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Mineralogy, petrology and materials science are fundamental disciplines not

only for the basic knowledge and classification of solid phases but also for their

technological applications, which are becoming increasingly demanding and

challenging. Characterization and design of materials are of utmost importance

and usually need knowledge of the thermodynamics and mechanical stability of

solids. Alongside well known experimental approaches, in recent years the

advances in both quantum mechanical methods and computational power have

placed theoretical investigations as a complementary useful and powerful tool in

this kind of study. In order to aid both theoreticians and experimentalists, an

open-source Python-based software, QUANTAS, has been developed.

QUANTAS provides a fast, flexible, easy-to-use and extensible platform for

calculating the thermodynamics and elastic behavior of crystalline solid phases,

starting from both experimental and ab initio data.

1. Introduction

An important issue for materials scientists (mineralogists,

petrologists, solid-state chemists and physicists, and materials

engineers) is to obtain good-quality data of the physical and

chemical properties of a solid phase at different pressure and

temperature conditions. This fundamental knowledge can

drive further research on both the thermodynamic stability of

the system under investigation, for example the construction

of phase diagrams, and possible innovative specific technolo-

gical applications.

Among several experimental methods, two approaches are

commonly employed to study the elastic properties of a solid

material: (i) hydrostatic compression and (ii) uniaxial/biaxial

deformation. In the first case, the mechanical data on the solid

can be obtained from the variation of unit-cell volume/axis

lengths with pressure (e.g. by using diamond-anvil cells) by

means of equation-of-state (EoS) fitting. Such experiments are

conducted either at constant temperature or by varying it

during diffraction experiments (Fukui et al., 2003; Gatta et al.,

2013, 2015; Pawley et al., 1995). The greatest challenge for this

kind of investigation is to describe the structural dynamics on

simultaneous variation of both pressure and temperature,

which still requires very complex experimental setups. In the

second case, the stress–strain relationship allows the deter-

mination of the fourth-rank elastic tensor of the material,

whose components are also called ‘elastic moduli’ and

‘second-order elastic constants’ by physicists and engineers,
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respectively. The analysis of the elastic properties can reveal

many details about both single-crystal and polycrystalline

behaviors and is of utmost importance for designing materials

with tailored mechanical properties. Several methodologies

could be employed to obtain the elastic moduli, such as Bril-

louin spectroscopy (Jiang et al., 2006) and shock wave

experiments (Duffy et al., 1991; Yoon & Katz, 1976).

In the past two decades, quantum mechanical (QM)

methods have been increasingly applied in solid-state and

materials science fields for both simple and complex systems.

For instance, in mineralogy, this new scientific branch even

started being referred to as ‘quantum mineralogy’. The use of

quantum mechanical approaches is mainly for structural,

electronic, vibrational and catalytical (surface) properties. The

simulation of the thermomechanical behavior of solids is only

recent, principally because of the high computational costs

required by such calculations. The basis to obtain thermo-

mechanical insights of crystals is given by the quasi-harmonic

approximation (QHA), as described by Anderson (1995). The

QHA offers a simple formulation valid for several solids

presenting different bond types, such as pure covalent

(Ottonello, Zuccolini & Civalleri, 2009), mixed covalent–ionic

(Ottonello et al., 2010; Ulian & Valdrè, 2015a), pure ionic

(Erba, 2014) and mixed covalent–dispersive (Ulian & Valdrè,

2015b,c). This method, which is derived from the harmonic

treatment of the unit cell of solids, introduces an explicit

dependence of phonon frequencies on volume, thus over-

coming the well known limitations of the harmonic approx-

imation (HA) as reported by Baroni et al. (2010).

Several formulations describing the volume dependence of

vibrational modes have been proposed: (i) Grüneisen’s mode-

� parameters (Anderson, 1995; Ottonello, Civalleri et al.,

2009); (ii) a volumetric polynomial fit of the thermodynamic

quantities calculated by the HA (Prencipe et al., 2011); and

(iii) a direct polynomial fit of the individual phonon

frequencies with respect to volume (Erba, 2014; Erba et al.,

2015). In all of these approaches, it is required to calculate the

phonon modes of the solid under investigation at different

unit-cell volumes. The main difference between the thermo-

dynamic and phonon interpolation schemes resides in the

number of fitting procedures to be performed, which is usually

lower for the direct polynomial fit of the individual phonon

frequencies. Typically, QHA calculations are carried out

considering only hydrostatic pressure variations on the unit

cell. However, it is known that phonon frequencies depend

also on the changes in the cell parameters expressed as strains,

as also reported and discussed in recent literature (Murri et al.,

2018; Ulian & Valdrè, 2018; Destefanis et al., 2019). However,

in the present work we refer to the most common approach to

QHA.

