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1 Introduction
se1

Problem: 
Dα
t u(t) = Au(t) +

∫ t
0
k(t− s)Bu(s)ds+ F (t), t ∈ [0, T ],

u(0) = u0,

Φ(u(t)) = g(t), t ∈ [0, T ].

(1.1) eq1.1

Unknowns: u, k.
Basic assumptions:

(A1) X is a complex Banach space with norm ‖ · ‖, α ∈ (0, 2), Dα
t u is the Caputo derivative of u with

respect to t.

(A2) A : D(A) → X is a linear operator; there exist, M , R ∈ R+, such that {λ ∈ C : |λ| ≥
R, |Arg(λ)| ≤ απ

2 } ⊆ ρ(A), and, for λ in this set,

‖(λ−A)−1‖L(X) ≤M |λ|−1,

B ∈ L(D(A), X).

(A3) Φ ∈ X ′.

Notation: if θ ∈ (0, 2),

Dφ(A) =


(X,D(A))φ,∞ if φ ∈ (0, 1),

D(A) if φ = 1,

{x ∈ D(A) : Ax ∈ (X,D(A))φ−1,∞ if φ ∈ (1, 2).

The following characterization of Dθ(A) (0 < θ < 1) holds (see ....)

∗The author is member of GNAMPA of Istituto Nazionale di Alta Matematica
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Theorem 1.1. Suppose that S satisfies the condition (A2). Let θ ∈ (0, 1). Then

Dθ(A) = {x ∈ X : sup
ξ≥R

ξθ‖A(ξ −A)−1x‖ <∞}.

An equivalent norm in Dθ(A) is

‖x‖θ := sup{‖x‖+ ξθ‖A(ξ −A)−1x‖ : ξ ≥ R} = sup{‖x‖+ ξθ‖A(ξ −A)−1x‖ : ξ ≥ R, ξ ∈ Q}.

Lemma 1.2. Let (Ω, µ) a measure space and let f : Ω→ X be measurable. Then
(I) the function t→ ‖f(t)‖θ is measurable (‖f(t)‖θ =∞ if f(t) 6∈ Dθ(A));
(II) if

∫
Ω
‖f(t)‖θdµ <∞,

∫
Ω
f(t)dµ ∈ Dθ(A) and

‖
∫

Ω

f(t)dµ‖θ ≤
∫

Ω

‖f(t)‖θdµ

Proof. (I) It follows from ‖f(t)‖θ = supξ≥R,ξ∈Q gξ(t), with

gξ(t) = ‖f(t)‖+ ξθ‖A(ξ −A)−1f(t)‖.

(II) If ξ ≥ R, ξ ∈ Q,

‖
∫

Ω

f(t)dµ‖+ ξθ‖A(ξ −A)−1

∫
Ω

f(t)dµ‖ ≤
∫

Ω

gξ(t)dµ ≤
∫

Ω

‖f(t)‖θdµ.

Taking the supremum in ξ, we obtain the assertion.

We shall employ the following

th1.1 Theorem 1.3. Let α ∈ (0, 2). Consider system
Dα
t v(t) = Av(t) + f(t), t ∈ [0, T ],

v(k)(0) = vk, k < α,
(1.2) eq1.2

supposing that (A1)-(A2) hold; then:
(I) (??) has, at most, one solution, for every f ∈ C([0, T ];X), u0 ∈ D(A), u1 ∈ X in case α > 1

(solution means Dα
t v ∈ C([0, T ];X), v ∈ C([0, T ];D(A))).

(II) Let θ ∈ (0, 1), αθ 6= 1. Then necessary and sufficient conditions implyng that (??) has a strict
solution v such that Dα

t v and Av are bounded with values in Dθ(A)) are :

uk ∈ D1+θ− kα
(A)(k < α), f ∈ C([0, T ];X) ∩B([0, T ];Dθ(A)).

