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Abstract

Although deep neural networks have achieved remark-

able results for the task of semantic segmentation, they

usually fail to generalize towards new domains, especially

when performing synthetic-to-real adaptation. Such do-

main shift is particularly noticeable along class boundaries,

invalidating one of the main goals of semantic segmentation

that consists in obtaining sharp segmentation masks.

In this work, we specifically address this core problem

in the context of Unsupervised Domain Adaptation and

present a novel low-level adaptation strategy that allows us

to obtain sharp predictions. Moreover, inspired by recent

self-training techniques, we introduce an effective data aug-

mentation that alleviates the noise typically present at se-

mantic boundaries when employing pseudo-labels for self-

training. Our contributions can be easily integrated into

other popular adaptation frameworks, and extensive experi-

ments show that they effectively improve performance along

class boundaries.

1. Introduction

Semantic segmentation is the process of assigning a class

to each pixel of an image. Recently, convolutional neu-

ral networks have proven to be highly effective in solv-

ing this challenging visual task [40, 5, 32, 37], leading to

ever-increasing interest in the deployment of semantic seg-

mentation models in spaces as diverse as autonomous driv-

ing, robotics, and medicine. However, training a seman-

tic segmentation network requires a large amount of pixel-

wise annotated data, which are tedious, time-consuming,

and expensive to collect. Moreover, current models of-

ten fail to generalize toward new domains, an issue that

cannot be overlooked in many relevant real-world applica-

tions. Indeed, performance often drops when models are

tested on new scenarios, especially when there exists a do-

main gap between the training (source) and test (target) im-

Input Ours Others

Figure 1: Given in input an RGB image (left-most column),

our model produces sharp predictions along class bound-

aries (central column), while a model trained on translated

images (right-most column) exhibits severe noise.

ages. For instance, in autonomous driving settings, object

appearances may drastically change when training and test-

ing across different cities, leading to severe segmentation

errors. This problem is even more pronounced when rely-

ing on synthetic data generated by computer graphics, such

as video games [36] or 3D simulations [38], that could oth-

erwise be advantageously exploited to easily obtain large

amounts of labeled data.

Unsupervised Domain Adaptation (UDA) [48] aims at

minimizing the impact of the domain gap under the assump-

tion that no ground-truth annotations are available for the

target domain. In the last few years, several UDA tech-

niques have been proposed for the task of semantic segmen-

tation [20, 44, 35, 19, 50, 2]. However, all these methods

ignore the main goal of semantic segmentation, which is to

obtain sharp prediction masks and only focus in the feature

adaptation part. For this reason, previous works can cor-

rectly segment out coarse blobs of large elements in a scene
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such as cars or buildings, while they provide inaccurate seg-

mentation masks along class boundaries as shown in Fig. 1.

On the other hand, in the supervised semantic segmen-

tation setting, a large amount of works focus on obtain-

ing sharp predictions [9, 23, 3, 53, 13]. This is commonly

done by better integrating low-level features into high-level

features since modern segmentation architectures discard

spatial information with down-sampling operations such as

max-pooling or strided convolution due to memory and time

constraints. Following the supervised setting, we argue that

this line of research should also be pursued for the UDA

case to obtain sharp predictions across domains even though

target labels are not available. Our approach, also leverages

on low-level features to seek this goal, and we introduce a

novel low-level adaptation strategy specifically for the UDA

scenario. More precisely, we enforce alignment of low-

level features exploiting an auxiliary task that can be solved

for both domains in a self-supervised fashion, intending to

make them more transferable. By doing this, we enable the

possibility to exploit shallow features to refine the coarse

segmentation masks for both the source and target domains.

To achieve this, we estimate a 2D displacement field from

the aligned shallow features that, for each spatial location

of the predicted coarse feature map, specifies the direction

where the representation for that patch is less ambiguous

(i.e. at centre of the semantic object). Our intuition is that

when the coarse feature map is bi-linearly up-sampled to re-

gain the target resolution, the feature representation of those

patches corresponding to semantic boundaries in the input

image is mixed up, as it contains semantic information be-

longing to different classes. Thanks to the estimated 2D

displacement field, however, we refine each patch represen-

tation according to the features coming from the center of

the object, which are less prone to be influenced by other

classes as they lay spatially far from boundaries. This pro-

cess will be referred later as the feature warping process.

