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Abstract— Climate change and more frequent heatwaves 
exacerbate the issue of fruit sunburn in orchards. To facilitate 
fruit temperature dynamics investigation, in relation to fruit 
sunburn damage occurrence, a low-cost thermal scanning 
platform, based on depth and thermal consumer-grade cameras, 
was developed to collect position and temperature fruit 
information. The platform exploits the Robotic Operating 
System (ROS) to synchronize data collection from the sensors, 
the YOLOv5 object detection algorithms to automatically detect 
fruits to be analyzed, and a Python based pipeline to align 
images and extract temperature and position information of the 
fruits (apple and grape cluster). Results referred to a first 
version of the system shown a high correlation between 
estimated and actual temperature (r > 0.92) and an acceptable 
positional error (~ 0.15m). Many improvements of the system 
are currently on-going to reach the expected performance on a 
second version of the platform. 

 
Keywords— Fruit temperature, fruit Sunburn, sensor fusion, 

computer vision system, automation 

I. INTRODUCTION 

Climate change exacerbate issues related to fruit crops 
production, modifying the typical phenological stage timing, 
increasing heat and water stresses periods to which plants and 
growers have to overcome, generally considering site-specific 
adaptation approaches [1], [2]. Due to the more frequent 
heatwaves, the risk of sunburn increases as the temperature 
rises due to excessive solar radiation and thermal stress [3], 
[4]. This not only compromises the marketability of the 
produce, thereby reducing growers’ incomes, but also entails 
indirect economic burdens as a result of additional protective 
measures. Understanding the impact of heatwaves on the 
incidence and severity of fruit sunburn is a crucial step for 
protecting crop yields and assuring growers’ profitability [5]. 

Being able to forecast the occurrence of possible fruit 
sunburn damage based on past, current, and forecasted 
weather data would be interesting for growers. This would 

 
 
 

 
 
 
 
 

enable the adoption of defense strategies such as kaolin 
spraying, climate-conditioning irrigation (e.g., over-canopy 
irrigation) as well as using netting systems to increase shading 
levels [6]. 

To reach this objective, fruit temperature dynamics in 
relation to sunburn occurrence need to be investigated taking 
in to account many variables such as the fruit species 
considered, the place and the way they are grown and 
managed as well as weather and microclimatic data of the 
surrounding area. Much of this information is easily and 
quickly attainable, such as weather or microclimatic data (e.g., 
through weather service or private weather station), fruit 
species, training system and management (by brief interview 
to the growers), or pedo-geological information (exploiting 
online GPS-based-repository). Conversely, the fruit 
temperature and position information needed for this 
investigation are collected mainly manually, thus requiring 
labor, increasing cost, and limiting the numerosity of samples. 

To overcome this situation and ease the application of 
machine learning approaches requiring a wide amount of 
ground-truth data, automatic data collection of fruit 
temperature and position is essential. Some studies already 
report systems able to autonomously collect fruit temperature 
data later used for investigating fruit sunburn occurrence [7]– 
[9]. However, a system able to integrate fruit positional 
information able to map fruit temperature related to its 
position in the field, possibly in near real-time, has not been 
released and developed yet. 

The goal of the presented study is to develop and test a 
scanning platform called ‘RGB-D/T’ based on ready-to-use 
consumer-grade set of sensors as well as a computer vision 
system (CVS) and object-detection algorithms [10], [11]. The 
platform realization objective is to facilitate fruit thermal and 
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spatial data collection by introducing automation and possibly 
exploiting autonomous vehicles like the one described in [12]. 

II. MATERIALS AND METHODS 

A. Platform setup 
 

 
Fig. 1. Left) The 3D printed case holding (a) thermal camera and (b) 
RGB-D camera. Right) Platform sensors set-up and field data collection. 

To implement the RGB-D/T system, consumer-grade 
sensors were specifically integrated in the setup to investigate 
possible “low-budget” solutions able to scan the orchards for 
fruit temperature distribution. A depth (or RGB-D) Intel 
RealSense D435i camera and a SEEK CompactPro thermal 
camera were utilized as sensor suite (Fig. 1). In order to firmly 
hold the cameras during the measurements and maintain their 
mutual positions, a 3D printed case was created and 
customized to fit with sensors’ shapes. 