(III) If T0 ∈ R+, there exists C(T0) ∈ R+ such that, if 0 < T ≤ T0,

‖Dα
t v‖B([0,T ];Dθ(A)) + ‖v‖B([0,T ];D1+θ(A)) ≤ C(T0)(

∑
k<α

‖vk‖D
1+θ− k

α
(A) + ‖f‖B([0,T ];Dθ(A))).

Proof. Concerning (I)-(II), see ... . We show (III). We set F : [0, T0]→ Dθ(A)), F (t) = f(t) if 0 ≤ t ≤ T ,
F (t) = f(t0) if T ≤ t ≤ T0. Let V be the solution of

Dα
t V (t) = AV (t) + F (t), t ∈ [0, T0],

V (k)(0) = vk, k < α.
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Then v = V|[0,T ], so that

‖Dα
t v‖B([0,T ];Dθ(A)) + ‖v‖B([0,T ];Dθ(A))

≤ ‖Dα
t V ‖B([0,T ];Dθ(A)) + ‖V ‖B([0,T ];Dθ(A))

≤ C(T0)(
∑
k<α ‖vk‖D1+θ− k

α
(A) + ‖F‖B([0,T0];Dθ(A)))

= C(T0)(
∑
k<α ‖vk‖D1+θ− k

α
(A) + ‖f‖B([0,T ];Dθ(A))).

Moreover, by ...
‖v‖Cα([0,T ];Dθ(A)) ≤ C(α)‖Dαv‖B([0,T ];Dθ(A)),

and D(A) ∈ J1−θ(Dθ(A), D1+θ(A)), so that, if 0 ≤ s < t ≤ T ,

‖v(t)− v(s)‖D(A) ≤ C‖v(t)− v(s)‖θDθ(A)‖v(t)− v(s)‖1−θD1+θ(A)

≤ C1(T0)(t− s)αθ(
∑
k<α ‖vk‖D1+θ− k

α
(A) + ‖f‖B([0,T ];Dθ(A))).

v can be represented in the form

v(t) =
∑
k<α

Sk(t)vk +

∫ t

0

T (t− s)f(s)ds, (1.3) eq1.3

with

Sk(t) =
1

2πi

∫
Γ

eλtλα−1−k(λα −A)−1dλ,

T (t) =
1

2πi

∫
Γ

eλt(λα −A)−1dλ,

and Γ describing the boundary of

{λ ∈ C : |λ| ≥ R 1
α , |Arg(λ)| ≤ π

2
+ ε},

with ε positive suitably small, oriented from ∞e−i(π2 +ε) to ∞ei(π2 +ε)

le1.2 Lemma 1.4. Suppose that (A1)-(A2) hold. Let f0 ∈ Dθ′(A), with θ < θ′ and let

z(t) =

∫ t

0

T (t− s)f(s)ds.

Then Av ∈ C1((0, T ];X) and ‖(Av)′(t)‖Dθ(A) ≤ Ctα(θ′−θ)−1.

Proof. From (??), we have z′(t) = T (t)f0 and, if ∈ (0, T ],

Az′(t) =
1

2πi

∫
Γ

eλtA(λα −A)−1f0dλ.

We can assume θ′ ∈ (θ, 1). So, Dθ′(A) = (Dθ(A), D1+θ(A))θ′−θ,∞. This implies, for, |µ| ≥ R, |Arg(µ)| ≤
απ
2 ,

‖A(µ−A)−1f0‖Dθ(A) ≤ C|µ|θ−θ
′
.

So

Az′(t) =
1

2πit

∫
Γ′
eλA(λαt−α −A)−1dλ.

‖Az′(t)‖Dθ(A) ≤ C0t
−1

∫
Γ′
eRe(λ)|λαt−α|θ−θ

′
|dλ| ≤ C1t

α(θ′−θ)−1.
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le1.4 Lemma 1.5. Suppose that (A1)-(A2), α ∈ (1, 2), θ < 1
α . Let f0 ∈ Dθ′(A), with θ′ > θ + 1− 1

α and let

z(t) = S1(t)f0.

