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ABSTRACT

Aims. We introduce a new deep-learning tool that estimates stellar parameters (e.g. effective temperature, surface gravity, and extinc-
tion) of young low-mass stars by coupling the Phoenix stellar atmosphere model with a conditional invertible neural network (cINN).
Our networks allow us to infer the posterior distribution of each stellar parameter from the optical spectrum.
Methods. We discuss cINNs trained on three different Phoenix grids: Settl, NextGen, and Dusty. We evaluate the performance of
these cINNs on unlearned Phoenix synthetic spectra and on the spectra of 36 class III template stars with well-characterised stellar
parameters.
Results. We confirm that the cINNs estimate the considered stellar parameters almost perfectly when tested on unlearned Phoenix
synthetic spectra. Applying our networks to class III stars, we find good agreement with deviations of 5–10% at most. The cINNs per-
form slightly better for earlier-type stars than for later-type stars such as late M-type stars, but we conclude that estimates of effective
temperature and surface gravity are reliable for all spectral types within the training range of the network.
Conclusions. Our networks are time-efficient tools that are applicable to large numbers of observations. Among the three networks,
we recommend using the cINN trained on the Settl library (Settl-Net) because it provides the best performance across the widest range
of temperature and gravity.

Key words. methods: statistical – stars: late-type – stars: pre-main sequence

1. Introduction

In star-forming regions, massive stars influence the surround-
ing environment energetically and dynamically during their short
lifetime, but the majority of stars that form in star-forming
regions are low-mass stars whose masses are similar to or lower
than the solar mass. These low-mass stars are not only the
most numerous objects in the star-forming region (Bochanski
et al. 2010), but also account for about half of the total stellar
mass (Kroupa 2002; Chabrier 2003). Living longer than massive
stars, these low-mass stars still remain in the pre-main-sequence
phase even when the massive stars are dead. These young low-
mass stars provide important information for studying stellar
evolution and planet formation.

Stellar parameters (e.g. effective temperature, surface grav-
ity, and luminosity) are estimated from photometric or spec-
troscopic data by various methods. These methods are usually

based on characteristic spectral features that vary depending on
the type of stars. Therefore, it is important to adopt a method
appropriate for the star under consideration and for the observed
wavelength range.

The volume of accumulated observations has continually
expanded in recent years, and therefore it has become impor-
tant to develop time-efficient tools that analyse large amounts
of data in a faster and more consistent way. To do this, artifi-
cial neural networks (NNs; Goodfellow et al. 2016) are currently
used in many astronomical fields. For instance, NNs have been
used to predict physical parameters (e.g. Fabbro et al. 2018;
Ksoll et al. 2020; Olney et al. 2020; Kang et al. 2022) or to
efficiently analyse images, such as identifying structures (e.g.
Abraham et al. 2018) and exoplanets (e.g. de Beurs et al. 2022),
or classifying observations (e.g. Wu et al. 2019; Walmsley et al.
2021; Whitmore et al. 2021). In this study, we develop NNs
that can efficiently analyse numerous spectra in the optical
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wavelength range of young low-mass stars. We prepare our net-
works to analyse data observed by the Multi Unit Spectroscopic
Explorer (MUSE) of the Very Large Telescope (VLT) adopting
the wavelength coverage and spectral resolution of MUSE. In the
follow-up paper, we will apply our tool to the spectra of young
stars in the Carina nebula that were observed with VLT/MUSE.

We adopt the conditional invertible neural network (cINN)
architecture developed by Ardizzone et al. (2021). Estimating
physical parameters from observed measurements is a non-trivial
task. Because the information we obtain from observations is
limited due to information loss during the forward process (i.e.
translation from physical systems into observations), different
physical systems can be observed similarly or almost identi-
cally, which we call a degenerate system. The cINN architecture
is specialised to solve the inverse problem of the degenerate
system (i.e. from observations to physical systems). In particu-
lar, cINN has its own advantage in that cINN always provides
a full posterior distribution of the physical system without
any additional computations. In astronomy, the cINN approach
has so far been used to characterise the internal properties
of planets (Haldemann et al. 2023), analyse photometric data
of young stars (Ksoll et al. 2020), study emission lines in
H II regions (Kang et al. 2022), or infer the merger history of
galaxies (Eisert et al. 2023).

The cINN architecture adopts a supervised learning approach
that learns the hidden rules from a number of well-labelled
data sets of physical parameters and observations. Because it is
difficult to collect a sufficient number of well-interpreted real
observations, synthetic observations have commonly been used
instead to generate enough training data. In this study, we use
Phoenix stellar atmosphere libraries (e.g. Allard et al. 2012;
Husser et al. 2013; Baraffe et al. 2015) to train cINNs. Selecting
the Settl, NextGen, and Dusty Phoenix libraries, we introduce
three cINNs (Settl-Net, NextGen-Net, and Dusty-Net) that were
trained on each of these libraries.

A few studies have developed NNs to analyse low-mass
stars from photometric or spectroscopic data (e.g. Ksoll et al.
2020; Olney et al. 2020; Sharma et al. 2020). For example,
Ksoll et al. (2020) developed a network using a cINN architec-
ture to estimate the physical parameters of individual stars from
HST photometric data, and Olney et al. (2020) used a convo-
lutional neural network (CNN) to estimate physical parameters
(e.g. effective temperature, surface gravity, and metallicity) from
near-infrared spectra observed with the Apache Point Observa-
tory Galactic Evolution Experiment (APOGEE) spectrograph.
Sharma et al. (2020) also used a CNN to diagnose the opti-
cal spectra of stars in a wide range of spectral types, but their
network only estimates the spectral type of the stars, not the
other physical parameters. On the other hand, in this paper, our
networks directly estimate the stellar parameters from the opti-
cal spectrum of low-mass stars, including the stars in the main
sequence and pre-main-sequence phases. Moreover, our network
provides a posterior distribution by adopting a cINN archi-
tecture, which is useful for studying the degeneracy between
parameters.

In this paper, we focus on validating the performance of the
three cINNs. We evaluate our networks not only on Phoenix
synthetic observations, but also on real spectra of 36 young
low-mass stars to investigate how well our cINNs work on real
observations. These stars are template stars in the class III phase
that have been well interpreted in the literature (e.g. Manara et al.
2013, 2017; Stelzer et al. 2013).

The paper is structured as follows. In Sect. 2 we describe
the structure and principles of cINN and explain implementation

details on the machine-learning side. In Sect. 3 we introduce our
three networks and three training databases. In the following sec-
tion (Sect. 4), we describe the class III template stars we used.
Our main results are reported in Sect. 5. We validate our net-
works using synthetic Phoenix spectra and 36 template stars. We
not only evaluate the parameter prediction power of the cINN,
but also determine whether the predicted parameters explain the
input observations. Section 6 presents the parts of the spectrum
on which cINN relies most. In Sect. 7 we investigate the gap
between Phoenix synthetic spectra and real observations. We
summarise the results in Sect. 8.

2. Neural network

2.1. Conditional invertible neural network

The cINN (Ardizzone et al. 2019a,b) is a deep-learning archi-
tecture that is well suited for solving inverse problems. These
are tasks in which the underlying physical properties x of a sys-
tem are to be recovered from a set of observable quantities y.
In nature, recovering the inverse mapping x ← y is often chal-
lenging and subject to degeneracy due to an inherent loss of
information in the forward mapping x → y, such that multiple
sets of physical properties may appear similar or even entirely
the same in observations.

To solve these difficulties, the cINN approach introduces a
set of unobservable, latent variables z with a known, prescribed
prior distribution P(z) to the problem in order to encode the
information that is otherwise lost in the forward mapping. The
cINN achieves this by learning a mapping f from the physi-
cal parameters x to the latent variables z conditioned on the
observations y, that is,

f (x; c = y) = z, (1)

capturing all the variance of x that is not explained by y in z,
while enforcing that z follows the prescribed prior P(z). Given a
new observation y′ at prediction time, the cINN can then query
the encoded variance by sampling the latent space according to
the known prior distribution and by making use of its invert-
ible architecture run in reverse to estimate the full posterior
distribution p (x|y′) as

p
(
x|y′

)
∼ g

(
z; c = y′

)
, with z ∝ P (z) , (2)

where f −1(·, c) = g(·, c) represents the inverse of the learned
forward-mapping for a fixed condition c. In practice, P(z) is usu-
ally prescribed to be a multivariate normal distribution with zero
mean and unit covariance, and the dimension of the latent space
is chosen to be equal to that of the target parameter space, that
is, dim(z) = dim(x).

The invertibility of the cINN architecture is achieved by
chaining so-called (conditional) affine coupling blocks (Dinh
et al. 2016). Each of these blocks performs two complementary
affine transformations on the halves u1 and u2 of the block input
vector u, following

v1 = u1 � exp (s2(u2, c)) ⊕ t2(u2, c)
v2 = u2 � exp (s1(v1, c)) ⊕ t1(v1, c).

(3)

As the equation shows, these two transformations are eas-
ily inverted given the halves v1, v2 of the output vector v
according to

u2 = (v2 	 t1(v1, c)) � exp (−s1(v1, c))
u1 = (v1 	 t2(u2, c)) � exp (−s2(u2, c)) .

(4)
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In both sets of Eqs. (3) and (4), si and ti (i ∈ {1, 2}) denote arbi-
trarily complex transformations, which need not themselves be
invertible (as they are only ever evaluated in the forward direc-
tion) and can also be learned by the cINN itself when realised as
small sub-networks (Ardizzone et al. 2019a,b).

Another advantage of the cINN architecture is that as the
observations are treated as a condition and simply concatenated
to the input of the subnetworks si and ti in each affine coupling
layer, it allows for (a) an arbitrarily large dimension of the input
y, and (b) the introduction of a conditioning network h (trained
together with the cINN itself), which transforms the input obser-
vation into a more helpful, learned representation ỹ = h(y) for
the cINN (Ardizzone et al. 2019b).

2.2. Implementation details

We employed a cINN consisting of 11–16 conditional affine cou-
pling layers in the generative flow (GLOW; Kingma & Dhariwal
2018) configuration, where the transformation outputs si(·) and
ti(·) are estimated by a single subnetwork ri(·) = (si(·), ti(·)).
The latter choice reduces the number of sub-networks per affine
layer from four to two, reducing network complexity and com-
putation time. As sub-networks ri we employed simple fully
connected architectures consisting of five to seven layers of size
256 using the rectified linear unit (ReLU, ReLU(x) = max(0, x))
as activation function.

The affine coupling layers were furthermore alternated with
random permutation layers, which randomly (but in a fixed
and thus invertible way) permute the output vector in between
coupling layers to improve the mixing of information between
the two streams u1 and u2 (Ardizzone et al. 2019a,b). For the
conditioning network h, we also employed a three-layer fully
connected architecture with layer size 512 and ReLU activation,
extracting 256 features in the final layer.

Prior to training, we performed a linear scaling transforma-
tion on the target parameters x = {x1, . . . , xN} and on the input
observations y = {y1, . . . , yM}, where each target property xi and
input feature yi was modified according to

x̂i =
xi − µxi

σxi

,

ŷi =
yi − µyi

σyi

,
(5)

where µxi , µyi and σxi , σyi , denote the means and standard devi-
ations of the respective parameter or feature across the training
data set. These transformations ensure that the distributions of
individual target parameters/input features have zero mean and
unit standard deviation and are trivially inverted at prediction
time. The transformation coefficients µxi , µyi and σxi , σyi are
determined from the training set and applied in the same way
to new query data.

