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Orientable arithmetic matroids

Roberto Pagariaa

aScuola Normale Superiore
Piazza dei Cavalieri 7, 56126 Pisa, Italy

Abstract

The theory of matroids has been generalized to oriented matroids and, recently,
to arithmetic matroids. We want to give a definition of “oriented arithmetic
matroid” and prove some properties like the “uniqueness of orientation”.

Keywords: matroids, orientable matroids, basis graph, line graph
2010 MSC: 52C40, 05B35

The aim of this paper is to relate two different generalizations of matroids:
the oriented matroids and the arithmetic matroids.

Oriented matroids have a large use in mathematics and science (for a general
reference see [1, 2]); they are related to the simplex method for linear program-
ming, to the chirality of molecules in theoretical chemistry, and to knot theory.
For instance, the Jones polynomial of a link is a specialization of the signed
Tutte polynomial (see [3]) of an oriented graphic matroid [4, 5]. Another inter-
esting fact is the correspondence between oriented matroids and arrangements
of pseudospheres [6] that generalizes the correspondence between realizable ma-
troids and central hyperplane arrangements.

Arithmetic matroids appear as the combinatorial object for the cohomol-
ogy module of the complement of a toric arrangement [7, 8, 9]. The study of
toric arrangements is related to zonotopes, partition functions, box splines, and
Dahmen-Micchelli spaces (see [10, 11, 8]). The obvious correspondence between
realizable arithmetic matroids and central toric arrangements has not been gen-
eralized to the non-realizable cases, so far.

With the aim of filling this gap, we define a class of well-behaved arithmetic
matroids which we call orientable arithmetic matroids (see Definition 1.6) hoping
that these correspond to “arrangements of pseudo-tori”.

An r×n matrix with integer coefficients describes at the same time a central
toric arrangement, an oriented matroid, and an arithmetic matroid. It comes
natural to say that two matrices are equivalent if they describe the same toric
arrangement. Geometrically, the group GLr(Z)× (Z/2Z)n acts on the set of all
r × n matrices with integer coefficients by left multiplication and sign reverse
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of the columns. Two realizations (i.e. matrices) of an arithmetic matroid are
equivalent if and only if they belong to the same GLr(Z)× (Z/2Z)n-orbit.

The space M(r, n;Z) is included in M(r, n;Q) and the action of GLr(Z) ×
(Z/2Z)n extends naturally to the one of GLr(Q) × (Z/2Z)n. Theorem 3.12
in [12] shows that all representations of an arithmetic matroid belong to the
same GLr(Q) × (Z/2Z)n-orbit. From this fact, it can be easily deduced that
representable arithmetic matroids have a unique orientation. We extend this
result to the non-representable case, showing (Theorem 6.1) that orientable
arithmetic matroids have a unique orientation (up to re-orientation).

We start by recalling some standard definitions and giving the compatibility
condition, eq. (GP), between the orientation and the multiplicity function of
an oriented arithmetic matroid. The condition (GP) coincides with the Plücker
relation for the Grassmannian. We prove that oriented arithmetic matroids are
closed under deletion, contraction, and duality. Next, we show that the condi-
tion (GP) implies a generalization of the Leibniz rule for the determinant. We
state and prove a result about the uniqueness of orientation so that it makes
sense to speak of orientable arithmetic matroids instead of oriented arithmetic
matroids. Finally, we show that orientable arithmetic matroids, upon forgetting
the multiplicity function, are realizable matroids (see Proposition 7.3). More-
over, we state the condition “strong GCD” (see Definition 7.1) implying the
realizability of orientable arithmetic matroids.

All the discussion can be generalized to quasi-arithmetic matroids and so to
matroids over Z (see [13]). It is not clear to the author how arithmetic matroids
and orientable arithmetic matroids are related to matroids over hyperfields (see
[14]).