Then Av ∈ C1((0, T ];X) and ‖(Av)′(t)‖Dθ(A) ≤ Ctα(θ′−θ−1). Consequently, if θ′ > θ + 1− 1
α ,∫ T

0

‖Az′(t)‖θdt <∞.

Proof. If t > 0, we have
Az′(t) = 1

2πi

∫
Γ
eλtλα−1A(λα −A)−1f0dλ.

= 1
2πitα

∫
Γ
eλλα−1((λt )α −A)−1f0dλ

so that

‖Az′(t)‖θ ≤ C0t
−α

∫
Γ

eRe(λ)|λ|α−1−α(θ′−θ)tα(θ′−θ)‖x‖θ′ |dλ| ≤ C1t
α(θ′−θ−1).

pr1.3 Proposition 1.6. We consider the problem
Dα
t u(t) = Au(t) + F (t), t ∈ [0, T ],

u(k)(0) = uk,

with the following conditions:

(a) F (t) = G(t) + t1−α

Γ(2−α)v[α], with G ∈ C1([0, T ];X), G′ ∈ B([0, T ];Dθ(A)), v[α] ∈ D1+θ− [α]
α

(A);

(b) u0 ∈ D1+θ(A), Au0 + F (0) ∈ Dθ′(A), for some θ′ > θ.
Then u(t) = U(t) + z(t), with:
(I) U ∈ C1([0, T ];X), v = U ′ solution of Dαv(t) = Av(t) +G′(t), t ∈ [0, T ],

v(0) = v0;
(1.4) eq1.4

(II) z solution of  Dαz(t) = Az(t) +Au0 + F (0), t ∈ [0, T ],

z(0) = 0.
(1.5) eq1.5A

Proof. By Theorem ??, (??) has a unique solution v, with Dαv,Av ∈ C([0, T ];X)∩B([0, T ];Dθ(A)). We
deduce

(1 ∗Dαv)(t) = A(1 ∗ v)(t) +G(t)−G(0), t ∈ [0, T ].

We set

Jαg(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds.

Then Dαv = (Jα)−1(v − v0). We deduce that

Jα(1 ∗Dαv) = 1 ∗ Jα(Dαv) = 1 ∗ (v − v0) = 1 ∗ v − tv0

and

Dα(1 ∗ v) = Dα(tv0) + 1 ∗Dαv =
1

Γ(2− α)
t1−αv0 + 1 ∗Dαv,

Dα(1 ∗ v) = A(1 ∗ v)(t) +G(t)−G(0) +
1

Γ(2− α)
t1−αv0, t ∈ [0, T ].

Setting
U(t) = (1 ∗ v)(t) + u0,
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we deduce

DαU(t) = AU(t) +G(t)− F (0)−Au0 +
1

Γ(2− α)
t1−αv0 = F (t)− F (0)−Au0, t ∈ [0, T ].

The conclusion follows.

co1.4 Corollary 1.7. Suppose that (A1)-(A2) hold. Suppose, moreover, that
(a) k ∈ C([0, T ]),
(b) u ∈ C1((0, T ];D(A)), ‖Au′(t)‖Dθ(A) ≤ Ctε−1, for some ε ∈ R+;
(c) u is a strict solution to Dαu(t) = Au(t) +

∫ t
0
k(t− s)Au(s)ds+ F (t), t ∈ [0, T ],

u(0) = u0, t ∈ [0, T ],

with F (t) = G(t) + t1−α

Γ(2−α)v0, G ∈ C1([0, T ];X), G′ ∈ B([0, T ];Dθ(A)), v0 ∈ D1+θ(A), u0 ∈ D1+θ(A),

Au0 + F (0) ∈ Dθ′(A), θ′ > θ.
Then u(t) = U(t) + z(t), with
(I) U ∈ C1([0, T ];X), v = U ′ solution of Dαv(t) = Av(t) +G′(t) + k(t)Au0 +

∫ t
0
k(t− s)Au′(s)ds, t ∈ [0, T ],

v(0) = v0;

(1.6) eq1.5

(II) z solution of  Dαz(t) = Az(t) +Au0 + F (0), t ∈ [0, T ],

z(0) = 0.