We trained the cINN approach for this problem by min-
imising the maximum likelihood loss as described in Ardizzone
et al. (2019b) using the Adam (Kingma & Ba 2014) optimiser
for the stochastic gradient descent with a step-wise learning-rate
adjustment.

3. Training data

3.1. Stellar photosphere models

The approach we used to train the cINN is to use libraries of
theoretical models for stellar photospheres. Our goal is to use

the cINN to classify and derive photospheric parameters from
medium- to low-resolution optical spectroscopy. For this pur-
pose, we selected the most extensive set of available models that
offer a spectral resolution better than R ∼ 10 000. The most
extensive, homogeneous, tested, and readily available1 library
of theoretical photospheric spectra, including different treat-
ments of dust and molecules formation and opacities, that is
applicable in the range of effective temperatures covering the
range from ∼2000 to ∼7000 K and gravities appropriate for pre-
main-sequence stars and brown dwarfs are the Phoenix spectral
libraries (e.g. Allard et al. 2012; Husser et al. 2013; Baraffe et al.
2015). We used the NextGen, Dusty, and Settl models. The lat-
ter is expected to provide the best description of the atmospheric
characteristics in most cases of interest (Allard et al. 2012). We
included the older NextGen models as a comparison set and the
Dusty models because they appear to describe photospheres in
the range of 2000 K ≤ Teff ≤ 3000 K more accurately (e.g. Testi
2009). For a more detailed description and comparison of the
physical assumption in the models, we refer to the discussion
and references in Allard et al. (2012).

The grid of synthetic spectra is available for regularly spaced
values of Teff and log g, with steps of 100 K in Teff and 0.5
in log g. To compute a synthetic spectrum for a given set of
(arbitrary but within the grid ranges) values of (Teff , log g, and
AV), we set up the following procedure: First, we identified the
values of Teff and log g in the grid that bracket the requested val-
ues, then we interpolated linearly in log g at the values of the
two bracketing Teff values, then we interpolated linearly the two
resulting spectra at the requested Teff value, finally, we computed
and applied the extinction following the Cardelli et al. (1989)
prescription, with RV as a user-selectable parameter (we used
RV = 4.4; see Sect. 3.2). The resulting spectrum was then con-
volved at the MUSE resolution, using a Gaussian kernel, and was
resampled on the MUSE wavelength grid.

3.2. Databases and networks

We analysed the cINN performance based on each of the three
spectral libraries described in the previous section. Accordingly,
we constructed a training data set for each spectral library using
the interpolation scheme we outlined. For the target parameter
space, we adopted the limits described below.

For NextGen and Settl, we limited Teff to the range of 2600
to 7000 K and log(g/cm s−2) from 2.5 to 5. The Dusty library
has an overall smaller scope, and therefore we can only probe
from 2600 to 4000 K in Teff and from 3 to 5 in log(g/cm s−2)
here. For AV, we selected the same range of 0 to 10 mag for all
three libraries, where we used the Cardelli et al. (1989) extinc-
tion law with RV = 4.4 to artificially redden the model spectra.
We chose RV = 4.4 considering the application of our networks
to the Carina nebula (Hur et al. 2012) in the follow-up study.
As some of the template stars used in this paper (Sect. 4) are
dereddend assuming RV = 3.1, we also experimented with train-
ing data sets using RV = 3.1. We found no significant difference
in our main results and therefore continue to use RV = 4.4 in
this study.

In terms of wavelength coverage, we matched the range of the
template spectra described in Sect. 4 (i.e. ∼5687 to ∼9350 Å) and
adopted the MUSE spectral resolution by subdividing the wave-
length interval into a total of 2930 bins with a width of 1.25 Å.

1 We downloaded the theoretical spectra from the websites https://
osubdd.ens-lyon.fr/phoenix/ and http://svo2.cab.inta-
csic.es/theory/newov2/
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Additionally, we normalised the spectra to the sum of the total
flux across all bins.

To generate the training data, we opted for a uniform ran-
dom sampling approach, where we sampled both Teff and g in
log space and only AV in linear space within the limits speci-
fied above for the three libraries. We generated a total of 65 536
synthetic spectra models for each library. We also experimented
with larger training sets, but found no significant increase in the
predictive performance of our method, such that we deemed this
training set size sufficient.

Finally, we randomly split each of these three initial
databases 80:20 into the respective training and test sets for
the cINN. The former subsets mark the data that the cINN was
trained on, whereas the latter were withheld during training and
served to quantify the performance of the trained cINN on pre-
viously unseen data with a known ground truth of the target
parameters.

We first trained 50 networks for each library with randomised
hyper-parameters of cINN, and we selected the best network
based on the performance on the test set and template stars.
We trained the network until the training loss and test loss con-
verged or either of them diverged, where the latter cases were
discarded. It took about 50 min to train one network (6 h for
50 networks using seven processes in parallel) with an NVIDIA
GeForce RTX 2080 Ti graphic card. After they were trained, our
networks can sample posterior estimates very efficiently. Using
the same graphic card and sampling 4096 posterior estimates per
observation, we needed about 1.1 s to sample posterior distribu-
tions for 100 observations (91 observations per second). When
tested with M1 pro CPU with 8 cores, it takes about 13 s for 100
observations (7.6 observation/s).

4. Class III templates

The set of observations on which we validated our networks con-
tained 36 spectra of well-known class III stars observed with
VLT/X-Shooter (Manara et al. 2013, 2017). We refer to the orig-
inal papers for details of the observations and data reduction.
The templates come from different star-forming regions (Taurus,
Lupus, Upper Scorpius, σ Orionis, TW Hydrae Association, and
Chameleon I) and span a broad range of effective temperatures
(2300–5800 K), as well as spectral types (M9.5–G5.0). We used
their properties as provided by Manara et al. (2013, 2017) and
Stelzer et al. (2013).

Spectral types for stars later than K5 were obtained based on
the depth of the molecular absorption bands (TiO, VO, and CaH)
and a few photospheric lines (e.g. Na I, Ca I, and Mg I) that are
present in the optical part of the spectra (Manara et al. 2013).
Earlier K-type stars were identified using the spectral indices
introduced by Herczeg & Hillenbrand (2014), while G-type stars
were identified based on the difference at 5150 Å of contin-
uum estimated between 4600 and 5400 Å, and 4900 and 5150 Å
(Herczeg & Hillenbrand 2014). Effective temperatures (Teff)
were derived from spectral types using the relations from
Luhman et al. (2003) for M-type objects and those from Kenyon
& Hartmann (1995) for K- and G-type stars. Most of the tem-
plates have none or negligible extinction (AV < 0.5 mag, Manara
et al. 2017); those with AV > 0.3 were dereddened before anal-
ysis assuming the extinction law from Cardelli et al. (1989) and
RV = 3.1.

The surface gravity (log g) of class III sources was estimated
using the ROTFIT tool (Frasca et al. 2003). It compares the
observed spectrum with the grid of referenced spectra and finds

a best-fit by minimising the χ2 of difference between the spectra
in specific wavelength ranges. Stelzer et al. (2013) and Manara
et al. (2017) used BT-Settl spectra in a log g range of 0.5–5.5 dex
as reference. The tool also provides Teff and radial and rotational
velocities, but we used Teff derived from spectral types in the
subsequent analysis. Table 1 provides a summary of the class III
stars and their stellar parameters. We excluded the sources from
the original paper that might be unresolved binaries or whose
youth is doubtful due to the lack of the lithium absorption line at
6708 Å (Manara et al. 2013).

X-Shooter has higher spectral resolution than MUSE. The
template spectra were therefore degraded to the MUSE resolu-
tion (R ∼ 4000) using a Gaussian kernel and were resampled on
MUSE spectra within the range of 5687.66–9348.91 Å (the com-
mon spectral range of MUSE and the optical arm of X-Shooter).
Subsequently, spectra were normalised to the sum of the total
flux of the stellar spectrum within the analysed spectral range.

5. Validation

5.1. Validations with synthetic spectra

In this section, we validate whether the trained networks learned
the physical rules hidden in the synthetic Phoenix models well.
We use the test set of each database, that is, the synthetic models
that are not used for the training, but share the same physics as
the training data. As mentioned in Sect. 3.2, we only used 80%
of the database for training and retained the rest for validation.
Each test set consists of 13 107 test models.

5.1.1. Prediction performance

We introduce an accuracy index to evaluate the parameter predic-
tion performance of the network. The accuracy of the prediction
is defined as the deviation between the posterior estimate of the
parameter and the ground-truth value (x∗) of the test model.
In this section, we calculate the accuracy on the same physical
scales as we used to build the databases in Sect. 3.2, meaning that
we use the logarithmic scales for the effective temperature and
surface gravity and the linear scale for the extinction magnitude.
We either used all posterior estimates sampled for one test model
or the maximum a posteriori (MAP) point estimate as a rep-
resentative. To determine the MAP estimate from the posterior
distribution, we performed a Gaussian kernel density estimation
on a 1D posterior distribution and determined the point at which
the probability density maximises, similar to the method used
in Ksoll et al. (2020) and Kang et al. (2022). In most parts of
this paper, we use the MAP estimate to quantify the accuracy of
the prediction.

We evaluated the three networks (Settl-Net, NextGen-Net,
and Dusty-Net) by using all 13 107 test models in the correspond-
ing test set. For each test model, we sampled 4096 posterior
estimates and measured the MAP estimates for three parameters
from the 1D posterior distributions. In Fig. A.1 we present 2D
histograms to compare the MAP values estimated by Settl-Net
with the true values of the entire test models. Settl-Net predicts
all three parameters extremely well, so that the data points all lie
on the one-to-one correspondence line. The NextGen-Net and
Dusty-Net also show extremely good results on the test set. The
results of the other two networks are very similar to the result of
Settl-Net (Fig. A.1), and therefore we do not include figures of
them in this paper.

To quantify the average accuracy of the network for multiple
test models, we measured the root mean square error (RMSE)
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Table 1. Stellar parameters of class III template stars.

