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Abstract

We develop a new structural Vector Autoregressive (SVAR) model for analysis with mixed-

frequency data. The MIDAS-SVAR model allows to identify structural dynamic links ex-

ploiting the information contained in variables sampled at different frequencies. It also

provides a general framework to test homogeneous frequency-based representations versus

mixed-frequency data models. A set of Monte Carlo experiments suggests that the test per-

forms well both in terms of size and power. The MIDAS-SVAR is then used to study how

monetary policy and financial uncertainty impact on the dynamics of gross capital inflows

to the US. While no relation is found when using standard quarterly data, mixed frequency

analysis exploiting the variability present in the series within the quarter shows that the

effect of an interest rate shock is greater the longer the time lag between the month of the

shock and the end of the quarter.
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1 Introduction

Temporal aggregation of high frequency data to match variables available only at lower fre-

quency is a potential source of misspecification. As shown by Christiano and Eichenbaum

(1987), a specification error, that they term “temporal aggregation bias”, affects both para-

meter estimates and hypothesis testing. Foroni and Marcellino (2016) and Ghysels (2016) show

that temporal aggregation of data entering Structural Vector Autoregressive (SVAR) models

severely affect identification, estimation and interpretation of impulse responses.1

A partial solution to the temporal aggregation bias is provided by econometric methodologies

for the analysis of variables measured at different sampling frequencies (see Foroni, Ghysels,

and Marcellino, 2014, for a survey). Models for mixed-frequency data can uncover dynamic

and structural relationships that would otherwise be hidden by the temporal aggregation of

data available at different sampling frequencies, such as macroeconomic flow variables and

financial variables. The mixed-frequency problem emerges in the analysis of monetary policy

and financial markets, where daily data are often used to identify monetary policy shocks at

monthly frequencies, or to study relationship between monetary policy and financial markets.2

Focusing on SVAR models estimated with mixed-frequency data, the literature has advanced

along two main lines of research. A first approach, pioneered by Zadrozny (1988, 1990), assumes

that there is a high-frequency latent process for which only low-frequency observations are

available. State-space representation combined with Bayesian or classical estimation are used

to match the latent process with the observed low-frequency data.3 A second approach, the

so–called Mixed Data Sampling regression models (MIDAS), treats all variables at different

frequencies as a “stacked skip-sampled” process; the relations between variables are then jointly

analyzed in a way that is much closer to the tradition of SVAR models (see Ghysels, 2016).

Since latent factors and latent shocks are absent, models in this strand of the literature are

straightforward multivariate extensions of the univariate MIDAS regression model (Andreou,

Ghysels, and Kourtellos, 2010). Reliance on the MIDAS framework to identify structural shocks

in VAR models was first proposed by Ghysels (2016).

We propose a mixed-frequency Vector Autoregressive model, the MIDAS-VAR, that can be

seen as a multivariate specification that encompasses both the unrestricted-MIDAS (U-MIDAS)

model by Foroni, Marcellino, and Schumacher (2014) and the reverse unrestricted MIDAS (RU-

1Foroni and Marcellino (2014) extend these results to dynamic stochastic general equilibrium (DSGE) models
showing that temporal aggregation from monthly to quarterly frequency significantly distorts the estimated
responses to a monetary policy shock. Bayar (2014) shows that averaging interest rates to match quarterly
macroeconomic variables in Taylor-type monetary policy rules leads to the overestimation of the interest-rate
smoothing parameter, and thus to a biased assessment of the persistence of monetary policy changes.

2See, e.g., Faust, Rogers, Swanson, and Wright (2003) and Cochrane and Piazzesi (2002) for identification
using daily data and Rigobon and Sack (2003), Rigobon and Sack (2004) and Bekaert, Hoerova, and Lo Duca
(2013) for an analysis of monetary policy and markets.

3See Arouba, Diebold, and Scotti (2009); Eraker, Chiu, Foerster, Kim, and Seoane (2015); Foroni and Marcel-
lino (2016); Giannone, Reichlin, and Small (2008); Mariano and Murasawa (2003); Schorfheide and Song (2015),
among many others.
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MIDAS) model by Foroni, Guérin, and Marcellino (2018).4 We also present and discuss the

structural representation of the MIDAS-VAR model and provide conditions for the identification

of its structural parameters. This relatively simple parametrization allows the standard mix of

OLS and maximum likelihood (ML) techniques to provide consistent estimates for the reduced-

and structural-form parameters, respectively. Furthermore, we present a formal test procedure

to evaluate the benefits of using a structural MIDAS-VAR model (MIDAS-SVAR, henceforth)

with respect to traditional low frequency structural VAR models. The performance of this test

is analyzed in a set of Monte Carlo experiments.

The temporal aggregation problem naturally arises in the growing literature on the global

financial cycle that investigates the determinants of international capital flows as flow data are

available only at a quarterly frequency. For instance, using a quarterly SVAR model, Bruno

and Shin (2015) find short-lived and not always statistically significant relationships between

US interest rates, financial instability proxied by the Market Volatility Index (VIX), the real

effective exchange rate and cross-border bank capital flows. A natural question is whether these

empirical findings can somehow be explained by the existence of a “temporal aggregation bias”

that arises when high frequency variables, such as interest rates and VIX, are transformed to

match lower frequency variables, such as gross capital flows.

To answer this question, in the empirical application, we investigate the relationships

between US capital inflows, the Target for the Federal Funds rate set by the Federal Reserve

and financial market uncertainty using a MIDAS-SVAR for a mixture of quarterly data on gross

capital inflows and monthly data on the Federal Funds Target rate (the policy instrument) and

on the financial uncertainty indicator introduced by Ludvigson, Ma, and Ng (2019).5

Using both sampling frequencies, we find that a monetary contraction (i.e. a positive shock

to the Target rate) leads to a positive hump-shaped reaction of capital inflows but the magnitude

of this effect is different depending on the timing of the shock within the quarter. The effect is

positive and significant when the shock to the Target rate occurs in the first and second months

of the quarter, while it becomes barely significant when the shock takes place in the third month

(i.e. at the end of the quarter). This can be explained by the high observed long–lived effects

of shocks to the policy rate. An increase in the Target rate occurring at the beginning of the

quarter can have a sizable effect on capital flows over the quarter because such flows accumulate

over the entire three–month period. Moreover, we find that a shock to the uncertainty index

leads to an immediate and statistically significant reduction of capital flows, independently of

the month it happens within the quarter, with the strongest impact observed when the shock

takes place in the first and second month of the quarter.

4In the literature the acronym “MF-VAR” (i.e. mixed frequency VAR) is often used to identify both MIDAS-
VAR models – where variables at different frequencies are considered a “stacked skip-sampled” process – and
models where high-frequency variables are seen as latent processes (see Götz, Hecq, and Smeekes, 2016, Ghysels,
Hill, and Motegi, 2016 and Ghysels, Hill, and Motegi, 2019). In this paper, we use “MIDAS-VAR” to emphasize
the fact that our contribution belongs to the family of MIDAS models, such as those just mentioned.

5See Section 4 for a more precise definition of our variables.
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This paper belongs to the literature addressing mixed-frequency data issues within the

MIDAS regression framework. The MIDAS literature has been mainly concerned with reduced-

form univariate time series models, focusing on the potential information embedded in high

frequency data to better forecast low frequency variables (see e.g. Clements and Galvao, 2008,

2009). Thus, unlike most existing work on mixed-frequency models, we examine the response

of macroeconomic and financial variables to structural shocks identified relying on variables

observed at different frequencies. In this sense, our paper complements the analysis by Foroni

and Marcellino (2014) and Christensen, Posch, and van der Wel (2016) who emphasize the

role of mixed-frequency variables in DSGE models. This approach is different from Foroni

and Marcellino (2016) who also deal with the estimation of SVAR models in the presence of

mixed-frequency data. In fact, following Mariano and Murasawa (2003), these authors use the

Kalman filter to estimate the state-space representation of a VAR model where the low frequency

variable is treated as a high-frequency variable with missing observations. By contrast, the

model in this paper involves only observable data and does not need filtering to recover hidden

states. Our paper is thus more closely related to Ghysels (2016) who introduces the MIDAS

framework in the context of SVAR analysis, and provides a very broad coverage of several

methodological aspects related to this topic. However, our identification approach is more

flexible; differently from Ghysels (2016), it allows to place restrictions directly on the relations

between structural shocks, besides imposing short-run restrictions on the instantaneous relations

between observable variables. Moreover, in this specific framework, we extend standard results

on the identification of structural parameters of SVAR models to the MIDAS-SVARs presented

in the paper.

The rest of the paper is organized as follows: In Section 2 we introduce the MIDAS-VAR and

MIDAS-SVAR models, discuss the identification conditions of the structural parameters and

provide some results on the relationships between these models and the traditional VAR and

SVAR models. In Section 3 we present a test strategy to statistically evaluate the performance

of a MIDAS-VAR when compared to a standard VAR. Section 4 is dedicated to the empirical

analysis, with a discussion on the identification of the structural shocks and on the estimated

Impulse Responses (IRFs) and Forecast Error Variance Decompositions (FEVDs). Section 5

concludes. Additional technical details and empirical results are confined in the Appendix and

in a Technical Supplement associated with the paper.