Proof. From the assumptions,

(k ∗Au)(t) = k(t)Au0 +

∫ t

0

k(t− s)Au′(s)ds

belonging to C([0, T ];X) ∩B([0, T ];Dθ(A)). So the conclusion follows from Proposition ??.

re1.5 Remark 1.8. On account of Lemma ??, (??) can be written also in the form Dαv(t) = Av(t) +G′(t) + k(t)Au0 +
∫ t

0
k(t− s)Av(s)ds+

∫ t
0
k(t− s)Az′(s)ds, t ∈ [0, T ],

v(0) = v0.

(1.7) eq1.6

We set
S(v, k)(t) := (k ∗A(v + z′))(t). (1.8) eq1.7

le1.6 Lemma 1.9. Suppose that the assumptions of Corollary ?? are satisfied. Let Φ ∈ X ′. We set

h(t) = g(t)− Φ(z(t)).

We suppose Φ(Au0) 6= 0 and set
χ := Φ(Au0)−1.

Then h ∈ C1([0, 1]), Dαh′ is defined and

k(t) = K0(t)− χΦ(Av(t))−R(v, k)(t), t ∈ [0, T ], (1.9) eq1.8
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with
K0(t) = χ[Dαh′(t)− Φ(G′(t))], (1.10)

R(v, k) = −χ{k ∗ Φ[A(v + z′)]}(t) = −χΦ[S(v, k)(t)]. (1.11) eq1.10

On the other hand,suppose that
Φ(u0) = h(0), Φ(v0) = h′(0). (1.12) eq1.11

Let (v, k) be a strict solution to (??)-(??), with v ∈ C([0, T ];D(A))∩B([0, T ];D1+θ(A)) and k ∈ C([0, T ]).
We set

u := u0 + 1 ∗ v + z.

Then, u ∈ C1([0, T ];D(A)), ‖Au′(t)‖Dθ(A) ≤ Ctα(θ′−θ)−1 ∀t ∈ (0, T ] and (u, k) is a solution to (??).

Proof. Applying Φ to the first equation in (??), we easily deduce (??).
On the other hand, let (v, k) be a strict solution to (??)-(??), with v ∈ C([0, T ];D(A))∩B([0, T ];D1+θ(A))

and k ∈ C([0, T ]). Then
k(·)Au0 + k ∗A(v + z′) = k(·)Au0 + k ∗Au′.

So, by Corollary ??, the two first conditions in (??) are satisfied.
It remains to show that Φ(u) = g. Applying Φ to the first equation in (??) and comparing with (??),

we deduce
Dα(Φv)(t) = Φ(Dαv(t)) = Dαh′(t), t ∈ [0, T ].

From (??), we deduce Φv = h′ and ΦU = h. We deduce that

Φ(u) = Φ(U) + Φ(z) = g.

In conclusion, we are reduced to study the system (??)-(??), which we write in the equivalent form
Dαv(t) = Av(t) +G1(t) + Ψ(Av(t))Au0 + S1(v, k)(t), t ∈ [0, T ],

v(0) = v0,

k(t) = K0(t) + Ψ(Av(t))−R(v, k)(t), t ∈ [0, T ],

(1.13) eq1.12

with
G1(t) = G′(t) +K0(t)Au0,

Ψ = −χΦ,

S1(v, k)(t) = R(v, k)(t)Au0 + S(v, k)(t), (1.14) eq1.13A

le1.7 Lemma 1.10. Suppose that (A1)-(A2) hold. We consider the problem Dαv(t) = Av(t) + Ψ(Av(t))f0 + f(t), t ∈ [0, T ],