Object name Region Spectral type Teff(K) log(g/cm s−2) Reference log(g)

RXJ0445.8+1556 Taurus G5.0 5770 3.93 (1)
RXJ1508.6−4423 Lupus G8.0 5520 4.06 (1)
RXJ1526.0−4501 Lupus G9.0 5410 4.38 (1)
HBC407 Taurus K0.0 5110 4.33 (1)
PZ99J160843.4−260216 Upper Scorpius K0.5 5050 3.48 (1)
RXJ1515.8−3331 Lupus K0.5 5050 3.86 (1)
PZ99J160550.5−253313 Upper Scorpius K1.0 5000 3.81 (1)
RXJ0457.5+2014 Taurus K1.0 5000 4.51 (1)
RXJ0438.6+1546 Taurus K2.0 4900 4.12 (1)
RXJ1547.7−4018 Lupus K3.0 4730 4.22 (1)
RXJ1538.6−3916 Lupus K4.0 4590 4.21 (1)
RXJ1540.7−3756 Lupus K6.0 4205 4.42 (1)
RXJ1543.1−3920 Lupus K6.0 4205 4.12 (1)
SO879 σ Orionis K7.0 4060 3.90 (2)
Tyc7760283_1 TW Hydrae M0.0 3850 4.70 (2)
TWA14 TW Hydrae M0.5 3780 4.70 (2)
RXJ1121.3−3447_app2 TW Hydrae M1.0 3705 4.60 (2)
RXJ1121.3−3447_app1 TW Hydrae M1.0 3705 4.80 (2)
CD_29_8887A TW Hydrae M2.0 3560 4.40 (2)
CD_36_7429B TW Hydrae M3.0 3415 4.50 (2)
TWA15_app2 TW Hydrae M3.0 3415 4.60 (2)
TWA7 TW Hydrae M3.0 3415 4.40 (2)
TWA15_app1 TW Hydrae M3.5 3340 4.50 (2)
SO797 σ Orionis M4.5 3200 3.90 (2)
SO641 σ Orionis M5.0 3125 3.80 (2)
Par_Lup3_2 Lupus M5.0 3125 3.70 (2)
SO925 σ Orionis M5.5 3060 3.80 (2)
SO999 σ Orionis M5.5 3060 3.80 (2)
Sz107 Lupus M5.5 3060 3.70 (2)
Par_Lup3_1 Lupus M6.5 2935 3.60 (2)
LM717 Chameleon I M6.5 2935 3.50 (2)
J11195652−7504529 Chameleon I M7.0 2880 3.09 (1)
LM601 Chameleon I M7.5 2795 4.00 fixed
CHSM17173 Chameleon I M8.0 2710 4.00 fixed
TWA26 TW Hydrae M9.0 2400 3.60 (2)
DENIS1245 TW Hydrae M9.5 2330 3.60 (2)

Notes. The last column indicates the literature source of the log(g) values, where “fixed” indicates that no measurement was available in the
literature, and we assumed a fixed value of log(g cm s−2) = 4.0 instead.
References. (1) Manara et al. (2017); (2) Stelzer et al. (2013).

following

RMSE =

√
ΣN

i=1(xMAP
i − x∗i )2

N
. (6)

In the case of the Dusty-Net, the training ranges of the effective
temperature and surface gravity are narrower than the range of
the other two networks. As the total number of models is the
same for all three databases (i.e. 65 536 models), the number
density of the model for the effective temperature and surface
gravity in the Dusty database is higher than the other two. We
therefore defined the normalised RMSE (NRMSE),

NRMSE =
RMSE

xtraining
max − xtraining

min

, (7)

by dividing the RMSE by the training range.

In Table 2 we list the RMSE and NRMSE of each param-
eter for three networks. As already shown in the comparisons
between the MAP values and true values (Fig. A.1), the RMSE
and NRMSE for all three networks are very low around 10−4 ∼

10−2. Dusty-Net has the smallest RMSE and NRMSE for all
three parameters in the three networks. In the case of the
effective temperature and extinction, the differences in NRMSE
between the networks are very small, whereas the difference in
the NRMSE in the case of surface gravity is relatively noticeable
in the three parameters. Although Dusty-Net has the best results,
the low values in Table 2 demonstrate that all three networks
perfectly learned the synthetic spectra.

5.1.2. Resimulation

To further validate the prediction results of the cINN on the syn-
thetic test data, we verified whether the spectra that correspond
to the MAP estimates match the respective input spectrum of
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Table 2. Average prediction performance of three networks (Settl-Net, NextGen-Net, and Dusty-Net) on 13 107 Phoenix synthetic models in the
test set.

RMSE NRMSE

Network log Teff log(g) AV log Teff log(g) AV

Settl 4.260 × 10−4 1.211 × 10−2 7.893 × 10−3 9.904 × 10−4 4.846 × 10−3 7.893 × 10−4

NextGen 3.064 × 10−4 6.742 × 10−3 6.499 × 10−3 7.123 × 10−4 2.697 × 10−3 6.499 × 10−4

Dusty 7.274 × 10−5 1.573 × 10−3 2.517 × 10−3 3.888 × 10−4 7.863 × 10−4 2.517 × 10−4

Notes. For each parameter and each network, we present the RMSE, the mean accuracy of the MAP estimates, and the RMSE normalised by the
parameter range covered in the training data (NRMSE). The test set of each network is drawn from the corresponding synthetic database.
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Fig. 1. Resimulation results of Settl-Net for the entire synthetic spectra in the test set. The left panel presents the median relative error across
the wavelength range of the resimulated spectra based on the MAP predictions of the cINN trained on the Settl models averaged over the 13 107
synthetic spectra in the test set. The grey envelope indicates the interquantile range between the 25 and 75% quantiles. In the right panel, we present
the histogram of the RMSEs of the 13 107 resimulated spectra. The mean resimulation RMSE across the test set is 3.01 ± 4.35 × 10−7.

each test example. We did this by feeding the MAP predictions
for the stellar parameters of the 13 107 test examples as an input
to our spectra interpolation routine, which we introduced for the
training set generation in Sect. 3.1, in order to resimulate the
corresponding spectra. Afterwards, we computed the residuals,
RMSEs, and R2 scores of the resimulated spectra in compari-
son to the corresponding input spectra. The latter serves as a
goodness-of-fit measure and is defined as

R2 = 1 −
∑

i(yi − ŷi)2∑
i(yi − ȳ)2 (8)

for a set of N observations yi with corresponding predictions ŷi,
where ȳ = 1

N
∑N

i yi denotes the mean of the observations. It takes
on values between 0 and 1, with the latter indicating a perfect
match (James et al. 2017).

Figure 1 summarises the results for Settl-Net, showing the
median relative residual against the wavelength in the left panel
and the distribution of RMSEs in the right one. The corre-
sponding plots for NextGen-Net and Dusty-Net are shown in
Figs. A.2 and A.3. Out of the 13,107 test cases, we were unable
to resimulate spectra for only 52, 32, and 9 MAP predic-
tions for Settl-Net, NextGen-Net, and Dusty-Net, respectively.
In these few instances alone fall either the predicted tempera-
ture or gravity (or both) outside the interpolation limits of the
respective spectra library, so that the spectrum cannot be res-
imulated. Notably, all of these cases are extreme edge cases
that lie immediately at the training boundaries of either Teff

or log(g) so that the cINN MAP estimates fall ever so slightly

outside the limits while still being an excellent match to the
ground truth.

Figure 1 confirms the excellent precision of the MAP pre-
dictions that was demonstrated in the ground-truth comparison
in Fig. A.1. With a median RMSE of the resimulated spectra
of 1.57+1.81

−0.77 × 10−7 (and median R2 score of 1), the resimulated
spectra correspond exactly to the corresponding input. The left
panel of Fig. 1 also shows that while the overall median residual
is very low, there is a systematic trend towards a larger discrep-
ancy between resimulation and input within a shorter wavelength
regime (<7250 Å). This is likely an effect of the overall low flux
in the short-wavelength regime for the colder stars (<4000 K), so
that even a small deviation in flux results in a comparably higher
value of the relative residual. We note again, however, that with
most relative deviations falling below 0.2%, the discrepancy is
marginal overall even in the short-wavelength regime.

Figures A.2 and A.3 show that NextGen-Net and Dusty-Net
exhibit a similar behaviour in the resimulation test, although we
find slightly lower mean RMSEs with 2.28 ± 2.48 × 10−7 and
9.01 ± 7.34 × 10−8, respectively. Because the mean RMSEs in
the three different spectral libraries agree within one σ, however,
it is safe to say that all three networks achieve equally excellent
performance in the resimulation test.

5.2. Validations with class III template stars

In this section, we investigate how well our cINNs predict
each parameter when they are applied to real observations by
analysing the class III template stars introduced in Sect. 4.
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Table 3. Summary of cINN MAP predictions for the class III template spectra for the cINN models based on the three different spectral libraries.

MAP estimate

Teff (K) [∆lit] log(g/cm s−2) [∆lit] AV (mag)

Object name Settl NextGen Dusty Settl NextGen Dusty Settl NextGen Dusty

RXJ0445.8+1556 5391 [379] 5692 [78] 4161 [1609] 4.28 [−0.35] 4.13 [−0.20] 4.14 [−0.21] 0.21 0.38 −0.02
RXJ1508.6−4423 5069 [451] 5434 [86] 4141 [1379] 4.10 [−0.04] 4.16 [−0.10] 4.13 [−0.07] −0.31 −0.04 −0.13
RXJ1526.0−4501 5150 [260] 5443 [−33] 4170 [1240] 4.25 [0.13] 4.21 [0.17] 4.13 [0.25] −0.02 0.19 0.14
HBC407 5129 [−19] 5497 [−387] 4165 [945] 4.71 [−0.38] 4.64 [−0.31] 4.26 [0.07] 0.17 0.37 0.02
PZ99J160843.4−260216 5006 [44] 5366 [−316] 4154 [896] 4.43 [−0.95] 4.42 [−0.94] 4.28 [−0.80] 0.15 0.38 −0.09
RXJ1515.8−3331 4895 [155] 5248 [−198] 4177 [873] 4.25 [−0.39] 4.32 [−0.46] 4.31 [−0.45] 0.00 0.32 0.27
PZ99J160550.5−253313 4759 [241] 5168 [−168] 4192 [808] 4.02 [−0.21] 4.19 [−0.38] 4.34 [−0.53] 0.09 0.40 0.21
RXJ0457.5+2014 4644 [356] 5105 [−105] 4123 [877] 4.37 [0.14] 4.63 [−0.12] 4.47 [0.04] −0.13 0.34 −0.17
RXJ0438.6+1546 4588 [312] 4992 [−92] 4177 [723] 4.01 [0.11] 4.20 [−0.08] 4.50 [−0.38] 0.01 0.44 0.20
RXJ1547.7–4018 4615 [115] 5015 [−285] 4185 [545] 4.15 [0.07] 4.40 [−0.18] 4.52 [−0.30] −0.02 0.26 0.13
RXJ1538.6–3916 4464 [126] 4830 [−240] 4180 [410] 4.17 [0.04] 4.38 [−0.17] 4.69 [−0.48] 0.01 0.30 0.21
RXJ1540.7–3756 4225 [−20] 4260 [−55] 4115 [90] 4.22 [0.20] 4.17 [0.25] 4.92 [−0.50] −0.11 0.12 0.22
RXJ1543.1–3920 4269 [−64] 4299 [−94] 4132 [73] 4.34 [−0.22] 4.32 [−0.20] 5.00 [−0.88] 0.03 0.28 0.39
SO879 4106 [−46] 4027 [33] 3909 [151] 3.96 [−0.06] 4.09 [−0.19] 4.78 [−0.88] 0.22 0.29 −0.12
Tyc7760283_1 3881 [−31] 3748 [102] 3742 [108] 5.00 [−0.30] 4.99 [−0.29] 5.23 [−0.53] −0.17 −0.34 −0.52
TWA14 3819 [−39] 3739 [41] 3677 [103] 5.07 [−0.37] 4.87 [−0.17] 5.09 [−0.39] −0.32 0.19 −0.30
RXJ1121.3–3447_app2 3797 [−92] 3622 [83] 3635 [70] 4.78 [−0.18] 4.68 [−0.08] 5.13 [−0.53] 0.38 0.30 0.02
RXJ1121.3–3447_app1 3719 [−14] 3559 [146] 3564 [141] 4.90 [−0.10] 4.77 [0.03] 5.16 [−0.36] 0.01 0.04 −0.07
CD_29_8887A 3670 [−110] 3483 [77] 3491 [69] 4.79 [−0.39] 4.57 [−0.17] 5.05 [−0.65] 0.56 0.51 0.07
CD_36_7429B 3423 [−8] 3264 [151] 3262 [153] 4.70 [−0.20] 4.44 [0.06] 4.82 [−0.32] 0.52 0.50 0.13
TWA15_app2 3467 [−52] 3289 [126] 3306 [109] 4.93 [−0.53] 4.71 [−0.31] 5.02 [−0.62] 0.17 0.31 0.09
TWA7 3519 [−104] 3321 [94] 3316 [99] 4.83 [−0.23] 4.45 [0.15] 4.80 [−0.20] 0.41 0.94 0.14
TWA15_app1 3469 [−129] 3285 [55] 3310 [30] 5.01 [−0.51] 4.79 [−0.29] 5.08 [−0.58] 0.06 0.20 0.10
SO797 3248 [−48] 3225 [−25] 3078 [122] 3.93 [−0.03] 3.47 [0.43] 4.03 [−0.13] 1.07 1.48 0.73
SO641 3129 [−4] 3237 [−112] 2997 [128] 3.86 [−0.06] 3.20 [0.60] 3.81 [−0.01] 0.68 1.46 0.43
Par_Lup3_2 3181 [−56] 3245 [−120] 3048 [77] 3.96 [−0.26] 3.29 [0.41] 4.00 [−0.30] 0.72 1.29 0.40
SO925 3008 [52] 3277 [−217] 2961 [99] 3.76 [−0.06] 2.92 [0.78] 3.61 [0.09] 0.97 2.01 0.76
SO999 3079 [−19] 3294 [−234] 2979 [81] 3.68 [0.12] 2.85 [0.95] 3.58 [0.22] 0.69 1.60 0.54
Sz107 2981 [79] 3272 [−212] 2935 [125] 3.69 [0.11] 2.85 [0.95] 3.50 [0.30] 0.56 1.67 0.35
Par_Lup3_1 2739 [196] 3170 [−235] 2868 [67] 3.53 [−0.03] 2.37 [1.13] 3.04 [0.46] 2.74 3.62 2.47
LM717 2714 [221] 3218 [−283] 2903 [32] 3.46 [0.14] 2.37 [1.23] 2.84 [0.76] 1.83 3.08 1.82
J11195652–7504529 2629 [251] 3165 [−285] 2864 [16] 3.50 [−0.41] 2.27 [0.82] 2.75 [0.34] 2.11 3.43 2.24
LM601 2601 [194] 3137 [−342] 2807 [−12] 3.62 [−] 2.28 [−] 2.98 [−] 1.79 3.16 2.00
CHSM17173 2539 [171] 3096 [−386] 2773 [−63] 3.50 [−] 2.18 [−] 2.61 [−] 1.66 3.45 2.31
TWA26 2477 [−77] 2959 [−559] 2625 [−225] 3.46 [0.14] 1.83 [1.77] 2.56 [1.04] 2.64 3.92 2.92
DENIS1245 2453 [−123] 2924 [−594] 2590 [−260] 3.45 [0.15] 1.71 [1.89] 2.58 [1.02] 2.34 3.74 2.82

