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ABSTRACT
In recent years, breakthroughs in methods and data have enabled gravitational time delays to emerge as a very powerful tool to
measure the Hubble constant H0. However, published state-of-the-art analyses require of order 1 yr of expert investigator time
and up to a million hours of computing time per system. Furthermore, as precision improves, it is crucial to identify and mitigate
systematic uncertainties. With this time delay lens modelling challenge, we aim to assess the level of precision and accuracy
of the modelling techniques that are currently fast enough to handle of order 50 lenses, via the blind analysis of simulated data
sets. The results in Rungs 1 and 2 show that methods that use only the point source positions tend to have lower precision
(10–20 per cent) while remaining accurate. In Rung 2, the methods that exploit the full information of the imaging and kinematic
data sets can recover H0 within the target accuracy (|A| < 2 per cent) and precision (<6 per cent per system), even in the presence
of a poorly known point spread function and complex source morphology. A post-unblinding analysis of Rung 3 showed the
numerical precision of the ray-traced cosmological simulations to be insufficient to test lens modelling methodology at the
percent level, making the results difficult to interpret. A new challenge with improved simulations is needed to make further
progress in the investigation of systematic uncertainties. For completeness, we present the Rung 3 results in an appendix and
use them to discuss various approaches to mitigating against similar subtle data generation effects in future blind challenges.
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1 IN T RO D U C T I O N

The flat � cold dark matter (�CDM) cosmological model has been
remarkably successful in explaining the geometry and dynamics of
our Universe. It has been able to predict/match the results of a wide
range of experiments covering a wide range of physical scales (Eisen-
stein et al. 2005; Betoule et al. 2014; Planck Collaboration XVI 2014;
Planck Collaboration XIII 2016; Riess et al. 2016; Alam et al. 2017),
and the expansion of our Universe (Riess et al. 1998; Perlmutter et al.
1999).

One of the key parameters of the model is the Hubble constant (H0)
that determines the age and physical scale of the Universe. Measuring
H0 at high precision and accuracy has been one of the main goals of
observational cosmology for almost a century (Freedman et al. 2001).
In recent years, as the precision of the measurements has improved to
a few per cent level, a strong tension has emerged between early and
late universe probes. As far as early-universe probes are concerned,
analysis of Planck data yields H0 = 67.4 ± 0.5 km s−1 Mpc−1 (Planck
Collaboration VI 2020), assuming a �CDM model. In the local uni-
verse, the Equation of State of dark energy (SH0ES) team using the
traditional ‘distance ladder’ method based on Cepheid calibration of
Type Ia supernovae by finds H0 = 74.03 ± 1.42 km s−1 Mpc−1 (Riess

� E-mail: dingxuheng@mail.bnu.edu.cn

et al. 2019), and H0 = 72.4 ± 2.0 km s−1 Mpc−1 based on the tip
of the red giant brand (Yuan et al. 2019). The Carnegie–Chicago
Hubble Program calibrated the tip of the red giant branch and applied
to Type Ia supernovae, finding a mid-way Hubble tension as H0=
69.8 ± 0.8 (±1.1 per cent stat) ± 1.7 (±2.4 per cent sys) (Freedman
et al. 2019). The tension between late and early universe probes
ranges between 4σ and 6σ (see summary by Verde, Treu & Riess
2019). If this ∼8 per cent difference is real and not due to unknown
systematics in multiple measurements, it demonstrates that �CDM
is not a good description of the universe, and additional ingredients
such as new particles or early dark energy might be needed (e.g.
Arendse et al. 2020; Knox & Millea 2020). Given the potential
implications of this tension, it is crucial to have several independent
methods to measure H0 each with sufficient precision to resolve the
tension (e.g. 1.6 per cent to resolve the 8 per cent H0 tension at 5σ ).

Time-delay cosmography by strong gravitational lensing provides
a one-step measurement of H0 together with other cosmological
parameters (Refsdal 1966; Treu & Marshall 2016). The strongly
lensed source produces multiple images, corresponding to multiple
paths followed by the photons through the universe. According
to Fermat’s principle, the lensed images arrive at the observer at
different times, corresponding to the extrema of the arrival time
surface. The time delays between the images depend on the absolute
value of cosmological distances, chiefly through the so-called ‘time-
delay distance’, D�t, and can thus be used to infer H0 like any
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other distance indicator (Schechter et al. 1997; Treu & Koopmans
2002a; Suyu et al. 2010). Importantly, time delay cosmography is
independent of all other probes of H0.

At the time of writing, the H0 Lenses in COSMOGRAIL’s
Wellspring (H0LiCOW) and SHARP collaborations have finished
the analysis of six strong lensed quasars and obtain a joint infer-
ence for Hubble constant as H0 = 73.3+1.7

−1.8 km s−1 Mpc−1 (Wong
et al. 2020). In addition, as part of the STRIDES collaboration,
Shajib et al. (2020b) analysed one particularly information-rich
strong lens system DES J0408-5354 alone and constrained the
H0 at 3.9 per cent level, in excellent agreement with the Wong
et al. (2020) result. [In the rest of the paper, we refer to
H0LiCOW/SHARP/COSMOGRAIL/STRIDES collectively as TD-
COSMO (Millon et al. 2020)]. Measurements of H0 using time delay
lenses also have been investigated by other collaborations (Paraficz
& Hjorth 2010; Ghosh, Williams & Liesenborgs 2020).

Based on the current results, it is predicted that a 1 per cent
precision in the H0 can be achieved via the time delay cosmography
alone using a sample of 40 lensed systems (Shajib, Treu & Agnello
2018). However, two issues need to be addressed before a 1 per cent
measurement of H0 can be achieved with time delay cosmography.
First, the analysis and computational costs need to be reduced in
order to make the larger samples tractable. Secondly, all sources of
potential systematic uncertainties must be investigated in order to
identify and mitigate any outstanding one.

The first issue is well illustrated by the current state of the art. At
present, the analysis of each system requires approximately 1 yr of
effort full time by an expert investigator. Furthermore, the analysis
by Shajib et al. (2020b) required approximately 1 million hours
of CPU time. Analysing 40 lenses would thus be prohibitive with
current techniques, especially in terms of investigator time. Efforts
are underway to automate these modelling efforts so that they can be
scaled to a large number of lenses reducing the investigator time per
lens (Shajib et al. 2019), but much work remains to be done to get to
high precision, low cost modelling (Schmidt et al., in preparation).

Regarding the second issue, a number of efforts are under way
to identify systematic uncertainties (e.g. Millon et al. 2020). All
parts of the analysis need to be checked with high-quality data and
independent analysis, as well as with simulated data sets.

One effective strategy to test for unknown systematic errors
is to use blind analysis. In the implementation followed by the
TDCOSMO collaboration, the inferred values of D�t and H0 are
kept blind until all coauthors agree to freeze the analysis during a
collaboration telecon. The inference is then unblinded and published
without modification. One of the goals of the blind analysis is to
avoid conscious and unconscious confirmation bias.

Another powerful strategy is to study systematic errors using
realistic simulations, possibly analysed blindly. Blind analysis of
simulated data sets was the strategy of the ‘time delay challenge’
(TDC). In the TDC (Dobler et al. 2015; Liao et al. 2015), a so-called
‘Evil’ team first simulated a large number of realistic ‘mock’ time
delay light curves, including anticipated physical and experimental
effects. Then, the ‘Evil’ team published the mock data and invited
the community to extract time delay signals blindly using their own
method. Liao et al. (2015) showed that time delays can be measured
from realistic data sets with precision within 3 per cent and accuracy
within 1 per cent.

The success of TDC encouraged the community to take on the next
step by verifying the precision and accuracy of lens models with a
time delay lens modelling challenge (TDLMC), initiated on 2018
January 8 by posting a paper on arXiv (TDLMC1, Ding et al. 2018).
The challenge ‘Evil’ team simulated 48 systems of mock strongly

lensed quasars data and provided access to the data through a weblink
to the participating teams (‘Good’ teams) to model, blindly:1

(i) https://tdlmc.github.io

The ‘Evil’ team produced realistic simulated time-delay lens data
including (i) Hubble Space Telescope (HST)-like lensed AGN im-
ages, (ii) lens time delays, (iii) LOS velocity dispersions, and (iv)
external convergence. After the ‘Good’ team submitted their inferred
H0, the performance of the adopted method could be estimated by
comparing them with the true values in the simulation.

The number of simulated lensed quasars was chosen to have
sufficient statistics to assess the performance at the percent level
(7 per cent expected per system, gives approximately a ∼1 per cent
precision on the mean). We stress that this is already a huge sample
for current modelling methods, and thus the challenge is exclusively
testing ‘fast methods’. The computational cost of lens modelling is
a major hurdle that will need to be overcome in the future; thus
TDLMC uses large simulated samples aiming at testing the speed
and performance of these ‘fast methods’.

We also note that TDLMC is limited to the study of the lens model
accuracy. Other sources of uncertainty are not considered. Therefore
ancillary data, including time delay, LOS velocity dispersion, and
information of external convergence are provided unbiased and with
true uncertainties.

This paper provides the details of the challenge design that were
hidden in the challenge opening paper (Ding et al. 2018, hereafter:
TDLMC1) and presents an overview of the submission results. We
encourage the individual ‘Good’ teams to submit more detailed
papers on their methods and results. The paper is structured as
follows. In Section 2, we describe the details of the challenge,
including hitherto hidden adopted when simulating the sample.
Sections 3 includes the response from the participating teams to
this challenge and a brief summary of the method(s) adopted.
The analysis of the submissions for Rungs 1 and 2 is presented
in Section 4. For Rung 3, we discovered post-unblinding that the
numerical precision of the ray-traced simulations was insufficient to
test lens model methodology at the percent level, making the results
from this rung difficult to interpret. Therefore, we dedicate a full
Section 5 to the subtleties of Rung 3 that will need to be addressed
in a future challenge that wishes to adopt numerical simulations
of galaxies as a starting point. The results of Rung 3 are given in
Appendix B for completeness, even though the results should be
interpreted with caution. We draw some of the implications of the
results and discuss our findings in Section 6. Section 7 presents a
brief summary of the paper. To facilitate the tracking of the whole
process of the TDLMC, we paste the main body of the TDLMC1 in
Appendix A which was used to open this challenges.