v(0) = v0,
(1.15) eq1.13

Assume that Ψ ∈ X ′, f0 ∈ Dθ(A), f ∈ C([0, T ];X) ∩ B([0, T ];Dθ(A)), v0 ∈ D1+θ(A). Then (??) has a
unique solution v in C([0, T ];D(A))∩B([0, T ];D1+θ(A)). Moreover, If T0 ∈ R+, there exists C(T0) ∈ R+

such that, if 0 < T ≤ T0,

‖v‖Cα([0,T ];Dθ(A)) + ‖v‖Cαθ([0,T ];D(A)) + ‖v‖B([0,T ];D1+θ(A)) ≤ C(T0)(‖v0‖D1+θ(A) + ‖f‖B([0,T ];Dθ(A))).
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Proof. We set, for 0 < τ ≤ T ,

Xτ := {V ∈ C([0, τ ];D(A)) : V (0) = v0},

which is a complete metric space with the distance

d(V1, V2) := ‖V1 − V2‖C([0,T ];D(A)). (1.16) eq1.14A

If V ∈ X(τ), we consider the problem Dαv(t) = Av(t) + Ψ(AV (t))f0 + f(t), t ∈ [0, τ ],

v(0) = v0,
(1.17) eq1.14

which, by Theorem ??, has a unique solution v = v(V ), belonging to B([0, T ];D1+θ(A)), with Dαv ∈
B([0, T ];Dθ(A)). Clearly, the solutions in [0, τ ] are the fixed points of the mapping V → v(V ). If
V1, V2 ∈ Xτ , we have, setting vj := v(Vj),

d(v1, v2) ≤ C(T0)ταθ‖Ψ(A(V1 − V2))‖C([0,τ ]) ≤ C1(T0)ταθd(V1, V2).

So, if τ is sufficiently small, (??) has a unique solution in [0, τ ].
In order to extend it, we show that a solution with the desired regularity ṽ is given in [0, σ], with

σ ∈ (0, T ), it can be extended in a unique way to a solution, again with the prescribed regularity, in
[0, (σ + δ) ∧ T ]. So we set now, for δ ∈ (0, T − σ],

Yδ :=:= {V ∈ C([0, σ + δ];D(A)) : V|[0,σ] = ṽ},

again equipped with the distance (??) (replacing T with σ+δ). If V ∈ Yδ, we consider again the problem
(??) in the interval [0, σ + δ]. Again, by Theorem ?? we have a unique solution v = v(V ); by the
uniqueness guaranteed by this theorem in [0, σ], we deduce v|[0,σ] = ṽ, so that v ∈ Yδ. If vj = v(Vj), with
Vj ∈ Yδ, j = 1, 2, we deduce from Theorem ?? (III)

d(v1, v2) = ‖v1 − v2‖C([0,σ+δ];D(A)) ≤ δαθ‖v1 − v2‖Cαθ([0,σ+δ];D(A)) ≤ C(T0)δαθd(V1, V2).

Choosing δ so small that C(T0)δαθ < 1 (independently of σ), we can extend in a unique way the solution
to [0, σ + δ].

The remaining part of the proof is analogous to that of Theorem ??.

Now we study problem (??). We indicate with V0 the solution of the problem DαV0(t) = AV0(t) +G1(t) + Ψ(AV0(t)), t ∈ [0, T ],

v(0) = v0

(1.18) eq1.16

and set
K1(t) = K0(t) + Ψ(AV0(t)), t ∈ [0, T ],

Of course, the existence and uniqueness of a solution V0 in B([0, T ];Dθ(A)) is guaranteed by Lemma ??.
We begin with the existence and, to some extent, uniqueness of a solution in a small interval:

Lemma 1.11. Let δ ∈ R+. Then there exists τ(δ) ∈ (0, T ], such that, if 0 < τ ≤ τ(δ) (??) has a unique
solution (v, k) with Dαv, Av in B([0, δ];Dθ(A)), k ∈ C([0, δ]) and

max{‖v − V0‖B([0,τ ];Dθ(A)), ‖k −K0‖C([0,τ ]) ≤ δ.
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Proof. We set, for τ ∈ (0, T ],