1. Definitions

Let E be a finite totally ordered set. We will frequently make use of r-tuples
of elements of E, so with an abuse of notation for any set A = {a1, . . . , ar} ⊂ E
we will write A for the increasing tuple (a1, . . . , ar).

We give the definition of a matroid in terms of its basis, since [2, Theorem
1.2.3] shows that it is equivalent to the one given in terms of independent sets.

Definition 1.1. A matroid over a finite set E is a non-empty set B ⊂ P(E)
such that

∀B1, B2 ∈ B ∀x ∈ B1 \B2 ∃ y ∈ B2 \B1 such that B1 \ {x} ∪ {y} ∈ B. (1)

Since this definition of matroids is cryptomorphic to the one involving the
rank function (see [2, Theorem 1.3.2]), we denote a matroid with the pair (E, rk).

Throughout this paper we will denote the r-tuples (yi, x2, . . . , xr) by xi and
(y0, . . . , yi−1, yi+1, . . . , yr) by yi, for i = 0, . . . , r, where x = (x2, . . . , xr) and
y = (y0, . . . , yr).

Definition 1.2 ([1, Definition 3.5.3]). A chirotope is a function χ : Er →
{−1, 0, 1} such that:
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(B0) it is not identically zero, i.e. χ 6≡ 0,

(B1) it is alternating, i.e. χ(σx) = sgn(σ)χ(x) for all σ ∈ Sr,

(B2) for all x2, . . . , xr and all y0, . . . , yr ∈ E such that

χ(xi)χ(yi) ≥ 0,

for all i > 0, then we have

χ(x0)χ(y0) ≥ 0.

Definition 1.3 ([1, p. 134]). The re-orientation with respect to A ⊆ E of a
chirotope χ is the chirotope χ′ defined by

χ′(x) = (−1)|A∩{x1,...,xr}|χ(x).

Two chirotopes are equivalent if one is a re-orientation of the other one.

The set {{b1, . . . , br} ⊂ E | χ(b1, . . . , br) 6= 0} is the matroid over E asso-
ciated with the chirotope χ. A well-known cryptomorphism of Lawrence [15]
between oriented matroids and chirotopes is stated in [1, Theorem 3.5.5].

For every matroidM = (E, rk) and every subset A ⊆ E we denote byM/A
the contraction of A and with M\A the deletion of A.

Let us recall the definition of “arithmetic matroid” introduced in [16, 17].

Definition 1.4. A molecule (A,B) of the matroid is a pair of sets A ⊂ B ⊆ E
such that the matroid (M/A) \Bc has a unique basis.

For A ⊆ E we denote the maximal subset S ⊇ A of rank equal to rk(A) by
A.

Definition 1.5. An arithmetic matroid is (E, rk,m) such that (E, rk) is a ma-
troid and m : P(E)→ N+ = {1, 2, . . . } a function satisfying:

1. if A ⊆ E and x ∈ E is dependent on A, then m(A ∪ {x})|m(A);

2. if A ⊆ E and x ∈ E is independent on A, then m(A)|m(A ∪ {x});

3. if (A,B) is a molecule then

m(A)m(B) = m(B ∩A)m((B \A) ∪A);

4. if (A,B) is a molecule then

ρ(A,B)
def
=

∑
A⊆S⊆B

(−1)|A∩B|−|S|m(S) ≥ 0.

We call m the multiplicity function.
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Definition 1.6. An oriented arithmetic matroid (E, rk,m, χ) is a matroid
(E, rk) of rank r together with two structures: a chirotope χ : Er → {−1, 0, 1}
and a multiplicity function m : P(E)→ N+ such that:

1. The unoriented matroid associated with the chirotope χ is the matroid
(E, rk).

2. The triple (E, rk,m) is an arithmetic matroid.

3. For all x2, . . . , xr and all y0, . . . , yr ∈ E the following equality holds

r∑
i=0

(−1)iχ(xi)m(xi)χ(yi)m(yi) = 0, (GP)

where xi = (yi, x2 . . . , xr) and yi = (y0, . . . yi−1, yi+1 . . . yr).