2 D E TA I L S O F T H E T D L M C C H A L L E N G E
D E S I G N

There are three challenge ladders in TDLMC, called Rung 1, Rung 2,
and Rung 3. In addition, an entry-level Rung 0 is also designed for
training propose. To ensure that the ‘Good’ teams do not infer any
information for the previous rung, we reset the H0 at each rung.
We adopt two independent codes, namely LENSTRONOMY2 (Birrer &

1For an early implementation of a blind challenge, see paper by Williams &
Saha (2000).
2https://github.com/sibirrer/lenstronomy
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1098 X. Ding et al.

Figure 1. HST images of the realistic galaxies that were used in the TDLMC simulations as lensed AGN host galaxies.

Amara 2018) and PYLENS3 (Auger et al. 2011), to simulate HST-like
lensed AGN images (equally split). This strategy helps us to mitigate
the ‘home advantage’, if any, in the sense that when ‘Good’ team
happens to adopt the same code as the one used to generate the
simulated images. The use of two independent codes also allows us
to estimate numerical uncertainties related to the implementation of
the algorithms, if present.

2.1 Challenge structure

The TDLMC begins with Rung 0, consisting of two lens systems
– one double and one quad. This training rung aims to ensure that
‘Good’ team members understand the format of the data, and avoids
any trivial coding errors or mistakes that potentially affect the results
of the entire challenge.

Considering that the lens modelling process is usually time-
consuming, we generated in total of 48 lensing systems, spread over
three blind rungs (i.e. Rung 1, 2, and 3. There are 16 systems in each
rung). The sample size is small enough to ensure it is tractable by the
‘Good’ teams and large enough to explore different conditions with
sufficient statistics and uncover potential biases at the percent level.
We increase the level of complexity from Rung 1 to Rung 3.

We reveal the details of the simulations for each blind rung in the
rest of this section, including the ones that were only known to the
‘Evil’ team before unblinding.

3https://github.com/tcollett/pylens

2.2 Details of each Rung

For training purpose, Rung 0 was designed to be as simple as possible.
Therefore, simple parametrized forms were adopted to describe the
surface brightness of the deflector and the source galaxy (i.e. Sérsic),
and the mass profile (elliptical power law) of the deflector. The true
point spread function (PSF) is given, and external convergence was
not considered. The Rung 0 data are released with all the input
parameters, so that the ‘Good’ teams can validate their analysis.

In Rung 1, the increase in complexity with respect to Rung 0 is
that the surface brightness of the AGN host galaxy is realistically
complex, rather than described by a simply parametrized model like
Sérsic. For the purpose of making realistic source galaxies, we started
from high-resolution images of nearby galaxies obtained by HST. The
digital images are downloaded from the Hubble Legacy Archive.4 In
order to get a clean galaxy image, we first removed isolated stars and
background foreground objects in the field. All the processed galaxy
images are shown in Fig. 1. Then, we obtained the global properties
of these galaxies, using GALFIT to fit them as the Sérsic profiles so
as to obtain their effective radius (Reff) in arcsec and total flux. This
information is then used to rescale the galaxy size and magnitude in
the source plane, as described in Section 2.3.3. A random external
convergence value is also added in Rung 1 (see Section 2.4).

Rung 2 increases the complexity of Rung 1 by providing the
‘Good’ teams with only a guess of the PSF, instead of the actual PSF
used to generate the simulations. This added complexity is meant to

4https://hla.stsci.edu/hlaview.html

MNRAS 503, 1096–1123 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/1096/6146088 by guest on 15 August 2023

https://github.com/tcollett/pylens
https://hla.stsci.edu/hlaview.html


TDLMC 1099

Figure 2. Example of 2D kinematic map for Rung 3. (left): LOS mean velocity (vave) map. (right): velocity dispersion (σ ave) map. The image resolution is
16 times higher than HST/WFC3, i.e. 0.′′13/16 = 0.′′008125.

represent a typical situation where the observer uses a nearby star or
model as an initial guess to the actual PSF and then improves on it
using the quasar images themselves. In order to implement this step
in a realistic manner, the ‘Evil’ team took one actual star observed
by HST WFC3/F160W and constructed a high-resolution image by
interpolation. This PSF image is used to carry out the simulation
process described in Section 2.5. However, the PSF information
based on a different star was given to the ‘Good’ teams.

Rung 3 was the most ambitious as we aimed to increase the
complexity of the deflector mass distribution, in addition to retain the
complexities of Rung 2. Assessing the effects of the complexity of the
deflector mass distribution is crucial to evaluate the performance of
modelling methods. For example, the mass sheet degeneracy (MSD;
Falco, Gorenstein & Shapiro 1985) can be broken by adopting a
power-law model to a non-power-law lens mass distribution (Schnei-
der & Sluse 2013, 2014). The assumption of any specific mass
profile can potentially result in the systematic bias to the measured
Hubble constant, the magnitude of which depends on the difference
between the model and the true unknown profile. This effect has
been illustrated with cosmological hydrodynamic simulations (Xu
et al. 2016; Tagore et al. 2018), suggesting a potential bias could be
introduced due to the MSD. In an attempt to model this, the deflector
galaxies in Rung 3 are based on cosmological numerical simulations.
However, this is also the most conceptually difficult step because we
do not have access to the ‘true’ mass distribution in real galaxies. For
Rung 3, the ‘Evil’ team examined two options to produce a realistic
deflector mass. The first option, following Gilman et al. (2017), is
to use the surface brightness distribution of real galaxies, convert it
into stellar mass, and add some dark matter components with some
prescription. There are challenges to this approach; for example, it is
not clear how to obtain self-consistent stellar kinematics. Thus, we
discarded this option and decided to (following e.g. Xu et al. 2016)
take the results of hydrodynamical simulations as our ‘realistic’ mass
distribution [specifically Illustris (Vogelsberger et al. 2013, 2014)
and the ‘zoom’ simulations in Frigo et al. (2019) were adopted].
This method has clear advantages but also limitations. For example,
the results are only as good in terms of interpreting the real universe
as the simulations are accurate, and it is well known that to simulate
massive elliptical galaxies accurately is a challenge (e.g. Naab &
Ostriker 2017). Furthermore, the resolution of the state-of-the-art
simulations is finite, and the effects of finite resolution are important
at the scale of strong lensing (Mukherjee et al. 2019; Enzi et al.
2020). We did not anticipate additional numerical issues that were
discovered post-unblinding and will be discussed later in the paper.

After setting up the deflector redshift in Section 2.3.1, the Rung 3
deflector providers produced deflector maps at the corresponding
redshift. These maps are at very high resolution, which is superior
to HST by a factor of 16 (i.e. 0.′′13/16 = 0.′′008125 per pixel). The
following information was provided by simulators to generate Rung
3 lensed images including

(i) mass distribution: The lensing maps include potential map
(f), the deflection angles maps (including f ′

x and f ′
y , i.e. first-order

derivation of f), and the hessian map (f ′′
xx , f ′′

yy and f ′′
xy , i.e. second-

order derivation of f).
(ii) surface brightness: The ‘observed’ R band surface brightness

is used to illustrate the light of the deflector in the simulation in
Section 2.5. This map is also used to calculate the light-weighted
LOS stellar velocity dispersion in Section 2.6.2.

(iii) kinematics: The kinematic maps include the LOS averaged
velocity map (Vave), which accounts for the deflector rotation (Fig. 2,
left-hand panel), and the averaged velocity-dispersion map (σ ave, see
Fig. 2, right-hand panel).

2.3 Specific ingredients of the simulations

In TDLMC, the ‘Evil’ team intends to provide the mock data as
realistic as possible. An overview of models/configuration that used
to simulate the mock data have been introduced in the challenge
designing paper TDLMC1, i.e. Appendix A. However, for obvious
reasons, some details had to be kept blind and are presented here for
the first time.

2.3.1 Redshift of deflector and source

The redshifts of the mock lenses are assumed to be distributed as for
typical lenses. In Rungs 1 and 2, the ‘Evil’ team randomly generated
their values from a normal distribution with zd ∈ N(0.5 ± 0.2), zs ∈
N(2.0 ± 0.4). In Rung 3, the lensing maps5 are directly provided by
the hydrodynamical simulation, fixing the redshift of the source at zs

= 1.5 and adopting the same deflector redshift same as provided by
the simulation (zd ∼ 0.5).

5Lensing maps include the potential map, the deflection map, and the
convergence map, i.e. f, f ′

x , f ′
y , f ′′

xx , f ′′
yy , and f ′′

xy .
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2.3.2 Detailed set-ups of the lensing mass

The lensing maps are assumed to be composed of a main deflector,
plus external shear and convergence. We describe the mass distribu-
tion of the deflector in this section. The deflector mass models are
meant to describe typical elliptical galaxies.

In Rungs 1 and 2, the main deflector is assumed to follow a
typical elliptical power-law mass distribution (see also the section
2.3.1 in TDLMC1, i.e. Appendix A2.2), with parameter distributions
as listed in Table 1. In the simulations, we first draw the single
isothermal sphere (SIS) velocity dispersion from the distribution in
Table 1. Then, the corresponding Einstein radius can be calculated
as RE = 4πv2

d
Dds

Ds
, where Dds, Ds are the angular diameter distance

between the source and the deflector and from the source to us.
In Rung 3, the deflector mass information is provided by the two

simulating teams (XD, MF, and SV) as described in Section 2.2.
They also provide the velocity map of the deflector, which is used
to calculate the aperture velocity dispersion in Section 2.6.2, and its
surface brightness (see next section).

2.3.3 Surface brightness calculation

The surface brightness in an image is comprised of light both from the
deflector and the lensed source. The main deflector surface brightness
in Rungs 1 and 2 is described with the widely used Sérsic profile
(as described in section 2.2.1 in TDLMC1, i.e. Appendix A2.1)
with parameters distributed as shown in Table 1. In Rung 3, the
(relative) R-band luminosity of stellar particles as deflector light
were computed based on their age and metallicity, using the Bruzual
& Charlot (2003) model. We only assume the distribution of the
deflector’s magnitude given in Table 1 to normalize its total flux for
the purpose of achieving a realistic signal-to-noise ratio.

To define the realistic surface brightness distribution of the AGN
host galaxy, we adopt a true high-resolution image taken from
HST archive for all the blind rungs,. We first rescale the image by
projecting it on the source plane, so that it has an apparent Sérsic
effective radius drawn from Table 1. The magnitude of the source host
galaxy is then rescaled from the observed according to the redshift
of the source.

