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Abstract—A common task in situated distributed systems is the
self-organising election of leaders. These leaders can be devices
or software agents appointed, for instance, to coordinate the
activities of other agents or processes. In this work, we focus on
the multi-leader election problem in networks of asynchronous
message-passing devices, which are a common model in self-
organisation approaches like aggregate computing. Specifically,
we introduce a novel algorithm for space- and priority-based
leader election and compare it with the state of the art. We
call the algorithm Bounded Election since it leverages bounding
(i.e. minimisation or maximisation) of candidacy messages to
drop or promote candidate leaders and ensure stabilisation.
The proposed algorithm is formally proven to be self-stabilising,
allows for leader prioritisation, and performs on-the-fly network
partitioning (namely, as a side effect of the leader election process,
the areas regulated by the leaders are also established). Also, we
experimentally compare its performance together with the state
of the art of leader election in aggregate computing in a variety
of synthetic scenarios, showing benefits in terms of convergence
time and resilience.

Index Terms—leader election, self-stabilisation, self-
organisation, network partitioning, aggregate computing

I. INTRODUCTION

In the autonomic computing vision [1], the complexity (e.g.,
in terms of integration [2] and maintenance) of recent and
forthcoming distributed systems is urging engineers to design
systems capable of autonomously managing themselves, i.e.,
to endow them with self-* properties and capabilities [3]. One
such property is self-organisation [4], [5], by which a system
spontaneously seeks and maintains order or structure without
external control. The benefits include system-level robustness
and adaptiveness to environmental change, and scalability by
means of decentralisation. This property can be engineered
into computing systems, through self-organisation mechanisms
or algorithms [6] which typically leverage loops of local
computation and interaction to solve specific problems.

Many problems in distributed systems can be seen as self-
organisation problems [7] when considered in dynamic envi-
ronments with ongoing system operation. Relevant problems
include reaching consensus, taking snapshots, partitioning a
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system into regions, and electing leaders [8]–[10]. A notion
connecting distributed algorithms to self-organisation is self-
stabilisation [11], introduced by Dijkstra [12] to characterise
algorithms that converge to correct states in finite time from
any arbitrary initial state, hence in spite of transitory changes
(i.e., resiliently).

In this work, we consider the leader election problem.
There are several research contributions to leader election,
considering the problem under a wide spectrum formulations,
assumptions, and goals. Indeed, it is possible to distinguish
between algorithms for single [13] and multi-leader elec-
tion [14]; algorithms designed for specific network topologies
(e.g., rings [15], hierarchies [16], or ad-hoc networks [17]);
algorithms for anonymous networks [18]; deterministic vs.
probabilistic algorithms [19]; algorithms optimising for time,
space, or message complexity; algorithms for specific dis-
tributed protocols (e.g., population protocols [20]), etc.

Specifically, our paper focuses on self-stabilising multi-
leader election in aggregate computing systems [21], namely
on round-based networks of asynchronous, message passing
agents. In this setting, a space-based version of the algorithm
is also called Sparse-choice (or simply S [22]), since leader
election could also be seen as a way to sparsely pick de-
vices to “cover” a system. A good sparse-choice primitive is
paramount, as it is frequently used in self-organising applica-
tions to break symmetry, assign responsibilities to important
nodes, perform sparse sampling of a phenomenon [23], or
partition the network. Indeed, network partitioning can be
achieved by denoting a partition (or area) through the set of
a leader and its followers. Areas can then be used to scope
activity.

In this paper, we propose an algorithm that is both self-
stabilising and solves the multi-leader election problem, doing
so by using solely one propagation step. Moreover, it also
considers priorities (in addition to distance) to determine
leaders, induces a network partitioning with no additional
effort (e.g., without the need of propagating information from
the leaders), and is shown to perform better, in terms of
convergence time and resilience, than the state of the art.

The content of the paper is organised as follows. Section II
provides background. Section III covers motivation and re-
lated work. Section IV provides the contribution, presenting
the novel, proposed algorithm and proving that it is self-



stabilising. Section V provides experimental evaluation in sim-
ulation settings. Section VI summarises results and discusses
future work.

II. BACKGROUND

In this paper, we focus on self-stabilising multi-leader
election in aggregate computing settings, namely in networks
of message-passing agents operating in asynchronous rounds.
This section provides corresponding background on leader
election (Section II-A) and the aggregate computing model
(Section II-B).

