,A,F)
% Solve AX + XA’ + M1 X M2’ + M3 X M4’ = F,
% where M_i=U_i*V_i’ and U_i, V_i are low rank s_i,
% via the Sherman--Morrison--Woodbury matrix-oriented formula
%
symmA=(norm(A-A’,1)<1e-12);
nonmulti=isempty(U3);

n=size(A,1);
s1=size(U1,2); s2=size(U2,2);
s3=size(U3,2); s4=size(U4,2);

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.ma.man.ac.uk/~higham/asna.html
https://doi.org/10.1515/cmam-2018-0014
https://doi.org/10.1002/nla.2384
https://doi.org/10.1002/nla.2384

24 of 25 HAO and SIMONCINI

if (symmA)
[Q,R]=eig(A); L=diag(R)*ones(1,n)+ones(n,1)*diag(R).’;
rhs=(Q’*F*Q)./L;

else
[Q,R]=schur(A,’real’);
rhs=lyap(R,-Q’*F*Q);

end

p=0;
% Change of basis
U1Q=Q’*U1; U2Q=Q’*U2;
V1Q=Q’*V1; V2Q=Q’*V2;

if (∼nonmulti) % extra low-rank term
U3Q=Q’*U3; U4Q=Q’*U4;
V3Q=Q’*V3; V4Q=Q’*V4;

end

% computed blocks of H associated with M1,M2
for k=1:s2

if (symmA), G=U2Q(1:n,k)’./L;end % replica of the row U2Q((:,k)’
for i=1:s1

p=p+1;
if (symmA)

VV1(1:n,1:n,p)=U1Q(1:n,i).*G; % replica of column U1Q(:,i) (*)
else

VV1(1:n,1:n,p)=lyap(R,-U1Q(:,i)*U2Q(:,k)’);
end

vk=V1Q’*(VV1(1:n,1:n,p)*V2Q);
H(1:s1*s2,p)=reshape(vk,s1*s2,1);
if (∼nonmulti)

vk=V3Q’*(VV1(1:n,1:n,p)*V4Q);
H(s1*s2+1:s1*s2+s3*s4,p)=reshape(vk,s3*s4,1);

end
end

end
coef(1:s1*s2,1)=reshape(V1Q’*rhs*V2Q,s1*s2,1);

% computed blocks of H associated with M3,M4
for k=1:s4

if (symmA), G=U4Q(1:n,k)’./L;end % replica of the row u4Q((:,k)’
for i=1:s3

p=p+1;
if (symmA)

VV1(1:n,1:n,p)=U3Q(1:n,i).*G; % replica of column U3Q(:,i) (**)
else

VV1(1:n,1:n,p)=lyap(R,-U3Q(:,i)*U4Q(:,k)’);
end

vk=V1Q’*(VV1(1:n,1:n,p)*V2Q);
H(1:s1*s2,p)=reshape(vk,s1*s2,1);

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

HAO and SIMONCINI 25 of 25

vk=V3Q’*(VV1(1:n,1:n,p)*V4Q);
H(s1*s2+1:s1*s2+s3*s4,p)=reshape(vk,s3*s4,1);

end
end
if (∼nonmulti)

coef(s1*s2+1:s1*s2+s3*s4,1)=reshape(V3Q’*rhs*V4Q,s3*s4,1);
end
C=(eye(s1*s2+s3*s4)+H)∖coef;
Stot=reshape(VV1,n∧2,s1*s2+s3*s4)*C;
X=Q*(rhs-reshape(Stot,n,n))*Q’;

Unless n is significantly larger than
∑

is2
i , the commands (*) and (**) are the most expensive steps in the whole proce-

dure, usually taking about 50% of the overall CPU time. For instance, this is the case for n= 200 and s1 = s2 = s3 = s4 = 8,
whereas for n= 400 and s1 = s2 = s3 = s4 = 2 the eigenvalue decomposition takes over 35% of the total time for A dense and
symmetric (Matlab profile was used for this analysis).

APPENDIX B

In this appendix, we report the algorithm described in Reference 16, together with a detailed computational cost. Only
the costs marked with a star are counted in the comparison, to only account for the generic implementation.

Algorithm B1. The algorithm proposed in Reference [16] for 𝓁 = 1

1: Set A1 = [U1 ⊗ U1] ∈ Rn2×s2 , A2 = [V1 ⊗ V1] ∈ Rn2×s2
2(n2s2) ⋆

2: Compute Q = [Q1,Q2] ∈ R
n2×sq w/orth. columns s.t., range(A1) = range(Q1) and range(Q) = range([A1,A2])

8s4n2 − 8
3

s6

3: Compute H = QT
1 (U1 ⊗ U1)(V1 ⊗ V1)TQ ∈ R

sq1×sq 6s4n2 + 4s6 − 5s4 ;
4: Perform SVD: H = Ũ1ΣṼ T

1 with r = rank(Σ) 32s6

5: Set P1 = (p1,… , pr) = Q1Ũ1Σ, P2 = Ṽ T
1 QT s4 + 6s4n2 − 2s2n2

6: Compute Schur decomposition of A = MRM∗ 25n3 ⋆

7: For k = 1,… , s2

8: Solve ASk + SkAT = vec−1(pk) using Schur dec. total: (10n3 − 4n2)s2 ⋆

9: Compute gk = P2vec(−1(vec−1(pk))) total: s4(2n2 − 1) ⋆

10: Set G = (g1,… , gr).
11: Compute y = P2vec(−1(Y)) 10n3 − 4n2 + s2(2n2 − 1) ⋆ and w = (I − G)−1y 2

3
s6 ⋆

12: x = −1(Y − vec−1(P1w)) 10n3 + 2n2s2 − 4n2 ⋆

 10991506, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2384 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