Nowadays, there are various quantum chemistry codes that

can calculate the quantities necessary to perform QHA and

elastic analyses of solids. Phonon modes and elastic tensors

can be obtained directly from the outputs of the quantum

mechanical software thanks to automated algorithms imple-

mented in the package and/or indirectly. For example, the

elastic moduli require knowledge of the stress–strain rela-

tionship based on total energy calculations, which are

performed for a systematic series of deformations of the

crystal structure. Within this approach, the elastic moduli are

related to the total energy of the solid via a Taylor expansion

in terms of the strain components truncated to the second-

order, as described by Perger (2010). In the simplest approach,

it is necessary to (i) determine the number and type of

deformations, (ii) calculate the total energy of the crystalline

solid for each deformed cell, and (iii) numerically derive the

elastic tensor components from the energy versus deformation

curves. Both the CRYSTAL (Dovesi et al., 2018) and the

VASP (Kresse & Furthmüller, 1996; Kresse & Hafner, 1993)

codes can provide the elastic moduli directly, because they

implement routines that automatically perform the steps cited

above. If the quantum mechanical code does not provide these

routines, it is necessary to perform these operations by hand or

rely on external codes/scripts that both generate specific input

files for the QM software and analyze the output results, as

performed for example by the ElaStic scripts (Golesorkhtabar

et al., 2013). The same applies for the calculation of the

phonon modes required by QHA analysis and of the equation

of state of the solid under analysis.

In addition, there is an increasing need of codes that can

post-process data from both theoretical simulations and

experimental measurements, to obtain other information such

as the thermodynamic and thermoelastic properties, or the

directional and averaged mechanical behavior. The available

tools in the scientific community are usually very specific to

just one or a few of the cited analyses, and a comprehensive

and inclusive platform is still missing.

Starting from all these considerations, and trying to satisfy

the needs of both experimentalists and theoreticians, we

developed QUANTAS (acronym of ‘quantitative analysis of

solids’), a software platform that can aid solid-state and

materials scientists of different fields in obtaining a multi-

plicity of properties of a crystalline phase.

At present, QUANTAS allows the user to calculate

(i) the thermodynamic and thermoelastic properties of a

material at selected pressure and temperature conditions from

ab initio quantum mechanical results;

(ii) the equation of state of crystalline phases from both

theoretical and experimental data;

(iii) elastic properties derived from the second-order elastic

moduli, independently of the means used to obtain them.

The present work is organized as follows: Section 2 lists and

briefly explains some of the extant codes to better compare

their functions with those of QUANTAS. Section 3 reports

and discusses the non-functional requirements of QUANTAS.

Sections 4–6 show all the functionalities and implementations,

and Sections S1–S4 in the supporting information present, for

the sake of completeness, some test cases used to validate

QUANTAS. Finally, possible future developments of the

presented package are explained and discussed. This paper is

not intended as a user manual but provides just some of the

details that can be found in the online documentation (see

Section 3). The focus is on the basic science, general concepts

and engineering aspects of QUANTAS.
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2. Extant software

In the following, we provide a brief presentation of other

related codes, explaining the differences with the QUANTAS

software.

2.1. Phonopy

Phonopy (Togo & Tanaka, 2015) is an open-source code

written in Python (with some functions in C) which aims to

calculate phonon properties of crystalline solids. It has several

pre-processing routines, e.g. creation of input files (unit-cell

structures) for the calculation of unit-cell energy related to

atomic displacements, and post-processing ones, such as

determination and plotting of phonon bands in k paths,

specifically developed for first-principles simulations.

Phonopy has several interfaces for different ab initio codes

and is widely employed by quantum chemical researchers. It

allows also the calculation of harmonic thermodynamic

properties and includes a quasi-harmonic approximation

framework. It employs a thermodynamic interpolation

scheme, using either the Murnaghan (1937) or the Vinet

(Vinet et al., 1987) equation of state to minimize the volume at

0 GPa. In QUANTAS, we provide four equation-of-state

formulations and polynomials to minimize the volume at

different temperature and pressure states, and both thermo-

dynamic and phonon interpolation schemes (see below).

2.2. EosFit7

The EosFit software (Angel et al., 2014) is a copyleft suite of

codes developed to calculate P–V–T EoSs and cell parameter

variations with pressure P and temperature T from volume V,

cell parameters and elasticity data (Milani et al., 2017). The

current version is based on the CrysFML Fortran library

(Rodrı́guez-Carvajal & González-Platas, 2005, 2008) and

includes both a console and a graphical user interface

(Gonzalez-Platas et al., 2016). It does not implement volume-

integrated equation-of-state formulations that could be used

by theoreticians to fit their total energy versus unit-cell

volume curves.

2.3. ElAM

ElAM (Marmier et al., 2010), implemented in Fortran 90, is

an open-source command-line software that provides analysis

of the second-order elastic tensor using well known solid-state

physics formulations as described by Nye (1957). It has both

2D and 3D plotting capabilities (the first in PostScript format,

the second in virtual-reality modeling language format).

However, the software seems discontinued since the end of

2009. It does not provide the calculation of directional and

averaged seismic wave speeds.

2.4. ELATE

A successor of ElAM, ELATE is an open-source online

tool, entirely written in Python by Gaillac et al. (2016), which

provides a detailed analysis of the second-order elastic tensor,

together with both bi- and tri-dimensional plots. It is also

integrated in the Materials Project, a large database of several

properties of many solid phases. As for ElAM, no routine has

been implemented to calculate the seismic wave speeds.

3. Non-functional requirements of QUANTAS

Many scientific software codes have very similar non-

functional requirements, such as license type and program-

ming language. For the development of QUANTAS we

followed whenever possible the best practices for scientific

code development that have been recently proposed by

Wilson et al. (2014).