A. Leader election

Leader election (LE) is one fundamental problem in dis-
tributed as well as self-organising systems [7], [11], [29].
Consider an undirected graph G = (V,E), where V is the set
of nodes in the network and E is the set of edges representing
communication channels between nodes. The LE problem
consists of determining one node in the system as the leader,
by means of a distributed protocol or algorithm involving
multiple rounds of local computations and communication.
Notice that this can also be seen as a particular kind of graph
labelling and graph colouring; however, LE is typically subject
to different constraints (e.g., other than assigning different
colours to adjacent edges or vertices) and generally considers
dynamic scenarios with partial observability. The LE problem
can be formulated in a weak or strong manner [30]. In the weak
formulation, every node outputs a Boolean value indicating
whether it is a leader or not. In the strong formulation, every
node must know the leader, or be able to locate it—so, the
output could be the identifier of the leader (in non-anonymous
networks), or a path leading to it (in anonymous networks). A
variant of LE is multi-leader election (MLE) [14], [31], where
the goal is to elect multiple leaders, e.g. for redundancy.

Several LE algorithms have been devised over time [32],
with differences related to the problem formulation, the un-
derlying assumptions, the performance trade-offs (in terms
of time, space, and message complexity), as well as target
properties and guarantees. Common underlying assumptions
include the network topology, the distributed protocol defining
legitimate actions, and the scheduling assumptions (e.g., in
terms of a/synchronism and fairness) [33]. Regarding the target
properties, an important one is self-stabilisation [11], [12]:
informally, an algorithm is self-stabilising if, regardless of the
initial configuration, it converges in finite time to a correct
configuration. In other words, the property means an algorithm
can automatically recover from transient faults—which is a
desirable feature, especially in large-scale distributed systems
like those found in the Internet of Things (IoT). Therefore,
in this paper we focus on the self-stabilising (multi-)leader
election problem [13], [34], in which the protocol must be able
to converge to a correct leader selection in finite time, from
any initial system configuration. The other model assumptions
(topology, protocol, scheduling) are elicited in the following
section.

B. Model and assumptions

We consider a round-based distributed protocol on dynamic
networks of asynchronous message-passing agents. This is,
indeed, the distributed protocol assumed by aggregate comput-
ing [35], a paradigm for self-organizing systems programming
that has been subject of intense research in the last decade [21].
For simplicity, we would refer to the model described in this
section as the aggregate computing model.

By a structural point of view, we still consider an undi-
rected graph, to model a network of devices (or nodes). The
devices connected to a device through an edge are called its
neighbours. A device can only directly communicate with its
neighbours. The neighbouring relationship is symmetric and
reflexive. We assume each node is given a unique identifier
(UID). A node can be equipped with sensors and actuators to
interact with the environment, for instance, a node can query
a sensor to get its own UID.

The distributed protocol consists of an asynchronous ex-
ecution of rounds. Every node alternates sleeping periods
with rounds (in general, not synchronised with other devices)
comprising the following steps.

1) Context acquisition. The node gets data from sensors and
collects messages from neighbours. We assume only the
last message from any neighbour is retained, and that
messages have a configurable expiration time.

2) Computation. The node runs a computation considering
its up-to-date context as input. We assume all nodes
share the same program, and such program is scheduled
in an asynchronous and weakly fair way (where a contin-
uously enabled node will eventually be scheduled) [33].
The output of a computation includes a single result
value (e.g., the UID of the local leader), which could
also be structured data, as well as the message to be
sent to neighbours (also called an export).

3) (Inter)Action. The node sends the same export message
to all its neighbours (broadcast) and may run actuations
(e.g., a robot may use a part of the result value to
command wheels for movement). For message passing,
we assume at-most-once delivery and message ordering
per sender-receiver pair.

A comprehensive survey of aggregate computing research
and details about its programming model are available in [21].
In this paper, we consider the notion of self-stabilisation,
formalised for aggregate computing systems in [36].

III. MOTIVATION AND RELATED WORK

In this section, we provide motivation for this work in
terms of two desirable features of multi-leader election and
the connection to network partitioning (Section III-A), as well
as related work about leader election in aggregate computing
(Section III-B).

A. Spatiality, priority-sensitivity, and network partitioning

In this section, we motivate two additional features or
constraints that may apply to multi-leader election, that are
desirable characteristics in general and fundamental features



of the novel algorithm proposed in this paper: spatiality and
priority-sensitivity.