Xδ,τ := {(V,H) ∈ (C([0, τ ];D(A))∩B([0, τ ];D1+θ(A)))×C([0, τ ]) : max{‖v−V0‖B([0,τ ];Dθ(A)), ‖H−K1‖C([0,τ ]) ≤ δ},

which is a complete metric space with the distance

d((V1, H1), (V2, H2)) = max{‖V1 − V2‖B([0,τ ];D1+θ(A)), ‖K1 −K2‖C([0,τ ])}.

Given (V,H) in Xδ,τ , we consider the problem
Dαv(t) = Av(t) +G1(t) + Ψ(Av(t))Au0 + S1(V,H)(t), t ∈ [0, T ],

v(0) = v0,

k(t) = K0(t) + Ψ(Av(t))−R(V,H)(t), t ∈ [0, T ],

(1.19) eq1.17

By Lemma ??, (??) has a unique solution (v, k) with the prescribed regularity. Clearly, as usual, solving
(??) is equivalent to find a fixed point of (V,H)→ (v, k).

From (??), we get
Dα(v − V0)(t) = A(v − V0)(t) + Ψ(A(v − V0)(t))Au0 + S1(V,H)(t), t ∈ [0, T ],

(v − V0)(0) = 0,

k(t)−K1(t) = Ψ(A(v − V0)(t))−R(V,H)(t), t ∈ [0, T ],

so that
‖v − V0‖B([0,τ ];D1+θ(A)) ≤ C(T )‖S1(V,H)‖B([0,τ ];Dθ(A))

We estimate ‖‖S1(V,H)‖B([0,τ ];Dθ(A)). By (??), (??), (??) and Lemma ??we have

‖S1(V,H)‖B([0,τ ];Dθ(A)) ≤ C0‖S(V,H)‖B([0,τ ];Dθ(A)) ≤ C1‖H‖C([0,τ ](τ‖V ‖B([0,τ ];D1−θ(A) + τα(θ′−θ))

≤ C1(‖K1‖C([0,T ) + δ)[τ(‖V0‖B([0,τ ];D1−θ(A) + δ) + τα(θ′−θ)] := ω0(δ, τ).

So
‖v − V0‖B([0,τ ];D1+θ(A)) ≤ C(T )ω0(δ, τ).

We have also

‖k −K1‖C([0,τ ]) ≤ C1‖v − V0‖B([0,τ ];D1+θ(A)) + ‖R(V,H)‖C([0,τ ]) ≤ C2ω0(δ, τ).

As lim
τ→0

ω0(δ, τ) = 0, if τ ≤ τ0(δ) and (V,H) ∈ Xδ,τ , (v, k) ∈ Xδ,τ .

Let now (V1, H1), (V2, H2) belong to Xδ,τ . We indicate with (vj , kj) (j = 1, 2) the corresponding
solutions of (??). It follows

Dα(v1 − v2)(t) = A(v1 − v2)(t) + Ψ(A(v1 − v2)(t))Au0 + S1(V1, H1)(t)− S1(V2, H2)(t), t ∈ [0, τ ],

(v1 − v2)(0) = 0,

k1(t)− k2(t) = Ψ(A(v1 − v2)(t))− (R(V1, H1)(t)−R(V2, H2)(t)), t ∈ [0, τ ].
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We have

‖v1 − v2‖B([0,τ ];D1+θ(A)) ≤ C0(T )‖S1(V1, H1)(t)− S1(V2, H2)‖B([0,τ ];Dθ(A))

≤ C1(T )‖S(V1, H1)(t)− S(V2, H2)‖B([0,τ ];Dθ(A))

≤ C1(T )(‖(H1 −H2) ∗A(V1 + z′)‖B([0,τ ];Dθ(A)) + ‖H2 ∗A(V1 − V2)‖B([0,τ ];Dθ(A)))