This was designed to vertically align the center of both the 
cameras lenses, while keeping the distance between them as 
reduced as possible, so to favor overlapping in cameras field 
of view (FoV). The 3D printed case was firmly fixed (with 
screws) on a wood pole equipped with two bubble levels and 
mounted on a tripod equipped as well with a bubble level. 

Data collection platform consisted of a standard laptop 
(MSI Katana GF66), exploiting a ROS (Robotic Operating 
System) workflow. The development of a ROS workflow to 
collect the data was essential to synchronize the frames from 
the two sensors. In addition, while the RGB-D camera was 
supported with a dedicated ROS driver, the SEEK 
CompactPro thermal camera was not, featuring only an 
official, but not open source, smartphone application based on 
Android OS. Thus, exploiting an open-source third-party 
software development kit (SDK), a custom ROS node was 
developed allowing both sensors to work simultaneously from 
the same ROS-Linux based platform (i.e., a laptop in this 
case). 

The ROS workflow allows to generate “.bag” files 
containing synchronized data from both sensors. From these 
files, it was later possible to extract the same timing 
synchronized data collected from both the cameras, despite 
their differences in frame rates. 

B. Color and thermal image alignment 
Since the two cameras are sensible to different wavelength 

(visible vs infrared), it was necessary to exploit both spectra 
to proper align images. For doing that, an alignment panel was 
made using small heating lightbulbs (n. lights = 30, diameter 
= 5 mm) mounted 125 mm apart on a wooden board, so to 
create a chessboard scheme, as already described in [9]. The 
high temperature and light emission of these bulbs, allowed to 

 

 
Fig. 2. Top) definition of the smallest area, enclosing all the keypoints for both 
color (red) and thermal (blue) images; Bottom) Example of thermal-to-RGB 
projection. 

distinguish them from the background both in RGB colors and 
temperature data. From the images collected using this panel, 
an alignment process was performed as follows (Fig.2): 

1. SimpleBlobDetector function from OpenCV library was 
used to detect the light bulbs in both RGB and thermal 
images (after a parameter tuning for each image type). 

2. Keypoints’ coordinates obtained from the blob detectors 
were used to determine the corners of the smallest 
bounding-box enclosing all the keypoints, thus define 
points P1, P2, P3, P4 in Fig.2. 

3. A scaling factor for both x and y axis was computed and 
used to resize the thermal image and align it to the 
corresponding RGB one by projecting all the pixels 
collected by the thermal camera. 

The mean scaling factor obtained from 18 images was then 
included in the ROS workflow to align RGB and thermal 
images during operation. 

C. Fruit detection 
In order to automate the data extraction instead of 

exploiting RGB color/thermal filtering as in [7], [8] a 
‘YOLOv5-m’ object detection algorithms was trained to 
identify fruits. Two models were developed for this purpose: 
one for apple fruit (mAP = 0.734 and F1-score = 0.74) and one 
for grape clusters (mAP = 0.973 and F1-score = 0.96) 
detection. The first model was trained leveraging on a 
proprietary dataset of 208 tree apple images collected in 
orchard during 2020-2021 seasons, while the second was 
trained exploiting an existing grape image WGISD dataset 
from[13]. These were then applied on the ROS-extracted RGB 
images, collected with the RGB-D/T system, to identify the 
fruit pixels in the images and apply the thermal analysis. 

D. Thermal calibration of the system 
Since the raw-to-Celsius degree thermal conversion 

equation used by the official Android app for the SEEK 
thermal camera, is neither open-source nor available for 
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developers, reverse engineering approach was exploited to get 
the proper calibration functions and convert raw thermal data 
obtained through the ROS workflow in Celsius degrees. To 
achieve this result, the same scenes containing several objects 
of known temperature were collected using both ROS 
framework and the Android app. The following steps were 
performed: 

1. Since raw thermal data obtained with the two collecting 
methods presented a different scale according to common 
thermal values (e.g., 0-6k vs 0-17k “Raw Thermal Units” 
(RTU) respectively for the Android app and ROS 
framework), it was not possible to directly convert ROS 
collected data to Celsius degrees (°C) and a ROSraw-to- 
SEEKraw data conversion algorithm was needed to ensure 
a proper conversion. Conversion coefficients for linear 
equations were extracted by means of pixel-to-pixel 
regression analysis. Despite the not strong correlation (r = 
0.60), the RMSE (4%) was acceptable and the ending 
results after the ROSraw-to-SEEKraw conversion 
presented a suitable data resolution and a proper 
representation (not preserved when using other different 
approaches). 