Indeed, we focus on space-based multi-leader election,
where the election of leaders has to generally take into
account distances between nodes in metric spaces. This is a
relevant problem since it is intimately related to the problem
of partitioning a situated network (cf. IoT systems) into
areas or regions. The creation and adaptation of regions is a
significant self-organising mechanism. Indeed, by dynamically
partitioning a system into regions it is possible to divide a large
problem into smaller problems (cf. divide-et-impera) as well
as to regulate the desired level of decentralisation in a sys-
tem. The combination of sparse-choice, dynamic partitioning,
and leader-followers feedback loops is at the basis of Self-
organising Coordination Regions (SCR) [10], a pattern for
supporting distributed situated recognition and action in dy-
namic environments, which is a documented, proved solution
to recurrent problems in scenarios like environmental monitor-
ing, situated problem solving, and computational ecosystems.

We also focus on priority-based multi-leader election, where
a notion of priority reflecting the strength or suitability of a
leader candidacy is considered in the election process. Indeed,
since leaders usually have to coordinate the work of other
nodes, take decisions based on collected data, and so on,
they often need to be rather powerful computing nodes (e.g.,
powered fog servers rather than resource-constrained devices)
or be chosen among high-degree nodes (e.g., hubs). So, consid-
ering priorities is reasonable, also because it provides a natural
way to locally break symmetry or to structure competitive
processes.

B. Related work

Several leader election algorithms have been proposed in
the literature. However, given our assumed system model, in
this paper we do not compare with works having substantially
different assumptions and goals, e.g., works tailored to single-
leader election [13], specific topologies (e.g., rings [15]),
anonymous networks [18], entirely different distributed pro-
tocols (e.g., population protocols [20]).

For the considered aggregate computing model, there exist
two leader election algorithms proposed in literature, to the
best of our knowledge. The first one, recently proposed by Mo
et al. [13], is self-stabilising, as it leverages a combination of
aggregate computing blocks demonstrated to be self-stabilising
in a way that does not disrupt self-stabilisation. However,
it relies on network diameter estimations that require the
construction of a feedback loop based on collection into and
propagation from candidate leaders (de-facto, leveraging a
known pattern [10]); and focuses on the problem of a single-
leader election. Although its more recent extension [26] can
be tuned to produce multiple leaders, the reliance on diameter
estimations (and related feedback loop) remains intact. Our
focus, instead, is on multi-leader election, to be performed
with a single propagation.

The second one is the Sparse spatial choice (S) algorithm,
described in [22], which performs a multi-leader election

process in which leaders are elected at a certain distance
between one another. Although frequently used and available
in existing libraries [24], it has never been formally proven
to be self-stabilising. Unproven self-stabilisation is a limiting
factor for widespread usage, as it essentially breaks self-
stabilisation guarantees that would otherwise be preserved by
composition of self-stabilising algorithms [36]. Additionally,
self-stabilisation says little about the actual level of reactivity
to change (i.e., time-to-convergence); so, it is important to
also consider how quickly stabilisation occurs—aspect that is
examined in Section V.

IV. SELF-STABILISING LEADER ELECTION ALGORITHM

In this section, we present our main contribution: a novel
priority-based multi-leader election algorithm for the aggregate
computing model. We present a starting-point naive algorithm
that will work as baseline (Section IV-A), the proposed algo-
rithm (Section IV-B) and its implementation, and finally prove
it is self-stabilising (Section IV-C).

A. Idea and trivial implementation

At the root of the idea behind the proposed algorithm is the
observation that, in many systems, although each node is po-
tentially a valid leader candidate, different nodes should have
different priorities, as in many circumstances some nodes are
better-suited leaders than others: for instance, in an IoT system
with edge servers, the latter should be preferentially picked
over “thin” devices to sustain data-intensive operations; in
non-ad-hoc networks (for instance, scale-free networks [37]), it
may be convenient to select leaders located in “central” points
of the network (for instance, to minimize the communication
lag); in systems where devices are battery-powered, leaders
with more battery would improve the overall reliability, and
so forth. Thus, devices may compete based on their perception
of how good they would be as leader. Assuming that there is
a way to generate a unique identifier for each device (to break
the symmetry in case multiple devices are exactly as good
potential leaders), we would obtain an order of preference.
This ordering could be then exploited as follows:

1) find the “best” leader among all devices (e.g., by gossip-
ing the information on the “goodness” of each leader);