2 The MIDAS-SVAR model: representation and identification

In this section we introduce a multivariate model for investigating the structural relationships

between variables observed at different frequencies, as is the case for gross capital inflows,

interest rates and the financial uncertainty indicator.
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2.1 Representation

Consider two vectors of variables xL and xH containing the nL low-frequency and nH high-

frequency variables, respectively, where xH are sampled m times more often than xL. The

MIDAS-VAR model, when considering quarterly and monthly series, i.e. m = 3, can be written

as6 
xH (t, 1)

xH (t, 2)

xH (t, 3)

xL (t)

 =

p∑
i=1


Ai

11 Ai
12 Ai

13 Ai
1

Ai
21 Ai

22 Ai
23 Ai

2

Ai
31 Ai

32 Ai
33 Ai

3

Ai
L1 Ai

L2 Ai
L3 Ai

L




xH (t− i, 1)

xH (t− i, 2)

xH (t− i, 3)

xL (t− i)

+


uH (t, 1)

uH (t, 2)

uH (t, 3)

uL (t)

 (1)

where the time index t refers to the low-frequency variables, while for the high-frequency vari-

ables the couple (t, j) indicates the month j of observation within the quarter t, and where p

represents the order of the MIDAS-VAR. This way of representing the model can be easily ad-

apted to different frequency mismatch, like weekly-monthly, daily-weekly or quarterly-annual.

When the difference between the frequencies of the series becomes larger, e.g. daily-monthly,

the use of MIDAS polynomials should be introduced in order to avoid parameter proliferation

(see Ghysels, 2016). The main advantage of this representation of the MIDAS-VAR lies in its

simplicity and, as will be discussed in the next sections, in the immediate comparison with a

traditional VAR.7

Denoting the vector of observable variables (sampled at different frequencies) as x̃(t), with

dimension ñ×1, being ñ = nL+mnH , allows us to provide the following more compact notation

equivalent to the one used for traditional VAR models:

A (L) x̃ (t) = ũ (t) (2)

where L denotes the low-frequency lag operator, i.e. LxL (t) = xL(t − 1) and LxH (t, j) =

xH(t− 1, j), and A(L) = Iñ −
∑p

i=1AiL
i.

The representation in Eqs. (1)-(2), being a function of the past values of the observable

variables, though at different frequencies, can be seen as the reduced form of the model. How-

ever, looking, for example, at the (multivariate) equation for the vector of variables xH (t, 2),

it is immediately clear that this does not depend on its first natural lag, xH (t, 1). The correct

specification of the dynamics of the process does not prevent the error term uH (t, 2) from being

6Deterministic components, such as constant term, intervention dummies and time trends are omitted for
simplicity. See del Barrio Castro and Hecq (2016) for details about the treatment of deterministic seasonal
features in MIDAS-VAR models.

7See also, Ghysels (2016), Ghysels, Hill, and Motegi (2016), Götz, Hecq, and Smeekes (2016), Götz and Hecq
(2019).
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correlated with uH (t, 1). More generally, the covariance matrix of the error terms is defined as

Σũ =


Σ11

Σ21 Σ22

Σ31 Σ32 Σ33

ΣL1 ΣL2 ΣL3 ΣL

 (3)

and none of the blocks is supposed to be zero.

The covariance matrix Σũ, thus, contains all contemporaneous relations among the high-

frequency variables (Σ11, Σ22 and Σ33), among the low-frequency variables (ΣL), the within-

quarter relations between low- and high-frequency variables (ΣL1, ΣL2 and ΣL3) and some

further dynamic relations among the high-frequency variables (Σ21, Σ31 and Σ32).

2.2 Identification of structural relationships

Ghysels (2016) discusses possible implementations of structural mixed-frequency VAR models

and, in particular, proposes the distinction between real-time predictions and policy response

functions. As we are interested in the latter, i.e. in understanding the structural relationships

among the variables, all the relations discussed at the end of the previous section, hidden in

the covariance matrix Σũ, must be identified explicitly.

As common in the literature, we perform policy analysis through impulse response func-

tions (IRFs) describing the dynamic transmission of uncorrelated structural shocks among the

variables. Based on the MIDAS-VAR model proposed in Eq. (1), under the assumption of sta-

tionarity,8 the IRFs can be easily obtained through the MIDAS-Vector Moving Average (VMA)

representation

x̃(t) =

(
Iñ −

p∑
i=1

AiL
i

)−1

ũ(t)

=
∞∑
k=0

Ckũ(t− k) ≡ C(L)ũ(t)

where Iñ = A(L)C(L). Specifically, the IRFs generally refer to the (ñ × 1) vector of latent

uncorrelated structural shocks, ε̃t, defined as

Aũ(t) = Bε̃(t) with ε̃t ∼ (0, Iñ) (4)

generating a set of non-linear relationships Σũ = A−1BΣε̃B
′A−1′ that link reduced-form mo-

ments with the structural parameters A and B, with A and B non-singular ñ× ñ matrices, and

8Some results for non-stationary time series in the mixed frequency framework can be found in Götz, Hecq,
and Urbain (2013)
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the covariance matrix of the structural shocks Σε̃ = Iñ as in Eq. (4).

Remark: MIDAS-SVAR, U-MIDAS and RU-MIDAS. Foroni, Marcellino, and Schu-

macher (2014) provide formal derivation of single equation Unrestricted MIDAS (U-MIDAS)

models where high-frequency variables are exploited to improve the forecast of low-frequency

variables. Specifically, they obtain an exact U-MIDAS representation where the error term

enters with a moving average structure (see, e.g., Marcellino (1999) and the references therein).

However, as the parameters of such a structure cannot be exactly determined, they provide an

approximate version where enough dynamics is included in order to make the residuals as close

as possible to the realization of a white noise process. Similarly, Foroni, Guérin, and Marcellino

(2018) derive the exact and approximate Reverse Unrestricted MIDAS (RU-MIDAS) models

where low-frequency variables are incorporated in models for predicting high frequency vari-

ables. The stacked presentation of the MIDAS-VAR model adopted in this section allows to

handle the set of equations for the low-frequency variables, at the bottom of the model, exactly

as the approximate U-MIDAS model. Furthermore, as it will be clear in the empirical applic-

ation of the next sections, the A matrix in Eq. (4) makes the equations for the high-frequency

variables exactly equivalent to the approximate RU-MIDAS models. Indeed, the A matrix helps

to include the dynamics of the high-frequency variables naturally missing in the formulation of

the reduced-form specification in Eq. (1).�

The AB-MIDAS-SVAR model, or more simply, the MIDAS-SVAR model described in Eqs.

(1) and (4) provides a very general framework for investigating the contemporaneous relations

between observable high- and low-frequency variables from one side, and between high- and low-

frequency structural shocks from the other, captured by the A and B matrices, respectively.

This specification, deeply investigated in Amisano and Giannini (1997) for the traditional SVAR

models, is more general than that proposed by Ghysels (2016) where the structural relationships

are confined to the A matrix, restricting the B matrix to be diagonal. In fact, many empirical

applications of SVAR models regarding the transmission of the monetary policy focus on the B

matrix (fixing A equal to the identity matrix) or on both the A and the B matrices (see e.g.,

Bernanke, 1986; Blanchard, 1989; Blanchard and Perotti, 2002).

Clearly, the identification of A and B, and, as a consequence, of the latent structural shocks,

is subject to restrictions on the parameters. In fact, following the definition of the AB-MIDAS-

SVAR model provided in Eq. (4), there are 2ñ2 parameters to be estimated from the ñ(ñ+1)/2

empirical moments contained in Σu. The following proposition, from Lütkepohl (2006), provides

a necessary and sufficient condition for the identification of the two matrices A and B when

subjected to the linear restrictions given by

SAvecA = sA and SBvecB = sB (5)
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for some SA, sA, SB and sB known matrices.

Proposition 1. (Local identification of the AB-model)

Consider the AB-MIDAS-SVAR model reported in Eqs. (1) and (4), subject to the restrictions

in Eq. (5). For a given covariance matrix of the error terms Σũ, the parameters in A and B

are locally identifiable if and only if

rank


−2D+

ñ

(
Σũ ⊗A−1

)
2D+

ñ

(
A−1B ⊗A−1

)
SA 0

0 SB

 = 2ñ2. (6)

where D+
ñ ≡ (D′ñDñ)−1D′ñ and Dñ is a

[
ñ2 × ñ

2 (ñ+ 1)
]

duplication matrix.9

Proof. The Proposition can be proved by calculating the Jacobian and applying the results in

Rothenberg (1971).10

Ghysels (2016) discusses the importance of the triangular Cholesky factorization in the

mixed-frequency VAR framework, where the high-frequency variables have a natural order for

intra-t timing of shocks. Ghysels focuses on the potential source of information coming from

the high-frequency variables in explaining the dynamics of the low-frequency ones, whereas

the AB-MIDAS-SVAR framework offers a very flexible tool to examine the interaction of low-

and high-frequency variables, and provides a better understanding of macroeconomic variables

fluctuations.

Interestingly, the flexibility of the structural specification in this paper allows to deal with

over-identified cases in which the over-identification comes from restrictions on the variances

of the structural shocks.11 In fact, starting from an unrestricted structural model (as in Götz

and Hecq, 2014), fixing the A matrix to be lower triangular with ones on the main diagonal, a

further set of restrictions can come from the structural shocks to have the same variance within

the quarter. This corresponds to impose some elements on the main diagonal of the B matrix

to be equal. Such restrictions make the model over-identified and provide useful degrees of

freedom for statistical inference on the structure as a whole.

3 Testing the equivalence of MIDAS-SVAR and SVAR

Ghysels (2016) discusses the asymptotic properties of misspecified VAR model estimators, where

the misspecification arises from a wrong selection of the sampling frequency of the variables.