3.1. Software license

QUANTAS is released as a free and open-source code

under the New Berkeley Software Distribution (BSD) soft-

ware license. This aims to provide the necessary conditions for

the verification and validation of research data (Joppa et al.,

2013), while also allowing advanced users to modify the source

code, collaborate on future implementations, and ensure long-

term maintenance and sustainability of the software.

3.2. Programming language

QUANTAS is developed in Python 3 (http://www.python.

org), with the numerical sections implemented through the

NumPy and SciPy scientific computing libraries (van der Walt

et al., 2011). Heavy computations are performed by a small

portion of the software that was written in Cython (Behnel et

al., 2011), namely as C extensions for Python. The computa-

tion is in double precision for the thermodynamic/thermo-

elastic properties using the HA or QHA framework, whereas

single precision is employed for the equation-of-state fitting

and the analysis of the elastic tensor. The choice of a high-level

language is motivated by its easier comprehensibility and

maintenance, and also the need to provide cross-platform

support. QUANTAS was developed keeping in mind the

different environments where it could be employed, from

desktop computers to servers. At the moment, the package is

shipped as a Python library that can be installed by the user,

but, in the near future, it will be available also from well

known package repositories such as PyPI (https://pypi.org/).

3.3. User interface

QUANTAS uses a command-line interface (CLI), which is

invoked by using a Python entry point. In general, a calcula-

tion is started from the console shell (or command prompt on

Windows) by typing

quantas sub_command input_file_name [options]

The available sub-commands are related to the different

routines implemented, whose names were chosen to be

intuitive for users. For example, to run a quasi-harmonic

approximation calculation, the sub-command that has to be

called is qha.
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In addition, a specific sub-command (inpgen) can be

employed to generate input files for post-processing analyses

of the (quasi-)harmonic approximation and second-order

elastic constants:

quantas inpgen [generator] input_file [options]

This routine is particularly useful given the complexity of

extracting the phonon modes from quantum mechanical

simulations and formatting them for a QUANTAS input file.

3.4. Online services

The QUANTAS source code is hosted at https://github.com/

gfulian/quantas, and detailed documentation on how to obtain

(download), install and use the software is provided by the

ReadTheDocs service (hosted on https://quantas.readthedocs.io).

The latter is also home of some tutorials designed to guide

users in creating the input files, running the different analyses

and collecting the results. The web site and documentation

were created using the Sphinx code (https://www.sphinx-

doc.org/).

4. (Quasi-)Harmonic approximation

4.1. Theory

In quantum mechanical simulations of periodic three-

dimensional systems (crystals), the harmonic thermodynamics

of any system can be obtained from its phonon properties,

which can be calculated just in the central point of the first

Brillouin zone (� point) or in several k points in the reciprocal

space. Several reports in the literature describe different

approaches to calculating the � point (k = 0) vibrational

modes and the phonon dispersion relations, whose detailed

description is beyond the scope of the present work. The

interested reader may refer to the fundamental work of

Parlinski et al. (1997), Erba (2014) and Togo & Tanaka (2015).

Let us assume that, given a crystal unit cell, a certain

number of k points have been sampled. It is known that 3N

oscillators (phonons), with N the number of atoms in the cell,

are associated with each considered k point. In turn, each

phonon is associated with an energy level given by the

harmonic expression "i
mðkÞ ¼ ðmþ 1=2Þ�iðkÞ, with m an

integer number and �i(k) the frequency of the harmonic

oscillator. It is then possible to express the vibrational cano-

nical partition function of the system as

QvibðTÞ ¼
P

k

P3N

i¼0

P1
m¼0

exp �"i kð Þ=ðkBTÞ
� �

; ð1Þ

where kB is the Boltzmann constant. Statistical thermo-

dynamics defines the entropy S(T), the thermal internal

energy Uth(T) and the isochoric heat capacity CV(T) of a

system as

SðTÞ ¼ kBT
@ log Qvib

@T

� �
þ kB log Qvib; ð2Þ

UthðTÞ ¼ kBT2 @ log Qvib

@T

� �
; ð3Þ

CVðTÞ ¼
@UthðTÞ

@T

� �
: ð4Þ

By substituting equation (1) into equations (2)–(4), it is

possible to write the harmonic expression of the thermo-

dynamic properties as reported by Prencipe et al. (2011) as

SðTÞ ¼ kB

X
k

X3N

i¼0

 
h�iðkÞ

exp h�iðkÞ=ðkBTÞ
� �

� 1

� log 1� exp h�iðkÞ=ðkBTÞ
� �� 	!

; ð5Þ

UthðTÞ ¼
X

k

X3N

i¼0

h�iðkÞ
1

2
þ

1

exp h�iðkÞ=ðkBTÞ
� �

� 1

( )
; ð6Þ

CVðTÞ ¼
X

k

X3N

i¼0

h�iðkÞ
� �2

kBT2

exp h�iðkÞ=ðkBTÞ
� �

exp h�iðkÞ=kBT
� �

� 1
� 	2

: ð7Þ

While the harmonic approach has been successfully adopted

in predicting vibrational (spectroscopic) and thermodynamic

properties of several systems (Belmonte, 2017; Erba, 2014;

Prencipe et al., 2004; Ulian et al., 2021; Ulian & Valdrè, 2019),

it suffers from several well known limitations. In fact, many

important properties of crystalline materials are wrongly

described within this framework; for instance, the elastic

constants and the bulk modulus do not depend on tempera-

ture, the constant-pressure and constant-volume heat capa-

cities are equal, and the thermal expansion is null. There are

several methods that can add the contribution of volume

(pressure) to the thermodynamics of a solid system, among

which one of the most powerful is the QHA (Anderson, 1995).