Finally, following a recent trend in UDA for semantic

segmentation [30, 55, 56, 34], we employ self-training, a

technique that foresees the training of a neural network with

its own predictions denoted as pseudo-labels. This step al-

lows to implicitly encourage cross-domain feature align-

ment thanks to the simultaneous training on multiple do-

mains. Yet, differently from previous works that mainly fo-

cus on masking incorrect pixels with some heuristics, we

propose a novel data augmentation technique aimed at pre-

serving information specifically along class boundaries. In

fact, due to the low confidence of the network in the tar-

get domain, pixels along edges are usually masked by the

aforementioned methods, resulting in a further performance

degradation along class boundaries due to the lack of super-

vision during the self-training process. Thus, we employ a

class-wise erosion filtering algorithm that allows us to syn-

thesize new training samples in which only the inner body

of the target objects is preserved and copied into other im-

ages. By doing this, all pixels have supervision, and the

network is trained to classify correctly edges also in the

target domain. Code available at https://github.com/

CVLAB-Unibo/Shallow_DA. To summarize our contribu-

tions are:

• We propose to use shallow features to improve the ac-

curacy of the network along class boundaries in the

UDA scenario. This is achieved by computing a dis-

placement field that lets the network use information

from the center of semantic blobs.

• We deploy semantic edge detection as an auxiliary task

to enforce the alignment of shallow features, which is

key to overcome the domain shift when computing the

displacement map.

• We introduce an effective data augmentation that se-

lects objects from target images and filters out noise at

class boundaries to obtain sharp pseudo-labels.

• We show that our approach achieves overall on par

or even state-of-the-art performance in standard UDA

for semantic segmentation benchmarks, and more im-

portantly improves predictions along boundaries when

compared to previous works.

2. Related Work

2.1. Pixellevel Domain Adaptation

Pixel-level adaptation aims at reducing the visual gap be-

tween source and target images. Typically, style and col-

ors are adapted by deploying CycleGANs[57], a generative

model able to capture the target style and injecting it into the

source images without altering their content. Early works

[50, 19] learn such transformation offline, and employ the

translated images during training time. Recent approaches

instead [28, 14], fuse the translation process into the train-

ing pipeline, obtaining an end-to-end framework. [24] ex-

tended this approach to obtain a texture-invariant network

by training on source images augmented with textures from

other natural images. Following recent works, our approach

builds upon these techniques. Indeed, we make use of

translated images to obtain strong baseline and extract good

pseudo-labels when adapting from synthetic to target.

2.2. Adversarial Learning

The goal of adversarial training in the context of Domain

Adaptation is to align the distributions of source and target

images so that the same classifier can be seamlessly applied

on a shared feature extractor. Adaptation can be forced ei-

ther in feature space [47] or in output-space [44]. Many

extensions of [44] have been introduced. [49] proposed to

align differently classes based on their intra-class variability
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Figure 2: Illustration of our architecture in the adaptation

step. Given an RGB input image, the network learns to ex-

tract semantic edges from shallow features. From the same

feature map, a 2D displacement map is estimated in order

to guide the warping of down-sampled deep features, which

lacks of fine-grained details.

in their appearance. Other works deploy adversarial learn-

ing to minimize the entropy of the target classifier [46] or to

perform feature perturbation [52]. In our work, since train-

ing a network adversarially is notoriously a difficult and un-

stable process [39], we avoid it.

2.3. SelfTraining

A recent line of research focuses on self-training [27]

thanks to its effectiveness and simplicity. This approach is

based on the idea of producing pseudo-labels for the tar-

get domain and use them to capture domain-specific char-

acteristics. [58] proposes an algorithm to filter out wrong

pixels with some confidence thresholds. Similarly, [30]

extended the idea by introducing an instance adaptive al-

gorithm to improve the quality of pseudo-label. [55] pro-

poses to use pseudo-labels to minimize the discrepancy be-

tween two classifiers, while [31] tries to minimize both the

inter-domain and intra-domain gap with the support of the

pseudo-labels. Differently, [43] synthesizes new training

samples by embedding objects from source images into the

target ones. Inspired by these recent trends, we adopt self-

training to align shallow features and guide the warping pro-

cess across domains. Differently from previous approaches,

however, we synthesise new training pairs enriching images

of both domains with target objects to improve segmenta-

tion quality on class boundaries.