2. After this step, relationship between raw thermal data (in 
SEEKraw RTU range) and Celsius degrees given by the 
Android app was investigated. The result was not found to 
be a linear relationship in the tested temperature range (i.e., 
-4 to 100°C). By this, three raw thermal data domains, 
having a linear relation, were defined (< 3k, 3k-7k, >7k 
RTU). While investigating this, it was found that objects 
temperature readings were notably altered by their 
distance from the sensors. Because of that, a data 
collection of the same scene was done with an object-to- 
camera distance variable from 0.5 to 3.0 m considering 0.5 
m steps. As a result, a discrete SEEKraw-to-°C correction 
equations for each of the thermal domain and distance 
combination was computed. 

3. At each distance, objects of different known temperatures 
were measured, and the error compared with the reference 
was computed. A calibration equation for each of 
minimum, maximum, and mean temperature of the scene 
was computed by interpolating errors recorded at the six 
distances, so to enable temperature-distance correction at 
all distances between the collected range. 

E. Fruit temperature extraction process 
1. The fruit temperature extraction algorithm starts by 

applying the YOLOv5 object detection model on the RGB 
image. The algorithm defines all the possible fruits 
(detected) from which to extract temperature information. 
For each analyzed image, the center coordinate, the width, 
and the height of the bounding box (bbox) for every 
detected fruit are stored into a dataframe (yoloDF). 

2. The ROSraw thermal image is aligned to the RGB one (see 
step B.) then is clipped at each fruit bbox coordinate, 
defined in yoloDF, creating an aligned thermal bbox 
(Tbbox) containing raw thermal information of the fruit. 

3. Per each clipped Tbbox, a filtering step is applied to check 
if the detected fruit (on the RGB image) falls in the thermal 
camera FoV: if >40% of the Tbbox are zero (unavailable) 
values, then the Tbbox is discarded, otherwise the process 
continues. 

4. The remaining Tbbox-es are analyzed for their thermal 
information and a percentile filtering step was developed 
to extract the temperature of the warmer spot/area of the 
fruit bbox, considering the purpose of the project, related 
to sunburn damage occurrence. At this phase, all the pixel 
values with temperature below the 70th percentile are 
discarded and not considered in the further steps. This 
filtering is essential also for removing thermal information 
not pertinent to the fruit (i.e., background, small areas with 
overlapping leaf, etc.). 

5. After this step only raw thermal data of the 70th – 100th 
percentile remain, and the following steps occurs: 

a. Firstly, raw thermal data are converted in their official 
SEEK app values range (see D.1). 

b. According to the obtained thermal values and shooting 
distance, the optimal raw-to-Celsius conversion 
function is applied (see D.2-3). 

c. At last, the minimum, mean and maximum 
temperature of the spot are computed and corrected for 
the distance error (see D.3). Since remaining fruit 
temperatures will always be near or above 
environmental temperature, these values are corrected 
using only max and mean temperature related 
correction coefficients obtained in D.3. 

F. 3D Fruit positioning 
To map fruit position, the depth information coming from 

the RGB-D sensor (i.e., depth map) was exploited. Before 
extracting positional information, a filtering step was applied 
to discard invalid values (i.e., zeros) present in the depth 
image due to geometrical/computational constraints or noise 
occurring in the data collection. Similarly to fruit thermal data 
extraction, YOLOv5 models were used to detect fruit on the 
RGB image and clip the aligned depth map for the detected 
area object (Dbbox). To remove depth information related to 
the background around the fruit, a distance occurrence 
filtering step was applied to Dbbox: low occurrence (< 10- 
15%) distances were discarded, while others depth data were 
maintained. The most represented (i.e., with highest 
occurrence) depth information, was then considered as the 
“mean fruit distance” (Z coordinate of the fruit, using the 
camera frame) since this should be the one better representing 
the fruit. Then, the X and Y coordinates of the fruit center were 
considered to be equal to the detected fruit bbox center. 