2) make it the leader of all devices “close enough” to it;
3) repeat the procedure recursively, excluding all devices

that already have a leader.
This algorithm can be expressed quite easily, for instance, with
the Protelis aggregate programming language [38]1:

1 def leaderElection(id, priority, radius) {
2 let best = gossip([priority, id], min).get(1)
3 if (distanceTo(best == id) <= radius) { best }
4 else { leaderElection(id, priority, radius) }
5 }

For the reader interested in the semantic details of aggregate
programs, leaderElection works as follows: first, gossip
selects the best leader of the current (sub-)network by

1In Protelis sources, language keywords are shown in bold purple and
library functions are shown in blue.



minimising over (priority, id) tuples, propagating the result
to neighbours, and projecting on the second element (at
position 1, assuming 0-indexing of tuples); then, distanceTo
computes for each node the distance to that leader, e.g.
through a gradient (cf. Section III-A) considering as source the
node whose id equals best; finally, the if/else branching
construct splits the (sub-)network in two parts, one of devices
closer to best than radius, whom will output best as their
leader (return value of leaderElection), and the other part
where the same leaderElection logic is recursively applied.

Recall from Section II-B that the program has to be evalu-
ated by all the devices, in asynchronous rounds, and that neigh-
bourhood broadcasts (logically, as optimisations are possible)
are sent at the end of each round. The actual data exchanged
with neighbours depends on the program and is specified in
aggregate computing languages through appropriate constructs
(such as share, see next) and their occurrences within library
functions (such as gossip and distanceTo).

This trivial implementation has two important drawbacks,
though. First, gossip algorithms are well-known to be mono-
tonic: they quickly adjust in one direction, but never accept
updates in the opposite direction. In our example, if the leader
selected first is no longer a good candidate (e.g., because it
is running out of battery, or because it moved in a peripheral
region of the network, or even because it left the system), it
would still be advertised as the globally best leader. In other
words, this solution is not self-stabilising. This behaviour can
be worked around by restarting the gossip or by adopting repli-
cation strategies [39], [40], requiring additional complexity
in computation and communication. Second, to converge, the
algorithm requires a gradient [27], [28] (although “hidden”
behind a library function call to distanceTo) to stabilise
across the network for each recursive call. This makes the
algorithm potentially slow-converging and fragile, as changes
on the first recursive calls (due, e.g., to nodes moving apart)
would require a re-computation across all the parts of the
network whose final value is computed more in-depth.

B. Algorithm
A better solution to the problem, that overcomes the afore-

mentioned issues, can be devised by rethinking the recursive
approach into a parallel solution: every device always com-
petes with its neighbours and, upon loss, supports the best
leader known to it. Informally, the algorithm can be explained
as follows.

1) Every device produces its opinion on the best leader in
form of a triple including the following information:

a) the leader’s priority;
b) the distance between this device and the best leader

it knows of;
c) the id of such leader.

Of course, at the beginning, every device will know no
candidate leader but itself.

2) Every device observes the best candidates in its neigh-
bourhood, discarding those that propose the device itself
as leader and those that are too far away.

3) The new best leader is the best between itself and the
best (if any) of those acquired from the neighbourhood.

4) The best leader can be communicated to the neighbours.
If this procedure is executed asynchronously by every device
in the network, the emergent result is a partitioning of the
network, with every device assigned to the best leader available
within the allowed range from its location.

We present in Algorithm 1 a reference implementation in
form of pseudocode. The algorithm can be expressed suc-
cinctly in the framework of aggregate computing, hence, we
also provide actionable implementations of Bounded Election
(Bounded Election) written in Protelis [38]; and in Scala
through the ScaFi [41] internal domain-specific language at
the companion artefact [42].

Algorithm 1 Bounded Election (single round)
Require: id, radius, strength, metric
Ensure: leader is the local leader
local← (val : −strength, dist : 0, lead : id)
others← receive() // set of neighboring leader triplets
valid← ∅ // will collect valid neighboring candidacies
for each proposal in others do

d← distanceBetween(id, proposal.lead,metric)
distance← proposal.dist + d // actual distance
if distance ≤ radius ∧ id 6= proposal.lead then
proposal.dist← distance // update the distance
valid← valid ∪ {proposal} // add to valid set

end if
end for
result← min(local,min(valid)) // select the best
send(result) // propagate the choice to neighbors
leader ← result.lead // update the local leader

We notice that the algorithm is agnostic with respect to
the distance metric. Also, since the maximum radius of
each area is provided as parameter, this algorithm supports
single-leader election by passing a finite (over)estimate of
the network diameter (measured according to the selected
metric, and not as hop-count), and thus guaranteeing that the
“highest priority” leader is known to any device in the network.
Depending on the implementation of the diameter calculation,
this strategy makes the algorithm very similar to [26] with
K > 1, where the “C block” is responsible for collecting
diameter estimations from the network.