3. Method

In UDA for semantic segmentation we are given image-

labels pairs {xi
s, y

i
s}

M
i=1 for a source domain S , while only

images {xi
t}

N
i=1 are available for a target domain T . The

goal consists in predicting pixel-wise classification masks

for target images. Our proposed framework comprises sev-

eral components, as depicted in Fig. 2. A standard backbone

(yellow branch) produces a coarse feature map Ac from an

image. A semantic edge extractor (top purple branch) es-

timates semantic edges ê, given the activation map A pro-

duced by the first convolutional block of the backbone. The

same shallow features are processed by another convolu-

tional block (bottom red branch) to obtain a 2D displace-

ment map, D. Then, Ac is up-sampled to the same size as

D and it is refined according to D to produce a fine-grained

feature map Af . Finally, one last convolutional block that

acts as a classifier is applied to produce a C-dimensional

vector for each pixel, with C being the number of classes,

and a final bi-linear up-sampling yields a prediction map of

the same size of the input. We detail each component in the

following subsections.

3.1. Lowlevel adaptation

Learning transferable shallow features. We intro-

duce an auxiliary task to push the network to learn domain-

invariant features that include details on objects boundaries

already from early layers. Given the feature map A, a

convolutional block γ is applied to predict an edge map

ê. Ground truths e are obtained by the Canny edge de-

tector [1] applied directly on semantic annotations for the

source domain and on pseudo-labels for the target domain,

so that only semantic boundaries are considered. A binary-

cross entropy loss is minimized for batches including im-

ages from both domains:

ê = γ(A),

Ledge =

H
∑

h

W
∑

w

e(h,w) log ê(h,w)

+ (1− e(h,w)) log(1− ê(h,w))

(1)

Hence, we enforce the auxiliary semantic edge detection

task for the very first layers of the network only, rather than,

as in typical multi-task learning settings such as [16, 10, 42],

at a deeper level, where features are more task-dependent.

We believe this design choice to be key for a good general-

ization for three reasons. First, trying to solve this task from

shallow layers guides the network to explicitly reason about

object shapes from the beginning, rather than solely texture

and colors as typically done by CNNs [17]. Second, solv-

ing an auxiliary task for both domains forces the network to

learn a shared feature representation, which naturally leads

to aligned distributions. Consequently, the displacement

field generated from the shallow features is effective also

in the target domain, and it can be directly exploited at a

deeper level to recover fine-grained details. Finally, the pe-

culiar choice of semantic edge detection is directly benefi-

cial to estimate a displacement field that mainly focuses on
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edges, making the following warping process more effec-

tive where the network is uncertain. We refer to the supple-

mentary material for ablations on the alignment performed

at different levels.

Feature warping. One of the contributions of our

method is to refine the bi-linearly up-sampled coarse feature

map Ac, hereafter Abu
c , to obtain a fine-grained feature map

Af that better captures the correct class for pixels laying in

the boundary regions. The refinement is guided by a 2D dis-

placement field D obtained from the domain-invariant shal-

low features computed by the first convolutional block of

the backbone. The displacement field indicates for each lo-

cation of Abu
c where the network should look to recover the

correct class information, namely the direction that better

characterize that patch. We estimate the 2D displacement

map D by applying a convolutional block to the aligned

shallow features A that are aligned as described above.

Our intuition is that, due to the unavoidable side-effect

of the down-sample operations in the forward pass, the rep-

resentation of those elements in Ac whose receptive field

includes regions at class boundaries in the original image,

contains ambiguous semantic information. Indeed, when

Ac is bi-linearly up-sampled, patches that receive contri-

butions from ambiguous coarse patches inherit such ambi-

guity. However, in the higher resolution feature map Abu
c

it may be possible to compute a better, unambiguous rep-

resentation for some of the patches, i.e. those now laying

entirely in a region belonging to one class. The correct

semantic information may be available in the nearby high-

resolution patches closer to the semantic blob centers. Thus,

each feature vector at position p on a standard 2D spatial

grid of Abu
c , is mapped to a new position p̂ = p+D(p), and

we use a differentiable sampling mechanism [22] to approx-

imate the new feature vector representation for that patch:

Af (p) =
∑

pl∈N (p̂)

wpl
Abu

c (pl) (2)

where wpl
, are the bi-linear kernel weights obtained from

D and N the set of neighboring pixels. Hence, Eq. (2) de-

fines a backward warping operation in feature space, where

Af is obtained by warping Abu
c according to D. Finally, the

fine-grained feature map Af is fed to the classifier to obtain

the final prediction that is up-sampled by a factor of 2 to

regain the input image resolution. We minimize the cross

entropy loss using annotations for the source domain and

pseudo-labels for the target domain:

Lsem =
H
∑

h=1

W
∑

w=1

C
∑

c=1

y(h,w,c) log ŷ(h,w,c) (3)

3.2. Data Augmentation for SelfTraining

Inspired by [54, 15, 18, 43], we use a pre-trained model

to select objects based on predictions on target images and

Figure 3: Given a target image prediction pair (top-left) and

a source training pair (top-right), we select classes such as

person (bottom-left) and apply our class-wise data augmen-

tation pipeline to synthesise a new training pair (bottom-

right). The selected shapes are eroded before being pasted.

paste them over source images (see Fig. 3). Peculiarly, our

self-training approach relies on a data augmentation pro-

cess that selects objects from the target scenes rather than

the source ones as done [43]. Although selecting source

objects may be useful to reduce the unbalanced distribu-

tions of classes, it is a sub-optimal choice since the network

would be still trained to identify shapes and details peculiar

to the source domain, which are different to those found at

inference time for the target images. We instead use pseudo-

labels to cut objects from the target scenes and paste them

into source or target images, forcing the network to look for

these patterns on both domains. However, due to the inher-

ent noise of pseudo-labels we need to filter out noisy predic-

tions. In particular, we aim at removing object boundaries

as they typically exhibit classification errors and tend to be

localized rather inaccurately. Given a target image xt and

its associated predictions ŷt, we compute a binary mask Bc

for each class c ∈ C∗, where C∗ denotes a random subset of

the considered classes. We exclude classes such as ”road”

and ”building” to avoid occlusion of the whole scene and to

counteract the unbalanced distributions of classes, and only

use object instances such as as ”car” and ”poles”. This

categorization is similar to the one used in [49], and can

be easily adapted to different datasets. We refer to the sup-

plementary material for the set of classes we used in each

experiment. For each spatial location p, Bc has value 1 if

p is assigned to class c, 0 otherwise. Then, we apply an

erosion operation, ⊖, with a 5 × 5 structuring element k to

each class mask Bc. To obtain the set of pixels to be copied

from the target image to a randomly selected source image

we apply the union set operator to all masks:

B =
⋃

c∈C∗

Bc ⊖ k, (4)
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xp =

{

x
p
t , Bp = 1

xp
s , Bp = 0

, yp =

{

ŷ
p
t , Bp = 1

yps , Bp = 0
(5)

The new synthesised training pairs are very often en-

riched with fine-grained details from the target domain. In-

deed, as shown in Fig. 3, thanks to our data augmentation

pipeline, only the inner part of an object is preserved while

edges are discarded, producing sharp pseudo-labels even at

class boundaries. The whole data augmentation process is

applied offline before training, therefore it does not have

any impact on the training time.

3.3. Training Procedure

The whole pipeline can be summarised in 3 simple steps.

We start with the initialization step to train our baseline

model (i.e. the yellow backbone of Fig. 2) on the source do-

main only. We follow standard practices [28, 49, 45, 34, 51]

and, for synthetic-to-real adaptation, we utilize domain-

translated source images provided by [28]. We deploy this

baseline to produce pseudo-labels for the target domain and

obtain an augmented mixed dataset as detailed in Sec. 3.2.

Then, we perform the adaptation step: we train the

model illustrated in Fig. 2 that empowers our additional

modules for low-level alignment as explained in Sec. 3.1.

It is important to highlight that the proposed data augmen-

tation extracts objects from only target images and pastes

them on images on both domains. Hence, at this stage, the

training is done simultaneously on both domains. The train-

ing loss is as follows:

L = Lsem + λLedge (6)

with λ set to 0.1 in all experiments.

Finally, we use the predictions from the model trained in

the previous step to synthesise new training pairs by follow-

ing again the procedure detailed in Sec. 3.2. This allows us

to distill the knowledge and the good precision along class

boundaries of the previously enhanced model into a lighter

segmentation architecture as the one used in the first step.

We do this to avoid the introduction of additional modules

at inference time. Differently from the adaptation step how-

ever, we apply our data algorithm using solely images from

the target domain. Indeed, as we are now at the third and

final stage, we expect pseudo-labels to be less noisy com-

pared to the previous step, and training only on the target

domain allows to capture domain specific characteristic. We

denote this third step as the distillation step.

4. Implementation

4.1. Architecture

According to standard practice in UDA for semantic

segmentation [44, 7, 28, 55, 49, 47, 24], we deploy the

Deeplab-v2 [5] architecture, with a dilated ResNet101 pre-

trained on ImageNet [12] and output stride 8. The ASPP [5]

module acts as classifier. We use this architecture for both

the initialization step and the distillation step. For more de-

tails on the additional modules of the adaptation step we

refer to the supplementary material.