Since the rank function rk is completely determined by the chirotope χ, we
omit rk and write (E,χ,m) for an oriented arithmetic matroid.

Remark 1.7. Our property (GP), related to the Grassmannian-Plücker relations,
implies the properties (GPr), for all r, defined in [18, Definition 10.3].

Notice that the compatibility condition (GP) involves only the values of the
multiplicity function on the basis of (E, rk).

Remark 1.8. The condition (GP) implies (B2) of Definition 1.2.

Example 1.9. Consider the matrix

X =

 1 0 0 −4 0 3 0
0 2 0 1 2 0 −2
0 0 3 0 1 −1 −1


and let E = {1, 2, . . . , 7}. The set B ⊂ P(E) of indexes B ⊂ E such that the
corresponding columns of X are a basis of Q3 is a matroid.

Let χ : E3 → {−1, 0, 1} be the function defined by (i, j, k) 7→ sgn(detX[i, j, k])
where X[i, j, k] is the square matrix whose columns are the ith, jth and kth
columns of X (in this order). This function χ is a chirotope whose underlying
matroid is B.

The matrix X defines an arithmetic matroid (E, rk,m) (see [16, 17]), for any
base B = {i, j, k} ⊂ E we have m(B) = |detX[i, j, k]|.

2. Deletion

The deletion of A ⊂ E is an operation defined for matroids [2, p. 22], for
oriented matroids [1, p. 133], and for arithmetic matroids [16, section 4.3] [17,
section 3]. We now define a deletion operation for oriented arithmetic matroids.

The triple (E \ A,χ \ A,m \ A) satisfies the first two conditions of Defini-
tion 1.6.
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Proposition 2.1. The triple (E \ A,χ \ A,m \ A) is an oriented arithmetic
matroid.

Proof. Let s be the rank of E \A and f = (a1, . . . , ar−s) ⊆ A such that rk((E \
A) ∪ f) = r. Consider the elements x2, . . . , xs and y0, . . . , ys in E \ A. For all

0 ≤ i ≤ s, the triples (xi, y
i, f) and (yi, xi, f) are molecules. The equality

m(xi ∪ yi)2m(xi ∪ f)m(yi ∪ f) = m(xi ∪ yi ∪ f)2m(xi)m(yi)

follows from condition (3) applies to the two molecules. Notice that xi∪yi does
not depend on i so we can denote it x ∪ y. We have

m(x ∪ y ∪ f)2
s∑
i=0

(−1)iχ(xi ∪ f)m(xi)χ(yi ∪ f)m(yi) =

= m(x ∪ y)2
s∑
i=0

(−1)iχ(xi ∪ f)m(xi ∪ f)χ(yi ∪ f)m(yi ∪ f).

The right side is, up to a non-zero scalar, the equation (GP) applied to x2, . . . , xs,
a1, . . . , ar−s and y0, . . . , ys, a1, . . . , ar−s for the oriented arithmetic matroid (E,χ,m).
Therefore, we have proven the claimed equality

s∑
i=0

(−1)iχ(xi ∪ f)m(xi)χ(yi ∪ f)m(yi) = 0,

and this completes the proof.

3. Contraction

The contraction (or restriction) of A ⊂ E is an operation defined for matroids
[2, p. 22], for oriented matroids [1, p. 134], and for arithmetic matroids [16,
section 4.3] [17, section 3]. We now define a contraction operation for oriented
arithmetic matroids.

Let A be a subset of E and call r − s its rank. We choose an independent
list f = (a1, . . . , ar−s) of elements in A. Define χ/A : (E \ A)s → {−1, 0, 1} as
χ/A(z) = χ(z ∪ f) and m/A(S) = m(A ∪ S).

Proposition 3.1. The triple (E \A,χ/A,m/A) is an oriented arithmetic ma-
troid.

Proof. We call T = A\f and fix the elements x2, . . . , xs and y0, . . . , ys of E \A.