In order to obtain images similar to those used for cosmographic
measurements, we assume that the active nuclei have a comparable
flux to that of their host galaxy, see Table 1.

We vary the position of the source AGN so as to generate the
lensing image in a range of configurations (including cusp, fold,
cross, and double).

2.4 External shear and convergence

All the mass along the line of sight (LOS) contributes to the deflection
of photons. In current state-of-the art analyses, this problem is made
tractable by modelling the main deflector and the most massive
nearby perturbers explicitly, while describing the remaining effects
to first order as external shear and convergence (κext).

For simplicity, in this challenge we do not include massive
perturbers, so there are just two components, the main deflector
(described above) and the LOS external shear and convergence.

In Rungs 1 and 2, we add an external shear to the lensing potential
with typical strength and random orientation, as shown in Table 1.
External shear is not added in Rung 3 in order to keep the lensing
potential self-consistent with the mass. More important is the effect
of the external convergence (κext), since it affects the relative Fermat
potential and time delay. As mentioned in TDLMC1, we consider the

Table 1. Parameter distributions.

Simulation ingredient Model and parameter values

(A): redshift
Deflector redshift zd ∼ N(0.5 ± 0.2)
Source redshift zs ∼ N(2.0 ± 0.4)

(B): deflector (image plane)
Lensing galaxy mass Elliptical power law
SIS velocity dispersion vd ∼ N(250 ± 25) km s−1

Einstein radiusa REin = 4πv2
d

Dds
Ds

Mass slope s ∼ N(2.0 ± 0.1)
Ellipticity q ∼ U(0.7 − 1.0)
Elliptical axis angleb φm ∼ U(0 − π )

Lensing galaxy SB Sérsic profile
Total magnitudec mag ∼ U(17.0 − 19.0) magnitude
Effective radius Reff = REin∗U(0.5 − 1.0)
Sérsic index n ∼ U(2.0 − 4.0)
Ellipticity q ∼ U(0.7 − 1.0)
Elliptical axis angled φ = φmU(0.9 − 1.1)

(C): AGN (source plane)
Host galaxy SB Realistic galaxy
Total magnitude mag ∼ U(22.5 − 20.0) magnitude
Effective radiuse Reff ∼ U(0.′′37, 0.′′45), 1.0 < zs < 1.5

Reff ∼ U(0.′′34, 0.′′42), 1.5 < zs < 2.0
Reff ∼ U(0.′′31, 0.′′35), 2.0 < zs < 2.5
Reff ∼ U(0.′′23, 0.′′33), 2.5 < zs < 3.0

Active nuclear light Scaled point source
Source plane total flux fAGN = fhost∗U(0.8 − 1.25)

External shear
Amplitudes γ ∼ U(0 − 0.05)
Shear axis angle φ ∼ U(0 − π )

External convergency
External kappaf κext ∼ N(0 ± 0.025)

Notes. Table lists the assumptions that were used to distribute the
parameters for the TDLMC simulation. In Rung 3, non-parametrized
deflectors (i.e. lensing galaxy mass and surface brightness) are adopted.
Thus, the B part in the table is not adoptable for this rung. The distribution
of ‘N’ means normal distribution and the ‘U’ means uniform distribution.
Among all the parameters shown in the table, only the redshifts (with
zero observation error) and unbiased estimated of external convergence
κext = 0 ± 0.025 were provided to the ‘Good’ teams.
a Using our definition, the Einstein Radius would be in the range [1.′′00,
1.′′20].
b The position angles start from the x-axis anticlockwise.
c The flux in cps and the magnitude value are related by the equation:
mag = −2.5∗log 10(flux) + zp, where zp is the filter zeropoint in AB
system. For filter WFC3/F160W, zp = 25.9463.
d The effective radius and elliptical axis angle of the lensing light are
assumed to be correlated with lensing mass at a certain level.
e The effective radius of the realistic galaxy is obtained by fitting Sérsic
profiles using Galfit.
f κext is randomly generated to calculate the time delay data. The parent
distribution was provided to the ‘Good’ teams, but not the actual value, to
mimic real analyses, see the descriptions at equation (4) for more details.

effect of κext by drawing from a Gaussian distribution N(0 ± 0.025)
for all the three Rungs.

2.5 Generating HST-like data

Having defined the ingredients of the simulations, we adopt two
independent codes to build the pipeline that produces the mock HST

MNRAS 503, 1096–1123 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/1096/6146088 by guest on 15 August 2023



TDLMC 1101

Figure 3. Illustration of the generation of a mock lensed AGN image, using LENSTRONOMY (top) and PYLENS (bottom). The image is sampled based on
HST-WFC3/F160W at four times higher resolution (i.e. 0.′′13/4). Note that the difference of numerical implementation between the two codes yield little
systematic residuals, which is well below the noise level (see Fig. A2).

imaging data. We aim to simulate the image quality of typical state-
of-the-art data sets, i.e. WFC3/F160W with individual exposures
of 1200 s, and typical background. We use astrodrizzle to co-add
eight single dithered exposures to obtain the final image with pixel
sampling improved from 0.′′13 to 0.′′08.

The simulations are similar to those described by Ding et al.
(2017a), which we refer to for more details. A brief description
is given here for convenience. The simulation starts from high-
resolution images with pixel scale four times smaller than the
HST resolution (i.e. 0.′′13/4). We start from actual HST images,
as illustrated in fig. 2 of TDLMC1, i.e. Fig. A2. To numerically
define the surface brightness of these actual images, PYLENS uses
interpolation, and with LENSTRONOMY we chose to use shapelet
decomposition (Refregier 2003; Birrer, Amara & Refregier 2015).
We then rescale the image to the desired size. Then, the distortion
by lensing is based on the deflection angles. We convolve the image
plane surface brightness with the PSF and add scaled PSF in the
position as the point sources to mimic instrumental resolution. In
Rung 1, the PSF is generated with TinyTim (Krist, Hook & Stoehr
2011), while in Rung 2 and Rung 3 PSFs are extracted from
the real HST images, and we use interpolation to obtain the PSF
image at higher resolution. The pipeline is illustrated in Fig. 3.
Note that at this step, the images are still sampled at the 0.′′13/4
resolution.

In the next step, we rebin the pixels by 4 × 4 to degrade the
image at HST resolution, i.e. 0.′′13. We select eight different patterns
to rebin the image, so as to mimic the dither process. In the next
step, we add the noise to the data, see figs 1 and 2 in Ding et al.
(2017a) for details. Finally, we use the drizzling process to co-add
eight dithered images to obtain the final drizzled image at 0.′′08
sampling. We present the 48 simulated images of the three rungs in
Fig. 4.

In the TDLMC, the eight dithered HST images and the final
drizzled images are all provided to the ‘Good’ teams including the
science images, noise level maps, and a sampled PSF image.

2.6 Simulated ancillary data

In addition to the HST imaging data, the ‘Evil’ team provides time
delay and aperture stellar velocity dispersion, computed as described
in this section.

2.6.1 Time delay

The true time delay between the lensed AGN images are calculated
using the following equations once the values of the simulated
parameters are given by

�tij = D�t

c

[
φ(θi) − φ(θj )

]
, (1)

where θ j and θ j are the coordinates of the images i and j in the image
plane. φ(θ i) is the Fermat potential at image i and D�t is so-called
time-delay distance, defined as

φ(θi) = (θi − β)2

2
− ψ(θi), (2)

D�t ≡ (1 + zd )
DdDs

Dds
, (3)

where Dd, Ds, and Dds are, respectively, the angular distances from
the observer to the deflector, from the observer to the source, and
from the deflector to the source.

We consider the effects of the κext to the observed time delay by

�tobs = (1 − κext)�ttrue. (4)

Note that the true value of κext is assumed to be zero. It is the measured
value of κext that is scattered as N(0 ± 0.025). The effect of adding
such κext is equivalent to adding a perturbation on the observed time
delays as equation (4). In principle, the external convergence effect
should also shift the Einstein radius, which we did not consider in
TDLMC for simplicity. That is, the κext is only taken as a pure scatter
effect on the time delay, hence H0.
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1102 X. Ding et al.

Figure 4. Mock data provided for Rung 1, Rung 2, and Rung 3. The configurations from left to right are cross, cusp, fold, and double. The images belonging
to the same rung are shown with the same stretch to facilitate visual comparisons.

Assuming zero bias on the time delay, we add random error as
the largest between 1 per cent and 0.25 d were adopted. We are
deliberately keeping the uncertainties on the time delay as small
as in the very best cases, in order not to obfuscate lens modelling
errors.

2.6.2 Aperture stellar velocity dispersion

The aperture stellar velocity dispersion is helpful to break the MSD
(Falco et al. 1985; Treu & Koopmans 2002b). The integrated LOS
velocity dispersion is computed as the second moment of the velocity
distribution weighted by surface brightness in a square aperture by
1.′′0 × 1.′′0, similar to the standard aperture used for real systems.
Seeing conditions are also chosen to mimic the best current ground-
based systems, idealized as a Gaussian kernel with a full width at
half-maximum (FWHM) as 0.′′6.

In Rungs 1 and 2, the deflector mass distribution is simply
parametrized. Following current practice (e.g. Shajib et al. 2018), we
assume that the mass distribution is related to the velocity dispersion

profile through the spherical Jeans equation:

1

l(r)

d
(
lσ 2

r

)
dr

+ 2βani(r)
σ 2

r

r
= −GM(≤ r)

r2
, (5)

where l(r) is the luminosity density of the deflector galaxy, σ r is the
radial velocity dispersion and βani(r) is the anisotropy profile and
described as

βani(r) = 1 − σ 2
t

σ 2
r

, (6)

where σ t is the tangential velocity dispersion. The observed LOS
velocity dispersion is surface brightness weighted, and thus can be
calculated by solving the equation as (Mamon & Łokas 2005)

I (R)σ 2
los(R) = 2G

∫ ∞

R

k
( r

R
,
rani

R

)
l(r)M(r)

dr

r
, (7)

where I(R) is the deflector surface brightness.
We adopt the Osipkov–Merritt parametrization of anisotropy

βani(r) = 1/(1 + r2
ani/r

2) (Osipkov 1979; Merritt 1985 a, b), with
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TDLMC 1103

Figure 5. Surface-brightness-weighted line-of-sight stellar velocity disper-
sion as a function of aperture radius, based on a lens system in Rung 3. The
stellar velocity dispersion is composed of the LOS mean velocity (i.e. vave)
and LOS velocity dispersion (i.e. σ ave), added in quadrature. The Einstein
radius and the effective aperture size are also shown as the blue and red lines,
respectively.

the function k(u, uani) given by

k(u, uani) = u2
ani + 1/2(

u2
ani + 1

)3/2

(
u2 + u2

ani

u

)
tan−1

√
u2 − 1

u2
ani + 1

− 1/2

u2
ani + 1

√
1 − 1/u2. (8)

The anisotropy radius rani is usually considered to be a free
parameter with size comparable to the effective radius. In the
simulation, we assume rani = Reff to calculate the velocity dispersion.