4.2. Training Details

Our pipeline is implemented in PyTorch [33] and trained

on a single NVIDIA 2080Ti GPU with 12GB of memory.

We train for 20 epochs in the first two steps, while we set the

number of epochs to 25 for the final distillation with batch

size 4 in all cases. We use random scaling, random crop-

ping at 1024× 892, and color jittering in our data augmen-

tation pipeline. Akin to previous works, we freeze Batch-

Normalization layers [21] while performing the initializa-

tion and adaptation step. For the last step, instead, we ac-

tivate these layers. We adopt the One Cycle learning rate

policy [41] for each training, with maximum learning rate

10−3 and SGD as optimizer.

5. Experiments

5.1. Datasets

We test our method on both synthetic-to-real and real-

to-real adaptation. We set GTA [36] or SYNTHIA [38] as

source datasets and Cityscapes [11] as target for the for-

mer setting, while we use Cityscapes as source and the

NTHU [8] dataset as target for the latter. GTA5 is a syn-

thetic dataset that contains 24,966 annotated images of

1914 × 1052 resolution. As for SYNTHIA, we use the

SYNTHIA-RAND-CITYSCAPES subset, which is a col-

lection of 9,400 synthetic images with resolution 1280 ×
760. The Cityscapes dataset is a high-quality collection of

real images of 2048 × 1024 resolution. The dataset has

2975 and 500 images for the training and validation split,

respectively. For the synthetic-to-real case, we only utilize

the training split without labels for training, and test on the

validation set as done in previous works [44, 58, 28]. The

NTHU dataset is a collection of images taken from four

different cities with 2048 × 1024 resolution: Rio, Rome,

Tokyo, and Taipei. For each city, 3200 unlabeled images

are available for the adaptation phase, and 100 labeled im-

ages for the evaluation. For fair comparison to other mod-

els, we compute the mIoU by considering all 19 classes in

the GTA5→Cityscapes benchmark, 16 or 13 shared classes

for SYNTHIA→Cityscapes, and 13 common classes for the

cross-city adaptation setting.

5.2. Synthetictoreal adaptation

To test our framework, we follow standard practice

[44, 58, 28, 55, 46, 7] and report the results for the

synthetic-to-real adaptation in the GTA5→Cityscapes and
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AdaptSegNet [44] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.6 32.5 35.4 3.9 30.1 28.1 42.4

MaxSquare [7] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.2 34.5 44.3

BDL [28] ✓ ✓ 88.2 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

MRNET [55] ✓ ✓ 90.5 35.0 84.6 34.3 24.0 36.8 44.1 42.7 84.5 33.6 82.5 63.1 34.4 85.8 32.9 38.2 2.0 27.1 41.8 48.3

Stuff and things [49] ✓ ✓ 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

FADA [47] ✓ 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2

LTIR [24] ✓ ✓ 92.9 55.0 85.3 34.2 31.1 34.4 40.8 34.0 85.2 40.1 87.1 61.1 31.1 82.5 32.3 42.9 3 36.4 46.1 50.2

Yang et al. [51] ✓ ✓ 91.3 46.0 84.5 34.4 29.7 32.6 35.8 36.4 84.5 43.2 83.0 60.0 32.2 83.2 35.0 46.7 0.0 33.7 42.2 49.2

IAST [30] ✓ 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5

DACS† [43] ✓ 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1

Ours ✓ ✓ 91.9 48.9 86.0 38.6 28.6 34.8 45.6 43.0 86.2 42.4 87.6 65.6 38.6 86.8 38.4 48.2 0.0 46.5 59.2 53.5

Table 1: Results on GTA5→Cityscapes. † denotes models pre-trained on MSCOCO [29] and ImageNet [12]. IT: Image

Translation; ST: Self-Training.
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AdaptSegNet [44] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

MaxSquare [7] 77.4 34.0 78.7 5.6 0.2 27.7 5.8 9.8 80.7 83.2 58.5 20.5 74.1 32.1 11.0 29.9 39.3 45.8

BDL [28] ✓ ✓ 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

MRNET [55] ✓ ✓ 83.1 38.2 81.7 9.3 1.0 35.1 30.3 19.9 82.0 80.1 62.8 21.1 84.4 37.8 24.5 53.3 46.5 53.8

Stuff and things [49] ✓ ✓ 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 - 52.1