C. Self-stabilisation of Bounded Election

1) Strategy: To prove that Bounded Election is self-
stabilising, we show that it is an instance of the minimis-
ing share pattern, which is proved in [43], following the
framework of [36], that it is self-stabilising. We do so by
rewriting the minimising share, preserving self-stabilisation,
until we obtain an algorithm that is functionally equivalent to
to Algorithm 1.

2) The minimising share pattern: In [43], it is proved that
an expression of the following form is self-stabilising:



1 share(x <- e) { fR(minHoodLoc(fMP(x, s̄), e), x)}

where the meaning of the terms is summarised in the remain-
der of this section (please, see Section 5.2 in [36] and, in
particular, Section 4.7 and Figure 7 in [43]).

a) share block: share(x <- e){ body } is a con-
struct meant to model evolution in time (through computation
of new information locally) and space (through information
exchange with other devices) [43]. The declared variable x,
assigned on the first round to the result of the evaluation of
expression e, collects the evaluations of the overall expression
in neighbour devices (including the device itself), working ini-
tially as the receive function of Algorithm 1. The expression
body is then evaluated, and its result is used both as next local
value (for the round to come) and as content of the message
to be sent to neighbours, thus working as the send function
of Algorithm 1.

b) raising function: fR(x, prev) is a raising function,
with respect to partial orders, of x and prev, where prev is the
value of x at the previous round. In other words, the function
always returns a value greater or equal than the arguments:
fR(x, prev)≥ max(x, prev).

c) monotonic progressive function: fMP is a monotonic
non-decreasing progressive function of x, with the following
implications:

1) ∀ x1 ≤ x2 ⇒ fMP(x1) ≤ fMP(x2), and
2) ∀ x ⇒ fMP(x,...) ≥ x.

fMP can take additional arguments s̄, as far as they are self-
stabilising expressions that do not contain the share-bounded
variable x.

d) selection of the minimum: minHoodLoc(e, loc) se-
lects the minimum among the neighbours’ values of expression
e and the current device’s local value loc.

Theorem 1 (Bounded Election is self-stabilising).

Proof. We note that our initial expression is the self-candidacy,
and that the identity function on the first parameter is a trivially
valid raising function (see Example 5.5 in [36]), we can thus
rewrite:

1 loc← (val : −strength, dist : 0, lead : id)
2 share(x <- loc) { minHoodLoc(fMP(x, s̄), loc)}

To improve readability, we then extract fMP and store its value
in a local variable v:

1 loc← (val : −strength, dist : 0, lead : id)
2 share(x <- loc) {
3 v ←fMP(x, s̄)
4 minHoodLoc(v, loc)
5 }

Then, the increment in distance and filtering operation (the
for-each cycle in Algorithm 1) is a valid replacement for fMP,
as any non-discarded element (hence including the minimum
in the set) gets larger, as its dist increases while other values
remain unchanged. In order to preserve the purely functional
structure of the proof, we rewrite the for-each operation as a
functional flatMap (we also apply the De Morgan’s law to
the boolean condition for compactness):

1 loc← (val : −strength, dist : 0, lead : id)
2 share(x <- loc) {
3 v ← x.flatMap { c ->
4 d← c.dist + distanceBetween(id, c.lead,metric)
5 if (d > radius ∨ id = c.lead) ∅
6 else {(val : c.val, dist : d, lead : c.lead)}
7 }
8 minHoodLoc(v, loc)
9 }

Finally, the selection of the minimum value between the
local candidacy and the minimum found in the neighbourhood
reproduces the behaviour of minHoodLoc:

1 loc← (val : −strength, dist : 0, lead : id)
2 share(x <- loc) {
3 v ← x.flatMap { c ->
4 d← c.dist + distanceBetween(id, c.lead,metric)
5 if (d > radius ∨ id = c.lead) ∅
6 else {(val : c.val, dist : d, lead : c.lead)}
7 }
8 min(min(v), loc)
9 }

Since the share operator replaces the reception and sending
of messages, this algorithm is equivalent to Algorithm 1,
and since it is adhering to the minimising share pattern,
Bounded Election is in turn self-stabilising [36], [43].