The analysis considers a high-frequency VAR model (characterized by latent processes if the

actual series are observed at a lower frequency only), and compares it to a low-frequency model

9See Magnus and Neudecker (2007), page 56, for details on the duplication matrix.
10See Lütkepohl (2006), page 365, for details.
11We thank an anonymous referee for suggesting this point.
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obtained by certain aggregation schemes. In particular, Proposition 5.1 in Ghysels (2016)

states that the asymptotic impact of misspecification is a function of the aggregation scheme.

In what follows, we restrict the analysis to two types of VAR models: a low-frequency quarterly

VAR and a monthly-quarterly MIDAS-VAR. The aim is to provide a testing strategy to verify

whether aggregating the data and moving to a low-frequency VAR generates a substantial loss

of information that might invalidate the analysis. We first focus on the dynamics of the VAR,

and then move to the structural part of the model.12

3.1 Matching the dynamics

Let x̃(t) have a stationary MIDAS-VAR representation. The following proposition establishes

the equivalence in conditional mean between MIDAS-VAR for x̃(t) and VAR representation for

homogeneous sampling frequency variables in ẍ(t), obtained as

Ä(L)ẍ(t) = üt. (7)

Proposition 2. Let ẍ(t) = Gx̃(t) be a vector containing stationary variables sampled at the

same frequency, the MIDAS-VAR(p) representation for x̃(t) is equivalent in mean to the VAR(p)

representation for ẍ(t) if

GAix̃(t− i) = Äiẍ(t− i), i = 1, 2, . . . , p. (8)

Proof. See Appendix A.1.

The equivalence, i.e. the condition in Eq. (8), holds if the matrices Ai, i = 1, . . . , p are

appropriately restricted. To illustrate this, start from a MIDAS-VAR model in which we have

monthly and quarterly variables, with just one quarterly-lagged value:
x1
H (t, 1)

x1
H (t, 2)

x1
H (t, 3)

x2
L (t)

 =


A1

11 A1
12 A1

13 A1
1

A1
21 A1

22 A1
23 A1

2

A1
31 A1

32 A1
33 A1

3

A1
L1 A1

L2 A1
L3 A1

L




x1
H (t− 1, 1)

x1
H (t− 1, 2)

x1
H (t− 1, 3)

x2
L (t− 1)

+


u1
H (t, 1)

u1
H (t, 2)

u1
H (t, 3)

u2
L (t)

 (9)

where x1
H collects the monthly series while x2

L the quarterly ones. This specification should

be compared to a traditional VAR in which both groups of variables are observed at the same

12Two recent contributions providing tests on the dynamics of mixed-frequency VAR models are worth men-
tioning. Ghysels, Hill, and Motegi (2016) and Götz, Hecq, and Smeekes (2016) propose two different approaches
to test for Granger causality within mixed frequency data.
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quarterly frequency, i.e.(

ẍ1
L (t)

ẍ2
L (t)

)
=

(
Ä1

11 Ä1
12

Ä1
21 Ä1

22

)(
ẍ1
L (t− 1)

ẍ2
L (t− 1)

)
+

(
ü1
L (t)

ü2
L (t)

)
(10)

where ẍ2
L = x2

L.

The comparison between the two specifications depends on the form of the time aggregation

used to transform x1
H (t, 1), x1

H (t, 2) , x1
H (t, 3) into ẍ1

L (t). The mapping from the MIDAS-

VAR to the VAR model reduces to consider a selection matrix G that is used to aggregate the

high frequency variables. As an example, if the aggregation scheme consists in taking the first

observation of the quarter only, the G matrix becomes:

G =

(
InH 0 0 0

0 0 0 InL

)
(11)

and the associated null hypothesis for testing the equivalence between the two specifications

(without exogenous variables, for simplicity) reduces to13

H1
0 : A1

12 = A1
13 = 0

H2
0 : A1

L2 = A1
L3 = 0.

(12)

This is just an example; different aggregation schemes are presented and discussed in Appendix

A.2, including a mixed aggregation scheme.

A natural way to evaluate the benefits of relying on mixed-frequency data instead of tem-

porally aggregated data is to implement a Wald- or LR-type test for the joint null hypothesis

H1
0 and H2

0 against the alternative that at least one of the two is not supported by the data.

If the aim of the analysis is to use the dynamics of the model to forecast the future values of

the endogenous variables, under the null hypothesis in Eq. (12), mixing monthly and quarterly

observations does not provide any gain. Under the alternative, the information provided by

mixed-frequency data is statistically relevant and useful to obtain more accurate forecasts.14

From Proposition 2, under the assumption of stationarity in the series, we can also obtain

the IRFs of ẍ(t) w.r.t. the shocks in the MIDAS-VAR. Under the restriction in Eq. (8), we have

ẍ(t) = Ä(L)−1Gũ(t) = C̈(L)Gũ(t)

13Details on the derivation of the null hypothesis are provided in Appendix A.
14Andreou, Ghysels, and Kourtellos (2010) implement similar test in a regression framework, since low fre-

quency regressions are nested in MIDAS regression. They show that, in a univariate model, when the difference
in sampling frequency is small (say monthly to quarterly), the gains from disaggregation are moderate. We will
go back to this point in Section 3.3.
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3.2 Matching the structural relationships

In the following proposition we define the restrictions for the equivalence between the structural

relations in the MIDAS-SVAR model, Eq.(1) and Eq.(4), and those in the SVAR model for the

homogeneous sampling frequency variables, ẍ(t), Äü(t) = B̈ε̈(t).

Proposition 3. Let ẍ(t) = Gx̃(t) be a vector containing stationary variables sampled at the

same frequency, the MIDAS-SVAR representation for x̃(t) is equivalent to the SVAR represent-

ation for ẍ(t) if

GAũ(t) = Äü(t)

GBε̃(t) = B̈ε̈(t)

Proof. See Appendix A.1.

As an example, the MIDAS-SVAR model considered in Section 2.2, with monthly and

quarterly data, can be written as


A11 A12 A13 A1

A21 A22 A23 A2

A31 A32 A33 A3

AL1 AL2 AL3 AL




u1
H (t, 1)

u1
H (t, 2)

u1
H (t, 3)

u2
L (t)

 =


B11 B12 B13 B1

B21 B22 B23 B2

B31 B32 B33 B3

BL1 BL2 BL3 BL




ε1
H (t− 1, 1)

ε1
H (t− 1, 2)

ε1
H (t− 1, 3)

ε2
L (t− 1)


A ũ (t) = B ε̃ (t)

(13)

with ũ (t) and ε̃ (t) defined as in Section 2.2 and where the elements in A and B must be

restricted in order to fulfill the rank condition in Proposition 1. In the SVAR model with

aggregated quarterly data, the specification of the structural relationships is given by(
Ä11 Ä12

Ä21 Ä22

)(
ü1
L (t)

ü2
L (t)

)
=

(
B̈11 B̈12

B̈21 B̈22

)(
ε̈1
L (t)

ε̈2
L (t)

)
(14)

where
(
ü1′
L (t) , ü2′

L (t)
)′

are the residuals of the quarterly VAR as in Eq. (10) and
(
ε̈1′
L (t) , ε̈2′

L (t)
)′

are the quarterly structural shocks.

If quarterly observations are obtained by simply taking the first month of the quarter, as in

Section 3.1, the two specifications in Eq. (13) and (14) can be compared by using the selection

matrix G introduced in Eq. (11). Pre-multiplying Eq. (13) by G allows us to show the relation
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between the MIDAS-SVAR and the quarterly SVAR. In particular, if the following relations

H1
0 : A12 = A13 = 0

H2
0 : AL2 = AL3 = 0

H3
0 : B12 = B13 = 0

H4
0 : BL2 = BL3 = 0

(15)

hold, the two specifications are statistically equivalent, and using monthly data does not add

useful information to identify the structural shocks.

If the aim of the analysis is to identify the structural shocks and to understand their transmis-

sion mechanisms, a statistical test can be implemented to verify whether a (monthly-quarterly)

MIDAS-SVAR has to be preferred to a traditional (quarterly) SVAR. The test consists in jointly

testing the null hypotheses in Eqs. (12)-(15) that can be implemented through a standard LR-

or Wald-type test strategy. As an example, the implementation of a LR-type test reduces to

calculate the log-likelihood of the unrestricted model (lu) and that of the restricted one (lr)

according to both the identifying restrictions and those in Eqs. (12)-(15). The test statistic

LR = −2 (lr − lu) is asymptotically distributed as a χ2 with the number of degrees of freedom

(dof) given by the order of the over-identification. If the null hypothesis is rejected, aggregating

the data loses substantial information that is important in the identification of the structural

shocks.

3.3 A Monte Carlo evaluation of the LR-test performance

We are interested in evaluating the performance of the test of hypothesis introduced in the

previous section to statistically check the equivalence of the MIDAS-VAR model to the tradi-

tional one. Andreou, Ghysels, and Kourtellos (2010) use a Wald-type test to check whether

univariate low frequency regression is nested in MIDAS regression. In a SVAR framework, in-

stead, since Amisano and Giannini (1997), it is more common to use LR-type tests to evaluate

overidentified restrictions. Following this line, we prefer focusing our simulation exercise on

the LR-test strategy. While the asymptotic distribution of the test statistic is standard, the

behavior in small samples can be problematic due to the large number of restrictions imposed.