The QHA includes an explicit dependence of the vibrational

phonons on the crystal volume, i.e. �ðk;VÞ, in the harmonic

description of the Helmholtz free energy:

FQHAðV;TÞ ¼ U0ðVÞ þ FQHA
vib ðV;TÞ: ð8Þ

The Helmholtz free energy FQHA(V, T) is the sum of the static

energy of the system U0(V) at T = 0 K and the vibrational

(thermal) contribution FQHA
vib ðV;TÞ. U0(V) is obtained by any

quantum mechanical code by geometry optimization of the

unit cell at selected (and constrained) volumes. The thermal

contribution FQHA
vib ðV;TÞ in the QHA term is defined as

FQHA
vib ðV;TÞ ¼ UZP

0 ðVÞ þ UthðV;TÞ � TSðV;TÞ

¼ UZP
0 ðVÞ þ kBT

X
k

X3N

i¼0

ln 1� exp
h�iðk;VÞ

kBT

� �
 �
;

ð9Þ

where UZP
0 ðVÞ ¼

P
i h�iðk;VÞ=2 is the zero-point vibrational

energy. From equation (9), it is possible to calculate the

equilibrium volume at selected temperatures by minimizing

the FQHAðV;TÞ term with respect to volume. The volumetric
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thermal expansion coefficient �V(T) at selected pressure can

be expressed as

�VðTÞ ¼
1

VðTÞ

@VðTÞ

@T

� �
P

: ð10Þ

It is possible to describe the isothermal bulk modulus (KT) of

the crystal from the energy second derivative of equation (8)

at fixed temperature as

KTðTÞ ¼ VðTÞ
@2FQHAðV;TÞ

@V2

� �
T

ð11Þ

and also the adiabatic bulk modulus (KS), which is a preferred

way to report the elastic behavior of the solid when comparing

the theoretical results with experimental data obtained from

some techniques (e.g. elastic wave analysis), as

KSðTÞ ¼ KT þ
�2

VVTK2
T

CV

: ð12Þ

The great advantage of the QHA approach is the combination

of pressure and temperature effects, as the pressure is calcu-

lated by

PðV;TÞ ¼ �
@FQHAðV;TÞ

@V
ð13Þ

and knowing the temperature we can calculate all the other

properties at selected P–T conditions.

From these formulations, it is possible to calculate the

isobaric heat capacity of the system using the quantities

obtained from equations (10) and (11) and from V(T):

CPðTÞ ¼ CVðTÞ þ �
2
VðTÞKTðTÞVðTÞT: ð14Þ

Finally, other thermodynamic properties could be calcu-

lated from the equations above, such as enthalpy and Gibbs

free energy.

The quasi-harmonic treatment, as reported above, needs an

adequate knowledge of the phonon dispersion relations,

namely how the phonon modes vary with the k point in the

first Brillouin zone. This is particularly relevant to properly

describe the three acoustic phonon bands of any crystal system

under consideration, because they represent the main contri-

bution to thermodynamic properties at low temperatures

(Belmonte, 2017), but they are always null at the � point

(central zone, k = 0). For simple systems, e.g. containing from

two to 20 atoms, phonon dispersion relations can be calculated

with supercell approaches as described by Parlinski et al.

(1997). However, such methods could become too computa-

tionally demanding for larger unit cells, and hence more

approximate algorithms must be employed instead. From this

perspective, it is possible to calculate the acoustic thermo-

dynamic properties from sine wave dispersion relations as

described by Kieffer (1979a,b,c):

CV ¼
3R

Z

2

�

� �3 X3

i¼1

ZXi

0

arcsin X=Xið Þ
� �2

X2 expðXÞ dX

X2
i � X2

� 
1=2
expðXÞ � 1½ �

2
; ð15Þ

S ¼
3R

Z

2

�

� �3 X3

i¼1

ZXi

0

arcsin X=Xið Þ
� �2

X dX

X2
i � X2

� 
1=2
expðXÞ � 1½ �

2

8<
:

�
X3

i¼1

ZXi

0

arcsin X=Xið Þ
� �2

X2
i � X2

� 
1=2
ln 1� expð�XÞ½ � dX

9=
;; ð16Þ

where X = h�/(kBT), R is the gas constant, Z is the number of

unit formulae per unit cell and the integrals are evaluated up

to the acoustic phonon boundary, the latter deriving, for

example, from second-order elastic moduli. Albeit approx-

imate, this approach can provide the acoustic contributions to

thermodynamic and thermoelastic properties with adequate

accuracy for a system with more than 20–30 atoms in the unit

cell (Prencipe et al., 2011; Ulian & Valdrè, 2015b; Ulian et al.,

2021).

4.2. Implementation

QUANTAS implements both HA and QHA methods for

the analysis of thermodynamics, as summarized in Fig. 1. A

scheme of the workflow specifically related to the quasi-

harmonic approximation is provided in Fig. 2. Formulations

based on both (i) the complete phonon dispersion relations

and (ii) the approximated sine wave dispersion relations are

included, which can be selected according to the available

input data.