FADA [47] ✓ 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 52.5

LTIR [24] ✓ ✓ 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3

Yang et al. [51] ✓ ✓ 82.5 42.2 81.3 - - - 18.3 15.9 80.6 83.5 61.4 33.2 72.9 39.3 26.6 43.9 - 52.4

IAST [30] ✓ 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0

DACS† [43] ✓ 80.6 25.1 81.9 21.5 2.6 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8

Ours ✓ ✓ 90.4 51.1 83.4 3.0 0.0 32.3 25.3 31.0 84.8 85.5 59.3 30.1 82.6 53.2 17.5 45.6 48.4 56.9

Table 2: Results on SYNTHIA→Cityscapes. † denotes models pre-trained with MSCOCO [29] and ImageNet [12]. IT:

Image Translation; ST: Self-Training. The 13 classes with ∗ are used to compute mIoU∗.

SYNTHIA→Cityscapes benchmarks in Tab. 1 and Tab. 2

respectively. We obtain state-of-the-art performance in the

former setting, surpassing also recent methods such as [30]

that performs many iterations of self-training. We also im-

prove over [43] for GTA5→Cityscapes, which, differently

from all other methods, pre-trains the baseline network not

only on ImageNet[12] but also on MSCOCO[29]. We ar-

gue that pre-training on more tasks and real annotated data

notably improves the baseline performance of the synthetic-

to-real benchmark. For GTA5→Cityscapes, we note that,

thanks to our low-level adaptation, we can boost perfor-

mances for fine-detailed classes such as Bicycle and Motor-

cycle. Regarding SYNTHIA→Cityscapes, we obtain com-

petitive performance, showing that our method can work

also in this challenging scenario in which the source syn-

thetic domain exhibits many bird’s-eye views that are very

different from the one in Cityscapes. Indeed our method is

only slightly inferior to IAST[30] and again superior to [43]

that performs a similar data augmentation.

5.3. Crosscity adaptation

We report in Tab. 3 our performance for the real-to-real

setting. Our proposal shows great results, confirming the

generalization properties of our contributions on diverse set-

tings. We improve performance with respect to previous

works for all the cities. Our model achieves 60% in mIoU in

Rome, which is likely the most similar to the German cities

used in the Cityscapes dataset. Nonetheless, we achieve

strong results even for more distant domains, e.g. as in the

case of Taipei, improving by 7.8% with respect to the model

trained only on the source domain. For the Cross-city adap-

tation setting, differently from the other settings, we use im-

ages of both domains in our distillation step to exploit the

perfect annotations available in the similar source domain.

5.4. Ablation Studies

In this section, we analyze the contribution provided

by each component of our framework and motivate our

design choices. In Tab. 4 we detail the results for both

GTA5→Cityscapes and SYNTHIA→Cityscapes. The first

row reports the performance obtained using only translated

source domain images. This is nowadays a common build-

ing block of many UDA frameworks, and we also consider

it our baseline on which we build our pipeline. In the adap-

tation section instead, we isolate both our contributions and

use the model trained in the initialization step to extract

pseudo-labels for the target domain as explained in Sec. 3.2

and train on both domains simultaneously. When apply-
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mIoU (%)

Rome

Source only 85.9 40.0 86.0 9.0 25.4 82.4 90.5 38.8 25.9 81.6 52.0 48.7 6.7 51.9

CBST [58] ✓ 87.1 43.9 89.7 14.8 47.7 85.4 90.3 45.4 26.6 85.4 20.5 49.8 10.3 53.6

AdaptSegNet [44] 83.9 34.2 88.3 18.8 40.2 86.2 93.1 47.8 21.7 80.9 47.8 48.3 8.6 53.8

MaxSquare [7] 80.0 27.6 87.0 20.8 42.5 85.1 92.4 46.7 22.9 82.1 53.5 50.8 8.8 53.9

FADA [47] ✓ 84.9 35.8 88.3 20.5 40.1 85.9 92.8 56.2 23.2 83.6 31.8 53.2 14.6 54.7

Ours ✓ 89.4 48.2 87.5 26.3 37.2 83.1 90.7 55.2 42.1 84.8 66.6 59.2 11.1 60.1

Rio

Source only 80.4 53.8 80.7 4.0 10.9 74.4 87.8 48.5 25.0 72.1 36.1 30.2 12.5 47.4

CBST [58] ✓ 84.3 55.2 85.4 19.6 30.1 80.5 77.9 55.2 28.6 79.7 33.2 37.6 11.5 52.2

AdaptSegNet [44] 76.2 44.7 84.6 9.3 25.5 81.8 87.3 55.3 32.7 74.3 28.9 43.0 27.6 51.6