To re-compute fruit coordinates with respect to the trunk, 
the position of this was needed. Trunk was detected in the 
image using a dedicated YOLOv5 model, then the mean trunk 
distance (Z) was computed as presented for fruits. Since trunk 
was considered as the origin at its ground level, instead of 
using its X and Y “center” as done for the fruit, only X bbox 
center coordinate was considered as X-trunk coordinate, while 
Y-trunk coordinate was extracted as the Y lowest value in the 
bbox (since this is the closest point to the ground in the trunk 
bbox). Once knowing both the fruit and the trunk coordinates 
in the same measure unit (X and Y in pixels, Z in millimeters) 
and from the same coordinate system origin (the RGB-D 
camera), it was possible to compute the fruit position relative 
to the trunk. This was done by simply subtracting from each 
fruit coordinates the correspondent trunk coordinates. 
Applying this technique on all the detected fruits of an image 
allowed to obtain a fruit distribution map of the whole plant. 
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The X and Y pixel coordinates were finally converted in 
millimeters, to obtain real world values. This was done 
exploiting a trigonometric approach accounting for mean 
object distance and camera’s FoV as reported in [10] and [14]. 

G. System evaluation 
A Field data collection to evaluate preliminary system 

performances was done. This consisted of a brief video 
recording (3 sec) of a single tree, using the ROS framework 
from both the cameras. For apple trees trained as “thin” 
spindle, the tripod was positioned in front of the tree trunk at 
2.80 m distance perpendicular to the tree-row plane (Z), with 
cameras parallel to the tree-row plane (X). Considering the 
possible tree height, after the tripod positioning, two height 
recordings occurred: one at 1.40 m (h1) and one at 2.50 m (h2) 
from the ground (Y) thus to be able to collect as much thermal 
data as possible considering the reduced FoVs (32° x 32°) of 
the thermal camera compared to the RGB ones (69° x 42°). 
The system was levelled thanks to the three level bubbles 
present on the tripod. The system positioning and the height 
and distance selected, managed to frame one entire tree in 
width and having a minimum reliable thermal analysis 
resolution of 11.2 x 11.2 mm (i.e., analysis of a 2 x 2 pixels 
matrix). With this approach data were collected, on 6 trees 
presenting fruits close to maturity stage with red epidermis 
color (cv Gala) and 6 trees loading fruits at earlier 
development stages with green skin color (cv Fuji). 

For grape data collection, a similar setup using the same 
X, Y, Z dimension and approach were utilized. In this case the 
tripod was placed in front of the middle of the plant canopy, 
not using the trunk as central referring point, at 2.30 m 
distance, so to frame one entire vine in width and height, 
having a minimum reliable analysis resolution of 9.6 x 9.6 mm 
(i.e., 2 x 2 pixels matrix). With this approach, after veraison, 
16 single vine (trained as VSP spur pruned cordon - cv 
Sangiovese) recordings were collected, presenting different 
levels of defoliation or fruit occlusion. 

III. RESULTS AND DISCUSSION 

A. RGB-thermal alignement evaluation 
The performance assessment consisted into comparing the 

projected positions of P1, P2, P3, P4 thermal points with the 

actual coordinates directly extracted from the RGB images 
(N=18 * 4 points). The evaluation pointed out a RMSE / mean 
error of ±9.17 / +4.5 pixels and ±4.17 / +0.17 pixels, on x-axis 
and y-axis respectively. Considering the dimensions of target 
objects (apples and grape clusters), this error guarantees that 
most of the thermal data obtained, is related to target objects, 
despite inaccuracies due to alignment errors. 

B. Fruit temperature extraction 
The evaluation of the temperature estimation 

performances was made throughout a comparison with a 
factory calibrated handheld thermal camera (HTI) based on 
field data collection where target reference objects for 
minimum (refrigerated container), “mean-ambient” 
(operators’ hand) and maximum (one highly exposed fruit) 
temperature were included. The temperature was then 
extracted through the developed pipeline – see E) exploiting 
manual labeling of the target object – and compared to HTI 
collected temperatures. Collected temperatures for this trial 
presented high correlation between the two sensors (r = 0.93 
– 0.98). 