While the harmonic approximation routines are quite

straightforward, i.e. they involve summations of quantities

calculated over each phonon frequency for each unit-cell

volume (see above), the QHA approach needs special care, as

it deals with both fitting and minimization procedures (see

Fig. 2). There are two critical points in the quasi-harmonic

treatment:

computer programs
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Figure 1
Overview of the QUANTAS approach for harmonic and quasi-harmonic
approximations. The software employs quantum mechanical data from ab
initio codes to calculate thermodynamic and thermomechanical proper-
ties of a solid phase at selected temperature and pressure conditions.



(i) how the phonon/thermodynamics dependence on

volume is described;

(ii) how the minimization of the Helmholtz free energy

[FQHAðV;TÞ] curves is performed.

4.2.1. Phonon frequency dependence on volume. For the

phonon frequency dependence on volume, two possible stra-

tegies are implemented: (i) exploiting an explicit dependence

of the phonon modes on unit-cell volume and (ii) providing an

implicit dependence using the harmonic approximation ther-

modynamics. In both cases, linear, quadratic or cubic poly-

nomial functions can be employed. A functional description of

the phonon versus unit-cell volume curves, �i(k, V), should be

the preferable option, as it allows the thermodynamics of the

system to be calculated at each desired P–T–V condition from

statistical thermodynamics.

However, to obtain the �i(k, V) curves a correct description

of the phonon frequency continuity over the explored volumes

is required, taking into account possible crossing of the

phonon bands by performing scalar products of the normal

mode eigenvectors. In contrast, the employment of a func-

tional (polynomial) form of the thermodynamic quantities

over the volume (at constant T) is more straightforward than

the former method (since vibrational frequency continuity

is not necessary), but there are more fitting procedures

involved (for each considered temperature, there are six

polynomial fits). Our tests, and the results reported by Erba

computer programs
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calculate the quasi-harmonic thermodynamic results.



and co-workers (Erba, 2014; Erba et al., 2015), suggest that the

first method using the phonon continuity over volume

provides results in very good agreement with experimental

data, depending on the quantum mechanical approach

employed to obtain the electronic energy and the vibrational

frequencies. However, in QUANTAS both formulations were

included, because some users may not be able to obtain (or

use) the phonon mode eigenvectors to check their continuity

over volume.

4.2.2. Minimization of Helmholtz free energy. Two strate-

gies were implemented in QUANTAS for the minimization of

the Helmholtz free energy at each temperature value: (i) an

equation-of-state fitting procedure of FQHAðV;TÞ by means of

volume-integrated formulations or (ii) minimizing an nth-

order polynomial that fits FQHAðV;TÞ as a function of volume.

This procedure leads to the equilibrium volume at selected

pressure and temperature conditions. Generally, the first

method is the preferred experimental way to obtain a

phenomenological description of the system under hydrostatic

compression, and its main advantage in the QUANTAS

framework is that it yields with just one fit both the equili-

brium volume V(T) and the bulk modulus KT(T) at a selected

temperature. The equation-of-state formulations implemented

in QUANTAS are the Murnaghan (1937), third-order Birch–

Murnaghan (Birch, 1947), Vinet (Vinet et al., 1987) and

Poirier–Tarantola, also called ‘natural strain’ (Poirier &

Tarantola, 1998), all of them in their volume-integrated form

(Fu & Ho, 1983; Hebbache & Zemzemi, 2004). However,

despite being more experimentally friendly, this approach may

result in slight numerical noise at high temperature (higher

than about 1500 K) in the thermomechanical data, whereas

the adoption of a numerical (polynomial fitting) approach can

provide more stable results. With polynomial fitting, the

isothermal bulk modulus KT(T) can be computed according to

equation (11).

The equilibrium volume at each desired pressure is

obtained, either from EoSs or from polynomial functions, by

minimizing

@FQHAðV;TÞ

@V
þ P0 ¼ 0; ð17Þ

where P0 is the target pressure. The V(P, T) values are then

used to calculate the thermodynamic and thermoelastic

properties at any selected P–T conditions.

4.3. Input data for (Q)HA calculations

In order to use the routine proposed in the present work,

some data from quantum mechanical simulations have to be

obtained. QUANTAS is developed to be ‘code blind’,

meaning that any QM code that uses its specific algorithms

and measurement units could be used to produce the required

input information.

The following input data from QM simulations are required:

(1) Starting bulk geometry (with volume Ve) of the system

under analysis, fully optimized for both lattice parameters and

atomic coordinates.

(2) Several bulk structures relaxed in both compression and

expansion regimes with respect to the equilibrium volume Ve.

A suitable approach is described in very recent literature

(Erba et al., 2015), which considers a number of volumes NV

between Ve� sVe% and Ve + 2Ves% (including Ve), with s the

step of the compression/expansion. Reliable values of N are 4,

7 and 13, and the step s can be set in the range 2–5.

(3) A complete set of vibrational frequencies (or phonon

dispersion relations) for each geometrically relaxed unit-cell

volume.