Summarising, our proof consisted of the following steps:
1) observation that the minimising share pattern is self-

stabilising;
2) observation that the share(x <- e){ body } repro-

duces the behaviour of a receive-compute-send block;
3) observation that the identity function is a valid raising

function;
4) substitution of fR with the identity;
5) observation that the for-each block in Algorithm 1, when

rewritten in functional form using a flatMap, produces
a monotonic progressive function;

6) substitution of fMP with the flatMap block
7) observation that minimising over the results of the

flatMap and the local candidacy has the same behaviour
of minHoodLoc;

8) substitution of minHoodLoc with min(min(v), loc);
9) observation that the produced algorithm preserves self-

stabilisation and is functionally equivalent to Algo-
rithm 1; which is in turn self-stabilising.

D. Resource consumption estimation

1) Runtime per node: The algorithm requires, for each
round, the evaluation of one message per neighbour, as the
operations of distance increase, self-candidacy filtering, and
minimisation can be compacted in a single iteration. Thus, the
algorithm complexity in time grows linearly with the number
of neighbours, the denser the network, the higher the cost.

2) Payload size: The payload is composed of two parts:
the triple representing a local candidacy and the information
required to estimate the distance from each neighbour (if any
information is needed). Since the algorithm abstracts away
the metric as an input parameter, several methods can be
used to estimate it, generating different metric spaces. In case
of GPS-equipped devices, the local position could be used to



Fig. 1. Snapshot of the randomly moving scenario. Devices are depicted
as coloured dots. Devices with the same colour belong to the same partition
(hence, share the same leader). Leaders are identified, within a partition, by a
thicker border. One thousand devices are deployed in a square arena, where
they are free to move. Devices sufficiently close-by are considered connected
(ad-hoc network), but the network is sparse and may part.

compute the distance between devices, and thus need to be
communicated to neighbours. In case of an estimation coming
from a local source (e.g., wireless signal attenuation, round-
trip-time at the previous round, or other information that can
be used as a proxy metric provided by the underlying network
protocol) the cost of this part of the payload goes to zero.
In case of custom metric spaces, the size depends on the
specific instance of the metric function; for instance, if nodes
are considered close if the value of some sensor reading is
similar, a reasonable metric could be the variance between the
local and neighbour value, which requires the sensor reading
to be included in the payload.

V. EVALUATION

The self-stabilisation proof of Section IV-C provides strong
guarantees on the eventual behaviour of Bounded Election,
but it does not provide information on its dynamics (namely,
on the transition between stable states); that, however, in
dynamic systems may be as (and even more) important than
the eventual guarantee. In fact, some systems may even never
reach a “steady state” that lasts enough for the self-stabilising
algorithm to be allowed to reach its final configuration: in
these cases, the transitional behaviour rises to prominence,
and “good” algorithms are expected to continuously drive the
system towards the would-be stable configuration.

Fig. 2. Snapshot of the edge scenario. Devices are depicted as coloured dots.
Devices with the same colour belong to the same partition (hence, share the
same leader). Leaders are identified, within a partition, by a thicker border.
975 devices are deployed in a square arena, where they are free to move.
Inside the arena are also 25 “thick” wall-powered edge devices, that do not
move and should be preferentially selected as leaders. Devices sufficiently
close-by are considered connected (ad-hoc network); the network is dense
enough that segmentation occurs rarely.

A. Scenarios

To gather information on the dynamic behaviour of the
proposed algorithm, we resort to the simulation of three
paradigmatic scenarios.

In the first scenario, depicted in Figure 3, we set up a
random scale-free network of one thousand devices through
preferential attachment [37]. We let the devices compute their
partition, but at fixed time intervals we modify their priority,
cyclically switching from the node degree (the number of
neighbours) to the device’s unique identifier to a randomly
generated value. The random value is generated once and
kept constant until the workmode is switched. This scenario
is meant to investigate how the algorithms adapt to sudden
changes in the way the network symmetry is broken.

In the second scenario, one thousand devices are located
within a square arena and allowed to move following Lévy
Walks [44]2. They communicate with neighbours located in
their proximity (within a predefined radius); the communica-
tion range has been selected to make sure that the network
segments frequently in sub-networks, forcing a continuous re-
adaptation of the election and partitioning process: the goal
of this scenario is to investigate a situation in which there

2We selected Lévy Walks as movement pattern as they reasonably approx-
imate the walking pattern of human beings [45].