Notes. For Teff and log(g), the value in parentheses indicates the difference xlit − xMAP to the literature stellar parameters listed in Table 1. Since all
class III templates are assumed to be at zero extinction, the value for AV itself is identical to the difference.

The stellar parameter values (i.e. effective temperature, surface
gravity, and extinction) provided by previous papers (Manara
et al. 2013, 2017; Stelzer et al. 2013) are listed in Table 1. The
36 template stars include cases for which the literature value
of the effective temperature exceeds the training range of the
cINNs, or for which the literature gravity value is lacking. Two
out of 36 stars have temperatures below 2600 K, which is beyond
the temperature range of all three databases. Moreover, 14 stars
with temperatures between 4000 and 7000 K exceed the training
range of the Dusty-Net. These stars were excluded from some
analyses in the following sections.

Using each network, we sampled 4096 posterior estimates
per star and measured MAP estimation for three parameters. We
list the MAP values predicted by the three networks in Table 3.

5.2.1. Parameter comparison between the literature and cINN

In Fig. 2 we compare the stellar parameter values from the lit-
erature (xlit) with MAP predictions (xMAP). Each row shows the

result of different cINNs. The first two columns are the results
of effective temperature and surface gravity. Because the extinc-
tion value of the template stars is negligible, we compared the
literature temperature value with the MAP extinction estimate.
We calculated the uncertainty of the MAP estimate based on the
width of the posterior distribution, but because the uncertainties
are all very small, we do not present the uncertainty of the MAP
estimate in the figure. For the uncertainty of the literature values,
we adopt a one-subclass temperature interval as the uncertainty
of the temperature and use the surface gravity uncertainty pro-
vided by the literature (Stelzer et al. 2013; Manara et al. 2017).
According to the literature, the 1σ uncertainty of the extinction
is ∼0.1−0.2 mag. We therefore indicate the range from −0.2 to
0.2 mag in grey to show the uncertainty range.

In this section, we do not use some stars in our analyses
whose stellar parameter value from the literature exceeds the
training range or for which any stellar parameter value is lack-
ing, although they are presented in Fig. 2 by triangles. We used
34, 34, and 20 stars for Settl-Net, NextGen-Net, and Dusty-Net,
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Fig. 2. Comparison of MAP predictions with literature values in Table 1. Stars are basically denoted by circles, but triangles denote stars that were
excluded in analyses such as RMSE calculation either because their literature temperature values exceed the cINN training range or because their
literature surface gravity values are lacking. The colour indicates the temperature deviation between the MAP estimate and the literature value. We
indicate the training range of each parameter with dotted green lines. In the third column, the horizontal grey area presents the 1σ uncertainty (i.e.
0.2 mag) of extinction provided by the literature.

respectively, when analysing temperatures or extinction, and we
used 32, 32, and 18 stars when analysing gravity.

Comparing the temperature MAP estimates with the litera-
ture values, we confirm that the majority of stars lie close to the
one-to-one correspondence line. We calculated the RMSE for
each network by only using stars whose temperature literature
values were within the training range (i.e. circles in Fig. 2). The
average of the one-subclass temperature interval of these stars
is about 140 K, therefore the RMSE values of 175.3, 192.3, and
94.02 K for Settl-Net, NextGen-Net, and Dusty-Net, respectively,

are well within the interval of one to two subclasses. As shown
in the figure and RMSE values, Dusty-Net agrees best with
the literature value when the temperature is within its train-
ing range of 2600–4000 K. However, Dusty-Net agrees little
with the literature values when the temperature is outside the
training range. This implies that using cINN to analyse stars
far from the training range should be done with caution. When
we compare Settl-Net and NextGen-Net, which have the same
training range, the MAP estimates of Settl-Net are closer to the
literature values.
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Fig. 3. Relative temperature deviations of the template stars between
the MAP estimates and the literature values sorted by their spectral type.
Different colours and symbols indicate the results of the three different
cINNs. The pink area indicates the uncertainty of the literature temper-
ature value. We only present template stars whose literature temperature
value is within the network training range.

Table 4. Average absolute relative error between cINN predictions and
literature values for the template stars.

Average relative error [%] Average relative error [σ]

Network Teff log(g) AV Teff log(g) AV

Settl 3.28 5.5 – 1.08 0.809 2.78
NextGen 4.49 10.2 – 1.12 1.38 4.95
Dusty 2.58 9.13 – 0.601 1 3.87

Notes. We calculated the errors by dividing the absolute difference
between the MAP estimate and the literature value either by litera-
ture values (i.e. errors in percent units) or by the 1σ uncertainty of the
literature value (i.e. errors in 1σ units). In the case of the effective tem-
perature, the 1σ uncertainty corresponds to the temperature interval of
one subclass. For each network and parameter, we only used template
stars whose literature values are within the training range of the network
to calculate the errors.

To compare the performance of the three networks on the
temperature in more detail, we present the relative temperature
deviations between the MAP predictions and the literature values
sorted by their spectral type. Figure 3 also shows that MAP esti-
mates from Dusty-Net agree well with the literature value within
5%. In the case of Dusty-Net, the deviation is within the one-
subclass interval, except for one star. In the case of Settl-Net and
NextGen-Net, 23 and 16 stars out of 34, respectively, deviate by
less than one-subclass interval. The MAP estimates of Settl-Net
and NextGen-Net agree relatively little with the literature val-
ues for hot stars of 4500 K (e.g. K4.0 type) or higher. However,
the discrepancies are still within 10%. The average absolute rela-
tive deviations when only the templates within the training range
of each network are used are 3.28, 4.49, and 2.58% for Settl-
Net, NextGen-Net, and Dusty-Net, respectively (Table 4). These
average errors are equivalent to 1.08, 1.12, and 0.601 subclasses.

In the case of surface gravity, the RMSEs of Settl-Net,
NextGen-Net, and Dusty-Net are 0.30, 0.51, and 0.42 dex,
respectively. However, because the surface gravity value from
previous studies (Stelzer et al. 2013; Manara et al. 2017) was
obtained by fitting the spectrum on the Settl models, the MAP
estimate of Settl-Net is essentially closest to the literature value.
Although Settl-Net has the lowest RMSE value, the other two
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Fig. 4. Average relative error of the template stars between the MAP
estimates and the literature values sorted by their spectral type. The
average error is calculated as the rms of the relative errors of temper-
ature and gravity, both in log scale (Eq. (9)). The pink area indicates the
1σ uncertainty of the literature value. We only present template stars
whose literature temperature value is within the network training range
and whose literature gravity value is presented. The colour codes are the
same as in Fig. 3.

networks also agree well with the literature value when the
uncertainty of the literature values is considered.

To combine the results of temperature and surface gravity,
we defined the combined error of two parameters as

Combined error =

√√
1
2

 ∆Teff

log T lit
eff

2

+

(
∆g

log glit

)2,
for

∆Teff = log T MAP
eff − log T lit

eff ,

∆g = log gMAP − log glit,

(9)

and present the combined error of each template star. We used
the effective temperature in the logarithmic scale to match the
scale with the surface gravity. The overall result using the com-
bined error presented in Fig. 4 is not significantly different from
Fig. 3, but when the gravity error is added, Settl-Net performs
better than Dusty-Net even for low-temperature stars. In the case
of NextGen-Net, the combined error is larger than in the other
two networks because there are cases where temperature and
gravity errors are both large. The average combined errors across
the stars of Settl-Net NextGen-Net, and Dusty-Net are 3.93, 7.20,
and 6.47%, respectively.

In the case of Settl-Net, all but seven stars agree well with the
literature values within the 1σ uncertainty. Except for one star
with a large error, most of the stars have errors smaller than 5 and
10% at most. Dusty-Net also has small errors (<15%), but Dusty-
Net has the disadvantage that it is inherently less versatile than
the other two networks because of its training range. NextGen-
Net also shows an error smaller than 10% for stars with spectral
type earlier than M5.0.

Lastly, in the case of extinction, the deviation between MAP
estimates and literature values varies depending on the tempera-
ture. For stars hotter than about 3400 K (i.e. M3.0 type), all three
networks predict near-zero extinction, with little deviation from
the literature values. In the case of NextGen-Net, some stars are
slightly outside the error range, but their MAP estimates are suf-
ficiently small. On the other hand, for cool stars below 3400 K,
the discrepancy between the MAP value and the literature value
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Fig. 5. Resimulation results for the class III star SO797. The columns show the results for the three different spectral libraries Settl, NextGen, and
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the input spectrum are shown in the bottom panels.

grows gradually. In the case of Settl-Net and Dusty-Net, the
MAP estimate does not exceed the maximum of 3, but in the
case of NextGen-Net, the MAP estimates are slightly larger than
for the other two networks.