We provide results for different data generating processes (DGPs), focusing on the reduced-form

of the model. The number of observation is T = 109 and is the same for all experiments (it

corresponds to the number of quarterly observations in the empirical analysis presented below).

We first provide some simulations for a small-scale MIDAS-VAR model, and then we move to

a larger setting as the one applied in the empirical analysis. All the simulations are evaluated

through the P-value plot and the size-power curve introduced in Davidson and MacKinnon

(1998); for each simulation we provide results obtained with 5,000 replications.
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3.3.1 Small-scale MIDAS-VAR

The first data generating process we consider (indicated as Model 1-H1) is a MIDAS-VAR

with just one quarterly variable and one monthly variable (nL = 1 and nH = 1). In particular,

the DGP is obtained through the estimation of a MIDAS-VAR, with one single (quarterly)

lag, where the high-frequency variable, xH , is the Target for the Federal Funds rate and the

low-frequency one, xL, is the ratio of gross capital inflows to GDP that will be described in the

empirical analysis in the following section. This makes the simulated model a small version of

that used in the empirical analysis. Following the notation in Eq. (1), the DGP is given by the

following parameters

A1 =


−0.066 −0.344 1.398 0.003

−0.319 −0.352 1.641 0.003

−0.505 −0.248 1.727 0.003

−4.005 0.340 3.276 0.524

 , Σũ =


0.029 0.051 0.065 0.385

0.051 0.119 0.153 0.873

0.065 0.153 0.219 0.935

0.385 0.873 0.935 94.231

 (16)

where the vector of constant terms is not reported for simplicity. The parameters in Eq. (16)

generate the data under the (alternative) hypothesis of a MIDAS-VAR where the different

nature of the variables clearly matters. In order to evaluate both the size and the power of

the test developed in Section 3.1, we also generate the data using a DGP obtained from the

previous matrices of coefficients in Eq. (16), but imposing the restrictions as in Eq. (12), i.e. by

thinking of a quarterly VAR model with the same two variables as before but with the Target

rate observed at the first month of the quarter (Model 1-H0). In Figure 1 we report a graphical

evaluation of both the size and the power of the test through the P-value plot (left panel) and

the size-power curve (right panel). The P-value plot is the simple empirical distribution function

(EDF) of the p-value of the test against a set of points in the interval (0,1).15 If the distribution

of the test used to calculate the p-value is correct, the P-value plot should be close to the 45◦

line. Figure 1, left panel, provides evidence on the actual size of the test when the DGP is

Model 1-H0 and the null hypothesis is as in Eq. (12), where, given the simplicity of the model,

all A1
12, A1

13, A1
L2 and A1

L3 are scalars. Thus, the LR test statistic is asymptotically distributed

as a χ2 with 4 dof. As expected, given the reduced number of parameters, the actual size of

the test practically corresponds to the theoretical one, at all significance levels. Figure 1, right

panel, instead, provides evidence on the power of the test and plots the EDF of the p-value

when the DGP is given by Model 1-H1 (Y-axis) against the EDF of the p-values when the

DGP is given by Model 1-H0 (X-axis). The power of the test, thus, is plotted against the true

size, instead of the nominal one.

From Figure 1, right panel, it is immediately evident that the null hypothesis is rejected

at all critical levels, providing strong evidence that Model 1-H1 is too far away from the null

15The EDF is evaluated at m = 215 points as suggested by Davidson and MacKinnon (1998).
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Figure 1: Monte Carlo simulations for small-scale MIDAS-VAR: pvalue plot (left panel) and
size-power curve (right panel) for the LR test.
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Notes: The DGPs small-scale MIDAS-VARs with nL = 1 low-frequency variable and nH = 1 high-frequency variable. The

DGPs are presented in Section 3.3.1.

hypothesis, and that the high-frequency nature of one of the variables contains information that

cannot be neglected in the analysis.

To analyze the power of the test when the null and the alternative hypothesis are much

closer than in the previous experiment, we generate two additional datasets (Model 2-H1

and Model 3-H1) using the same covariance matrix Σũ, but with the following parameters

describing the dynamics of the MIDAS-VARs:

A1 =


0.3 0.1 0.1 0

0.1 0.2 0.3 0

0.1 0.1 0.4 0

0 0.1 0.1 0.5

 A1 =


0.3 0.03 0.08 0

0.1 0.2 0.3 0

0.1 0.1 0.4 0

0 0.02 0.01 0.5


Model 2-H1 Model 3-H1.

(17)

For both experiments, the corresponding data are generated when the null hypothesis, as the

one described in the first experiment, is true (Model 2-H0 and Model 3-H0), i.e., starting

from the two matrices in Eq. (17) but with the restrictions imposed as in Eq. (12). Apart from

the sensible parameters involved in the null hypothesis, i.e. A1
12, A1

13, A1
L2 and A1

L3, all the

remaining parameters are the same in the last two specifications. The size performance of the

test, reported in Figure 1, left panel, are thus identical for Model 2-H0 and Model 3-H0. As

for the previous experiment, the actual size of the test practically coincides with the nominal

one, for all confidence levels. Concerning the power, shown in Figure 1, right panel, the test

performs differently for the two models. In particular, the test continues to perform quite well

for Model 2-H1, where the power is about 75−80% for the usual 1% and 5% critical levels. For

Model 3-H1, instead, the power enormously decreases although remaining quite satisfactory

if one thinks that Model 3-H1 and Model 3-H0 are very close to each other.
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3.3.2 Medium-scale MIDAS-VAR

This section considers tests on MIDAS-VAR models where the number of variables involved,

and thus the number of restrictions, increase. As before, we consider three experiments, one

based on a DGP obtained through real data, while the other two based on artificial sets of

parameters.

The first DGP (Model 1-H1) is obtained by estimating a MIDAS-VAR using actual data,

with nH = 3 high-frequency monthly variables and nL = 1 quarterly variable with one lag.

The monthly variables are the Target for the Federal Funds rate, the indicator of financial

uncertainty and the growth rate of industrial production, while the quarterly one is, as in the

previous section, the gross capital inflows relative to GDP. The variables are described in the

empirical section below. The matrices of parameters are reported in Appendix B. Starting from

these matrices of parameters, we impose the restrictions as in Eq. (12). Then, using this new

set of parameters we generate the new datasets in which the null hypothesis is true (Model

1-H0). In these latter sets of experiments, the null hypothesis is equivalent to the one reported

in Eq. (12) and also in Section 3.3.1, but now A1
12 and A1

13 are (3× 3) matrices while A1
L2 and

A1
L3 are (1 × 3) vectors. The asymptotic distribution of the test statistic is thus a χ2 with 24

dof.

Size and power comparisons are shown in Figure 2. Due to the large number of restrictions,

the empirical size tends to over-reject the null; at the canonical 5% and 10% critical levels,

the test rejects at 10.4% and 18.4%, respectively. Concerning the power of the test, reported

in the right panel, against the true size of the test, we can always reject the null hypothesis

when the data are generated through Model 1-H1. Given that the DGP is generated by

estimating a MIDAS-VAR on real data, this result emphasizes the importance of considering

all the information contained in the data, instead of aggregating into a quarterly VAR.

As before, however, we propose two additional models (Model 2-H1 and Model 3-H1)

generating data more closely related to the null hypothesis. For evaluating the size of the test

and drawing the size-power curve, the models generating the data when the null is true (Model

2-H0 and Model 3-H0) are obtained by imposing the zero restrictions introduced in Eq. (12).

As the only different parameters in Model 2-H1 and Model 3-H1 are those involved in the

null hypothesis, the two specifications of Model 2-H0 and Model 3-H0 are equivalent. Figure

2, left panel, evaluates the empirical size of the test which is very similar to the one already

obtained for Model 1-H0. Figure 2, right panel, evaluates the power of the test for the two

models. The power is extremely high for Model 2-H1 while it decreases for Model 3-H1,

in which the choice of the parameters is extremely close to the specification under the null

hypothesis (Model 3-H0). Despite this reduction, the power continues to be quite high and

much larger than the empirical size of the test.
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Figure 2: Monte Carlo simulations for medium-scale MIDAS-VAR: pvalue plot (left panel) and
size-power curve (right panel) for the LR test.
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Notes: The DGPs medium-scale MIDAS-VARs with nL = 1 low-frequency variable and nH = 3 high-frequency variables.

The DGPs are presented in Section 3.3.2.

4 A MIDAS-SVAR analysis of US capital inflows and monetary

policy

In light of the methodology developed in the previous section, we shall present new results

emphasizing the role played by the natural mixed frequency of the variables in detecting the

effect of monetary policy and financial uncertainty on US gross capital inflows.

We estimate a MIDAS-SVAR model for US gross capital inflows over GDP, financial uncer-

tainty, as measured by the uncertainty indicator Uf recently proposed by Ludvigson, Ma, and

Ng (2019), and the Target for the Federal Funds rate, i.e. the Federal Reserve’s main operating

target in conducting monetary policy.16 The sample period is 1986:1-2013:3. Data on gross

capital flows are quarterly, and are taken from the IMF Balance of Payments Statistics.

The financial uncertainty Uf and the Target rate, both observed at monthly frequency, are

taken from the authors’ web page and the FRED web site, respectively.17

As in the recent literature on capital flow dynamics, we focus on gross inflows, as opposed to

net flows, because the size and variability of the former are much larger than those of net flows

as shown by the two aggregates for the US economy reported in Figure 3.18 Second, changes

in gross capital inflows characterize periods of crisis, such as the global financial crisis and the

dot-com bubble at the beginning of the new millennium.