Observe that (f, T, xi) and (f, T, yi) are molecules of (E, rk). Thus

m(A)2m(xi ∪ f)m(yi ∪ f) = m(f)2m(xi ∪A)m(yi ∪ f).

Since m(A) and m(f) are nonzero, then condition (GP) for x and y in the
contracted matroid is equivalent to condition (GP) for x ∪ f and y ∪ f in the
original matroid.
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4. Duality

The duality is an operation defined for matroids [2, chapter 2], for oriented
matroids [1, p. 135], and for arithmetic matroids [16, p. 339] [17, p. 5526]. We
now define duality for oriented arithmetic matroids.

Recall that the set E is ordered. For every z = (z1, . . . , zk) ⊆ E we call z′

the complement of z in E with some arbitrary order and let σ(z, z′) be the sign
of the permutation that reorders the list (z, z′) as they appear in E. We define
χ∗ : En−r → {−1, 0, 1} as

χ∗(z) = χ(z′)σ(z, z′)

and the multiplicity function m∗ : P(E)→ N+ as m∗(z) = m(z′).

Proposition 4.1. The triple (E,χ∗,m∗) is an oriented arithmetic matroid.

Proof. Let x = (x2, . . . , xn−r) and y = (y0, . . . , yn−r) be two sublists of E.
Coherently with the notation above, let x′ = (x′0, . . . , x

′
r) and y′ = (y′2, . . . , y

′
r)

be their complements. For every 0 ≤ i ≤ n− r the element yi is equal to xk or
x′j . In the first case χ∗(xi) = 0 and in the second case

χ∗(xi) = χ(x′j)σ(xi, x
′j) = (−1)n−r+1+jχ(x′j)σ(x, x′).

Analogously, if yi = x′j then

χ∗(yi) = χ(y′
j
)σ(yi, y′

j
) = (−1)n−r+iχ(y′

j
)σ(y, y′)

where y′
j

= (x′j , y
′
2, . . . , y

′
r). If yi = x′j , then m∗(xi) = m(x′j) and m∗(yi) =

m(y′
j
). Thus, up to a sign, the condition (GP) for y′ and x′ in the original

matroid implies condition (GP) for x and y in the dual matroid.

5. GP-functions

We now study functions satisfying a relation that looks like the Plücker
relation for the Grassmannian. A posteriori all these functions are nothing else
that the determinant det : V r → Q restricted to a finite (multi-)set E ⊂ V .

Definition 5.1. A map f : Er → Q is a GP-function if it is alternating and for
all x ∈ Er−1 and all y ∈ Er+1 the following equality holds

r∑
i=0

(−1)if(yi, x2 . . . , xr)f(y0, . . . yi−1, yi+1 . . . yr) = 0.

We denote the point-wise product of two function χ and m with

χm(b)
def
= χ(b) ·m(b).
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Example 5.2. The main examples of GP-function are the functions χm for
every oriented arithmetic matroid. Another example is given by a map i : E →
V , where V is a Q-vector space of dimension n, and consider the function
det : V n → Q. The composition of the natural inclusion En → V n with the
determinant det is a GP-function.

The following theorem is a generalization of the Leibniz formula for the
determinant.

Theorem 5.3. Let f : Er → Q be a GP-function. Then for all (a1, . . . , ar) in
Er and (b1, . . . , br) ∈ Er the following formula holds:

∑
σ∈Sr

(−1)sgnσ
r∏
i=1

f(a1, . . . , bσ(i), . . . , ar) = f(a1, . . . , ar)
r−1f(b1, . . . , br), (2)

where bσ(i) substitutes ai.

Proof. We prove the lemma by induction, the base case r = 2 being trivial.
We fix (a1, . . . , ar) ∈ Er and (b1, . . . , br) ∈ Er. Let g : Er−1 → Q be the
GP-function defined by

g(x2, . . . , xr) = f(a1, x2, . . . , xr).