Further data analysis is currently ongoing to have a more 
reliable evaluation related mostly on fruit temperatures, but 
preliminary results on apple fruits measured through HTI 
handled thermal camera as reference (N=12) showed an 
RMSE / mean error ranging from ±1.38 / -0.95 °C to ±6.72 / 
+6.59 °C, with best results for extraction and correction of 
average temperature of the fruit. Preliminary results of the 
system on grape clusters detection and temperature extraction 
pointed out an RMSE / mean error ranging from ±3.43 / -0.96 
°C to ±10.36 / -9.79 °C, for single cluster temperature 
measured with thermocouples (N=16) with the lowest errors 
occurring when considering maximum fruit temperature 
extraction and correction. 

These results are quite encouraging, particularly 
considering the strong correlation with reference temperature. 
In addition, the low mean errors presented when dealing with 
maximum-mean fruit temperature corrections (±1.38 and 
±3.43 °C respectively for apple and grape) point a high 
potentiality of the system for reliable max fruit temperature 
estimation. Despite that the system is still not accurate as other 
presented solutions [7], [8] for in field data collection. 

 

 
Fig. 3. Graphical output of the developed platform: representation of the 3D fruit temperature distribution of an apple orchard row. 
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C. 3D Fruit positioning 
The evaluation of the 3D fruit positioning of the system 

and process performances in obtaining positional information 
is currently ongoing. Very preliminary results based on few 
fruits from images collected in field (N<20) pointed out that 
the system seems to present an RMSE of ± 0.15 m approx. in 
positioning the fruit center with respect to the reference fruit. 
Further analysis both in laboratory and in field conditions are 
currently ongoing to obtain more robust results, but 
considering the purpose of the system, in positioning the fruit 
on the tree, an error of 0.15 m seems acceptable when dealing 
with plant dimensions (i.e., meters); infact, a fruit wrong 
placed 15 cm apart from where it actually is hanging still an 
acceptable representation of its position on a vine or an apple 
tree. 

 
 

In Fig. 3 is shown a graphical representation of the RGB- 
D/T system final output of the system, where both thermal and 
positional information of fruit of different trees are depicted. 
Despite the obtained results, further improvements are still 
needed to increase the performance of the system, in fact, in 
the same figure, automatically detected fruits temperatures 
present a range of 51 - 58°C, that is above of the known 
temperature thresholds for sunburn occurrence in apple [3]; 
despite this, only for few fruits sunburn damage occurred. 
This, together with the fruit temperature extraction 
performances previously presented, highlight that the system 
still needs for improvement to correctly estimate fruit 
temperature in field. Regarding this, new temperature-to- 
distance corrections, and increased dataset for raw-to-°C 
thermal data conversion equations are under development and 
datasets for thermal and 3D positioning evaluation (currently 
under analysis) will be further enlarged. In addition, new fruit 
detection models will be applied to increase detection 
performances and identify only those most exposed fruit, 
since these are the most informative for investigating sunburn 
related fruit temperature dynamics; with the purpose to extract 
information properly related to the fruit surface only also the 
utilization of and improved circle detection algorithm will be 
implemented in the fruit detection pipeline[11]. Moreover, as 
can be seen in Fig. 3, trunk positions are currently expressed 
as a distance (in mm) from the beginning of the orchard row 
in which data collection occurred. In a new version of the 
RGB-D/T platform, a GPS receiver will be included to 
georeferencing plants (and consequentially fruits), this in 
order to enable the use of an automated vehicle for data 
harvesting [15] as well as GIS analysis. In this newer version, 
fruit sizing and tracking [16] functionality will be 
implemented to test in-field real-time orchard scanning. 

 
 

IV. CONCLUSION 

The presented study described a first prototype of a low- 
cost RGB-D/T scanning platform (software available at[17], 
[18]) for in field fruit temperature and position data collection. 
The purpose of this platform was to ease (by automate) data 
collection enabling orchard mapping and support the 
utilization of machine learning approaches, requiring wide 
amount of data, to investigate fruit temperature dynamics 
related to sunburn occurrence. The results presented refers to 
a first version of the system and can be summarized in an 
already acceptable performance level for the purpose of the 
system, with thermal and position error of ±1.38 °C and ± 0.15 

m in best case scenario. Despite this, as highlighted in the 
discussion, further improvement are still needed to increase 
both system precision and accuracy during field 
measurements. 

Furthermore, as anticipated, the authors are currently 
working on a second version of the platform that will be 
mounted on an autonomous vehicle to actually test its 
capability in automatically mapping fruit position, 
temperature and (probably) size in near real-time. 
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