The indicator of financial uncertainty, Uf , is taken from Jurado, Ludvigson, and Ng (2015).

The index Uf is estimated as the average of the time-varying volatility, as produced by stochastic

volatility models, of the one-month-ahead forecast error of each series in a large panel of macroe-

conomic and financial variables conditional on available information.19 This indicator increases

16All the variables do not show sign of unit roots. Results from ADF and KPSS tests can be obtained from
the authors upon request.

17Further details on the specification of the MIDAS-SVAR model are provided in Section 4.1.
18Gross inflows are given by the difference between foreign purchases of domestic assets less foreign sales of

domestic assets.
19See Ludvigson, Ma, and Ng (2019) for further details on construction.
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Figure 3: US capital flows dynamics.
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in periods of financial turmoil and decreases during stable periods.

The last endogenous variable in our model is the Target for the Federal Funds rate. The

Target rate (for short in what follows) is the level at which the Federal Reserve aims to keep

the Federal Funds rate, i.e. the interest rate at which banks and credit unions lend their reserve

balances overnight to each other on an uncollateralized basis. The Target rate is decided at the

meetings of the Federal Open Market Committee, and it is de facto the policy instrument that

the Federal Reserve uses to conduct its monetary policy.20

The monetary policy reaction function that determines the Target rate is often thought to

have two components: (i) a systematic, anticipated, reaction to key macroeconomic variables

(inflation, output gap, etc.) in the spirit of the Taylor (1993) rule, and; (ii) an unanticipated

“monetary policy shock”. The first step is to identify the monetary policy shocks, i.e. the

structural shocks to the Target rate, that will be used to investigate the transmission of monetary

policy to gross capital flows and the uncertainty indicator through impulse response functions.

The assumption generally made for identification in a SVAR framework is that the Target rate

does not contemporaneously affect inflation and the output gap (as well as other macroeconomic

aggregates).21 This implies that news to the inflation rate and the output gap are exogenous

20As the Target rate is the main indicator of the monetary policy stance, it can be roughly referred to as the
instrument of monetary policy, though, technically, the instruments are the open market operations to maintain
the Federal Funds rate close to the Target.

21The literature on the effects of monetary policy shocks to the real economy is huge and mainly differentiates
according to the empirical strategy used for the identification of the macroeconomic shocks. See among many
others Christiano, Eichenbaum, and Evans (2005) for recursive identification schemes, while Bacchiocchi and
Fanelli (2015) and Bacchiocchi, Castelnuovo, and Fanelli (2017) for non-recursive identification schemes and
references therein for alternative approaches.
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to the Target rate, and monetary policy shocks can be derived from a regression of the Target

rate on the contemporaneous and lagged values of such variables. We exploit this standard

identification strategy to estimate monetary policy shocks by including in the equation for the

Target rate, as exogenous variables, the contemporaneous value and two monthly lags of the

inflation rate and the growth rate of industrial production, the latter as a proxy for the output

gap.22 In the Technical Supplement, we show that our findings are robust to the inclusion of

such variables as endogenous variables in the VAR.

Finally, we include in all equations, as exogenous control variables, lagged EU and Japanese

short-term interest rates. In fact, there is substantial evidence showing that European interest

rates are affected by US monetary policy (see, among others, Favero and Giavazzi (2008)) and

the same is probably true for the interest rates of many other countries (see Passari and Rey,

2015). However, to the extent that foreign interest rates react to US policy shocks, we expect

US capital inflows to slow down as other low-risk countries follow the same monetary policy.

As many macroeconomic variables are available only quarterly, SVAR models used to analyze

the transmission of monetary policy shocks to the real economy are often based on this sampling

frequency. A preliminary analysis of our model based on quarterly data shows a positive,

but statistically not significant, reaction of capital inflows to a positive shock of the Target

rate, as well as a feeble negative response to an uncertainty shock.23 In the next Section we

compare these results to those obtained from the MIDAS-SVAR estimation of the same model

in order to asses the presence of distortions due to the “temporal aggregation bias”. In fact,

as monthly realizations of the Target rate and the financial uncertainty indicator may contain

useful information to unveil the structural and dynamic relationships among the variables, this

comparison allows us to verify the usefulness of MIDAS-SVAR estimation.

4.1 The MIDAS-SVAR reduced-form model

Consider the MIDAS-VAR model

A (L) x̃ (t) = D (L) z̃ (t) + ũ (t) (18)

with x̃ (t) =
(
xH (t, 1)′ , xH (t, 2)′ , xH (t, 3)′ , xL (t)′

)′
, and more precisely

xH (t, j) =

(
i (t, j)

Uf (t, j)

)
j = 1, .., 3

xL (t) = k (t) (19)

22The inflation rate and the growth rate of industrial production are also included as exogenous variables in the
other two equations of the VAR. Being inflation and the growth rate of industrial production observed monthly,
in each equation they enter contemporaneously and up to two monthly lags.

23The details of a preliminary analysis with the quarterly VAR are described in the Technical Supplement.
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where i (t, j) and Uf (t, j) are the Target rate and the financial uncertainty indicator, respect-

ively, all observed at the j-th month of quarter t, while k (t) measures the gross capital inflows-

GDP ratio for the quarter t. A set of exogenous variables z̃t, as discussed above, is included

to identify the structural shocks. In particular, we consider the inflation rate π (t, j) and the

growth rate of industrial production ∆ip (t, j), with j = 1, .., 3, observed at monthly frequency.24

The inclusion of these variables allows us to identify the monetary policy shocks.

The reduced-form MIDAS-VAR can thus be modeled as in Eq. (1) where Σũ is the covariance

matrix of the residuals, as in Eq. (3). The time index remains the quarter t and the reduced

form can be treated as a traditional VAR model in which the high frequency variables enter at

all monthly frequencies. This, as shown below, helps to identify the different structural shocks

hitting the dependent variables in each month within the quarter.

The optimal number of lags (in quarters) is obtained through the standard approach. The

Akaike and Bayesian information criteria, joint with the standard Lagrange Multiplier tests for

the autocorrelation and the multivariate normality of the residuals, suggest to include simply

two lags.

4.2 Identification of mixed-frequency structural shocks

The AB-MIDAS-SVAR model provides a very general approach to investigate the transmission

of policy and non-policy shocks in a mixed-frequency data framework. As discussed in Section

2.1, the covariance matrix of the residuals Σũ hides all contemporaneous relations among the

high- and low-frequency variables, the within quarter relations between low- and high-frequency

variables and the within quarter dynamics between xH (t, `) and xH (t, j), with ` > j. These

relations will be made explicit through the A matrix. The other contemporaneous relations,

instead, are specified in the B matrix that shows the simultaneous effect of the structural shocks

among the variables, and within the quarter. The exactly identified structural form becomes:

1

1

∗ ∗ 1

∗ ∗ 1

∗ ∗ ∗ ∗ 1

∗ ∗ ∗ ∗ 1

1





ui (t, 1)

uu (t, 1)

ui (t, 2)

uu (t, 2)

ui (t, 3)

uu (t, 3)

uk (t)


=



∗
∗ ∗

∗
∗ ∗

∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗





εmp (t, 1)

εu (t, 1)

εmp (t, 2)

εu (t, 2)

εmp (t, 3)

εu (t, 3)

εk (t)


(20)

where asterisks (∗) denote unrestricted coefficients and empty entries correspond to zeros. The

previous relation in Eq. (20), using the estimated residuals from the MIDAS-VAR in Eq. (18),

24In this specification the two exogenous variables enter without lags within the same quarter t, i.e. without
considering lags t− 1, t− 2, . . .. Including such lags, however, does not change the empirical results presented in
this section.
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allows us to identify the structural shocks εmp (t, j), εu (t, j) and εk (t) that represent the mon-

etary policy shock (a shock to the Target rate), the uncertainty shock and the capital inflow

shock, respectively. In particular, a recursive structure is assumed, in which uncertainty shocks

affect the Target rate after one month, while shocks to the Target rate contemporaneously im-

pact on the uncertainty indicator Uf . This set of assumptions, according to which the financial

uncertainty indicator, in a recursive scheme, is ordered after the policy rate, is in line with

Bekaert, Hoerova, and Lo Duca (2013), among many others. Interestingly, the mixed frequency

nature of the variables allows us to identify the high frequency structural shocks hitting the low

frequency variables m times (m = 3 in our empirical analysis) within the same quarter t. This

is a main contribution of our methodology.

The “relatively reduced” dimensionality of the model makes the ML estimator, starting from

the multivariate Gaussian distribution for the error terms as generally used in the traditional

SVAR literature, easily implementable and allows hypothesis testing on the restrictions in the

A and B matrices in Eq. (20), as well as those on the dynamics of the model, to behave as

standard LR tests.25

4.3 Does temporal aggregation matter? Testing MIDAS-SVAR against SVAR

In Section 3 we proposed a test for investigating whether the MIDAS-SVAR model is effectively

more powerful than a traditional SVAR model, both for the dynamic part and the structural

part of the model. Starting from the reduced form, the log-likelihood test statistic is LR =

−2(519.238 − 245.772) = 546.933 and, when compared with its asymptotic distribution under

the null, i.e. a χ2
(36), it leads to a clear rejection of the null hypothesis with a p-value practically

equal to 0. Therefore, the test strongly suggests that the MIDAS-SVAR model provides much

more accurate results than the traditional SVAR that uses low-frequency variables only. The

details concerning the test implementation are provided in Appendix C.