In Rung 3, the velocity dispersion is provided by the hydrody-
namical simulations via high-resolution maps (16 times higher than
HST), see Section 2.2. The aperture stellar velocity dispersion is thus
a combination of the two kinematic maps by Vaper = √

V 2
ave + σ 2

ave,
where the Vave and σ ave is the LOS mean velocity and the velocity
dispersion as shown in Fig. 2. The ‘Evil’ team calculate the 2D
surface-brightness-weighted LOS dispersion and convolve it using
a FWMH 0.′′6 Gaussian kernel. Finally, the averaged velocity dis-
persion in the aperture was computed. Note that in principle the
surface brightness weighting should be considered before convolving
and aperture selection. However, the velocity map and the surface
brightness map are both convolved using the same Gaussian kernel,
making the sequence of this processing irrelevant. For illustration, the
velocity dispersion as a function of aperture size is shown in Fig. 5.

A random Gaussian noise with 5 per cent standard deviation is
added to the model velocity dispersion to represent high-quality
measurement errors.

2.7 Metrics and expected performance

The ‘Good’ teams submitted their modelled H0 of each lens system
in the three rungs, and the ‘Evil’ team defined four standard metrics
to estimate the performance of the submissions, including efficiency
(f), goodness (χ2), precision (P), and accuracy (A). They are defined
as follows:

f = N

Ntotal
, (9)

χ2 = 1

N

∑
i

(
H̃0 i − H0

δi

)2

, (10)

P = 1

N

∑
i

δi

H0
, (11)

A = 1

N

∑
i

H̃0 i − H0

H0
, (12)

where N is the number of successfully modelled systems in each
submission and Ntotal = 16. δi is the uncertainty (1σ level) of H0 by
each systems in the submission. We identified the following targets
for the metrics, based on current state of the analyses:

0.4 < χ2 < 2, (13)

P < 6 per cent, (14)

|A| < 2 per cent. (15)

The χ2 metric target is aimed to ensure that the estimated errors
are a reasonable measure of the deviation from the truth. The P
metric target is chosen to represent the precision of the best current
measurements. The A metric target is set to investigate whether the
fast methods can contain biases below the current reported precision
by state-of-the-art analysis of samples of a few lenses. We don’t set
a metric target for f, as deciding which systems can be analysed
with sufficient confidence depends on the methodology employed
and thus we expect it to vary widely across submissions.

3 R E S P O N S E TO TH E C H A L L E N G E

The TDLMC challenge mock data were released on 2018 January
8. The deadlines of the blind submission for the three rungs were
2018 September 8 for Rung 1, 2019 April 8 for Rung 2, and 2019
September 8 for Rung 3. Each rung was unblinded a few days after
the submission deadline, to give teams a chance to learn in real time
during the challenge. The ‘Evil’ team was especially mindful to help
the ‘Good’ teams detect bugs and glitches that could invalidate the
subsequent blind rungs, and prevent the teams from learning about
their ability to tackle increased complexity.

Prior to the Rung 3 deadline, the ‘Evil’ team received in total 15,
17, and 24 submissions for Rung 1, Rung 2, and Rung 3, respectively,
from five different participating teams (‘Good’ teams). We describe
the method adopted by each team in the rest of this section.

3.1 Student-T team

H. Tak

This team proposes the following posterior density of H0 designed
to combine information from multiple lens systems in a simple but
statistically principled way:

π (H0 | D) ∝ L(H0)h(H0). (16)

The notation D denotes a set of the time delay estimates, Fermat
potential difference estimates, and their standard errors for all unique
pairs of lenses in 16 systems. Also, L(H0) represents the likelihood
function and h(H0) indicates a Uniform (20, 120) prior density.
This proper uniform prior guarantees posterior propriety of the
resulting posterior (Tak, Ghosh & Ellis 2018). The team derives
the likelihood function from a Gaussian assumption on the Fermat
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1104 X. Ding et al.

potential difference estimate (Marshall et al., in preparation):

φest
ijk | �ijk, H0 ∼ N

(
φijk = c�ijk

D�(H0)
, σ 2

(
φest

ijk

))
, (17)

where φest
ijk denotes the Fermat potential difference estimate of the

ith and jth lensed images in the kth lens system and σ (φest
ijk) indicates

its standard error (1σ uncertainty). The notation �ijk is the time
delay between the ith and jth lensed images in the kth system (�ijk

= −�jik). The time delay distance D�(H0) is treated as a function
of only H0 because all other information is completely given in the
TDLMC.

On top of this Gaussian assumption on φest
ijk , the team adopts

another Gaussian distribution for the time delay �ijk with its mean
equal to �est

ijk and standard error σ (�est
ijk), i.e.

�ijk ∼ N
(
�est

ijk, σ 2
(
�est

ijk

))
. (18)

The team also assumes that �ijk and H0 are independent a priori
in a sense that �ijk is typically inferred from light curves of
multiple-lensed images without any information about H0 (Tak et al.
2017).

The Gaussian assumptions in equations (17) and (18) make it
simple to integrate out �ijk analytically from their joint distribution,
leading to the Gaussian distribution of φest

ijk given only H0:

φest
ijk | H0 ∼ N

(
c�est

ijk

D�(H0)
,

c2σ 2
(
�est

ijk

)
D2

�(H0)
+ σ 2

(
φest

ijk

))
. (19)

The team also assume the conditional independence among Fermat
potential difference estimates within and across lensed systems given
the Hubble constant H0. Then, the likelihood function of H0 is the
product of Gaussian densities whose distributions are specified in
equation (19), for every unique pair of gravitationally lensed images
i and j across 16 lensed systems.

Since the posterior density function of H0 in equation (16) is a
function of only H0, it is easy to draw an i.i.d. sample from this
posterior via a grid sampling (chapter 5, Gelman et al. 2013).

On top of the posterior π (H0|D), the team models κext using the
relationship, H ext

0 = (1 − κext)H0, where H ext
0 is the Hubble constant

with κext considered and H0 is the one without κext considered (Rusu
et al. 2017). The team puts a N(0, 0.0252) prior on κext for simplicity,
which is assumed to be independent of the data. Finally, the posterior
distribution of H ext

0 is derived as

π
(
H ext

0 | D
) =

∫
π

(
H ext

0 | D, κext

)
g (κext) dκext, (20)

where g denotes the N(0, 0.0252) density of κext. The posterior
distribution of H ext

0 in equation (20) is sampled via a Monte Carlo
integration: (i) draw a random sample of κext from N(0, 0.0252),
(ii) sample H0 from equation (16), and (iii) lastly set H ext

0 =
(1 − κext)H0. A Jacobian term is not needed for a deterministic
transformation within a Bayesian sampling framework (Tak et al.
2020). The proposed framework does not account for the lens velocity
dispersion for each lens system.

The key to the proposed approach is to obtain D to be used as
a condition of the posterior distribution in equation (20) because
given D, it is simple to draw a random sample of H0. The team
notes again that D is composed of time delay estimates, �est

ijk’s, their
standard errors, σ (�est

ijk)’s, Fermat potential difference estimates,
φest

ijk’s, and their standard errors, σ (φest
ijk)’s. The first two components

are fully known in the TDLMC, and thus the remaining ingredients
for sampling H ext

0 from equation (20) are φest
ijk’s and σ (φest

ijk)’s.

For this purpose, the team uses LENSTRONOMY (version 0.4.3,
Birrer & Amara 2018). In Rung 1, the team uses the elliptical Sérsic
profile for the source light model and adopts one, two, or three
elliptical Sérsic profiles for the lens light model. In Rungs 2 and 3,
the team utilizes a superposition of a smooth power-law elliptical
mass density profile (SPEMD) with external shear for the lens mass
model. An elliptical Sérsic profile with shapelets (Birrer et al. 2015)
is adopted for the source light model, and an elliptical Sérsic profile
is used for the lens light model. The team fixed nmax = 10 as the
order of the shapelets basis for the baseline model. Also, the team
uses the PSF iteration to correct the PSF model (Shajib et al. 2019).
In addition, the team manually boosts the noise level by adopting
one of seven different PSF error inflation rates (1 per cent, 5 per cent,
10 per cent, 15 per cent, 20 per cent, 25 per cent, and 30 per cent) to
deal with additional errors in the given PSF. This means that for each
unique pairs of lenses, the team fits the model by LENSTRONOMY

seven times each with one of the seven PSF error inflation rates.
For each of the seven fits, LENSTRONOMY produces a posterior

sample of φijk that is possibly non-Gaussian. Thus, to obtain φest
ijk

and σ (φest
ijk), the team summarizes the posterior distribution in two

ways; posterior mean and standard deviation (Summary 1); posterior
median and quantile-based standard error (Summary 2). This is
because the posterior mean and standard deviation can be misleading
if the posterior distribution of φijk is not Gaussian.

Consequently, for each pair of lensed images the team obtains the
seven pairs of (φest(l)

ijk , σ (φest(l)
ijk )) for l = 1, . . . , 7, according to each

type of summary. Since D requires having only one representative
pair of (φest

ijk , σ (φest
ijk)) for each pair of lensed images, the team takes

an average of these seven pairs in three ways. The first one is a
Fisher-type weighted average of φ

est(l)
ijk ’s weighted by 1/σ 2(φest(l)

ijk )’s
(Average 1). This averaging method puts more weights on the
pairs with smaller standard errors. The second averaging method
simply takes an arithmetic mean over seven estimates and over seven
variances (Average 2). This way puts equal weights on all seven
pairs regardless of their different standard errors. Finally, the third
one uses the same arithmetic mean as Average 2 but sets σ (φest

ijk) to

a sample variance of the seven estimates, φ
est(l)
ijk ’s (Average 3). This

one does not use the information about standard errors at all. The
team briefly describes the details of each submission in Table 2.