In the input file, the unit-cell volume and the lattice static

energy (0 K, no thermal contributions) are provided as arrays

of length m (the number of compressed/expanded volumes),

and the phonon modes are reported as a matrix of shape k �

m � p, where k is the number of sampled k points in the

Brillouin space and p is the number of phonon modes (3n, with

n the number of atoms in the unit cell). For example, the user

could employ the �-point vibrational frequencies calculated

for a unit cell containing 40 atoms, studied in five compression

states: in this case, k = 1, m = 5 and p = 120, whereas k > 1 when

phonon dispersion relations were simulated. Compared with

the use of only �-point vibrational frequencies, the accuracy of

the quasi-harmonic approximation results increases when

phonon dispersion relations (k > 1) are employed as input

data.

5. Equation of state

In both experimental and theoretical settings, the volumetric

behavior of a solid phase with pressure can be described in a

functional form called the ‘equation of state’. The volume of

the solid is related to its unit cell, which could be obtained

from high-pressure diffraction experiments. The equation of

state is a parametrized function, containing from two to four

parameters that are adjusted to fit the experimental data.

There are several places in the literature where a detailed

description of the theory behind the EoS formulations is

provided (Anderson, 1995; Angel, 2000), and here only the

relevant information is discussed.

At the moment, only five isothermal equation-of-state

formulations are coded in QUANTAS:

(1) Murnaghan (1937):

P ¼
K0T

K00T

¼
V0T

V

� �K0
0T

� 1

" #
: ð18Þ

(2) Birch–Murnaghan (Birch, 1947):

P ¼ 3K0TfE 1þ 2fEð Þ
5=2 1þ

3

2
K00T � 4ð ÞfE




þ
3

2
K0TK000T þ K00T � 4ð Þ K00T � 3ð Þ þ

35

9

� �
f 2

E

�
;

fE ¼
1

2

V0T

V

� �2=3

� 1

" #
:

ð19Þ
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(3) Vinet (Vinet et al., 1987):

P ¼ K0T

3fV

1� fVð Þ
2 exp � fVð Þ;

fV ¼ 1�
V

V0T

� �1=3

; � ¼
3

2
K00T � 1ð Þ:

ð20Þ

(4) Modified Tait (Freund & Ingalls, 1989):

P ¼
1

b

V=V0Tð Þ þ a� 1

a

� ��1=c

� 1

( )
;

a ¼
1þ K00T

1þ K00T þ K0TK000T

; b ¼
K00T

K0T

�
K000T

1þ K00T

;

c ¼
1þ K00T þ K0TK000T

K00T

� 
2
þ K00T � K0TK000T

:

ð21Þ

(5) Natural strain (Poirier & Tarantola, 1998):

P ¼ 3K0T

V0T

V

� �
fN 1þ afN þ bf 2

N

� 

;

fN ¼
1

3
ln

V0T

V

� �
; a ¼

3

2
K00T � 2ð Þ;

b ¼
3

2
1þ K0TK000T þ K00T � 2ð Þ þ K00T � 2ð Þ

2
h i

:

ð22Þ

Here, V0T is the unit-cell volume, K0T is the bulk modulus, K00T

is the first derivative of the bulk modulus with respect to

pressure and K000T is the second derivative of K0T . The

subscripts ‘0’ and ‘T ’ mean that each parameter is obtained at

reference pressure zero and temperature of interest T,

respectively.

The modified Tait (T) and Murnaghan (M) EoSs are

‘invertible’ formulations, as it is possible to express the unit-

cell volume as a function of pressure by inverting the equation.

In addition, the modified Tait equation of state can be reduced

to the Murnaghan one by imposing K000T = 0.

The Birch–Murnaghan (BM) and natural strain (NS)

equations of state are ‘finite-strain EoSs’, which were formu-

lated considering that the energy of the compressed solid can

be expressed as a Taylor series in the linear strain f (that is

Eulerian strain, fE, for the BM EoS and natural strain, fN, for

the NS EoS). Both of them are fourth-order expansions, but

they can be truncated to third- and second-order expressions

by using assumed values for the K00T and K000T parameters,

respectively, as described by Angel et al. (2014).

The Vinet (V) equation of state was derived from molecular

mechanics models for very high compression regimes and is a

third-order EoS.

According to the literature (Angel, 2000) and to the

reported formulations, the fitting strategy considers the

volume as the independent variable and the pressure as the

dependent one, because the experimental uncertainties on V

are generally much lower than those on P. Then, a least-

squares method is used to fit the data, employing the errors on

the variables as weights during the procedure. For example,

this is the approach adopted by the well known EosFit soft-

ware (Angel, 2000; Angel et al., 2014). The goodness of fit is

given by the residual variance (weighted chi squared, �2),

which is equal to unity if the EoS model perfectly matches the

weighted experimental data. In contrast, if �2 > 1 it means that

the equation of state correctly represents only a portion of the

data for several possible reasons, e.g. some compression states

were not adequately obtained, the errors of the values were

underestimated or the model is not accurate enough to

describe all of the data set. For example, it is discouraged to

use the Murnaghan EoS for unit-cell compressions higher than

10%. A value of �2 < 1 does not represent a better fit and may

also express an overfitting of the data, namely the equation-of-

state model contains more parameters than the number of P–

V points.

A visual assessment of the goodness of fit can also be

obtained from the strain-normalized pressure plots ( f–F),

which are usually clearer than the standard P–V plots.