Fig. 3. Subsequent snapshots of the simulation of the scale-free network scenario. Devices are depicted as coloured dots. Devices with the same colour
belong to the same partition (hence, share the same leader). Leaders are identified, within a partition, by a thicker border. Devices’ priorities switch from
using the node degree, favouring more “central” devices as leaders (left), to using their device unique identifier (centre), to using a selection based on a
pseudo-randomly generated number (right). (Full resolution images are provided at the accompanying repository.)

is a continuous perturbation, and stability is never reached.
Figure 1 shows a simulation snapshot of the scenario.

The last scenario, whose snapshot is presented in Figure 2,
simulates a mixed IoT/edge situation. 975 devices are de-
ployed inside the same arena of the previous scenario and are
free to move within its boundaries with the same movement
rule; however, this time 25 devices are marked as edge servers,
they are deployed in a 5x5 grid inside the arena, they cannot
move, and they are the preferred leaders for their area. This
scenario is designed to investigate the behaviour of the network
when there are heterogeneous devices, and some are better
suited to work as leaders. In each scenario, devices compute
rounds asynchronously with a frequency of 1Hz. We do not
model network errors and packet losses in these experiments.

B. Algorithms

We compare three algorithms:
1) Bounded Election;
2) the trivial recursive version of the leader election pre-

sented in Section IV-A; and
3) the current state of the art, represented by the S block

as implemented in the Protelis-lang library [24].
For the trivial recursive version, in the scale-free scenario we
adopt an arguably unfair way to detect changes: we do reset
the gossip process right at the time the leader strength changes.
In a nominal situation, that would be hardly possible: the
algorithm would have needed to run overlapping replicates
of the gossip process [39], with a much higher resource
consumption and a slower time to adjust to non-monotonic
changes.

C. Metrics

We are interested in stabilisation times as, in cases when
the execution of other algorithms depend on the network

partitioning (as in the case of the SCR pattern [10]), then even
a small improvement on the stability or convergence time can
lead to much faster adaptation. This potentially translates to
fewer rounds required to stabilise and lower power consump-
tion, especially if advanced scheduling strategies (reactive or
partially reactive, as in [46]) are used. One simple metric
would have been the time required for the whole network
to stabilise, but such a metric can not tell apart “almost
stabilised” scenarios from completely off ones, while we want
an indication of the quality of the transient. Moreover, such
metric would have never converged in the non-static scenarios,
where adaptation must be executed continuously. To have
insights on the dynamic behaviour, we concocted a metric that,
informally: looks behind R+1 rounds; counts how many times
each device changed its leader; sums these changes for every
device; and finally normalises on the overall number of rounds
considered. In other words, we measure the mean probability
that there was a leader change in a round, in any device, in
the last R + 1 rounds. More formally:

• let I be the set of all possible device UIDs;
• let ldt ∈ I be the leader selected in device d at round t;
• let T be the current round;
• for each device d, we consider the set Ld

TR =
{ldT , ldT−1, . . . , l

d
T−R} comprising the leaders perceived in

a mobile window spanning the last R + 1 rounds;
• we then consider the R couples of subsequent leaders

Sd = {(ldi , ldj ) | ∀j = i + 1; ldi , l
d
j ∈ R};

• we define a function over 2-ples c : I2 → {0, 1}

c((k1, k2)) =

{
1, k1 = k2

0, otherwise

that outputs 1 iff the elements of the tuple are equal;
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Fig. 4. Algorithms compared in the scale-free network scenario; the
instability metric is detailed in Section V-C. Every 100 seconds, the leader
strength is changed as indicated in the labels at the bottom of the chart:
deg (degree of the node), id (id of the node), and rand (randomly generated
value). Despite the (unfairly) timely reset of the gossip, the recursive algorithm
shows the worst performance overall. Although the self-stabilisation of the
classic algorithm has never been formally proven, it always stabilised in our
experiments. The proposed algorithm is the best across the chart: it reaches
stability first in all cases.

• we then count how many times in the last R + 1 rounds
the leader has not changed, normalised on the considered
number of rounds: Cd =

∑
x∈Sd c(x)/|Sd|, we consider this

a measure of local instability;
• finally, we obtain our global metric of global instability

Y =
∑

d∈I Cd
/|I| by normalising the sum of the local

contributions.
In our experiment, we consider the instability in the last 11
rounds (R = 10) as metric.