In this section, we showed that the discrepancy between
the network MAP prediction and literature value varies with
the characteristics of the stars. Based on the overall results,
a star of M6.5–K1.0 (2935–5000 K) for Settl-Net, M4.5–K1.0
(3200–5000 K) for NextGen-Net, M5.5–M0.0 (3060–4000 K)
for Dusty-Net agrees especially well with the literature values.
Settl-Net agreed best with the literature values overall. Dusty-Net
also agrees well for stars whose temperature is within the Dusty
database of 2600–4000 K. NextGen-Net has relatively large
errors compared to the other two, but it still shows reliable perfor-
mance for early-type stars. Because Settl-Net and NextGen-Net
cover a wider range of temperatures (i.e. 2600–7000 K) and
gravity (2.5–5 log(cm s−2)) than Dusty-Net, Settl-Net is the
best choice among the three networks. However, all three net-
works agree well with the literature values considering their
uncertainty.

This result shows how well our cINN predictions agree
with the values obtained with the classical methods in previous
studies. The differences between literature values and network
predictions do not demonstrate that the network prediction is
incorrect. For example, in the case of surface gravity, there is
inevitably a larger discrepancy between the literature values and
the MAP predictions of NextGen-Net and Dusty-Net because the
literature value was also obtained by fitting spectra based on the
Settl model. This means that we need to consider the methods
that were used in the literature, and additional analysis is required
to judge whether the cINN prediction is incorrect. The resim-
ulation following in the next section provides a better clue to
determine the correctness of our cINN predictions.

5.2.2. Resimulation

As for the synthetic test data in Sect. 5.1.2, we also evaluated
the accuracy of the cINN predictions on the class III template
by resimulation to quantify the agreement between the spectra

corresponding to the MAP estimates with the input spectra. In
this case, we also ran a resimulation for the nominal literature
stellar parameters of the class III sources listed in Table 1 for
comparison. Some of the class III template sources in our sam-
ple lack an estimate for log(g) in the literature. For these sources,
we assumed a fixed value of log(g/cms−2) = 4.0 in our resimu-
lation, which is a reasonable guess for the spectral types in our
sample. The sources in question are marked as “fixed” in the
last column of Table 1. In a few templates (seven for Settl, one
for NextGen, and eight for Dusty; see Table 3) the cINN extinc-
tion MAP estimate has an unphysical negative value. Since most
of these are only barely below zero, we decided to allow these
negative values to be accounted for during the resimulation.

Figure 5 shows an example result of the resimulation for
the M4-type template star SO797 for all three spectral libraries.
The top panels compare the resimulated spectra to the input
spectrum, and the bottom panels show the corresponding resid-
uals. The red curve indicates the resimulation result derived
from the cINN MAP estimates, and the blue curve marks
the literature-based outcome. In this particular example, the
cINN recovers both Teff and log(g) quite accurately for all
three spectral libraries but overestimates AV for this suppos-
edly zero-extinction template class III source by 1.07, 1.48, and
0.73 mag based on Settl, NextGen, and Dusty, respectively. Inter-
estingly, however, we find that the resimulated spectrum based
on the cINN MAP prediction with the supposedly incorrect AV
matches the input spectrum better than the spectrum derived
from the literature value in all three examples, as attested by
the smaller RMSE and better R2 score of 2.7 × 10−5 and 0.98
compared to 3.77 × 10−5 and 0.97 in the Settl case, for exam-
ple. Figure A.4 shows another such example, which immediately
shows that the cINN-based resimulated spectrum matches the
input observation much better than the literature-based solu-
tion, which evidently does not capture the slope of the observed
spectrum correctly.

Figures 6 and 7 and Table A.1 summarise the resimulation
results for the entire class III template sample, showing the
median relative residuals against the wavelength, the distribu-
tions of RMSEs and R2 scores, and a table of all RMSEs and R2
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Fig. 6. Comparison of the median relative error of the resimulated spec-
tra for the class III template stars between the resimulations based on the
literature stellar parameters (blue, see Table 1) and the cINN MAP pre-
dictions (red). From top to bottom, the panels show the corresponding
results for the three tested spectral libraries Settl, NextGen, and Dusty.

scores, respectively. The resimulation statistics vary between the
libraries. Because the effective temperature limits of the libraries
are lower (i.e. 2600 K), 2 of the 36 templates, namely TWA26
and DENIS1245, can a priori not be resimulated with Settl and
NextGen. For Dusty, the literature sample is even smaller, with
only 20 out of 36 templates due to the low upper temperature
limit of 4000 K. For the resimulation of the MAP estimates,
we used 31 templates with Settl-Net, 29 with NextGen-Net, and
only 17 with Dusty-Net. For more details, we refer to Table A.1.
For the Dusty resimulation, there are 7 templates for which the
log(g) prediction is above the training set limit of 5. However,
since the Dusty spectral library extends to log(g/cms−2) = 5.5,
we decided to run the resimulation for these 7 templates, in par-
ticular because for most of them, the log(g) prediction is only
barely above 5 (see Table 3).

Figure 6 shows that our observation from Fig. 5, in which the
resimulated spectrum based on the cINN prediction fits the input

spectrum better than the literature-based resimulation, holds for
the entire template sample on average for the three networks.
The distributions of the RMSEs and R2 scores of the resimulated
spectra in Fig. 7 further confirm this, as the cINN-based resim-
ulated spectra tend towards smaller RMSEs and slightly better
R2 scores than the literature-based spectra for all three spectral
libraries.

The resimulations of the seven templates for which the
Dusty-based cINN prediction of log(g) exceeds the learned upper
limit of 5 (i.e. the cINN extrapolated) show that even when the
cINN extrapolates, the set of predicted parameters corresponds
to a spectrum that matches the input observation quite well, and
in particular, it matches the input equally if not better than the
respective spectrum resimulated from the literature values, as
indicated by the R2 scores (see Table A.1 and Fig. A.5 for an
example). This result shows that the cINN prediction is fairly
robust even in the event of slight extrapolation.

Comparing our chosen resimulation accuracy measures to
the spectral types of the class III templates in Fig. 8, we find that
the RMSEs exhibit an increasing trend towards M types for all
three spectral libraries. For the R2 scores, we find a notable dip
in the goodness of fit for the intermediate spectral types, that is,
between M2 and K3, in the resimulation of the literature and in
the cINN-based values for Settl and NextGen. The beginning of
this dip can also be seen in the Dusty-based results up to the tem-
perature limit of this library at the K7 type. Interestingly, when
compared to Fig. 4, the discrepancy between the cINN prediction
and literature stellar properties is relatively low in this spectral
type, where the cINN and literature values both correspond to an
equally suboptimal fit to the observed spectra.

The resimulation test shows overall that the cINN approach
predicts parameters for the real class III template spectra that
correspond to spectra that not only fit the input observations very
well (as shown by the good R2 scores in Fig. 7 and Table A.1), but
also match better than the spectra resimulated from the literature
values in most instances. This validates that cINNs find the best
theoretical model that satisfies the input observation well as it is
designed to.

6. Feature importance

6.1. Importance calculation

In this section, we evaluate the parts of the spectra on which the
cINN prediction relies most. To do this, we measure the so-called
permutation feature importance, an approach first described by
Breiman (2001) for random forest models and later generalised
by Fisher et al. (2019). We implemented the algorithm of Fisher
et al. (2019) as described in Molnar (2022). It operates as
described below.

First, we computed the error on the original held-out
test set,

eorig = L (X, g(Y)) , (10)

where g represents the inverse translation (x← y) of the trained
cINN, X denotes the matrix of the target parameters of the test
set (ntest × nparameters), Y is the ntest × nfeatures feature matrix of the
test set, and L represents a loss measure. In our case, L is the
RMSE of the MAP estimates.

Next, for each feature j ∈ {1, . . . , nfeatures}, we generated
a feature matrix Yperm, j via random permutation of the jth
column in order to break the association between feature j
and the target parameters x, estimate the prediction error
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template spectra for the three different spectral libraries. Bottom: histograms of the corresponding R2 scores for the resimulated spectra.

eperm, j = L
(
X, g

(
Yperm, j

))
based on the permuted data set, and

compute the feature importance of feature j as the quotient

FI j =
eperm, j

eorig
. (11)

The larger FI j , the worse the model prediction becomes if fea-
ture j is scrambled via permutation, that is, the more important
feature j is to the decision making of the model. The closer FI j
to 1, on the other hand, the less feature j affects the predictive
performance and, thus, the less relevant it is to the reasoning of
the model.

In our particular case, the feature space is very high dimen-
sional with 2930 spectral bins per spectrum. Consequently,
computing the individual per spectral bin feature importance is
rather computationally expensive as it requires generating the
posteriors and determining the MAP estimates for each of the
2930 bins. Although the computational cost alone is not pro-
hibitive in this case given the cINNs great efficiency, we still
opted for a slightly different approach because the spectral bins
themselves are also not necessarily independent of each other.
Instead of using the individual bins, we grouped them together
into combined features, for which we then estimated the impor-
tance. In practice, this meant that we permuted multiple columns
at once (each column with its own permutation seed), corre-
sponding to the spectral bins in a given group. For the setup
in this study, we decided in particular to evaluate the feature
importance across the wavelength range using groups of 10 bins,
which corresponds to a spectral width of 12.5 Å. We set all
groups to overlap by 5 bins (i.e. 6.25 Å) with the preceding

and following groups. We averaged the feature importance for
overlapping bins.

6.2. Important features for M-, K-, and G-type stars

We drew three groups from the test set according to the temper-
ature of the test model: M-type (2600–3850 K) group, K-type
(3900–5110 K) group, and G-type (5150–6000 K) group, and
evaluated the feature importance across the wavelength for each
group per network. In the case of Dusty-Net, we only evaluated
this for the M-type group because the highest temperature of the
Dusty database is 4000 K.

Figure 9 presents the feature importance of Settl-Net for
M-type stars. To compare the important features with the loca-
tions of stellar parameter tracers existing in the real spectrum,
we plot the median flux of M-type template stars in the first row
and indicate the locations of several tracers of stellar parameters
(Table 5): Na I doublet 5890, 5896 Å (Teff and log g, Allen &
Strom 1995), Ca I 6122, 6162, 6439 Å (log g, Allen & Strom
1995), Ba II, Fe I, and Ca I blend 6497 Å (Teff and log g, Allen
& Strom 1995; Herczeg & Hillenbrand 2014), Hα 6563 Å (Teff ,
Luhman et al. 2003), K I doublet 7665, 7699 Å (Teff and log g,
Manara et al. 2013, 2017), Na I doublet 8183, 8195 Å (Teff and
log g, Kirkpatrick et al. 1991; Allen & Strom 1995; Riddick et al.
2007), Ca II IR triplet 8498, 8542, 8662 Å (Teff , Kirkpatrick
et al. 1991; Allen & Strom 1995; Luhman et al. 2003), Mg I

8807 Å (Teff , Manara et al. 2013; Herczeg & Hillenbrand
2014), hydrogen Paschen series (AV, Edwards et al. 2013),
CaH 6750–7050 Å (Teff and log g, Kirkpatrick et al. 1993;
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Allen & Strom 1995), TiO 6080–6390, 7053–7270 Å (Teff ,
Kirkpatrick et al. 1991; Henry et al. 1994; Jeffries et al.
2007), ViO 7550–7570, 7920–8000 Å (Teff , Allen & Strom
1995; Riddick et al. 2007; Manara et al. 2013), and R1
8015–8130 Å (Teff , Riddick et al. 2007) .