Due to the space limitations, the detailed information of the lens
modelling settings will be presented in a separate paper (Tak et al.,
in preparation).

3.2 EPFL team

M. Millon, A. Galan, F. Courbin, V. Bonvin

3.2.1 modelling technique

The EPFL team followed a streamlined version of current modelling
practices applied to time delay cosmography. The main difference
with respect to the analysis described by Birrer et al. (2019) and
Shajib et al. (2020b) is that the challenge is known to be free of
significant perturbers besides the main deflector and the LOS. Taking
advantage of this information and to reduce computation costs, a
smaller number of model choices was considered in the challenge
as compared to real systems. In addition, in order to reduce human
investigator time, the modelling was standardized as opposed to
tailored to the specific of each individual lens. For this purpose, a
partly automated modelling pipeline was developed by the team.
A more detailed description of the pipeline may be the subject
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TDLMC 1105

Table 2. The details of the submissions of Student-T team. Summaries 1, 2,
Averages 1, 2, 3 are defined in Section 3.1.

Rung Algorithm Details

1 1 Summary 1 and Average 1
2 Summary 1 and Average 2
3 Summary 1 and Average 3
4 The same as Algorithm 1 except that three pairs

are intentionally removed for consistency
5 The same as Algorithm 2 except the three pairs
6 The same as Algorithm 3 except the three pairs

2 1 Summary 1 and Average 1
2 Summary 1 and Average 2
3 Summary 2 and Average 1
4 Summary 2 and Average 2
5 An independent replication of Algorithm 1

3 1 Summary 1 and Average 1
2 Summary 1 and Average 2
3 Summary 2 and Average 1
4 Summary 2 and Average 2
5 The same as Algorithm 1 with three times more

repetitions (i.e. 21 pairs instead of 7 pairs)
6 The same as Algorithm 2 with 21 pairs
7 The same as Algorithm 3 with 21 pairs
8 The same as Algorithm 4 with 21 pairs
9 The same as Algorithm 5 but without considering

κext i.e. sampling from (16) instead of (20)
10 The same as Algorithm 6 but sampling from (16)
11 The same as Algorithm 7 but sampling from (16)
12 The same as Algorithm 8 but sampling from (16)

of a future paper. The standardization is a necessary step towards
modelling large numbers of systems, but it may result in failures if
the one-size-fits all approach is not (yet) sufficiently accurate.

For the modelling part, the team used the publicly available
software LENSTRONOMY (Birrer & Amara 2018). This software is
well validated and has been previously used for the modelling and
cosmography analysis of real time delay strong lens systems (Birrer,
Amara & Refregier 2016; Birrer et al. 2019; Shajib et al. 2020b).
The entire challenge data set was used as constraints for our models,
including the provided drizzled image, noise maps, and PSF; the
measured time delays at lensed AGN positions �tmeasu; the measured
LOS velocity dispersion of stars in the lens galaxy σlos, measu; and the
estimate of the external convergence κext.

The models are described by linear (surface brightness amplitudes)
and non-linear parameters, depending on the type of profiles (see
Birrer et al. 2015, for details). The team chose to add the time delay
distance D�t as a free non-linear parameter.

For a single system, the generic workflow starting from lens
modelling up to H0 inference can be divided in the three following
steps.

(1) First, linear and non-linear parameters are optimized by
alternating particle swarm optimizer (PSO) runs and increments of
the complexity of lens models. Parameters are sampled from uniform
priors, ensuring that all lenses can be modelled from the same initial
set of priors. The time delay distance D�t, considered as a free
non-linear parameter of the model, is constrained by the measured
time delays �tij, measu by enforcing the modelled time delays to be
compatible with the measured ones. Modelled time delays �tij, model

are computed as follows:

�tij,model = (1 + zd)
D�t

c
��ij,model, (21)

where zd is the lens redshift, �model is the model Fermat potential, c
is the speed of light, and ‘ij’ defines the difference of the indicated
quantity evaluated at the positions of two lensed AGN i and j.
This procedure gives best-fitting estimates of the linear and non-
linear parameters, which are then used as a starting point of an
MCMC sampling. Both PSO and MCMC routines are implemented
in LENSTRONOMY, based on the COSMOHAMMER package (Akeret
et al. 2013) and EMCEE (Foreman-Mackey et al. 2012).

(2) For each MCMC sample, the team derived in a post-processing
step the LOS velocity dispersion σlos, model from model parameters.
The team used the Osipkov–Merritt model to solve the spherical
Jeans equation, again following current practices, e.g. Suyu et al.
(2010), Shajib et al. (2018), with routines implemented in LENSTRON-
OMY. The team computed angular diameter distances from both
kinematics and time delays. The sampled time delay distance gives
directly the distance ratio DdDs/Dds. The modelled LOS velocity
dispersion, along with the model parameters ξmodel, is used to
compute the distance ratio Ds/Dds from the following relation (Birrer
et al. 2016):

σ 2
los, model = Ds

Dds
c2 J (ξmodel, rani), (22)

where J captures all dependencies on model parameters and kine-
matics anisotropy, moving any dependencies on cosmological pa-
rameters in the distance ratio. The external convergence was also
sampled as κext � N (0, 0.025), to simulate a correction to the
time delay distance by any mass external to the main deflector,
through: D�t, eff = D�t/(1 − κext). From the two distance ratios
described above, is straightforward to extract the angular distance
to the deflector, namely Dd.

(3) Following Birrer et al. (2019), the inference of the Hubble
constant is performed in the 2D plane defined by angular distances
D�t, eff and Dd. This plane encodes the joint constraints from imaging
data, time delays, external convergence, and lens kinematics. In order
to approximate the full covariance between the two D�t, eff and Dd

posteriors, both distributions are used to evaluate the likelihood
when inferring H0. Since �m is fixed in this challenge, the only
cosmological parameter being sampled is the Hubble constant.

(4) The team computed the final inferred H0 value and associated
uncertainty estimates for an entire rung in two steps. First, an outlier
rejection scheme was performed, according to the following criteria,
that were found to be good markers of poor models:

(a) Each individual H0 median value must be inside
the prior bounds defined by the TDLMC, i.e. inside
[50, 90] km s−1Mpc−1;

(b) The sampled time delay distance D�t (free parameter
constrained by the lens model and time delays) and the modelled
time delay distance D�t, model [obtained through equation (21)
inversion] must be consistent with each other at the �1σ level;

(c) The modelled lens velocity dispersion σ 2
LOS, model must be

consistent at �2σ level with the measured value;
(d) Each individual H0 posterior must be consistent with each

other at the �2σ level.

When all the above criteria were fulfilled, the team kept the model for
the joint inference over the rung, for a given model family. This leads
to a set of D�t and Dd pairs of posteriors. The team then performed
two joint inferences using

(a) only time-delay information. H0 is sampled according to
the ensemble of D�t posteriors only.

(b) both time-delay and kinematics information. This follows
the approach described in Birrer et al. (2019), H0 is sampled in
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1106 X. Ding et al.

the 2D plane over the set of D�t and Dd posteriors. This last
option is the standard procedure used for joint inference of real
lenses (e.g, Wong et al. 2020)

Note that even in the first case of inference H0 from D�t only,
knowledge about kinematics still plays a (smaller) role, because of
model selection steps are performed before the inference.

The joint H0 posteriors described above are computed under the
assumption that the systems do not share systematic errors. If this
assumption breaks, then one should marginalize from individual
distributions, instead of the joint inference. For this reason, the team
also submitted H0 posteriors that are marginalized over the selected
models. Additional details specific to each rung are given in the
following subsections.

3.2.2 Rung 1

In Rung 1, lens mass and light profiles are simply-parametrized.
Hence, the team used SPEMD (Barkana 1998) with external shear
profiles to describe the projected mass distribution, and a single
Sérsic profile for the lens surface brightness. For the source, the team
used a Sérsic profile superimposed to a set of shapelets (Refregier
2003; Birrer et al. 2015). The team chose nmax = 8 as the maximum
order of the shapelets basis for their the baseline model. When
significant residuals were observed at Einstein ring location, nmax

were slightly increased, typically up to nmax = 14. The source galaxy
centroid (Sérsic+shapelets) was fixed to the position of the quasar,
itself modelled as a single point source constrained by enforcing
lensed images to trace back to the same position in source plane.

The ‘Evil’ team kept secret any details related to kinematics
modelling assumptions, including the anisotropy model they used
for computing velocity dispersion. As stated above, the EPFL
team used Osipkov–Merritt modelling for computing velocity dis-
persions (Osipkov 1979; Merritt 1985a). This model assumes a
parametrized anisotropy parameter βani = r2/(r2 + r2

ani), where rani

is the anisotropy radius, which defines the radius at which stellar
orbits go from being radial (near the centre) to isotropic (equally
radial and tangential). Standard practices are to sample the anisotropy
space through a uniform prior on the anisotropy radius, see e.g. Suyu
et al. (2012) and Shajib et al. (2018). In Rung 1, the team used a
uniform prior rani � U(0.5, 5) reff , where reff is the half-light radius
of the lens.

The unblinding of Rung 1 revealed that the team’s submitted
inference was strongly affected by one (or several) systematic
error(s), as quantified by an accuracy of A = 7.512 per cent. The
main origin of this bias was found to be a consequence of the high
precision of measured time delays, which surpasses those of real
time delay lenses so far, combined with small angular separation
between lensed images. Indeed image separations are on average
∼1 arcsec, and time delays are of the order of dozens of days with
precision 0.25 d. Typical lensed systems modelled by the TDCOSMO
collaboration have on average image separations of ∼2.5 arcsec with
time delays precision up to a couple of days. A particularly high
precision is therefore required when modelling the position of each
lensed images in the setting of the challenge, which is not the case
for all real systems analysed so far. A lack of precision can propagate
to a significant bias on the Hubble constant. The bias they observed
in their initial Rung 1 submission allowed them to highlight such
a requirement, which have been the topic of a dedicated paper by
Birrer & Treu (2019). The authors introduced simple formulae that,
given an expected precision on the Hubble constant, can be at first
order used to estimate the astrometric requirements that must be

fulfilled, from image separations and time delays precision. They
refer the reader to that paper for consequences of such requirements
and quantitative examples. As discussed in Section 4.2, the problem
was solved by the EFPL team by introducing in LENSTRONOMY a
nuisance parameter to describe the unknown difference between true
and measured image positions and marginalizing over it.