≤ C2(T )[‖H1 −H2‖C([0,τ ])(τ(‖V0‖B([0,T ];D1+θ(A)) + δ) + τα(θ′−θ))

+τ(‖K1‖C([0,T ]) + δ)‖V1 − V2‖B([0,τ ];D1+θ(A)]

≤ ω1(δ, τ)d((V1, H1), (V2, H2)),

with lim
τ→0

ω1(δ, τ) = 0. It follows

‖k1 − k2‖C([0,τ ])

≤ C2(‖v1 − v2‖B([0,τ ];D1+θ(A)) + ‖R(V1, H1)−R(V2, H2)‖C([0,τ ]))

≤ C3(‖v1 − v2‖B([0,τ ];D1+θ(A)) + ‖S(V1, H1)(t)− S(V2, H2)‖B([0,τ ];Dθ(A)))

≤ C3ω1(δ, τ)d((V1, H1), (V2, H2)).

So the conclusion follows from the contraction mapping theorem.

We want to show that, in fact, (??) has a unique global solution. The key step is the following

Lemma 1.12. Suppose that (A1)-(A3) hold. Consider problem (??), with G1 ∈ C(]0, T ];X) ∩ B([0, T ];
Dθ(A)), u0, v0 ∈ D1+θ(A). Let 0 < τ0 ≤ τ1 < min{2τ0, T} and let (V,K) be a solution in [0, τ1],
with V ∈ B([0, τ1];D1+θ(A)), K ∈ C([0, τ1]). Then there exists δ positive, independent of τ1, such that
(??) has a unique solution (v, k) in [0, (τ1 + δ) ∧ 2τ0 ∧ T ] with v ∈ B([0, (τ1 + δ) ∧ 2τ0 ∧ T ];D1+θ(A)),
k ∈ C([0, (τ1 + δ) ∧ 2τ0 ∧ T ]) and coinciding with (V,K) in [0, τ1].

Proof. Let δ ∈ R+. We set
τ(δ) := (τ1 + δ) ∧ (2τ0) ∧ T

and
Xδ := {(W,H) ∈ (C([0, τ(δ)];X) ∩B([0, τ(δ)];D1+θ(A)))× C([0, τ(δ)])

: W|[0,τ1] = V,H|[0,τ1] = K}.

For (W,H) ∈ Xδ, we consider the problem
Dαv(t) = Av(t) +G1(t) + Ψ(Av(t))Au0 + S1(W,H)(t), t ∈ [0, (τ1 + δ) ∧ 2τ0]],

v(0) = v0,

k(t) = K0(t) + Ψ(Av(t))−R(V,H)(t), t ∈ [0, (τ1 + δ) ∧ 2τ0],

(1.20) eq1.19

For any (W,H) ∈ Xδ, (??) has a unique solution (v, k) with v ∈ B([0, τ(δ)];D1+θ(A)), k ∈ C([0, τ(δ)]).
We observe that, by the uniqueness of the solution of (??), v|[0,τ1] = V and k|[0,τ1] = K. We deduce that
(v, k) ∈ Xδ, which we equip with the usual distance

d((V1, H1), (V2, H2)) = max{‖V1 − V2‖B([0,τ(δ)];D1+θ(A))), ‖H1 −H2‖C([0,τ(δ)])}.

Now we look for conditions ensuring that the mapping (W,H)→ (v, k) is a contraction in Xδ. As usual,
we get

d((v1, k1), (v2, k2)) ≤ C(T )‖S(V1, H1)− S(V2, H2)‖B([0,τ(δ)];Dθ(A))).
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Let τ1 ≤ t ≤ τ(δ). Then

‖S(V1, H1)(t)− S(V2, H2)(t)‖Dθ(A)

≤ ‖
∫ t

0
(H1(t− s)−H2(t− s))A(V1(s) + z′(s))ds‖Dθ(A) + ‖

∫ t
0
H2(t− s)(A(V1(s)− V2(s))ds‖Dθ(A).