To evaluate whether these observational tracers act as impor-
tant features in our networks, we verified whether the fea-
ture importance value corresponding to each tracer wavelength
exceeded a fiducial value. We used the value of median plus one
standard deviation over the entire wavelength range as a fiducial
value to determine an important tracer. For tracers with multiple
lines or molecular bands, we averaged the feature importance
for each line or over the wavelength range. In Table 5 we mark
tracers whose average importance exceeds the fiducial value. We
also indicate for which parameters these lines and bands trace in
real observations.

Figure 9 shows that the Na I doublet 8183, 8195 Å lines
are the most important feature for Settl-Net to predict stellar
parameters of M-type stars. In the case of extinction, there are
two wide peaks near 7500 Å, where the redder peak overlaps
with the VO molecular band. However, Na I has a similarly high
importance value. In the case of temperature and gravity, K I

doublet 7665, 7699 Å lines play a second important role, and in
extinction, Hα does. VO and R1 molecular absorption bands as
well act as important features to determine the temperature and
extinction.

We present the feature importance evaluated for NextGen-
Net and Dusty-Net in Fig. A.7. Na I, K I, and Hα are important
features for M-type stars in all three networks. However, for
NextGen-Net, there is a large bump at 7500 Å in the case of tem-
perature. The results of NextGen-Net are spikier than in the other
two networks overall. In the case of Dusty-Net, the importance
value of the Na I doublet 5890, 5896 Å (Na I D) is relatively high
compared to the other networks, and there is a very wide bump
around Na I doublet 8183, 8195 Å.

Because extinction affects the overall shape of the spectrum,
it is interesting that Settl-Net relies strongly on a few certain
lines. Broad bumps exist in the red part of the spectrum, but there
are particularly important lines and areas such as the Na I, Hα,
and near VO bands. The result of NextGen-Net is similar to that
of Settl-Net, but shows a slightly more spiky trend with wider
peaks. Dusty-Net shows a more wavy shape across the entire
wavelength range than the others.

Next, in the case of K-type stars, the results of Settl-Net
and NextGen-Net are similar to each other, unlike the case of
M-type stars. We therefore only present the result of Settl-Net
in this paper (left panels in Fig. 10). Compared to the results of
M-type stars, it is noticeable that important features are differ-
ent for each parameter. In the case of temperature and extinction,
the overall shapes are similar: The Hα line is the most important
feature. The Na I doublet 8183, 8195 Å are no longer so impor-
tant to determine temperature and extinction for K-type stars.
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In addition, Na I D lines and hydrogen Paschen series have rel-
atively high importance values. On the other hand, in the case
of surface gravity, the Na I doublet 8183, 8195 Å lines still play
the most important role. The importance of Na I D in gravity
becomes noticeable in K-type stars compared to M-type stars.

Additionally, there are several peaks at K I, Mg I 8807 Å that are
used as important features to determine gravity.

The result of G-type stars (i.e. right panels in Fig. 10) is
similar to the K-type stars. The Hα is still the most important fea-
ture for temperature and extinction, and the Paschen series also
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Fig. 10. Feature importance evaluation for K-type synthetic models (left) and for G-type synthetic models (right) in the test set using Settl-Net. The
panels in the first row show the median flux of K-type and G-type class III template stars, respectively. Lines and shades are the same as Fig. 9.

Table 5. Tracers whose feature importance values are higher than the fiducial value of median plus one standard deviation are indicated, meaning
that marked tracers are significantly important features for determining each stellar parameter.

M-type K-type G-type

Tracers Used in observations for Teff log(g) AV Teff log(g) AV Teff log(g) AV

Na I doublet 5890, 5896 Å Teff , log(g) − − − X X X X X X
TiO 6080–6390, 7053–7270 Å Teff (M− and late K-type) − − − − − − − − −

Ca I 6122, 6162, 6439 Å log(g) − − − − − − − − −

Ba II, Fe I, and Ca I blend 6497 Å Teff , log(g) − − − X − X X − X
Hα 6563 Å Teff (early type) − − X X X X X X X
CaH 6750–7050 Å Teff (M-type), log(g) − − − − − − − − −

VO 7550–7570, 7920–8000 Å Teff (M-type) X X X X X X X − X
K I doublet 7665, 7699 Å Teff , log(g) X X X − − − − − −

R1 8015–8130 Å Teff (M-type) X X X − − − X X −

Na I doublet 8183, 8195 Å Teff (M-type), log(g) X X X X X − − X X
hydrogen Paschen series AV − − − X X X X X X
Ca II IR triplet 8498, 8542, 8662 Å Teff (early type) X X − X X − X X X
Mg I 8807 Å Teff − − − − X − − X −

Notes. For tracers with multiple lines (e.g. doublets) or molecular bands, we averaged the feature importance values. The results are based on the
feature importance evaluation of Settl-Net (Figs. 9 and 10).

include several peaks. For gravity, Na I D becomes more impor-
tant in G-type stars and has an importance value comparable to
that of Na I doublet 8183, 8195 Å. These sodium lines are the
most important features to determine gravity. On the other hand,
the importance of K I lines decreases in G-type stars compared
to K-type stars.

These results show that the features on which our networks
rely to determine parameters vary depending on the input object.
In particular, when changing from M- to K-type, important fea-
tures change noticeably. For example, the Na I doublet 8183,
8195 Å lines are essential features for networks to understand
M-type stars, sensitive to all three stellar parameters, but for
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earlier-type stars (K- and G-types), it is only important to deter-
mine gravity. Similarly, the K I doublet lines are gravity-sensitive
features for late-type stars, but they are less essential for earlier
types. In the case of the Na I doublet 5890, 5896 Å lines, on the
other hand, they are more important for hot stars than for cold
stars to determine gravity.

The feature-importance tests presented in this section indi-
cate the features that affect the judgement of the network, which
is based on the Phoenix models. Some of the important features
(that are essential for the network) behave very similarly to our
knowledge, but others do not. Above all, the behaviour of the
Na I doublet 8183, 8195 Å lines in the feature importance test
agrees well with our knowledge. The Na I line, tracing the grav-
ity (Riddick et al. 2007; Herczeg & Hillenbrand 2014; Manara
et al. 2017) and the temperature of late-type stars (Kirkpatrick
et al. 1991; Allen & Strom 1995; Riddick et al. 2007), is also
essential for networks to determine stellar parameters of late-
type stars and gravity. Based on Table 5, we find that the R1
8015–8130 Å, K I doublet 7665, 7699 Å, and Ba II, Fe I, and
Ca I blend 6497 Å also behave similarly to our knowledge. On
the other hand, unlike our knowledge that the Ca II IR triplet
8498, 8542, 8662 Å and Mg I 8807 Å trace the temperature
(Kirkpatrick et al. 1991; Allen & Strom 1995; Luhman et al.
2003; Manara et al. 2013; Herczeg & Hillenbrand 2014), the
networks do not rely much on these lines to estimate the
temperature.

In the feature-importance results of extinction, we showed
the interesting results that there are particularly influential fea-
tures, although the extinction affects the overall shape of the
spectrum, not the particular lines. One of the possible causes
is the degeneracy between temperature and extinction. In our
results, the features influential in determining the temperature
tend to have high importance in extinction as well (e.g. the Na I

doublet 8183, 8195 Å, the VO band, and Hα). Due to the degen-
eracy between the two parameters, the over- or under-estimation
of the temperature can be compensated for by an over- or under-
estimate of extinction. This means that if the features important
for temperature are scrambled, the determination of the extinc-
tion can also be affected. Another possible cause is that the
network determines extinction based on correlations between
multiple features. For example, if the network relies on the ratios
of several features to Hα, Hα may have relatively higher impor-
tance than others because scrambling Hα affects all these ratios.

The feature importance only shows how much the error
increases by scrambling a certain feature. Therefore, it is diffi-
cult to clearly understand the reasons for the error increment.
Compared to the spectra of template stars, however, it is obvi-
ous that cINN captures important information from the point at
which absorption or emission exists. Many features have been
used to predict parameters in addition to the main features indi-
cated in the figures or in the table, but the important point is
that the most influential features are the same as the tracers we
already know. This confirms that even though we do not exactly
know how cINNs learn the hidden rules from the training data,
what cINNs learned is very close to the physical knowledge
we have.

7. Simulation gap and the best network

In Sects. 5.1.1 and 5.2.1 we showed that for the synthetic mod-
els, our cINNs predict stellar parameters perfectly and for the
template stars, network predictions agree well with the litera-
ture values within an error of 5–10%. The difference between

literature values and network predictions slightly varies depend-
ing on the characteristics of the template stars. In Sects 5.1.2
and 5.2.2 we confirmed that resimulation of the spectrum based
on the network prediction restored the original input spectrum
well. This means that the network successfully finds the most
suitable model that satisfies the given observational data, as the
network is designed to do. In other words, the very good res-
imulation results indicate that cINNs provided us with the best
results within the physics it has learned.

Interestingly, the resimulated spectrum based on the network
prediction is closer to the original input spectrum than the resim-
ulated spectrum based on the literature values for template stars
(see Fig. 5 and Table A.1), despite the discrepancy between the
network prediction and literature value. This can be considered
to be one of the following two cases. One is because there is a
simulation gap, that is, a gap between the physics within training
data (i.e. the Phoenix atmosphere models), and the physics of
the real world. The other is because of misclassification, mean-
ing that the literature value used as a reference in this paper is
inaccurate. In the former case, no matter how perfectly trained
the network is in terms of machine learning, it encounters inher-
ent limitations. The simulation gap can be improved with better
training data.

The three Phoenix libraries used in this paper reflect many
important physics and characteristics of stellar atmosphere, but
they do not reflect reality perfectly. Therefore, we suspect that the
parameter predictions differ from the literature values because
of the simulation gap, even though the resimulation results
are almost perfect. In this section, we introduce a method for
quantifying the simulation gap using the trained cINN and for
determining how large the gap is between the Phoenix models
and reality. Finally, we draw comprehensive conclusions about
the performance and usage of our cINNs.

7.1. Quantifying the simulation gap

As explained in Sect. 2.1, cINN consists of the main network
that connects parameters (x) and latent variables (z) and the con-
ditioning network (h) that transforms the input observation (y)
into the useful representative (i.e. condition, c). Both are trained
together, and the conditioning network in this paper compresses
2930 features (y1, . . . , y2930) included in one spectrum into
256 conditions (c1, . . . , c256). If the condition of the real obser-
vational data that are passed through the conditioning network
(cobs) follows the same probability distribution as the condition
of the training data (ctrain), this means that there is no simulation
gap because the conditioning network extracts only important
features from the spectrum.

However, unlike the latent variables that were set up to follow
a prescribed distribution (i.e. a standard normal distribution),
the distribution of conditions does not follow a certain known
distribution. Therefore, we built a network (k) that transformed
the distribution of conditions (p(c)) into a prescribed probabil-
ity distribution. The k network based on the cINN architecture
is described as k(c) = s, and the output s was trained to fol-
low a standard normal distribution. By definition of the cINN
architecture, the dimensions of c and s are the same.

Using the conditioning network h and transformation net-
work k, we checked the simulation gap between the Phoenix
models and template stars by comparing the distribution of the
transformed condition of template stars k(h(ytpl)) = stpl with the
distribution of transformed condition of the training data strain,
which follows a known distribution. We evaluated the simulation
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gap based on the R2 score between two probability distribu-
tions, p(strain) and p(stpl). The larger the R2 value, the smaller
the simulation gap.