For Rung 1, the team submitted a single sample of models, and
related joint Hubble value, following the description above.

3.2.3 Rung 2

In Rung 2, only a guess of the PSF was provided, in order to
test PSF reconstruction algorithms. The team used the iterative
PSF reconstruction originally implemented in LENSTRONOMY. For
a set of baseline models, the team incorporated this routine during
parameter optimization, effectively alternating between PSO and
PSF reconstructions. Having noticed that the PSF was degraded the
same way for each of the 16 lenses of Rung 2, the team computed
a median stacked PSF kernel from their best reconstructed kernels.
This reconstructed PSF was then used for all of their subsequent
Rung 2 modelling attempts.

Based on Rung 1 knowledge, the team took into consideration the
astrometric requirements described in previous subsection, in order
to mitigate a potential bias on the inferred Hubble constant. The team
allowed extra degrees of freedom to model any unknown uncertainty
on the position of AGN images (a.k.a. point sources), by introducing
in the parameter space, two new ‘offset’ parameters, δx and δy, for
each of the 2 or 4 images independently. These offsets actually
represent the error between the (modelled) position of point sources
on the image, and the (predicted) positions at which the Fermat
potential is evaluated for time delays computation. These additional
parameters are sampled as non-linear parameters, and constrained
by time delays and imaging data. The team regularly checked that
those offsets were correctly constrained, with amplitudes expected
to be below the image pixel scale.

After careful analysis of post-unblinding or Rung 1, the team
realized that most consistent results were obtained when rani ≈
reff. Consequently, in Rung 2, the team fixed the anisotropy radius
rani to be equal to the lens half-light radius for all the remaining
submissions.

The remaining volume of the parameter space (mass and light
profiles of the lens galaxy, light profiles of source galaxy, and quasar
model) was identical to those of the previous rung.

The team submitted four model samples and corresponding joint
value for Rung 2:

(i) DdDdt: the inferred H0 was obtained through joint inference
in the 2D plane

{
D�t, eff, Dd

}
;

(ii) margDdDdt: same as DdDdt, except that the inferred final
value was obtained by marginalization over individual H0 posteriors,
as opposed to a joint inference ;

(iii) Ddtonly: same as DdDdt, except that H0 values were
inferred only from the time delay distance D�t, eff ;

(iv) margDdtonly: same as Ddtonly, except that the inferred
final value was obtained by marginalization over individual H0

posteriors.

3.2.4 Rung 3

For Rung 3, the team used the exact same PSF reconstruction
method as for Rung 2. For lens models, they followed the practices
of the TDCOSMO collaboration, in the sense that they chose two
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families of models: power law and composite. The former consists of
elliptical power-law mass distribution with external shear, whereas
the latter distinguishes the baryonic mass and dark matter, in addition
to the external shear. For the baryonic matter, they used a double
Chameleon profile (see Suyu et al. 2014, for definition) to fit the lens
surface brightness, and convert it to surface mass density through
a constant mass-to-light ratio, introduced as a free parameter. They
modelled the dark matter component as a single elliptical NFW
profile.

In order to improve their efficiency in modelling Rung 3 with
two model of families, which require significant amount of work,
they also used double Chamelon profiles to describe the lens light
in their power-law models. This allowed them to extract best-fitting
lens light parameters from their power-law models, and properly
initialize the corresponding composite models, for a given lens. Note
that it is different than the usual TDCOSMO procedure, where the
surface brightness of the lens galaxy is fitted with double Sérsic for
power-law mass models. They checked that no systematic errors were
introduced when using double Sérsic instead of double Chameleon
profiles, which is expected as the latter is designed to be a good
approximation of the former.

The rest of the procedure was similar to their submissions for
Rung 2 and 3, in terms of selection criterions and joint inference.
The selection was performed independently for the two model fam-
ilies described above, meaning that their composite and power-law
submissions did not necessarily consist in the same modelled lenses,
nor the same number of lenses. For each model family, they submitted
two submission pairs, with H0 inferred from (1) joint

{
D�t, eff, Dd

}
inference and (2) D�t, eff only. Additionally, they submitted a third
pair of submissions with a subset of lenses whose models were
coincidentally accepted with both model families, which enabled
them to combine their inferences from power-law and composite
models. More precisely, for a given lens, they marginalized over the
two model families, prior to the final joint inference H0 among the
different lenses. To summarize, one ended up with six submissions
for this rung.

3.3 Freeform team

P. Denzel, J. Coles, P. Saha, L. L.R. Williams

The lenses were reconstructed with the codes GLASS by Coles, Read
& Saha (2014) and its precursor PIXELENS by Saha & Williams
(2004), which are based on the free-form modelling technique. In
contrast to other methods, free-form lens reconstructions are not
restricted to a parametrized family of models, but rather build a
lens as superpositions of a large number of mass components, e.g.
mass tiles or pixels, with minimal assumptions about the form of
the full lens. The price to pay for the flexibility is that the free
parameters outnumber the constraints and thus regularization needs
to be imposed to avoid overfitting the data.

While GLASS and PIXELENS are completely separate codes, im-
plemented in different languages, and using different Monte Carlo
sampling engines, they both share the same approach to free-form
lenses. Represented as a discrete grid of pixels, the lens potential
takes the following form:

ψ(θ ) =
∑

κn∇−2Qn(θ ), (23)

where κn is the density of the nth mass tile and Qn(θ ) is the shape
integral over the nth pixel. Each tile is a square and its contribution
κnQn(θ ) to the potential at θ can be worked out analytically
(AbdelSalam, Saha & Williams 1998). In both GLASS and PIXELENS,

the tiles cover a circular area centred on the lensing galaxy. The radius
of this area rp, in pixels, determines the resolution of a model. For
instance, rp = 8 places one tile at the centre and eight tiles extending
left and right (17 pixels side to side) with a total of 225 pixels
covering the entire circular area. The tile size in arcseconds can be
set explicitly or estimated such that there are several rings of pixels
outside the outermost image. Mass distributions that are assumed to
be radially symmetric (doubles and some quads) are constrained to
have diametrically opposite pixels of equal value, which reduces the
number of pixels by half. GLASS also allows for the central pixel to be
further subdivided into 3 × 3 or 5 × 5 subpixels, to capture a steeply
rising cusp. In this paper, we denote the use of the subdivision with
the parameter sp = 3 or sp = 5, respectively. A central pixel with no
subdivision is equivalent to sp = 1. Both codes ensure a small region
of ‘pixel rings’ outside the outermost image.

Quasar image positions, time delays, and redshifts are the only data
input for the models. Image parities are also given but are determined
solely from experience and by generating test models to verify image
parity assignment. As is well-known images are located at extrema
of ∇ψ and the sign of ∇∇ψ determines the parity.

This input is used to create a system of equations that are linear in
the source position β and mass tiles κn. The intrinsic and well-known
problem of lensing arises from the fact that there are infinitely many
solutions to these linear equations. Free-form techniques usually
sample from that solution space according to a few reasonable priors.
Most notably they require non-negative mass tiles, limited to twice
the average of all neighbouring tiles, and the local density gradient
to point typically 45◦ from the centre; additionally, the azimuthally
averaged mass profiles must not increase, which still allows for
twisting isodensity contours and significantly varying ellipticities
with radius. These priors ensure some minimum level of physical
correctness where the density of the reasonably smooth lensing mass
is increasing towards the centre. From the information provided by
the ‘Evil’ team for each rung, further physical parameters and priors
could be included:

(i) Redshifts set the distance scales (assuming a standard cosmol-
ogy of �m = 0.27 and �� = 0.73).

(ii) The models allowed for external shear.
(iii) Time delays were constrained, for GLASS with uncertainties

of ±0.25 d, for PIXELENS without.
(iv) The range of H0 was limited to 50−90 km s−1 Mpc−1.

The velocity dispersion information was not used to constrain the
models, but can be derived from the models following Leier (2009).

A free-form lens model consists of an ensemble of models; ∼1000
typically provide a good cover of the solution space. A single model
may contain more than one lensing system, in which case they are
coupled by the requirement that H0 must be the same for all systems.

An ensemble usually includes many different convergence maps
some of which are unphysical at times. Generally, this is not
a problem, as the ensemble average6 washes out these outliers.
Nevertheless, the ensemble can be filtered according to different
criteria in order to optimize the ensemble average. In Rung 2
for instance, we applied such a post-processing filter based on a
simplified version of the source mapping algorithm described in
Denzel et al. (2020). Instead of only using quasar image positions, the
entire photometric information was used to select the most probable
models in the following manner. A χ2 value was computed for each

6Due to the linear nature of the lens equation, a superposition of solutions
also is a solution.
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lens model of the ensembles by fitting a synthetic image using the
drizzled image data (including science images, noise level maps,
and a sampled PSF image, while masking out the lensing galaxies
in the centre). For each ensemble, 300 models with the best values
were retained to estimate H0. This ensured that only the models
which best fit the entire image data were used to infer H0. Despite
slight improvements on H0 the filter was abandoned again for Rung 3,
because, at the time, the methods were computationally too intensive.

Each ensemble H0 distribution was Gaussian fitted as was de-
manded by the submission format of the challenge. However, it is
important to note that the distributions are far from Gaussian as
discussed in Denzel et al. (2021).

For each rung, model ensembles were generated for all 16 single
lenses and for groups of multiple lenses (four sets of four lenses)
using GLASS and PIXELENS. These submissions have the suffixes
Single and Multi, respectively.

In Rung 1, all GLASS models use pr = 8 but single lenses have
sp = 5, and multilenses use sp = 1. In Rung 2, GLASS single lens
models have a higher resolution using rp = 10 and sp = 5, while
multilenses use rp = 8 and sp = 1. For Rung 3, the resolution
of GLASS models was increased as high as was computationally
feasible to rp = 12 for the submission glassSingleHiRes. The
submission glassSingleLowRes used the standard rp = 8. Both
submissions further resolved the central pixel with sp = 3.

Additionally, in Rung 1 glassCherrypick is a multilens
analysis using a subset of four lenses for which the individually
modelled arrival-time surfaces and mass maps subjectively appeared
to be unproblematic (e.g. no additional images and a clean arrival
time surface). In Rung 2, glassSynthFiltered used the afore-
mentioned source mapping algorithm to select models from the
glassMulti ensemble that best reproduced the lensed images.