5.1. Implementation

While the physics behind the different formulations is well

known within the community, the fitting procedure requires

some explanation. Standard least-square procedures consider

uncertainties only on the dependent variable, while the inde-

pendent one is considered free from errors. In the EoS fitting,

the dependent variable is pressure because the errors asso-

ciated with pressure measurements are usually much larger

than those of the unit-cell/lattice parameters. However,

including the uncertainties on the unit-cell volume V would

increase the accuracy of the fitted EoS parameters. Differently

from EosFit7 (Angel et al., 2014), which employs the effective

variance method described by Orear (1982), QUANTAS

adopts the orthogonal distance regression (ODR) statistical

approach (Boggs et al., 1987), which allows the inclusion of the

uncertainties of both dependent and independent variables.

The ODR algorithm is coded in the ORDPACK library

(Boggs et al., 1989; Zwolak et al., 2007), which is included in

the SciPy Python package used by QUANTAS. If the user

desires to weight the fit only for pressure, the software auto-

matically switches to the ordinary least-squares procedure.

The fitting procedure is completely interactive, and users

can have exact and complete control over it. As in EosFit7

(Angel et al., 2014), users may set weights and fix parameters

and modify them to find the best EoS parameters for their data.

For this operation, the input file must contain the isothermal

data of the material unit cell at different pressure states. These

quantities can derive from either experiments or theoretical

simulations. The input data are organized in a table-like

format, indicating which quantity is present in each column.

Uncertainties on both pressure and unit-cell volume/lattice

parameters can be included.

6. Elastic properties from second-order elastic
constants

In the theory of linear elasticity, the stress tensor can be

expressed in terms of strain by
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�ij ¼ Cijkl"kl: ð23Þ

Cijkl are the components of the fourth-rank modulus tensor,

whose coordinates depend on the choice of the axes. Equation

(23) can be inverted, leading to

"ij ¼ Sijkl�kl; ð24Þ

where Sijkl are the components of the compliance tensor, the

inverse modulus tensor. A fourth-rank tensor has 81 compo-

nents, but a maximum of 21 independent values, for triclinic

crystals. It is also common to express the stiffness and

compliance tensor components using the Voigt (engineering)

matrix notation (see Nye, 1957), which is often adopted

because of its simplicity. Note that the Voigt notation is not a

tensor, but a matrix representation of it.

According to Nye (1957), several mechanical properties

related to the polycrystalline (isotropic) elastic behavior of a

material can be calculated from the elastic tensor by means of

the Voigt, Reuss and Hill averages:

KV ¼ 1=9ð Þ C11 þ C22 þ C33 þ 2 C12 þ C13 þ C23ð Þ
� �

; ð25Þ

KR ¼ S11 þ S22 þ S33 þ 2 S12 þ S13 þ S23ð Þ
� ��1

; ð26Þ

	V ¼ 1=15ð Þ C11 þ C22 þ C33 þ 3 C44 þ C55 þ C66ð Þ
�

� C12 þ C13 þ C23ð Þ
�
; ð27Þ

	R ¼
15

4 S11þS22þS33� S12þS13þS23ð Þ
� �

þ3 S44þS55þS66ð Þ
;

ð28Þ

�KKVRH ¼ 1=2ð Þ KV þ KR

� 

; ð29Þ

�		VRH ¼ 1=2ð Þ 	V þ 	R

� 

; ð30Þ

EVRH ¼
9 �KKVRH �		VRH

3 �KKVRH þ �		VRH

; ð31Þ

where EVRH is Young’s modulus, and KR, KV, KVRH, 	R, 	V

and 	VRH are the Voigt, Reuss and Hill values of the bulk and

shear moduli, respectively.

The mean shear, ���S, and longitudinal, ���L, wave speeds of a

polycrystal with no preferred orientation of the grains depend

on the coupling between grains and can range from the Reuss

limit (with free grain boundaries) to the Voigt limit (with

locked grain boundaries). Most randomly oriented poly-

crystals have shear and Young’s moduli close to, but not

identical to, the VRH averages, for which the following

approximation of the mean wave speeds is valid:

���S ¼ �		VRH=
ð Þ
1=2; ð32Þ

���L ¼
4 �KKVRH þ 3 �		VRH

3


� �1=2

; ð33Þ

where 
 is the density of the crystal.

The calculation of the six eigenvalues of the second-order

elastic tensor allows us to define the mechanical stability of the

solid as described by Mouhat & Coudert (2014) for the

different crystal systems: if any of the eigenvalues are nega-

tive, the system is unstable.

It is also possible to derive single-crystal elastic properties

from the stiffness matrix, and an excellent treatment of their

calculation was recently proposed by Marmier et al. (2010). In

brief, this requires the transformation of the stiffness tensor

using the following rule for generic fourth-rank tensors T:

T 0���� ¼ r�ir�jr�kr�lTijkl; ð34Þ

which employs the Einstein summation rule with the terms r�i

being the direction cosines. In a Cartesian reference system, it

is possible to represent a direction corresponding to an elas-

tically significant distortion as a point on a unit sphere (unit

vector a), using two angles, 
(0, �) and ’(0, 2�):

a ¼

sin 
 cos ’
sin 
 sin ’

cos 


0
@

1
A: ð35Þ

A single vector is sufficient to calculate the spatial variation of

some properties, such as Young’s modulus or the linear

compressibility, but a second vector b, perpendicular to a, is

required to obtain the shear modulus and Poisson’s ratio. The

second vector is characterized by a third angle, �(0, 2�), and

by the coordinates

b ¼

cos 
 cos ’ cos�� sin 
 sin�
cos 
 sin ’ cos�� cos 
 sin�

� sin 
 cos�

0
@

1
A: ð36Þ

Then, the coordinates of a and b represent the first two

columns of the rotation matrix, which allows the calculation of

all the components in the subvectorial space defined by

directions 1 and 2:

S012 ¼ S01122 ¼ aiajbkblSijkl and S066 ¼ S01212 ¼ aibjakblSijkl:

ð37Þ

The spatial dependence of the elastic modulus E and linear

compressibility � are defined as

Eð
; ’Þ ¼
1

S011 
; ’ð Þ
¼

1

aiajbkblSijkl

; ð38Þ

�ð
; ’Þ ¼ Sijklaiaj; ð39Þ

and the spatial variations of the shear modulus 	 and Pois-

son’s ratio � are given by the following formulae:

	ð
; ’; �Þ ¼
1

4S066 
; ’; �ð Þ
; ð40Þ

� 
; ’; �ð Þ ¼ �
S012 
; ’; �ð Þ

S011 
; ’ð Þ
¼

aiajbkblSijkl

aiajakalSijkl

: ð41Þ

Directional variations of seismic (acoustic) wave speeds can

be obtained by solving the Christoffel equation, as reported by

Musgrave (1970).
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6.1. Implementation

The analysis of the second-order elastic constant matrix is

performed by a forked version of the ELATE script (Gaillac et

al., 2016), which was modified in our program to work offline

and adapted to the QUANTAS framework. This modified

version includes also a routine to find the reference crystal

system and provides analysis of the seismic wave speeds by

solving the Christoffel equations as reported by Musgrave

(1970). Regarding the plotting capabilities, the original

framework was changed to the Matplotlib library (Hunter,

2007), providing polar plots of the spatial variations of the

elastic properties on the xy, xz and yz planes.

The elastic moduli can be provided to QUANTAS as an

input file containing the stiffness matrix (i.e. the elastic tensor

in Voigt’s notation) in either full, upper triangular or lower

triangular form. The code performs a conversion from the

matrix form to the tensorial form for the analysis of the elastic

properties. This conversion preserves the Cartesian reference

frame that was employed to obtain the elastic tensor in Voigt’s

notation. If the crystal density is supplied, analysis of the

seismic wave speeds is also performed. The analysis is auto-

matic, and the user may ask to produce polar plots of the

results.

7. Future development

For the future development steps of QUANTAS, we are

working on new functionalities, for example, the capability to

construct the phase diagrams for both a single substance (e.g.

silica compounds) and solid solutions, by using the calculated

Gibbs free energy values. This would resemble the

CALPHAD method (Lukas et al., 2007), but applied to the

theoretical/experimental materials science fields. Concerning

the EoS capabilities, it is planned to add thermal and P–T and

P–T–V equations of state to aid the analysis of high-pressure

and high-temperature data.

In addition, a graphical user interface is currently under

development, with the aim of easing the use of the software

and providing a plug-in platform that could be easily imple-

mented with new functionalities.

Finally, since QUANTAS is an open-source project, we

encourage users to contribute to our code, extending its

functionalities with new modules.

8. Conclusions

There is a continuous and growing interest in the development

and characterization of different materials at both experi-

mental and theoretical levels, with important basic, techno-

logical and industrial applications. In this context, a detailed

knowledge of the thermodynamic and elastic stability of solid

phases is of utmost importance. In addition, thanks to

increasing computational power, density functional theory is

rising as a competing tool to drive innovation in materials

science, physics, chemistry and other disciplines. Indeed, this

framework offers an unprecedented balance between accu-

racy and speed.

The scope of QUANTAS is to provide a tool to reach a

better understanding of both experimental and theoretical

results, and to extend the knowledge on the P–T behavior of

synthetic materials and minerals. QUANTAS is a fast easy-to-

use software that can support researchers in speeding up their

calculations, improving data quality over a wide range of cases.

The software structure is simple and written in the Python

programming language, which is truly cross platform.

As developers, we also encourage and support the inte-

gration of QUANTAS into other software that relies on

quantum mechanical simulations of solid phases. The source

code is flexible and reusable with little modification by other

developers, a feature that is also facilitated by the distribution

of the code under the Simplified BSD license.

Last, but not least, QUANTAS can be considered as a

useful teaching software aid as well as a practical and powerful

research tool. Students of various levels of study may find it

helpful in understanding how thermodynamics and mechan-

ical properties of materials behave and evolve.
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Rodrı́guez-Carvajal, J. & González-Platas, J. (2005). Acta Cryst. A61,

C22.
Rodriguez-Carvajal, J. & Gonzalez-Platas, J. (2008). Acta Cryst. A64,

C46–C46.
Togo, A. & Tanaka, I. (2015). Scr. Mater. 108, 1–5.
Tosoni, S., Pascale, F., Ugliengo, P., Orlando, R., Saunders, V. R. &

Dovesi, R. (2005). Mol. Phys. 103, 2549–2558.
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Ulian, G. & Valdrè, G. (2015a). Am. Mineral. 100, 935–944.
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