7.2. Simulation gap

We trained transformation networks (k) for each cINNs (Settl-
Net, NextGen-Net, and Dusty-Net) and compared the probability
distribution of the transformed conditions of the training data
and template stars. Figure 11 shows that the distribution of the
training data (blue line) follows the prescribed standard normal
distribution well (pink line), but the distribution of the template
stars (black) differs from that of the training data. Each star has
256 condition components, but we present all these components
in one distribution. The R2 scores for all template stars are 0.805,
0.709, and 0.425 for Settl, NextGen, and Dusty, respectively. The
Dusty model seems to have the widest simulation gap, but we
need to consider that Dusty-Net has a narrower training range
than the parameter space of the template stars.

As the performance of the cINN varies depending on the
temperature of the template star, we divided the stars into three
groups based on the prediction performance of the networks
shown in Sect. 5.2.1 (see Figs. 3 and 4). For example, Settl-Net
and NextGen-Net predicted parameters that agreed well with the
literature values, especially for stars with temperatures between
∼3000 and ∼5000 K. We therefore divided the stars into three
groups based on 3000 and 5000 K for Settl-Net and NextGen-
Net. In the case of Dusty-Net, we divided groups based on 3000
and 4000 K due to the temperature upper limit of 4000 K for the
Dusty training set.

In the case of the Settl and NextGen libraries (Fig. 12),
the earlier the spectral type, the smaller the gap, and Settl has
a smaller gap than NextGen in the overall temperature range.
While the simulation gap is small for hot stars above 3000 K,
the gap is large for later-type stars below 3000 K. In the case of
NextGen, in particular, the simulation gap is very large for stars
below 3000 K. In the case of Dusty, the simulation gap for the
coldest group (T < 3000 K) is also very large and comparable to
that for hot stars (T > 4000 K), which is beyond the temperature
range of the Dusty library.

The large gap for the lowest temperature group (T < 3000 K)
is an obvious result because perfectly implementing the atmo-
sphere of late-type stars through the simulation is a much more
difficult task than for the earlier-type stars. For late-type stars,
condensation of vapour is essential, but the relevant physical
processes are complex, making it very difficult to produce a
good atmosphere model. Thus, these results demonstrate the
inherent limitations of modelling low-temperature stars. These
results show that the degree of the simulation gap varies with
the characteristics of the star, just as the difference between the
prediction of cINN and the literature value varies, as shown in
Sect. 5.2.1.

Interestingly, Settl and NextGen both have the smallest simu-
lation gaps for early-type stars with temperatures above 5000 K.
However, in Figs. 3 and 4, the difference between the MAP pre-
diction and the literature value of this group is slightly larger
than that of the intermediate-temperature group (3000–5000 K).
The smallest simulation gap (Fig. 12) and good resimulation
results better than the resimulation of literature values (Fig. A.4
and Table A.1) imply that MAP estimates of our networks for
early-type stars above 5000 K are sufficiently reliable. Therefore,
we suggest that the parameter estimations by our networks may
be more accurate than the literature values for early-type stars
above 5000 K.
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Fig. 11. Probability distributions of transformed conditions of the train-
ing data (blue) and template stars (black) for three networks. The gap
between the blue and black lines indicates the gap between the Phoenix
model and the template spectrum. The R2 value between the blue and
black line and the number of template stars used is presented in the
upper left corner of each panel.

7.3. Best network

The simulation gap is clearly large for late-type stars. Interest-
ingly, however, our cINNs nevertheless predict the temperature
and surface gravity well. First of all, all three networks had poor
predictions of extinction for late-type stars below 3000 K. It is
therefore very difficult for the network to estimate extinction
accurately for stars in this temperature range, and the estimated
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Fig. 12. Probability distributions of transformed conditions of the training data and template stars. Each column represents three networks (Settl-
Net, NextGen-Net, and Dusty-Net), and each row represents the group of template stars depending on their temperature (T lit

eff
). The colour codes are

the same as in Fig. 11.

extinction is not very reliable compared to the other two stel-
lar parameters. However, Settl-Net, NextGen-Net, and Dusty-Net
estimated the temperature accurately with maximum errors of
less than 10, 5, and 15%, respectively, despite the large simula-
tion gap. This is a sufficiently accurate prediction considering
the temperature interval between one subclass of stellar spec-
tral type (see Fig. 3). Using the combined error in Fig. 4, we
demonstrate that Dusty-Net and Settl-Net predict the surface
gravity and temperature accurately within 5% for late-type stars
as well as early-type stars, despite the simulation gap of late-
type stars. This shows that our networks are still applicable to
low-temperature stars despite the limitations of the training data.
The performance of NextGen-Net was relatively poor for low-
temperature stars compared to the other two networks, which is
explained by the large simulation gap shown in Fig. 12.

On the other hand, for earlier-type stars with relatively small
simulation gaps, the network performs more reliably. Except
for one or two outliers, Settl-Net and NextGen-Net both accu-
rately predict temperature and gravity within an error of 5–10%
at most. NextGen-Net tends to estimate extinction and tem-
perature slightly higher than Settl-Net. NextGen-Net apparently
adopts a degenerate solution that satisfies the same input spec-
trum by increasing both extinction and temperature slightly.

Overall, Settl-Net, with the smallest simulation gap, shows the
best performance of the three networks.

We conclude that Settl-Net is the best network considering
the parameter prediction performance and the simulation gap.
For low-temperature stars (e.g. M-type stars), Dusty-Net also
shows comparable performance to Settl-Net. However, because
the stellar parameter coverage (i.e. temperature and gravity) of
Settl-Net is wider than that of Dusty-Net, Settl-Net is more ver-
satile and usable. Based on our overall results, we therefore
recommend using Settl-Net when applying the network to real
observations. The only limitation to be cautious of is the estima-
tion of extinction. Regardless of the spectral type of the stars, a
cINN estimates temperature and gravity accurately, but we cau-
tion about estimating extinction when the estimated temperature
is below 3000 K.

8. Summary

We introduced a novel tool for estimating stellar parameters from
the optical spectrum of an individual young low-mass star. cINN
is one of the deep-learning architectures that specialise in solv-
ing a degenerate inverse problem. The degenerate problem here
means that due to the inevitable information loss during the
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forward process from the physical system to observation, differ-
ent physical systems are mapped onto similar or almost identical
observations. Many of the main tasks in astrophysics involve
solving degenerate inverse problems, such as estimating physical
properties from observations. We developed a cINN for young
low-mass stars to efficiently diagnose their optical spectra and
estimate stellar parameters such as effective temperature, surface
gravity, and extinction.

The cINN adopts a supervised learning approach, mean-
ing that the network is trained on the database consisting of
numerous well-labelled data sets of physical parameters and
observations. However, it is difficult to collect a sufficient num-
ber of well-interpreted observations in reality. Therefore, we
instead used synthetic observations to generate enough train-
ing data. In this work, we used three Phoenix stellar atmosphere
libraries (i.e. Settl, NextGen, and Dusty) to produce the database
for the training and evaluation of the network. By interpolating
the spectrum in the temperature – gravity space and adding the
extinction effect on the synthetic spectra, we produced a database
for each Phoenix library consisting of 65 536 synthetic models.
To produce the databases, we randomly sampled three param-
eters from the given parameter ranges. The Settl and NextGen
databases cover the temperature range of 2600–7000 K and the
log(g/cm s−2) range of 2.5–5. The Dusty database covers the
temperature of 2600–4000 K and log(g/cm s−2) of 3–5. All three
databases have extinction values within 0–10 mag. Then, we
built and trained cINNs using each database, but only used 80%
of the synthetic models in the database to train the network
and retained the rest for evaluation. We presented three cINNs
that learned different Phoenix atmosphere models: Settl-Net,
NextGen-Net, and Dusty-Net.

We validated the performance of our cINNs in various
methods. Our main results are listed below.
1. All three networks provided perfect predictions on the test

set with an RMSE lower than 0.01 dex for all three param-
eters, demonstrating that the cINNs are well trained. Addi-
tionally, we resimulated the spectrum using the parameters
estimated by the network using our interpolation method and
compared it with the original input spectrum. The resim-
ulated spectra perfectly match the input spectra of the test
models with RMSE of about 10−7. These results prove that
our three cINNs perfectly learned the hidden rules in each
training data set.

2. To test the performance on the real observational data, we
analysed 36 class III template stars that were interpreted by
Manara et al. (2013, 2017) and Stelzer et al. (2013) with
our cINNs. We demonstrated that the stellar parameters
estimated by our cINNs agree well with the literature values.

3. Each network has a slightly different error depending on
the temperature of the given star. Settl-Net works especially
well for M6.5–K1.0 (2935–5000 K) stars, and NextGen-Net
works well for M4.5–K1.0 (3200–5000 K) stars. Dusty-Net
works well for M5.5–M0.0 (3060–4000 K) stars. The tem-
perature upper limit of the Dusty training data is 4000 K, and
Dusty-Net works well for stars within its training range. For
stars in other temperature ranges, the three networks perform
well, with an error smaller than 10%.

4. The most difficult parameter for cINNs to predict is the
extinction of cold stars with temperatures lower than 3200 K.
All three networks tend to estimate a higher extinction than
the literature value for cold stars. However, cINNs estimate
extinction well for hot stars with temperatures above 3200 K.

5. We resimulated spectra based on cINN estimations and lit-
erature values and compared them with the original input

spectrum. Interestingly, most of the resimulated spectra
based on cINN estimations are closer to the input spectra
than the resimulated spectra derived from the literature val-
ues. This implies that our cINNs understand the physics in
each Phoenix library well and are able to find the best-fitting
Phoenix model (i.e. parameters) for the given observation.

6. The resimulations are perfect even though the prediction of
the network is slightly different from the literature. This can
be explained by the gap between the Phoenix model and
reality, the so-called the simulation gap. We quantified the
simulation gap between each library and template stars using
the conditioning networks included in our cINNs. We con-
firm that the simulation gaps are relatively large for cold stars
below 3000 K, where the cINNs have difficulty in estimat-
ing extinction. We confirm that the simulation gap is small
for hot stars, where the cINNs predict the parameters well.

7. The overall results imply that although there is an obvi-
ous gap between the Phoenix model and reality, especially
for cold stars below 3000 K, our networks can nonethe-
less provide reliable predictions for all stars within an error
of 5–10%, especially for temperature and gravity. Extinc-
tion estimated by cINN is also reliable unless the estimated
temperature is lower than 3200 K.

8. We investigated on which parts of the spectrum the cINN
relies most to predict stellar parameters and compared the
important features with typically used stellar parameter trac-
ers. We find that cINN relies on different features depending
on the physical parameters and on the input observations
(e.g. spectral types). We confirm that the main features are
equivalent to the typically used tracers, such as Hα 6563 Å
and the Na I doublet 8183, 8195 Å.

Our overall results show that our cINNs perform reliably
enough to be applicable to real observational data. Of the
three networks introduced in this paper, we recommend Settl-
Net trained on the Settl library as the best network because
of its remarkable performance and versatility in the parameter
space.
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Appendix A: Supplemental materials

In this appendix, we present supplementary figures and the table
mentioned in our main results (sections 5–6).