3.4 Rathnakumar team

S. R. Kumar, H. Chand

The main motivation of the team was to understand to what accuracy
and precision H0 can be constrained through simple analytical
modelling, constrained by point image positions and flux ratios. To
this end, the team modelled the TDLMC Rung 0, Rung 1, and Rung
2 systems using GLAFIC software (Oguri 2010). In general, the mass
distribution of the lensing galaxy was modelled as singular isothermal
ellipsoid along with a shear component (SIE + γ ). In Rung 1, some
double lens systems were found to overfit (χ2 << 1). Thus, the
team replaced SIE by SIS along with a shear component (SIS +
γ ). All the Rung 2 systems were modelled as SIE + γ , except for
one system for which this model was found to result in catastrophic
failure. The exceptional case was modelled as singular isothermal
ellipsoid without any shear component (SIE only).

The astrometry of the lensed quasar images and the centre of the
lensing galaxy were measured from the provided HST drizzled image
for each system using ‘IMEXAM’ task in IRAF. The astrometric
coordinates were assigned an uncertainty of 0.′′02. The fluxes of the
lensed quasar images were also measured through aperture photom-
etry using the same IRAF task from HST drizzled image. From these
fluxes, the absolute flux ratio was computed for each lensed quasar
image with respect to the brightest image. These flux ratios were
each assigned a sufficiently large uncertainty of 0.2 (e.g. for quads,
three flux ratio values were considered), in order to accommodate
for factors such as intrinsic quasar variability, microlensing-induced
variability, etc. Parity constraints were inferred for the lensed quasar
images based on the arrival time order and the configuration, in

case of quadruple lenses. The team used the velocity dispersion and
relative time delay values provided along with their uncertainties as
constraints during the modelling. The fitting process was done using
standard procedure by implemented in GLAFIC. The background
cosmology was fixed to �m = 0.27, �� = 0.73, and w = −1.
Source and lens redshifts were fixed for each system according to
the provided values. The measured H0 for each system was taken to
be that corresponded to the best-fitting model. The 1σ uncertainty of
H0 was inferred by fixing it at different values around the measured
value and marginalizing all the model parameters to minimize χ2

and noting the range where �χ2 < 1, with respect to the value
for the best-fitting model. The error bars in positive and negative
directions were averaged. To include the LOS effects for Rungs 1 and
2 systems, 2.5 per cent was added in quadrature to the H0 uncertainty.
The team submitted only the results for those systems where H0 was
constrained to better than 20 km s−1 Mpc−1. The remaining systems
were flagged as failure. The team also submitted results filtered
according to cut-off values of 15 and 10 km s−1 Mpc−1 to see what
effect these selections have on the TDLMC performance metrics. In
order to combine all the H0 estimates from the individual systems
into one global value for a rung, the team did a simple weighted
average.

3.5 H0rton team

J. W. Park, Y.-Y. Lin

The H0rton team automated the lens modelling using a Bayesian
neural network (BNN), a method pioneered by Hezaveh, Levasseur
& Marshall (2017). The BNN-inferred lens model posterior was
then propagated into H0 inference. Readers are referred to the
accompanying method paper (Park et al. 2020) for more details.
The implementation of the H0rton pipeline is available in the form
of the open-source PYTHON package H0RTON.7

Given the drizzled image of each lens system, the BNN predicted
the posterior PDF over a power-law elliptical mass model (PEMD)
parameters, the source position, and the half-light radius of the Sérsic
lens light (for computing the velocity dispersion likelihood). The
posterior PDF was parametrized as a mixture of two Gaussians with
full covariance matrices, informed by the results of Wagner-Carena
et al. (2020) that the parameter recovery improved with this form
of the posterior in comparison to the single uncorrelated Gaussian
originally adopted by Hezaveh et al. (2017).

The training set for the BNN consisted of 200 000 images. The
assumed lens mass and lens light profiles were identical to those
used to generate the TDLMC data of Rungs 1 and 2, i.e. PEMD
and elliptical Sérsic, respectively. The AGN host light, however,
was assumed to follow an elliptical Sérsic profile in order to keep
the parametrization simple. The predictive model parameters in the
training set were assumed to be independently distributed, aside
from selecting the magnification to be greater than 2 in order to
ensure significant lensing signal. The approximate range of each
parameter was inferred from the Rung 1 data set and confirmed by
visual inspection on the Rung 3 images. For the PSF convolution,
the simulation rotated among the 16 drizzled PSF maps provided
in Rung 1. The PSF information was fed to the BNN only via
the convolved image and the network was expected to process the
deconvolution internally. Non-drizzled images or PSF maps were not
used. The training set was generated using the team’s open-source

7https://github.com/jiwoncpark/h0rton
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Table 3. Summary table of input data.

Team Point sources Extended source Kinematics

Student-T Yes Yes No
EPFL Yes Yes Yes
Freeform Yes No No
Rathnakumar Yes No Yes
H0rton Yes Yes Yes

Note. Table summarizes the input data as used by the ‘Good’ team. In
addition, all teams use time delays and redshifts, and simulated HST
images to constrain the deflector.

PYTHON package BAOBAB,8 which wraps around the LENSTRONOMY

package (Birrer & Amara 2018).
The combined cosmographic likelihood was the product of the

likelihoods of the time delays and the LOS velocity dispersion with
the nuisance parameters, i.e. the external convergence, kinematic
anisotropy, and the BNN-inferred model parameters, marginalized
out. The velocity dispersion was modelled assuming a spherical
power-law mass profile and a Hernquist lens light to solve the
spherical Jeans equation, as done by Suyu et al. (2010). The kinematic
computations were performed with LENSTRONOMY. Samples from
the cosmographic likelihood were obtained via MCMC sampling
with EMCEE (Foreman-Mackey et al. 2012). Note that, in contrast
to the traditional forward modelling approach, the pixelwise image
likelihood was never directly modelled. Instead, the BNN-inferred
posterior entered the MCMC integration as a prior over the lens
model parameters at the H0 inference stage.

It was discovered during the analysis procedure that, when the
BNN-predicted source position and lens model were directly used to
solve the lens equation, the predicted number of images often did not
agree with the data. These cases were traced to sources very close
to the caustic, for which the precision requirements on the source
position tended to be very high (see e.g. Birrer & Treu 2019). The
BNN-inferred posterior was placing significant weight on models
that did not produce the correct number of images. To alleviate
this discrepancy, the image positions were manually estimated
from the images and fed in as additional data into the MCMC
sampling pipeline. A Gaussian likelihood of the image positions,
when appended to the MCMC sampling objective, iteratively brought
the BNN-inferred lens model closer to one that yielded the observed
image positions.

The H0rton team joined the challenge late and only made a blind
submission to Rung 3. The open-box data sets of Rungs 1 and
2 that were available at the time, however, informed the team’s
approach.

4 A NA LY SIS O F RUNGS 1 AND 2 SUBMISSI ONS

To summarize the input data used by each ‘Good’ team, we present
the information in Table 3. A summary of the computation and
investigator time invested in the challenge is given in Table 4. A
brief analysis of the results of the submissions is presented in this
section.

4.1 Basic statistics

In this section, we give an overview of the performance of the blind
submissions to Rungs 1 and 2. As described in Section 2.7, four
metrics are used to perform a synthetic evaluation of the submissions,

8https://github.com/jiwoncpark/baobab

Table 4. Summary of computation and investigator time.

Team CPU time (h) Investigators time (h)

Student-T 15 400 48
EPFL 500 000 1700
Freeform 5000 –
Rathnakumar – –
H0rton – –

Note. Estimated CPU and investigator time spent for TDLMC by the
teams who provided them.

Table 5. Metrics of blind submission for Rungs 1 and 2.

Team Algorithm f log (χ2) P (%) A(%)

Metrics of Rung 1
Student-T Algorithm1 0.688 0.771 4.834 1.049
Student-T Algorithm2 0.688 0.615 5.374 1.752
Student-T Algorithm3 0.688 0.493 8.237 2.492
Student-T Algorithm4 0.688 0.541 6.533 0.293
Student-T Algorithm5 0.688 0.324 7.019 1.005
Student-T Algorithm6 0.688 0.094 10.036 1.825
EPFL Submission 0.688 0.411 6.169 7.512
Freeform GlassCherrypick 0.250 1.193 5.785 − 22.847
Freeform GlassMulti 1.000 0.406 9.002 − 4.570
Freeform GlassSingle 1.000 0.264 13.812 − 8.516
Freeform PixelensMulti 1.000 0.349 9.299 − 7.220
Freeform PixelensSingle 1.000 0.790 13.123 − 5.632
Rathnakumar Cut-off10 0.125 0.024 8.429 4.112
Rathnakumar Cut-off15 0.250 − 0.164 12.137 6.337
Rathnakumar Cut-off20 0.375 − 0.339 15.419 3.932

Rung 1 combined metrics
Direct average 0.654 0.522 9.140 − 1.745
Bagging − 0.199 9.646 − 1.644
Rejection σ -median 0.219 9.639 − 1.081
Rejection σ -mean 0.205 9.649 − 0.920
Rejection widths-median 0.522 9.147 − 1.779

Metrics of Rung 2
Student-T Algorithm1 0.812 − 0.161 18.215 − 4.811
Student-T Algorithm2 0.875 − 0.672 27.764 5.161
Student-T Algorithm3 0.812 0.845 8.531 − 6.096
Student-T Algorithm4 0.750 0.414 12.267 − 3.663
Student-T Algorithm5 0.750 − 0.247 18.225 − 8.014
EPFL DdDdt 0.688 − 0.127 3.260 − 1.740
EPFL Ddtonly 0.688 0.180 2.635 − 1.957
EPFL MargDdDdt 0.688 − 0.127 3.260 − 1.740
EPFL MargDdtonly 0.688 0.180 2.635 − 1.957
Freeform GlassMulti 1.000 2.762 10.603 − 3.496
Freeform GlassSingle 1.000 1.834 13.010 − 3.580
Freeform GlassSynthFiltered 1.000 1.847 13.017 − 0.683
Freeform PixelensMulti 1.000 0.053 16.335 17.095
Freeform PixelensSingle 1.000 − 0.293 21.480 3.187
Rathnakumar Cut-off10 0.125 − 0.249 12.304 − 2.090
Rathnakumar Cut-off15 0.312 − 0.293 17.166 4.797
Rathnakumar Cut-off20 0.375 − 0.311 18.382 1.461