Moreover, if we focus on the structural form, we can perform different tests in order to

check whether the information contained in the monthly variables really matters in terms of a)

the identification of the shocks and b) the propagation of such shocks to the dynamics of US

capital inflows. Concerning the former, we first test the joint hypothesis that the Target rate

and the uncertainty indicator at time (t, 1) help to identify the monetary policy shock at time

(t, 2) and the Target rate and the uncertainty indicator at time (t, 1) and (t, 2) help to identify

25The estimates become quasi-ML when the assumption of a Gaussian likelihood is not supported by the data.
As a consequence, all LR tests should be interpreted as quasi-LR tests.
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the monetary policy shock at time (t, 3). This hypothesis correspond to the following structure:
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.

However, the likelihood test statistic, LR = 253.766, suggests to strongly reject the six over-

identifying restrictions with a p-value practically equal to 0.

Similarly, we can jointly test the following set of assumptions: the monetary policy shock

at time (t, 1) helps to identify the uncertainty shock at time (t, 1); the endogenous variables

and the structural shocks at time (t, 1) help to identify the uncertainty shock at time (t, 2);

the endogenous variables and the structural shocks at time (t, 1) and (t, 2) help to identify the

uncertainty shock at time (t, 3). Under this null hypothesis we have the following structure:
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As for the previous case, this null hypothesis (nine over-identifying restrictions) is strongly

rejected by the data (LR = 294.558 and p-value=0.00).

Concerning the second type of tests focusing on the transmission of the structural shocks, we

first check the null hypothesis that only the monetary policy and uncertainty shocks occurring

in the first month of the quarter contribute to explain the dynamics of US capital inflows.

This hypothesis imposes four zero restrictions on the last row of the B matrix in Eq. (20). The

related likelihood ratio test statistic, LR = 5.979, suggests to not reject the null hypothesis with

a p-value= 0.20. Other two interesting null hypotheses are that the impact of monetary policy

shocks first, and uncertainty shocks then, have the same impact on the dynamics of capital

inflows across the different months within the quarter. Both hypotheses impose two equality

restrictions in the last row of the B matrix in Eq. (20). The conclusions are opposite. While

monetary policy shocks have statistically different effects (at least at the 10% and 5% critical

level) on US capital inflows within the quarter (LR = 8.449, with a p-value= 0.01), the on
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impact response of capital inflows to uncertainty shocks seems to be statistically equivalent over

the three months of the quarter (LR = 0.903, with a p-value=0.64). Finally, as already discussed

at the end of Section 2.2, it is interesting to check whether monetary policy or uncertainty shocks

have the same variance for the different months of the quarter. Concerning the monetary policy

shocks, the two restrictions take the form H0 : B11 = B33 = B55. The related likelihood ratio

test presents a test statistics LR = 6.885 with a related p-value= 0.03, thus suggesting to

mildly reject the null hypothesis. On the contrary, for the variance of the uncertainty shocks

(H0 : B22 = B44 = B66), the test suggests to strongly reject the null hypothesis (LR = 27.817,

with a p-value practically equal to zero).

4.4 Impulse responses and variance decomposition

Impulse responses analysis. The impulse response functions (IRFs) of capital inflows, k (t), to

the different types of shocks are shown in Figure 4. As discussed above, the low frequency

variable k (t) is expected to respond to monetary policy and uncertainty shocks occurring in

all three months within the quarter. Impulse responses are displayed in the first row of Figure

4 for shocks to the Target rate and in the second row for shocks to the financial uncertainty

indicator. The bottom panel reports the response of capital inflows to a shock to themselves.

The dynamic response of capital inflows to an unanticipated increase in the Target rate

is broadly similar, independently of the month it happens within the quarter, with a positive

hump-shaped reaction that reverts to zero in the long run; however, the magnitude of the effect

is strongest for shocks to the Target rate taking place in the first month of the quarter, it is

weaker, and negative on impact, for shocks in the second month and barely significant for shocks

occurring in the third month, i.e. at the end of the quarter. Hence, a monetary contraction, i.e.

a positive shock to the Target rate, has a strong positive effect on capital inflows when it takes

place at the beginning of the quarter, while such effect builds up in the following quarter for

shocks in the second month and, finally, vanishes at the end of the quarter.

The magnitude of the effects of monetary policy shocks, thus, is rather different depending

on the month they happen within the quarter. To the extent that changes in the Target rate are

persistent, a shock that occurs at the beginning of the quarter, and lasts over three months, is

expected to have a larger effect on capital inflows as it affects the net sale of assets over the entire

three-month period over which they are measured. On the other hand, a shock at the end of the

quarter barely affects capital inflows within that quarter since the latter are mostly determined

by the market conditions prevailing in the previous two months. The delayed positive effect of

shocks to the Target rate occurring in the second month of the quarter is consistent with this

interpretation. While asset prices and exchange rates immediately react to interest rate shocks,

US capital inflows, i.e. the net sale of US assets to foreign residents, being a flow variable,

increase with the sampling period.

An increase in the Target rate occurring at the beginning of the quarter – and lasting until
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Figure 4: Response of gross capital inflows to shocks to monetary policy, financial uncertainty
and gross capital flows: MIDAS-SVAR model.
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Notes: Impulse response functions and 90% bootstrapped confidence intervals for the MIDAS-SVAR model. Response of
gross capital flows over GDP (k(t)) to shocks to monetary policy (εmp(t, j)), financial uncertainty (εu(t, j)) and capital
inflows (εk(t)), where j = 1, 2, 3 indicate whether the high-frequency shocks affect the low frequency variable during the
first, second and third month of the quarter, respectively. The sample period is 1988:1-2013:3.

the end of the quarter – that boosts sales of US assets can have a sizable effect on capital flows

simply because such sales accumulate over the entire three-month period. The medium/long-

term responses, instead, are similar regardless of the timing of the shocks in the quarter.

This interpretation requires shocks to the Target to be persistent; if they were short lived,

in particular if they just lasted one month, their impact on capital flows would be the same

independently of the month they occurred. Figure 5 shows the response of the Target rate to its

own shock. Monetary policy shocks are rather persistent; a shock that occurs at the beginning of

the quarter produces a significant effect on the following two months too, before capital inflows

data are recorded. Actually, the response of the Target rate to its own shock is hump-shaped

reaching a peak after two months which suggests the possibility of a delayed reaction of capital

flows. The result that shocks to the Target rate have different effects depending on their timing

within the quarter explains the evidence reported in the Technical Supplement for the quarterly

VAR that monetary policy has no (or at most very weak) impact on capital inflows. In fact,

aggregating the three impulse responses of Figure 4 (left panel) makes the overall quarterly

effect quite weak.

The middle row of Figure 4 shows the impulse responses of capital inflows to financial
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Figure 5: Response of Fed Funds Target rate to monetary policy shocks: MIDAS-SVAR model.
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uncertainty shocks for each of the months in the quarter. The results are qualitatively similar

to those obtained with the quarterly SVAR described in the Technical Supplement, especially in

the short run. When focusing on the effect of the monthly shocks, however, we observe that the

effect is strongest when the uncertainty shock occurs at the beginning of the quarter, while it

becomes weaker and weaker as it happens later in the quarter. The profile of the IRFs, however,

is very similar for the three shocks independently of their timing. Such similar responses are

possibly due the low persistence of the uncertainty shocks, as opposed to the high persistence

observed for the monetary policy shocks.

Figure 6 reports the responses of the uncertainty indicator to monetary policy shocks. A

monetary contraction, i.e. a positive shock to the Target rate, reduces financial uncertainty.

The dynamic response of the uncertainty indicator is similar, independently of the month when

the monetary policy shock takes place, but the effect is stronger for shocks occurring at the

beginning of the quarter while it tends to vanish for shocks at the end of the quarter.

Figure 7 reports the reaction of the Target rate to uncertainty shocks. In line with Bekaert,

Hoerova, and Lo Duca (2013), an increase in financial uncertainty (or in risk aversion, in their

setting) prompts a monetary easing that, however, is not statistically significant.
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Figure 6: Response of financial uncertainty to monetary policy shocks: MIDAS-SVAR model.
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Figure 7: Response of Fed Funds Target rate to financial uncertainty shocks: MIDAS-SVAR
model.
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Table 1: FEVD Quarterly SVAR and MIDAS-SVAR for capital flows
Panel a. Quarterly SVAR

h 0 1 4 8 20

εmp(t) 2.72 6.49 7.53 10.04 10.60

εu(t) 2.38 5.42 6.38 6.89 7.12

εk(t) 94.91 88.09 86.09 83.07 82.28

Panel b. MIDAS-SVAR

h 0 1 4 8 20

εmp(t, 1) 2.95 3.42 8.34 8.55 10.59

εmp(t, 2) 3.85 7.47 9.02 9.27 5.76

εmp(t, 3) 1.20 1.64 1.24 1.26 5.84∑3
j=1 ε

mp(t, j) 8.00 12.53 18.59 19.07 22.03

εu(t, 1) 1.41 1.49 1.38 1.37 1.51

εu(t, 2) 0.06 0.06 0.69 0.78 1.57

εu(t, 3) 0.00 0.97 3.91 4.03 4.06∑3
j=1 ε

u(t, j) 1.46 2.51 5.98 6.18 7.13

k(t) 90.53 84.96 75.42 74.75 70.84

Notes: Forecast Error Variance Decomposition (FEVD) for the capital inflows subject to monetary policy shocks (εmp(·)),
uncertainty shocks (εu(·)) and capital shocks (εk(·)) in the AB-MIDAS-SVAR model calculated at different horizons (0,
1, 4, 8, 20 quarters) (panel b), and FEVD obtained through the aggregate quarterly SVAR discussed in the Technical
Supplement (panel a). The sample period is 1988:1-2013:3.