Appendix A.1: Prediction performance

We evaluated the performance of three networks (Settl-Net,
NextGen-Net, and Dusty-Net) on 13,107 synthetic test models
drawn from the corresponding database by comparing the MAP
predictions from the network and the true values of the models.
We present the result of Settl-Net in Fig. A.1 as representative
because the other two networks (NextGen-Net and Dusty-Net)
also show very similar results. The figure shows that the network
estimates all three parameters perfectly with very small RMSEs.
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Fig. A.1. 2D histograms comparing the MAP values estimated by Settl-Net and the true values for the entire test models of the Settl database. The
colours indicate the number of models at each point in the 2D histograms. In the lower right corner, we present the RMSE and the number of test
models (Ntest).

A175, page 21 of 26



A&A 674, A175 (2023)

Appendix A.2: Resimulation

We validated the cINN predictions on the synthetic test data
(Sect. 5.1.2) and on real template spectra (Sect. 5.2.2) by res-
imulating the spectra corresponding to the MAP estimates with
our spectral library interpolator (Sect. 3.1) and comparing the
result to the respective input spectra.

Analogously to Fig. 1, Figs. A.2 and A.3 show the median
relative error of the resimulated spectra (left panel) and the dis-
tributions of the RMSEs (right panel) for the 13,107 synthetic
test spectra when evaluated with the cINN models trained on
NextGen and Dusty, respectively.

Table A.1 provides a summary of the resimulation results
for the cINN predictions on the class III template spectra (see
Sect. 5.2.2 and also Tables 1 and 3). We list the RMSEs and R2

scores of the resimulated spectra with respect to the correspond-
ing input spectra for the resimulation based on the literature and
cINN-predicted parameters for all three spectral libraries.

Figures A.4 and A.5 provide additional examples of the
resimulation results by comparing the resimulated spectra to
the input spectra and the outcomes between the three libraries,
analogously to Fig. 5. In particular, these two figures show
examples in which the resimulated spectra based on the cINN
MAP estimates appear to match the input spectra notably better
than the respective resimulation outcome based on the literature
properties of the given class III templates.

Lastly, Fig. A.6 provides an overview of the resimulation
results for all class III template spectra for the cINN trained on
the Settl library, corresponding to the top left panels in Figs. 5,
A.4, and A.5.
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Fig. A.2. Resimulation results of NextGen-Net for the entire synthetic spectra in the test set. Left: Median relative error across the wavelength
range of the resimulated spectra based on the MAP predictions of the cINN trained on the NextGen models averaged over the 13,107 synthetic
spectra in the test set. The grey envelope indicates the interquantile range between the 25% and 75% quantiles. Right: Histogram of the RMSEs of
the 13,107 resimulated spectra. The mean resimulation RMSE across the test set is 2.28 ± 2.48 × 10−7.
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Fig. A.3. Resimulation results of Dusty-Net for the entire synthetic spectra in the test set. Left: Median relative error across the wavelength range
of the resimulated spectra based on the MAP predictions of the cINN trained on the Dusty models averaged over the 13,107 synthetic spectra in
the test set. Here the grey envelope indicates the interquantile range between the 25% and 75% quantiles. Right: Histogram of the RMSEs of the
13,107 resimulated spectra. The mean resimulation RMSE across the test set is 9.01 ± 7.34 × 10−8.
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Fig. A.4. Resimulation results for the class III star RXJ0445.8+1556. Same as Fig. 5.

A175, page 23 of 26



A&A 674, A175 (2023)

Table A.1. Summary of the resimulation test for the literature values and cINN MAP predictions for the three different spectral libraries, listing
the RMSEs and R2 scores of the resimulated spectra.

Resimulation RMSE (×10−5) / R2 Score

Settl NextGen Dusty

Object Name Literature cINN Comment Literature cINN Comment Literature cINN Comment

RXJ0445.8+1556 2.15 / 0.88 0.61 / 0.99 - 2.18 / 0.88 0.77 / 0.98 - - / - - / - Teff > 4000 K
RXJ1508.6-4423 0.95 / 0.98 0.93 / 0.98 - 1.08 / 0.98 1.05 / 0.98 - - / - - / - Teff > 4000 K
RXJ1526.0-4501 1.14 / 0.97 0.66 / 0.99 - 1.20 / 0.96 0.77 / 0.98 - - / - - / - Teff > 4000 K
HBC407 1.00 / 0.97 0.68 / 0.99 - 1.16 / 0.96 0.91 / 0.97 - - / - - / - Teff > 4000 K
PZ99J160843.4-260216 1.08 / 0.96 0.82 / 0.98 - 1.19 / 0.95 0.93 / 0.97 - - / - - / - Teff > 4000 K
RXJ1515.8-3331 1.28 / 0.94 0.85 / 0.97 - 1.41 / 0.92 0.92 / 0.97 - - / - - / - Teff > 4000 K
PZ99J160550.5-253313 1.50 / 0.90 0.73 / 0.98 - 1.64 / 0.88 0.93 / 0.96 - - / - - / - Teff > 4000 K
RXJ0457.5+2014 1.98 / 0.78 1.23 / 0.92 - 2.07 / 0.76 1.25 / 0.91 - - / - - / - Teff > 4000 K
RXJ0438.6+1546 2.09 / 0.70 0.89 / 0.95 - 2.19 / 0.67 1.02 / 0.93 - - / - - / - Teff > 4000 K
RXJ1547.7-4018 0.90 / 0.97 0.95 / 0.96 - 1.08 / 0.95 1.11 / 0.95 - - / - - / - Teff > 4000 K
RXJ1538.6-3916 1.05 / 0.93 0.92 / 0.94 - 1.24 / 0.90 1.20 / 0.91 - - / - - / - Teff > 4000 K
RXJ1540.7-3756 1.42 / 0.56 1.61 / 0.44 - 1.56 / 0.48 1.54 / 0.49 - - / - - / - Teff > 4000 K
RXJ1543.1-3920 1.48 / 0.42 1.63 / 0.30 - 1.72 / 0.22 1.48 / 0.42 - - / - - / - Teff > 4000 K
SO879 2.66 / 0.53 2.44 / 0.61 - 3.02 / 0.39 2.18 / 0.68 - - / - 2.08 / 0.71 -
Tyc7760283_1 2.56 / 0.73 1.88 / 0.85 - 1.99 / 0.84 1.95 / 0.84 - 1.93 / 0.85 1.89 / 0.85 5 < log(g) < 5.5
TWA14 3.04 / 0.83 - / - log(g) > 5 3.28 / 0.80 2.74 / 0.86 - 2.96 / 0.84 3.07 / 0.82 5 < log(g) < 5.5
RXJ1121.3-3447_app2 2.19 / 0.93 1.88 / 0.95 - 2.45 / 0.91 2.15 / 0.93 - 1.86 / 0.95 1.80 / 0.95 5 < log(g) < 5.5
RXJ1121.3-3447_app1 2.69 / 0.92 2.84 / 0.91 - 3.60 / 0.85 2.44 / 0.93 - 2.87 / 0.91 2.42 / 0.93 5 < log(g) < 5.5
CD_29_8887A 2.55 / 0.95 1.91 / 0.97 - 2.57 / 0.95 2.48 / 0.95 - 1.92 / 0.97 1.85 / 0.97 5 < log(g) < 5.5
CD_36_7429B 2.70 / 0.97 2.30 / 0.98 - 4.90 / 0.91 2.57 / 0.97 - 3.26 / 0.96 2.26 / 0.98 -
TWA15_app2 2.98 / 0.96 3.04 / 0.96 - 4.04 / 0.92 2.59 / 0.97 - 2.93 / 0.96 2.57 / 0.97 5 < log(g) < 5.5
TWA7 3.45 / 0.95 3.62 / 0.94 - 4.53 / 0.91 2.66 / 0.97 - 3.36 / 0.95 2.76 / 0.97 -
TWA15_app1 3.95 / 0.93 - / - log(g) > 5 3.26 / 0.95 2.95 / 0.96 - 3.01 / 0.96 2.96 / 0.96 5 < log(g) < 5.5
SO797 3.77 / 0.97 2.70 / 0.98 - 6.35 / 0.92 2.47 / 0.99 - 4.63 / 0.96 2.27 / 0.99 -
SO641 3.83 / 0.97 3.15 / 0.98 - 6.37 / 0.92 2.62 / 0.99 - 4.76 / 0.96 2.63 / 0.99 -
Par_Lup3_2 3.68 / 0.97 3.03 / 0.98 - 4.74 / 0.95 2.86 / 0.98 - 3.31 / 0.98 2.76 / 0.98 -
SO925 4.55 / 0.97 4.42 / 0.97 - 7.28 / 0.91 3.06 / 0.98 - 5.91 / 0.94 3.17 / 0.98 -
SO999 4.20 / 0.97 3.90 / 0.97 - 6.27 / 0.93 2.99 / 0.98 - 5.00 / 0.96 3.10 / 0.98 -
Sz107 4.44 / 0.97 4.85 / 0.96 - 6.58 / 0.93 2.83 / 0.99 - 5.32 / 0.95 3.11 / 0.98 -
Par_Lup3_1 8.90 / 0.92 5.64 / 0.97 - 12.4 / 0.85 - / - log(g) < 2.5 11.5 / 0.87 4.05 / 0.98 -
LM717 7.08 / 0.95 5.77 / 0.96 - 10.1 / 0.88 - / - log(g) < 2.5 9.80 / 0.90 - / - log(g) < 3.0
J11195652-7504529 7.49 / 0.95 6.73 / 0.96 - 10.9 / 0.89 - / - log(g) < 2.5 10.1 / 0.89 - / - log(g) < 3.0
LM601 7.76 / 0.94 7.26 / 0.95 - 9.97 / 0.91 - / - log(g) < 2.5 9.06 / 0.92 - / - log(g) < 3.0
CHSM17173 8.65 / 0.94 - / - Teff < 2700 K 10.1 / 0.90 - / - log(g) < 2.5 9.63 / 0.92 - / - log(g) < 3.0
TWA26 - / - - / - Teff < 2700 K - / - - / - log(g) < 2.5 - / - - / - Teff < 2700 K
DENIS1245 - / - - / - Teff < 2700 K - / - - / - log(g) < 2.5 - / - - / - Teff < 2700 K

Resimulated Spectra 34 31 - 34 29 - 20 17 -

Notes. The comment column indicates why the cINN prediction could not be resimulated. For SO879, the cINN prediction can be resimulated with
the Dusty library even though the literature temperature exceeds 4000 K because the cINN underestimates Teff by 151 K here, thus falling into the
Dusty temperature boundaries.
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Fig. A.5. Resimulation results for the class III star CD_29_8887A. Same as Fig. 5.
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Fig. A.6. Resimulation results for all class III templates for the cINN trained on the Settl library. In each panel, the black curve indicates the
observed spectrum, and the red and blue curves correspond to the spectra that were resimulated based on the cINN MAP estimates and literature
properties, respectively. The latter values are summarised in the table in each panel. If either the red or blue or both curves are lacking, the
corresponding set of parameters could not be resimulated. For the RMSEs and R2 scores of the resimulated spectra, see Table A.1.
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Appendix A.3: Feature importance

We investigated the important feature on which NextGen-Net
and Dusty-Net rely most. We divided the synthetic observations
into three groups depending on their spectral types (e.g. M-, K-,
and G-types). We present the results of NextGen-Net and Dusty-
Net for M-type stars in Fig. A.7. We do not present the results of
NextGen-Net for K- and G-type stars because the overall results
are similar to that of Settl-Net presented in Fig. 10.
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Fig. A.7. Feature importance evaluation for M-type synthetic models in the test set using NextGen-Net (left) and Dusty-Net (right). The first row
shows the median flux of M-type class III template stars. The lines and shades are the same as in Fig. 9.
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