By induction we have

∑
σ∈Sr−1

(−1)sgnσ
r∏
i=2

g(a2, . . . , cσ(i), . . . , ar) = g(a2, . . . , ar)
r−2g(c2, . . . , cr). (3)

The left hand side of the eq. (2) can be rewritten as:

r∑
j=1

f(bj , a2, . . . , ar)
∑

σ∈Sr−1

(−1)sgnσ+sgn τj

r∏
i=2

f(a1, . . . , bσ(τj(i)), . . . , ar), (4)

where τj = (1, j) and Sr−1 is the subgroup of Sr of permutations that fix the
element 1. Now, for every j, we use eq. (3) with ci = bτj(i) to manipulate
expression (4):

f(a1, . . . , ar)
n−2

[
f(b1, a2, . . . , ar)f(a1, b2, . . . , br)−

r∑
j=1

f(bj , a2, . . . , ar)·

f(a1, b2, . . . , b1, . . . , br)
]

that is equal to the left hand side of (2) since f is a GP-function.

Lemma 5.4. Let f and g be two GP-functions and B = (b1, . . . , br) ∈ Er.
Suppose that f(B) = g(B) 6= 0 and f(C) = g(C) for all C = (c1, . . . , cr) ∈ Er
such that |{i | ci 6= bi}| = 1. Then f = g.
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Proof. We use Theorem 5.3 for the function f and g. Considering eq. (2) for f
and g, the left hand sides for f and g are equal, so

f(b1, . . . , br)
r−1f(d1, . . . , dr) = g(b1, . . . , br)

r−1g(d1, . . . , dr),

for all d1, . . . , dr ∈ E. By hypothesis f(b1, . . . , br) = g(b1, . . . , br) 6= 0, thus we
have f(d1, . . . , dr) = g(d1, . . . , dr) for all (d1, . . . , dr) ∈ Er.

6. Uniqueness of the orientation

This section is dedicated to prove the following theorem:

Theorem 6.1. Let (E,χ,m) and (E,χ′,m) be two oriented arithmetic matroids
over the same matroid (E, rk). Then χ′ is a re-orientation of χ.

We fix a total order on E ' [n] such that [r], the first r elements, are a basis
of the matroid.

The basis graph of a matroid was first studied in [19] and [20].

Definition 6.2. The basis graph BG of a matroid (E,B) is the graph on the
set B of vertices with an edge between two vertices B1 and B2 if |B1 \B2| = 1.

Once chosen a basis B0 of a matroid, we define BG1 to be the induced
subgraph of BG whose vertices are all vertices adjacent to B0. Define BG≤1 the
induced subgraph whose vertices are the ones adjacent to B0 and B0 itself.

Our strategy in proving Theorem 6.1 is the following: suppose that χ([r]) =
χ′([r]), Lemma 6.7 proves that, up to reorientation, χ and χ′ coincides on all
vertices of distance one from [r]. Lemma 6.8 proves that χ(B) = χ′(B) using
Theorem 5.3.

Definition 6.3. Consider a matroid (E, rk). Let G be the bipartite graph on
vertices E and an edge between i ∈ B0 and j ∈ E \B0 if B0 \{i}∪{j} is a basis.
We call this graph the B0-fundamental circuit graph of the matroid (E, rk).

Definition 6.4. The Line graph L(G) of a graph G = (V,E) is the graph whose
set of vertices is the set E of edges in G. The graph L(G) has an edge between
e1 and e2 ∈ E if and only if the edges e1 and e2 are incident in G.

The Line graph of G is the graph BG1. A coordinatizing path in G is a
spanning forest of the graph G. We choose a coordinatizing path P of the graph
G and its Line graph L(P ) is an induced subgraph of BG1.