Forecast Error Variance Decomposition. In Table 1 we report the Forecast Error Variance

Decomposition for the capital inflows subject to monetary policy and uncertainty shocks in the

AB-MIDAS-SVAR model (panel b), calculated at different horizons (0, 1, 4, 8, 20 quarters).

Such results are compared to those obtained through the aggregate quarterly SVAR discussed

in the Technical Supplement (panel a). In the AB-MIDAS-SVAR model, shocks to the Target

rate account for more the double of the variance of capital flows compared with the quarterly

SVAR model after 20 quarters, while this ratio is up to three times for the response on impact.

Evidence in favor of the MIDAS-SVAR with respect to the traditional SVAR is less clear when

comparing the effects of uncertainty shocks to those in the quarterly SVAR.

All the previous results show that the MIDAS-SVAR model performs significantly better

than the quarterly SVAR: All the identified structural shocks explain a much larger part of the

forecast error variance and provide richer impulse responses by exploiting the dynamics within

the quarter.

5 Concluding remarks

We presented a new framework for performing structural analysis with mixed-frequency data.

This model, that we called MIDAS-SVAR, fully exploits the different frequencies of the variables,

and its specification appears as a generalization of standard VARs. We have also proposed a

test of hypothesis for statistically evaluating the gains of using mixed frequencies with respect

to low frequency standard VARs. The asymptotic distribution of the test statistic is standard,
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while in small samples the performance of the test has been evaluated through a set of Monte

Carlo experiments. For small- and medium-scale MIDAS-VARs the gains are enormous when

the DGP is based on real data. Moreover, the gains reveal to be consistent even when the DGP

is quite close to a standard low frequency VAR.

Using this econometric framework we presented new evidence on the effects of monetary

policy and financial uncertainty on US capital inflows. In particular, we showed that the (so

far) weak evidence of an effect of monetary policy shocks on US capital inflows is due to the

different impact that such shocks have depending on the month in which they occur within the

quarter. The MIDAS-SVAR allows to highlight these different effects.
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A Appendix: Mapping from MIDAS-VAR to VAR: Some de-

tails and further results

Consider the MIDAS-VAR models in Eq. (9) with potential exogenous variables included:
x1
H (t, 1)

x1
H (t, 2)

x1
H (t, 3)

x2
L (t)

 =


A1

11 A1
12 A1

13 A1
1

A1
21 A1

22 A1
23 A1

2

A1
31 A1

32 A1
33 A1

3

A1
L1 A1

L2 A1
L3 A1

L




x1
H (t− 1, 1)

x1
H (t− 1, 2)

x1
H (t− 1, 3)

x2
L (t− 1)

+

+


C1

11 C1
12 C1

13 C1
1

C1
21 C1

22 C1
23 C1

2

C1
31 C1

32 C1
33 C1

3

C1
L1 C1

L2 C1
L3 C1

L




zH (t, 1)

zH (t, 2)

zH (t, 3)

zL (t)

+


u1
H (t, 1)

u1
H (t, 2)

u1
H (t, 3)

u2
L (t)

 (21)

where zH (t, i) is the vector of high-frequency exogenous variables for the i-th month of quarter

t and zL (t) is the vector of low-frequency exogenous variables at quarter t. If the aggregation

scheme consists in taking the first observation of the quarter only, the G matrix is the one re-

ported in Eq. (11) and the associated null hypothesis is as described in Eqs. (12)-(15) for testing

the equivalence between the two specifications (without exogenous variables, for simplicity). If

the model specification allows for exogenous regressors, the previous null hypothesis must be

completed with

H1
0 : A1

12 = A1
13 = 0

H2
0 : A1

L2 = A1
L3 = 0.

(22)

A very similar situation occurs when the aggregation scheme for high-frequency variables reduces

to select the last observation of the quarter.

A.1 Proofs

Proof of Proposition 2. Let ẍ(t) = Gx̃(t), with

A(L)x̃(t) = ũ(t),

pre-multiplying by G

GA(L)x̃(t) = Gũ(t)

G(Iñ −A1L− . . .−GApL
p)x̃(t) = Gũ(t)

Gx̃(t)−GA1x̃(t− 1)− . . .−GApx̃(t− p) = Gũ(t)
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with GAix̃(t− i) = Äiẍ(t− i), i = 1, 2, . . . , p, then

E[Gx̃(t)|x̃(t− 1), . . . , x̃(t− p)] = Ä1ẍ(t− 1) + . . .+ Äpẍ(t− p).

Proof of Proposition 3. Given the SVAR for ẍ(t) = Gx̃(t)

Aü(t) = Bε̈(t),

pre-multiplying the MIDAS-SVAR model by G

GAũ(t) = GBε̃(t)

with GAũ(t) = Aü(t) and GBε̃(t) = Bε̈(t) the two models are equivalent.

A.2 Different aggregation schemes

The use of the selection matrix G allows to evaluate the differences between MIDAS-SVARs

and traditional SVARs when alternative aggregations of the high frequency variables are made.

Consider, for example, the quarterly data obtained by cumulating monthly data:

ẍ1
L (t) =

3∑
i=1

x1
H (t, i) , (23)

then, define the selection G matrix as follows

G =

(
InH InH InH 0

0 0 0 InL

)
(24)

and pre-multiply both sides of Eq. (9) by G. After some algebra, we obtain that

(
ẍ1
L (t)

ẍ2
L (t)

)
=

(
Ä1

11 Ä1
12

Ä1
21 Ä1

22

)
x1
H (t− 1, 1)

x1
H (t− 1, 2)

x1
H (t− 1, 3)

x2
L (t− 1)

+

(
C̈1

11 C̈1
12

C̈1
21 C̈1

22

)
z1
H (t− 1, 1)

z1
H (t− 1, 2)

z1
H (t− 1, 3)

z2
L (t)

+

(
ü1
L (t)

ü2
L (t)

)
(25)
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with

Ä1
11 =

(
A1

11 +A1
21 +A1

31 A1
12 +A1

22 +A1
32 A1

13 +A1
23 +A1

33

)
Ä1

21 =
(
A1

L1 A1
L2 A1

L3

)
Ä1

12 = A1
1 +A1

2 +A1
3

Ä1
22 = A1

L

C̈1
11 =

(
C1

11 + C1
21 + C1

31 C1
12 + C1

22 + C1
32 C1

13 + C1
23 + C1

33

)
C̈1

21 =
(
C1
L1 C1

L2 C1
L3

)
C̈1

12 = C1
1 + C1

2 + C1
3

C̈1
22 = C1

L

(26)

When there are no exogenous variables, the MIDAS-VAR and the VAR models described in

Eq. (9) and Eq. (10), respectively, are equivalent if

H1
0 :

(
A1

11 +A1
21 +A1

31

)
=
(
A1

12 +A1
22 +A1

32

)
=
(
A1

13 +A1
23 +A1

33

)
H2

0 : A1
L1 = A1

L2 = A1
L3.

(27)

In the case exogenous variables are included, as in the empirical application presented in the

paper, the null hypothesis for testing the mapping between the two specifications must include

the following relations

H3
0 :

(
C1

11 + C1
21 + C1

31

)
=
(
C1

21 + C1
22 + C1

32

)
=
(
C1

31 + C1
32 + C1

33

)
H4

0 : C1
L1 = C1

L2 = C1
L3.

(28)

Concerning the matching between SVAR and MIDAS-SVAR, the representations of the latter

can be easily obtained by pre-multiplying both sides of Eq.(13) by the G matrix defined before,

regardless the presence or not of exogenous variables. The null hypothesis

H1
0 : (A11 +A21 +A31) = (A12 +A22 +A32) = (A13 +A23 +A33)

H2
0 : AL1 = AL2 = AL3

H3
0 : (B11 +B21 +B31) = (B12 +B22 +B32) = (B13 +B23 +B33)

H4
0 : BL1 = BL2 = BL3

(29)

immediately follows.

Extremely interesting, as it would reasonably be in many empirical applications, is the case

where the high-frequency variables are aggregated differently with respect to their nature. As

an example, the interest rate and the uncertainty indicator could be selected at the beginning of

the quarter, while inflation and the growth rate of industrial production could be aggregated by

taking the quarter average. Were this the case, for an hypothetical vector of high-frequency vari-

ables defined by xH(t, j) =

(
i (t, j) , Uf (t, j) , π (t, j) ,∆ip (t, j)

)′
, and one single low-frequency
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variable k(t), the associated selection matrix would be

G =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1/3 0 0 0 0 1/3 0 0 0 0 1/3 0 0

0 0 0 0 1/3 0 0 0 0 1/3 0 0 0 0 1/3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(30)

with related null hypothesis obtained through the same reasoning as explained before.