MaxSquare [7] 70.9 39.2 85.6 14.5 19.7 81.8 88.1 55.2 31.5 77.2 39.3 43.1 30.1 52.0

FADA [47] ✓ 80.6 53.4 84.2 5.8 23.0 78.4 87.7 60.2 26.4 77.1 37.6 53.7 42.3 54.7

Ours ✓ 86.6 63.3 82.3 10.3 19.8 73.9 88.4 57.5 41.3 78.1 51.5 40.0 19.4 54.8

Tokyo

Source only 86.0 38.8 76.6 11.7 12.3 80.0 89.5 44.9 28.0 71.5 4.7 27.1 42.2 47.2

CBST [58] ✓ 85.2 33.6 80.4 8.3 31.1 83.9 78.2 53.2 28.9 72.7 4.4 27.0 47.0 48.8

AdaptSegNet [44] 81.5 26.0 77.8 17.8 26.8 82.7 90.9 55.8 38.0 72.1 4.2 24.5 50.8 49.9

MaxSquare [7] 79.3 28.5 78.3 14.5 27.9 82.8 89.6 57.3 31.9 71.9 6.0 29.1 49.2 49.7

FADA [47] ✓ 85.8 39.5 76.0 14.7 24.9 84.6 91.7 62.2 27.7 71.4 3.0 29.3 56.3 51.3

Ours ✓ 87.8 41.0 79.6 20.3 24.2 80.2 90.0 62.3 30.8 74.0 6.4 32.7 50.0 52.4

Taipei

Source only 85.0 38.1 82.2 17.8 8.9 75.2 91.4 23.9 19.6 69.2 45.9 49.4 16.0 47.9

CBST [58] ✓ 86.1 35.2 84.2 15.0 22.2 75.6 74.9 22.7 33.1 78.0 37.6 58.0 30.9 50.3

AdaptSegNet [44] 81.7 29.5 85.2 26.4 15.6 76.7 91.7 31.0 12.5 71.5 41.1 47.3 27.7 49.1

MaxSquare [7] 81.2 32.8 85.4 31.9 14.7 78.3 92.7 28.3 8.6 68.2 42.2 51.3 32.4 49.8

FADA [47] ✓ 86.0 42.3 86.1 6.2 20.5 78.3 92.7 47.2 17.7 72.2 37.2 54.3 44.0 52.7

Ours ✓ 95.6 78.9 94.3 45.9 70.3 93.0 96.2 63.3 51.3 90.5 83.6 84.8 56.5 55.7

Table 3: Results for the Cross-City experiments. ST: Self-Training.

GTA Synthia

Step IT ST A W D mIoU mIoU

Initialization ✓ S 47.3 41.6

Adaptation

✓ ✓ S, T 49.8 43.5

✓ ✓ ✓ S, T 52.0 46.4

✓ ✓ ✓ ✓ S, T 52.6 46.9

Distillation ✓ ✓ ✓ T 53.5 48.4

Oracle T 63.8 65.1

Table 4: Ablation studies on GTA5→Cityscapes (second-

to-last) and SYNTHIA→Cityscapes (last) columns. IT: im-

age translation; ST: Self-Training; W: low-level adaptation;

A: Data Augmentation; D: Training domain.

ing a naive self-training strategy (i.e. training directly on

pseudo-labels) we already obtain a significant boost (+2.5%

and +1.9%) respectively. However, when deploying the

proposed data augmentation (row 3), we observe an even

greater boost: +4.8% for both settings. This clearly demon-

strates the effectiveness of our data augmentation and its

applicability to diverse scenarios. Then, applying the pro-

posed low-level adaptation (row 4) also yields an additional

contribution overall: about +0.6% on top of the data aug-

mentation version. We argue that is noticeable, especially

when performances are already high, as in our case, and the

strongest competitors are all within a narrow window. Fi-

nally, in row 5, we distill our full model (i.e. row 4) into

a simple Deeplab-v2 for efficient inference time and apply

once again the proposed data augmentation. Remarkably,

this further improves performance with respect to the dis-

tilled model and avoids the typical pseduo-labels overfitting

behavior when employing many steps of self-training.