Example 6.5. We continue the Example 1.9: we chose as B0 the basis {1, 2, 3}.
The B0-fundamental circuit graph is shown in Example 6.5. The six highlighted
edge are a choice of a coordinatizing path P , and its Line graph L(P ) has
vertices the six bases {4, 2, 3}, {1, 4, 3}, {1, 5, 3}, {1, 2, 5}, {1, 2, 6}, and {1, 2, 7}.
The graph BG1 has two more vertices given by the bases {6, 2, 3} and {1, 7, 3}.

The following lemma is essentially proven in [21, Lemma 6].
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1 2 3

4 5 6 7

Figure 1: The B0-fundamental circuit graph and a coordinatizing path P highlighted.

Lemma 6.6. Let (E,χ,m) be an oriented arithmetic matroid with basis graph
BG, B0 be a vertex of BG and P be a coordinatizing path in a graph G (i.e. the
B0-fundamental circuit graph of the matroid). Then there exists a re-orientation
χ′ of χ such that χ′(B) = χ′(B0) for all vertices B ∈ L(P ).

We prove in our setting the equivalent of [21, Lemma 9].

Lemma 6.7. Let (E, rk,m) be an arithmetic matroid with basis graph BG, B0

be a vertex of BG and P be a coordinatizing path in the graph G. Let χ and
χ′ be two orientations of the arithmetic matroid (E, rk,m) such that χ(B) =
χ(B0) and χ′(B) = χ′(B0) for all vertices B ∈ L(P ). If χ(B0) = χ′(B0), then
χ(B′) = χ′(B′) for all B′ ∈ BG≤1.

Proof. Consider the subgraph H of G with the same set of vertices and with
an edge between i ∈ B0 and j ∈ E \ B0 if and only if χ(B0 \ {i} ∪ {j}) =
χ′(B0 \ {i} ∪ {j}) 6= 0. The graph H contains the chosen coordinatizing path
P by hypothesis. Suppose that H 6= G and let T (T 6= ∅) be the set of edges
of G not contained in H. For each (i, j) ∈ T we can consider l(i, j) the length
of the minimal path in H connecting the vertices i and j. Obviously, l(i, j) is
a odd number greater than 2. Let us fix (h, k) ∈ T with l(h, k) minimal among
all l(i, j) for (i, j) ∈ T and a minimal path Q = (h = i0, j0, i1, . . . , it, jt = k)
in H between h and k, where t is defined by the equality 2t + 1 = l(h, k). By
minimality of (h, k), two vertices ia and jb are connected in G if and only if
a = b, a = b+ 1 or b = t and a = 0.

Without loss of generality, we suppose iv = v+1 for 0 ≤ v ≤ t, B0 = [r], and
jv = r+v+1 for 0 ≤ v ≤ t. Apply Theorem 5.3 with ai = i and bj = t+j+2 to
the GP-functions χm and χ′m. The product

∏r
i=1 χm(a1, . . . , bσ(i), . . . , ar) is

non zero if and only if (ai, bσ(i)) is an edge in the path Q or if {ai, bσ(i)} = {h, k}
for all i ≤ t+ 1 and bσ(i) = ai for all t+ 1 < i ≤ r. The same implication holds
for the function χ′m. This happens only for two different permutations τ and

9



η, say that τ(h) = k and η(h) = j0. We define

x
def
=χm(a1, . . . , ah−1, bk, ah+1, . . . , ar),

a
def
=

∏
i 6=h

χm(a1, . . . , bτ(i), . . . , ar),

b
def
=

r∏
i=1

χm(a1, . . . , bη(i), . . . , ar),

c
def
=χm(a1, . . . , ar)

r−1χm(b1, . . . , br).

Thus, eq. (2) can be reduced to ax + b = c. The equivalent relation for χ′ is
ax′ + b = c′ with x′ = ±x and c′ = ±c. Since a, b, c and x are non-zero, then
x = x′ and so

χ(a1, . . . , ah−1, bk, ah+1, . . . , ar) = χ′(a1, . . . , ah−1, bk, ah+1, . . . , ar).

This equality contradicts the assumption H 6= G.