B Appendix: Monte Carlo simulations, some details

In Section 3.3.2 we have presented some simulation experiments for a medium-scale MIDAS-

VAR model with nH = 3 high-frequency monthly variables and nL = 1 quarterly variable

with one single lag. In particular, Model 1-H1 is obtained through the following matrices of

parameters:

Σũ =



0.028 −0.004 −0.001 0.046 −0.003 0.000 0.058 −0.005 −0.001 0.204

−0.004 0.023 0.001 −0.003 0.022 0.001 0.001 0.020 0.001 −0.285

−0.001 0.001 0.000 −0.001 0.002 0.000 0.000 0.002 0.000 0.005

0.046 −0.003 −0.001 0.102 −0.003 −0.001 0.132 −0.008 −0.001 0.350

−0.003 0.022 0.002 −0.003 0.045 0.003 0.001 0.041 0.003 −0.438

0.000 0.001 0.000 −0.001 0.003 0.001 0.000 0.003 0.001 −0.011

0.058 0.001 0.000 0.132 0.001 0.000 0.193 −0.006 −0.001 0.289

−0.005 0.020 0.002 −0.008 0.041 0.003 −0.006 0.051 0.004 −0.389

−0.001 0.001 0.000 −0.001 0.003 0.001 −0.001 0.004 0.001 −0.025

0.204 −0.285 0.005 0.350 −0.438 −0.011 0.289 −0.389 −0.025 82.278



(31)

and

A1 =



−0.008 −0.041 −1.350 −0.392 0.093 0.176 1.379 −0.105 −0.181 0.002

−0.149 0.060 0.845 0.219 −0.210 −2.055 −0.053 1.116 0.832 −0.002

−0.007 −0.002 0.121 0.012 0.018 −0.156 −0.005 −0.003 0.836 0.000

−0.134 −0.208 −3.217 −0.519 0.295 0.174 1.599 −0.293 −0.578 −0.002

−0.146 0.194 −0.101 0.170 −0.179 −1.323 −0.019 0.877 0.683 −0.001

−0.023 −0.014 0.136 0.036 −0.002 −0.036 −0.014 0.027 0.582 −0.001

−0.241 −0.310 −3.159 −0.544 0.422 1.560 1.726 −0.356 −3.078 −0.003

0.110 0.283 −0.411 −0.122 −0.292 −0.408 0.011 0.811 −0.300 0.001

0.007 −0.015 0.113 −0.002 −0.020 0.248 −0.007 0.037 0.275 −0.001

−1.200 −3.441 −73.371 −1.461 12.762 −66.768 1.423 −8.138 4.622 0.376



(32)
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Finally, the further models, Model 2-H1 and Model 3-H1, are obtained through the same

covariance matrix, Σũ, and the following matrices of parameters

A1 =



0.3 0 0 0.05 0.05 0.05 −0.05 −0.05 −0.05 0

0 0.3 0 0.05 0.05 0.05 −0.05 −0.05 −0.05 0

0 0 0.3 0.05 0.05 0.05 −0.05 −0.05 −0.05 0

0 0 0 0.3 0 0 0 0 0 0

0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0.3 0 0 0 0

0 0 0 0 0 0 0.3 0 0 0

0 0 0 0 0 0 0 0.3 0 0

0 0 0 0 0 0 0 0 0.3 0

0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.5



(33)

and

A1 =



0.3 0 0 0.01 0.02 0.02 −0.02 −0.02 −0.02 0

0 0.3 0 0.01 0.02 0.02 −0.02 −0.02 −0.02 0

0 0 0.3 0.01 0.02 0.02 −0.02 −0.02 −0.02 0

0 0 0 0.3 0 0 0 0 0 0

0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0.3 0 0 0 0

0 0 0 0 0 0 0.3 0 0 0

0 0 0 0 0 0 0 0.3 0 0

0 0 0 0 0 0 0 0 0.3 0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5



(34)

respectively. The matrices of the parameters for generating Model 1-H0, Model 2-H0 and

Model 3-H0, i.e. when the null hypothesis is true, are obtained starting from Eqs. (32)-(34)

and imposing the restrictions presented in Eq. (12) and discussed in Section 3.3.2.

C Appendix: MIDAS-SVAR vs SVAR, test implementation

This section is dedicated to the empirical implementation of the test. We consider that the low-

frequency variables are obtained by adding high frequency variables. Alternative aggregation

schemes are however discussed in Appendix A. We first focus on the reduced form model, and

then discuss the structural form.

The reference null hypothesis is that reported in Eq. (27), and can be empirically imple-

mented through a LR test. The reduced form is estimated both without and with restrictions

and the two log-likelihood values are 519.238 and 245.772, respectively. The test statistic

LR = −2(245.772 − 519.238) = 546.933 asymptotically follows a χ2
(36), with a related p-value

practically equal to 0, strongly suggesting to reject the null hypothesis. Aggregating the high

frequency series as in traditional VARs generates a loss of information that is statistically highly
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significant. The number of degrees of freedom is given by the number of restrictions on the

parameters related to the dynamics of the VAR (first row of Eq.(27), i.e. 8 restrictions for each

of the two lags), plus the restrictions on the relationships between low- and high-frequency vari-

ables (second row of Eq.(27), i.e. 4 restrictions for each of the two lags), plus a set of further

12 restrictions on the exogenous variables (the details are discussed in Appendix A).

Such incontrovertible result favoring the MIDAS-VAR model makes completely unneces-

sary the test on the matching between the structural part of the MIDAS-SVAR versus the

SVAR model, whose implementation, however, would have followed the same LR principle, as

postulated in Eq. (29).26

D Robustness checks

In this section we provide a rich set of robustness checks regarding the identification of the

shocks and the impact of other control variables. All the details of these further investigations

are reported in the Technical Supplement.

D.1 Robustness: Different identification scheme

In the specification of the MIDAS-SVAR in Section 4.2, a recursive structure is assumed in which

financial uncertainty shocks affect the Target rate after one month, while shocks to the Target

rate contemporaneously impact on the financial uncertainty indicator. This set of assumptions,

though in line with Jurado, Ludvigson, and Ng (2015), is at odds with Bloom (2009) and

Caggiano, Castelnuovo, and Groshenny (2014) who arrange the uncertainty measure as first in

the SVAR specification.27

In order to validate our findings we repeat the empirical analysis inverting the ordering of

the monthly variables in the MIDAS-SVAR. The resulting IRFs, reported in Figure TS.2 in the

Technical Supplement, substantially confirm the main findings of Section 4.4.

D.2 Robustness: Endogenous economic activity indicator and inflation rate

In the empirical analysis, in order to control for parameters proliferation, the growth rate of

industrial production and the inflation rate are considered as exogenous variables.28 This choice,

26As suggested in the Appendix A, one might be interested in alternative aggregation schemes. We have
therefore tested whether the MIDAS-VAR model is comparable with the traditional VAR model obtained by
taking the mean of the high-frequency variables instead of the first month of the quarter. The null hypothesis
is strongly rejected. The results continue to confirm the better performance of the MIDAS-VAR model. See
Appendix A for the details on the definition of the null hypothesis.

27Ludvigson, Ma, and Ng (2019), Angelini, Bacchiocchi, Caggiano, and Fanelli (2019) and Carriero, Clark,
and Marcellino (2017), in three recent contributions, question the exogenous role or the endogenous response of
financial uncertainty indicators, like the VIX, towards the real economy. Prevailing the former or the latter of
these two causality directions might have important implications on the short-run restrictions imposed to identify
the structural latent shocks.

28A topic for future research could be the implementation of Bayesian MIDAS-SVAR with shrinkage priors, as
in the spirit of Carriero, Clark, and Marcellino (2015), in order to deal with the potential parameters proliferation.
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though consistent with the identification of the monetary policy shock, is questionable in that

such variables are usually included as endogenous in VAR specifications, so as to determine the

growth rate of industrial production and inflation jointly with the interest rate.

The analysis presented in Section 4 is replicated with the inclusion of these monthly variables

as endogenous. In particular, the identification structure is the same as in Eq. (20), with the

growth rate of industrial production and inflation, ∆ip(t, j) and π(t, j), ordered just before the

Target rate i(t, j), with j = 1, . . . , 3. The results, reported in Section TS.2.3 of the Technical

Supplement, show no differences in the responses of capital inflows to monetary policy shocks

and financial uncertainty shocks, for each month within the quarter.

D.3 Robustness: controlling for further exogenous variables

In Section 4 we discussed the importance of considering economic activity and inflation to

identify monetary policy shocks. However, other variables may be relevant to explain the

dynamics of the uncertainty indicator and US capital inflows. Thus, we include, as exogenous

variables: an indicator of the global business cycle measured by the growth rate of aggregate

industrial production in OECD+BRICST countries (Brazil, Russia, India, China, South Africa

and Turkey); an indicator of the US stock market, as measured by the return on the S&P500

price index29; the 10-year interest rate on US Treasury bonds; the effective exchange rate, and an

alternative indicator for the US business cycle measured by the monthly civilian unemployment

rate. To avoid endogeneity issues we rely on the lagged values of these monthly variables. All

the results are practically identical to those presented in Section 4.4, and are available from the

authors upon request.

29Qualitatively identical results are obtained relying on the MSCI-World Index or running the model using the
levels instead of the growth rates of variables.



• We develop a structural Vector Autoregressive (VAR) model for mixed-frequency data: the MIDAS-
SVAR model

• The MIDAS-SVAR model allows to identify structural dynamic links exploiting the information
contained in variables sampled at different frequencies.

• It also provides a general framework to test homogeneous frequency-based representations versus
mixed-frequency data models.

• Finite sample performance of test is analysed with a set of Monte Carlo experiments
• The MIDAS-SVAR is used to study how monetary policy and financial uncertainty impact on the

dynamics of gross capital inflows to the US.