We set ṽ := V|[0,τ0], h̃ := H|[0,τ0]. Then we have, on account of t− τ1 ≤ τ0,∫ t

0

(H1(t− s)−H2(t− s))A(V1(s) + z′(s))ds =

∫ t−τ1

0

(H1(t− s)−H2(t− s))A(ṽ(s) + z′(s))ds,

so that

‖
∫ t

0

(H1(t−s)−H2(t−s))A(V1(s)+z′(s))ds‖Dθ(A) ≤ ‖H1−H2‖C([0,τ(δ)])(‖ṽ‖B([0,τ0];D1+θ(A))δ+C0δ
α(θ′−θ)).

Analogously,

‖
∫ t

0
H2(t− s)(A(V1(s)− V2(s))ds‖Dθ(A) = ‖

∫ t
τ1
h̃(t− s)(A(V1(s)− V2(s))ds‖Dθ(A)

≤ δmax(|h̃|)‖V1 − V2‖B([0,τ(δ)];D1+θ(A))

We deduce that
‖v1 − v2‖B([0,τ(δ)];D1+θ(A)) ≤ ω0(δ)d((V1, H1), (V2, H2)),

with lim
δ→0

ω0(δ) = 0. We observe that ω(δ) does not depend on τ1. We have also

‖k1−k2‖C([0,τ(δ)] ≤ ‖Ψ(A(V1−V2))‖C([0,τ(δ)]+‖R(V1, H1)−R(V2, H2)‖C([0,τ(δ)] ≤ ω1(δ)d((V1, H1), (V2, H2)),

with lim
δ→0

ω1(δ) = 0, and the conclusion follows.

Now we are able to prove the main result of the paper:

th1.10 Theorem 1.13. Suppose that (A1)-(A3). Consider problem ??, with u, k unknown. Assume that the
following further conditions are fulfilled:

(a) α ∈ (0, 1];

(b) F (t) = G(t) + t1−α

Γ(2−α)v0, with G ∈ C1([0, T ];X), G′ ∈ B([0, T ];Dθ(A)), θ ∈ (0, 1), v0 ∈ D1+θ(A);

(c) u0 ∈ D1+θ(A);
(d) Au0 + F (0) ∈ Dθ′(A), with θ < θ′;
(e) Φ ∈ X ′;
(f) if z if the solution of (??) and h(t) = g(t) − Φ(z(t)), D1+αh ∈ C([0, T ]), h(0) = Φ(u0), h′(0) =

Φ(v0);
(g) Φ(Au0) 6= 0.
Then (??) has a unique solution (u, k) such that u−z ∈ C1([0, T ];D(A)), (u−z)′ ∈ B([0, T ];Dθ(A)),

k ∈ C([0, T ]).

Proof. If (u, k) is a solution with the required properties, k ∗ Au ∈ C1([0, T ];X) and (k ∗ Au)′ ∈
B([0, T ];Dθ(A)). So, by Corollary ??, u = U + z, with v = U ′ solution of (??), or, equivalently (??).

On the other hand, if v is a solution of (??), u := U + z, with U := u0 + 1 ∗ v, satisfies the two first
equations in (??). From (??) we have also Φ(U) = h and Φ(Dαv) = D1+αh. Applying Φ to the first
equation in (??), on account of (g), we deduce (??).

.....

[?] Problem of determination from final data (not convolution kernels).
Paper [?] Reconstruction of a kernel m such that k = a + m, applicable in case α ≤ 1. Even in this

case needed not so mich regularity, but also more compatibility conditions than here.
[?] Determination of order of derivation α and coefficient of the second order space derivative α ∈ (0, 1).

Hilbert space setting. The operator A with conditions on the spectrum which are satisfied by a positive
self-adjoint compcat operator. Assumptions on the Fourier coefficients on the data.

Determination of source term: [?],
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