D. Implementation and reproducibility

Each scenario has been simulated 200 times with a dif-
ferent random seed; the results discussed in Section V-E are
averaged over all the repetitions. The seed controls the shape
of the network in the scale-free network scenario, the initial
position of devices in the scenarios with movement, and the
asynchronous round scheduling. The simulations have been
realised in Alchemist [47], the implementation of the recur-
sive and self-stabilising Bounded Election has been written
in Protelis [38]. Data generated by the simulator has been
analysed using xarray [48]; visual reports of the data have been
created via matplotlib [49]. For the sake of reproducibility,
the experiment has been open-sourced with MIT Licence,
archived on Zenodo, assigned a DOI [42], and made available
on GitHub3.

E. Results

Data shows that Bounded Election outperforms the other
algorithms across the board, converging first in the scale-free
scenario and showing lower instability in the scenarios with
mobile devices.

3https://github.com/DanySK/experiment-2022-self-stab-leader-election
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Fig. 5. Algorithms compared in the random movement scenario; the
instability metric is detailed in Section V-C. In this setting, we expected the
classic algorithm to perform better than the alternatives. Instead, data shows
that the opposite happens: both the recursive version and the Bounded Election
outperform the baseline, with the proposed algorithm consistently showing
better stability throughout the experiment.

The behaviour of the three algorithms under testing for the
scale-free scenario is depicted in Figure 4. The behaviour
of the recursive version is interesting, as it performs pretty
well for some specific choices of the leaders: when leaders
are selected based on their degree (hence, centrality in the
network), it outperforms the classic algorithm. The situation
reverses in all other cases, though: the recursive version suffers
from much longer stabilisation times when the best leaders
are on the peripheral areas of the network. Although the self-
stabilisation of the classic algorithm has never been formally
proven, it always stabilised in our experiments.

With all nodes moving randomly (Figure 5), we expected the
classic algorithm to perform better than the alternatives, as the
selection of the leaders could better adapt. Instead, data shows
that the opposite happens: both the recursive version and the
Bounded Election outperform the baseline, with the proposed
algorithm consistently showing better stability throughout the
experiment. The most likely cause of the behaviour is the fact
that, on average, the best leader remains quite central in this
network, and, as a consequence, in most cases it “projects” a
large “area of stability”.

Finally, in the edge-inspired scenario (Figure 6), data shows
that the recursive version is competitive with the classic
one, with Bounded Election by far outperforming the other
algorithms. This is indeed the case where the algorithm was
expected to shine, as there is a clear preference over which
leader should be picked, and picking them has an advantage,
as they remain static.

As discussed in Section V-C, obtaining consistently shorter
convergence time and higher stability can lead to cascading
benefits when (as it usually is the case) other algorithms
run on top of network partitioning. Faster adaptation allows
the partition-based algorithm to operate with a correct view
of their partition, and better stability means that adaptation

https://github.com/DanySK/experiment-2022-self-stab-leader-election
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Fig. 6. Algorithms compared in the edge scenario; the instability metric
is detailed in Section V-C. In these condition, we expected the algorithms
capable to select edge devices over the other devices to perform better, as
their areas can remain more stable. Data shows that, while Bounded Election
consistently outperform the alternatives, the recursive version, although better
than the baseline for most of the time, shows a more erratic behaviour.

mechanisms that sit on top of the partitions will get triggered
less frequently. Depending on the specific scenario at hand,
this could in turn translate to better performance, improved
user experience, and/or reduced energy requirements.

VI. CONCLUSION

In this work, we have proposed a novel leader election
algorithm, Bounded Election, for the aggregate computing
model, which is space-based, priority-based, induces network
partitioning, and, crucially, is proved to be self-stabilising.
Compared to other state-of-the-art solutions, besides its proven
self-stability, Bounded Election also shows better dynamic
performance, both in terms of shorter stabilisation time and
average resilience to small continuous disruption.

Future work should be devoted to a more extensive explo-
ration of scenarios, to find cases in which Bounded Election
does not perform well enough. These, when identified and
properly addressed, could lead to a new family of self-
stabilising algorithms for collective leader election and net-
work partitioning, possibly tailored to general use and corner
cases. We also notice that, in principle, the algorithm retains
self-stabilisation regardless of the way the leader strength
is computed, as far as this computation is self-stabilising,
too. Thus, work should be devoted into better understand the
consequences of different views on the strength of a leader,
and whether this mechanism can be leveraged to achieve useful
behaviours.
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