Lemma 6.8. Let (E, rk,m) be an arithmetic matroid and χ and χ′ two orien-
tations of the arithmetic matroid (E, rk) that coincide on the elements of BG≤1.
Then χ = χ′.

Proof. By hypothesis both χm and χ′m are GP-functions, so by Lemma 5.4
they are equal.

Theorem 6.1 follows from Lemmas 6.6 to 6.8.
We show an example of an orientable arithmetic matroid that is not repre-

sentable.

Example 6.9. Let ([3], rk,m) be the orientable arithmetic matroid associated
with the matrix ( 1 1 2

0 n n ) for a integer n > 1. Let m′ be the multiplicity function
defined by m′([3]) = 1 and m′(A) = m(A) for all A ( [3]. The triple ([3], rk,m′)
is a non-representable arithmetic matroid, since the multiplicity function does
not have the GCD property. This matroid is orientable, indeed any orientation
χ of ([3], rk,m) is an orientation of ([3], rk,m′). Figure 2 represents an arrange-
ment of hypersurfaces of T 2, the compact two dimensional torus, whose pattern
of intersections coincides with the arithmetic matroid ([3], rk,m′) for n = 3.

7. Representability

Definition 7.1. An arithmetic matroid (E, rk,m) has the strong GCD property
if

m(A) = gcd{m(B) | B basis and |B ∩A| = rkA}

for all A ⊆ E.
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Figure 2: An arrangement of hypersurfaces in the compact torus.

Notice that arithmetic matroids with the strong GCD property are uniquely
determined by their values on the basis of the underlying matroid. The strong
GCD property is equivalent to the statement that both (E, rk,m) and (E, rk∗,m∗)
are GCD arithmetic matroids.

Proposition 7.2. Let (E, rk,m) be an orientable arithmetic matroid. Then the
underlying matroid (E, rk) is representable over Q.

Proof. We choose an orientation χ of the arithmetic matroid (E, rk,m) and a
basis B0 = (b1, . . . br) of the matroid. For each e ∈ E, consider in Qr the vector

ve
def
= (χm(b1, . . . , bi−1, e, bi+1, . . . , br))1≤i≤r.

We choose a total order on E = [n] such that B0 = [r]. Let N be the matrix
that represent the vectors vi, for i = 1, . . . , n, in the canonical basis of Qr.
We claim that, for each A ⊆ [n] of cardinality r, the functions detN [A] and
χm(B0)r−1χm(A) coincide. The claimed equality holds if A = B0. If A =
{1, . . . , i− 1, i+ 1, . . . , r, j}, then

detN [A] = (−1)r−i
χm(1, . . . , i− 1, j, i+ 1, . . . , r)

χm([r])
detN [[r]]

=
χm(A)

χm(B0)
χm(B0)r = χm(B0)r−1χm(A)

The GP-function χm(B0)r−1χm(·) and detN [·] coincide on BG≤1, thus by
Lemma 5.4 χm(B0)r−1χm(B) = detN [B] for all B ⊂ E, |B| = r. The matroid
defined by N is (E, rk) since they have the same set of basis.

Proposition 7.3. Let (E, rk,m) be an orientable arithmetic matroid with the
strong GCD property. Then (E, rk,m) is representable.

Proof. Consider an orientation of (E, rk,m), the vectors ve ∈ Qr for e ∈ E de-
fined in the proof of Proposition 7.2, and let Λ the lattice generated by {ve}e∈E .
Let G be a finite abelian group of cardinality m(∅) = m(E). We claim that
the elements (ve, 0) in Λ × G are a representation of the arithmetic matroid
(E, rk,m). Observe that the index [Zr : Λ] is equal to m(B0)r−1m(E). Let
(E, rk,m′) be the arithmetic matroid described by the vectors (ve, 0). The mul-
tiplicity functions m and m′ coincides on all basis of the matroid (E, rk), hence
by the GCD property m = m′.
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