Moreover, to motivate our intuition that shallow features

are amenable to guide the warping process, we compare

the results obtained by applying our adaptation step in the

GTA5→Cityscapes setting at the three different levels of the

backbone before the last module achieving 52.6%, 51.6%,

and 51.8% mIoU for layers Conv1, Conv2, and Conv3 re-

spectively. Thus, the best result is achieved by using the first

convolutional block of the architecture, while on Conv2 and

Conv3 results are comparable (see Fig. 2 for layer names).

5.5. Performance Along Class Boundaries

4 6 8 10 12 14 16 18 20
Trimap Width (pixels)

30

35

40

45

m
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n 
IO
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StuffAndThings
AdaptSegNet
IAST
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Figure 4: mIOU on GTA5→Cityscapes as a function of

trimap band width around class boundaries.
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Figure 5: mIOU on GTA5→Cityscapes as a function of

trimap band width around class boundaries. We report re-

sults for the three versions of the adaptation step of Tab. 4.

In this section, we test the segmentation accuracy with

the trimap experiment [6, 26, 4, 25] to quantify the accuracy

of the proposed method along semantic edges. Specifically,

we evaluate in terms of mIoU pixels within four bandwidths

(4, 8, 16, 20 pixels) around class boundaries (trimaps). We

first compare our final model against other frameworks in

Fig. 4. We observe that our method is more accurate w.r.t.

all other competitors in all the tested bandwidths, validat-

ing our main goal that is improving precision along class

boundaries. We also highlight that although the green line is

obtained from a distilled model (row 5 of Tab. 4), that does

not include the additional modules presented in Sec. 3.1,

it is still able to maintain strong performances at seman-

tic boundaries thanks to the precise pseudo-labels extracted

from the adaptation step. We refer to supplementary ma-

terials for some qualitative examples. Then, we assess in

Fig. 5 how our contributions affect performances on seman-

tic boundaries. To this end, we repeat the same trimap ex-

periment using the intermediate steps of our pipeline i.e.

row 2, 3, and 4 of Tab. 4. When applying all our contribu-

tions (purple line), we are able to improve by a large margin

over the self-training strategy (black line) confirming that

the additional modules account for an improvement along

semantic edges. Furthermore, activating the low-level adap-

tation strategy maintains its improvements along semantic

edges over the data augmentation only version (cyan line),

leading to better pseudo-labels for the distillation step.

5.6. Comparison with other data augmentations

We compare our data augmentation, one of our main

contributions, with the one introduced in [43]. More specif-

ically, we apply this data augmentation in the adaptation

step as in row 3 of Tab. 4, i.e. without the low-level adap-

tation modules to isolate the data-augmentation effect. We

augment target images randomly pasting objects from the

source domain, using the open source implementation of

[43]. With this strategy, we only obtain 51.0% in terms of

mIoU, while with our technique the mIoU raises to 52.2%,

Figure 6: Top left: input target image. Top right: estimated

2D displacement. Bottom left: semantic map from a model

trained on translated images. Bottom Right: Our results,

improved on class boundaries by using the warping module.

Colors and lightness in the middle indicates the warping di-

rection with the corresponding intensity.

confirming our intuition that looking for target instances is

more effective than forcing the network to identify source

objects as done [43] during the self-training step.

5.7. Displacement map visualization

In this section, we analyze the displacement map learned

by the model. As Fig. 6 shows, the 2D map that guides the

warping process is consistent with our intuition that the dis-

placement is more pronounced at the boundaries, while ar-

eas within regions such as the body of a person, are charac-

terized by a low displacement (i.e. white color). Moreover,

we can appreciate that when the warping is applied accord-

ing to the estimated displacement field (top-right), the con-

tours of small objects such as poles, traffic signs, and per-

sons are better delineated (bottom-right). On the other hand,

in the bottom-left mask, these objects are coarsely seg-

mented when using a segmentation model train with trans-

lated images only. We also highlight that the displacement

field is agnostic to semantic class (it only considers bound-

aries), and even though it captures other kinds of edges (i.e.

not only semantic ones), it leads to computing an average

of patches belonging to the same class.

6. Conclusion

In this paper, we have proposed a novel framework for

UDA for semantic segmentation that explicitly focuses on

improving accuracy along class boundaries. We have shown

that we can exploit domain-invariant shallow features to es-

timate a displacement map used to achieve sharp predictions

along semantic edges. Jointly with a novel data augmenta-

tion technique that preserves fine edge information during

self-training, our approach achieves better accuracy along

class boundaries w.r.t. previous methods.
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