Rung 2 combined metrics
Direct average 0.785 1.765 13.154 − 0.309
Bagging − 0.343 10.768 0.372
Rejection σ -median − 0.040 14.041 1.481
Rejection σ -mean 0.660 17.170 0.870
Rejection widths-median 1.769 13.187 − 0.279

Rung 2 post-blind submissions, see Section 4.3
Student-T Algorithm1 0.938 − 0.421 15.492 − 5.969
Student-T Algorithm2 1.000 − 0.873 26.844 6.396
Student-T Algorithm3 1.000 0.317 6.591 0.056
Student-T Algorithm4 1.000 − 0.162 11.805 4.330

Note. Table summarizes the metrics of the blind submission for Rungs 1 and 2, together with
the post-blind submissions by Student-T team (see Section 4.3).

even though we encourage teams to carry out more detailed studies.
The metrics of each submission for Rungs 1 and 2 are shown in
Table 5. Note that the ‘Good’ teams were allowed to adopt multiple
methods based on different algorithms and submit multiple results
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Figure 6. Results for TDLMC Rung 1, showing the four metrics for all the submissions using different algorithms, together with the combined metrics shown
as yellow points. The f, χ2, P, and A are defined in Section 2.7. The grey regions in each plot bracket the expected performance of the metrics. Note that we did
not set a target performance for the efficiency (f) metric; the grey regions in the three left-hand panels is drawn only for the other metrics. The last four combined
metrics have either reconstructed its sample or rejected the outliers, thus the efficiency metrics are also not considered.

for each rung. The metrics plots by each submission are shown in
Figs 6 and 7.

‘Good’ teams including Student-T, EPFL, and Rathnakumar also
estimated and submitted the overall H0, which is their best estimation
using the combination of the lens systems analysed in each rung. The
Freeform team also submitted the overall H0 values after unblinding,
although it is based on a straightforward average of blind inferences.
Following equations (11) and (12), we calculated the metrics of
precision and accuracy using the values of these overall H0 and show
them in Fig. 8. Note that overall H0 is a joint inference from the
combination of the multiple lens systems; thus, the precision metric
value should be, in principle, decreased by the square root of the
volume of the analysed lensed systems (i.e.

√
N ), compared to Figs 6

and 7. The combination of multiple systems could also in principle
allow teams to flag and reject outliers, thus reducing the impact of
overly complicated systems, i.e. those for which the modelling tool
or data quality is insufficient.

Furthermore, we investigated whether there is ‘wisdom in
the crowd’ by considering metrics combined across H0 sub-
missions for Rungs 1 and 2. We considered the following
strategies:

(i) Direct average: of all the submission of H0 without weighting;

(ii) Bagging: For each lens in one rung, we compute the mean H0

across all the submissions and estimate the uncertainty via bootstrap
resampling. The result is taken as the H0 inference for each lens
system. Then, we combine H0 inference across all the lens systems
in the rung to compute the metrics;

(iii) Rejection σ -median: We combine the entire H0 submissions
in one rung to do the bootstrap resampling. We remove the outliers
before inferring the averaged metrics using the following criteria.
In each bootstrap seed, we calculate the median H0 (H0, median) and
reject the outliers by |H0,median − H̃0 i |/δi > 3;

(iv) Rejection σ -mean: Similar to rejection σ -median, we remove
the outliers in each bootstrap seeding using the H0 weighted mean
value (H0, mean) by |H0,mean − H̃0 i |/δi > 3;

(v) Rejection widths-median: Similar to previous rejection meth-
ods, we use the widths of the H0 distribution in each bootstrap
drawing (i.e. WH0 , which is the half width of 16–84 per cent con-
fidence interval in H0 distribution) and remove the outliers in the
bootstrapped sample by |H0,mean − H̃0 i |/WH0 > 3.

The combined metrics are shown in Table 5 and Figs 6 and 7.
These values can be considered as the combined performance of
the entire ‘Good’ teams in each rung. As expected, we find that the
points of these averaged metrics are in the centre of the cloud of
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Figure 7. Same as Fig. 6, but for Rung 2’s results. To demonstrate the improvement of the Student-T team’s result after using the correct file (see Section 4.3),
figure also shows post-blind submissions labeled by the hollow markers. We note that the combined metrics, i.e. the yellow points, does not include the results
by post-blind algorithms.

Figure 8. Results for TDLMC Rung 1 (left) and Rung 2 (right), based on the overall H0 submissions by each algorithm. The Freeform team submitted the
overall H0 values after unblinding, although it is based on a straightforward average of blind submissions.
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Table 6. Summary of the precision and accuracy by combining
algorithms based on different level of information used to constrain
the models in Rung 2.

Combined fitting algorithm Precision (%) Accuracy (%)

Everything 2.9 − 1.8 ± 0.4

Extended source:
Blind submissions only 11.4 − 2.7 ± 1.0
Blind + post-blind 12.8 − 1.2 ± 0.8
Only post-blind for Student-T 10.1 0.02 ± 0.69

Point sources 15.2 2.5 ± 1.4

Note. ‘Everything’ calculates the metrics combining the algorithms
that adopted point sources, extended source, and kinematics. ‘Ex-
tended Source’ combines the results of the algorithms that utilized
the lensed arc information in the lens modelling. ‘Point Sources’
combines the ones that use only point sources but not lensed arcs. For
cases with post-blind submissions explained in the text, we report all
the permutations of blind and post-blind combinations.

the submission by the ‘Good’ teams. It is also encouraging that the
ensemble averages show no evidence of bias, even though they are a
little off the precision target. We note that these combined metrics are
inferred after the unblinding in our TDLMC, but they are based on
blind submissions. In future blind challenges, this kind of combined
metrics could be built in from the start. We note that the averaged
metrics are only introduced to help to ‘guide the eye’ to evaluate
if there is ‘wisdom in the crowd’. This is not a common practice in
current research on this topic. Furthermore, the combined metrics are
not representative and overweighting certain methods since different
teams had different number of submissions.

A few trends emerge from these plots, discarding Student-T
submission to Rung 2, and EPFL submission to Rung 1 for reasons
discussed in the next subsections. First, most methods seem to have a
realistic assessment of their uncertainties, landing on or close to the
χ2 target. Secondly, the methods constrained only by point source
position and fluxes tend to produce significantly larger uncertainties
than the target precision. Only the method using the full extent of the
surface brightness of the host galaxy and the ancillary data hits the
precision target. This trend can be confirmed by Table 6, in which the
combined metrics of precision and accuracy are calculated in Rung 2
based on the algorithms using different levels of information. This
finding is encouraging even though not surprising: using more data
yields more precise results. Also encouraging is that even in the more
challenging Rung 2 all the methods – including Student-T post blind –
hit the accuracy target. Unexpectedly, the accuracy in Rung 1 seemed
to have been less than in Rung 2. The improved accuracy in Rung 2
is likely due to the fact that the ‘Good’ teams learned from Rung 1’s
results to improve their algorithms and identify bugs in the codes.

To understand if the performance of the lens modelling is different
between different lens configurations (i.e. cross, cusp, fold, and
double) and simulating codes (i.e. LENSTRONOMY and PYLENS),
we categorize the entire submissions and compare their metrics
directly by plotting them together in Fig. 9. Interestingly, there is
no significant evidence of difference between the different config-
urations (e.g. doubles and quads), which is an echo of the recent
study by Birrer et al. (2019) that the precision of the cosmographic
measurement with the doubly imaged AGNs could be comparable
to those of quadruply imaged ones. Of course, this result should
not be overinterpreted as the additional information content of the
quads may just be not apparent in the configuration and regimes
studied here, but relevant in other situations where, for example,

Figure 9. Figure illustrates the metrics of Rungs 1 and 2 according to
different categories of lens systems using the entire submissions. Note that
in Rung 2, the goodness (i.e. χ2) is overwhelmingly dominated by the four
double systems in the Freeform glassMulti’s submission. Because these four
double systems are simulated by LENSTRONOMY and PYLENS evenly, the
corresponding log10(χ2) in Rung 2 is significantly larger than the other ones.
The larger goodness by Freeform team is an artefact due to the prior that H0

is between 50 and 90 km s−1 Mpc−1. The values which lie close to 50 have
low error estimates (cut-off at 50), which results in very high χ2 value.

the mass distribution is more complicated or the data quality is not
as good, or the uncertainties are smaller. One potential explanation
for the similarity is that the quads considered here are fairly more
symmetric than the quads of the TDCOSMO collaborations, likely
as a result of the selection function that favours systems with large
ellipticity and shear since they have the highest cross-section for
quads versus doubles. Symmetric quads have typically shorter time
delays and less radial leverage when compared to more asymmetric
ones, and thus provide weaker constraints on the Hubble constant.
For all these reasons, the similarity between quads and doubles found
in this challenge does not imply that they are equally efficient in
reality. Also, the metrics are indistinguishable if we consider the
LENSTRONOMY and PYLENS samples separately. This is true even
if we restrict the comparison to the submissions by Student-T and
EPFL teams, who used LENSTRONOMY. The lack of significant ‘home
advantage’ is consistent with the fact that the difference of the
simulated images between LENSTRONOMY and PYLENS is below the
noise level (see Fig. A2).

Due to the limitations of Rung 3, as discussed in Section 5, we
present the Rung 3 results in Appendix B.

4.2 Lessons form Rungs 1 and 2

The first important lesson is that the independent teams have come
up with several independent techniques, including novel ones. As
described above, the underlying assumptions of the techniques vary
greatly, and so does the amount of information used by each technique
and the flexibility of the models. As often the case in astrophysics,
finding the right balance between too little and too much flexibility in
the models is difficult yet vital to obtain accuracy and precision. Too
little flexibility may lead to bias or underestimated error bars. Too
much flexibility may lead to unphysical solutions or unnecessary
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Figure 10. Post-blind improvement of the Student-T team’s results using the correct PSF file for Rung 2 submissions, without changing any code or algorithm.
This correction removes any bias in the inference and improves slightly the precision.

inflation of the error bars. The level of flexibility directly ties to
another major obstacle to precision, lensing degeneracies. One way in
which degeneracies can be quantified is by pulling multiple solutions
from different families of models, and analysing the variance within
that ensemble (see e.g. Gomer & Williams 2020; Saha 2000).

The second important lesson is that most methods seem to produce
reasonable estimates of their uncertainties. In Rung 1, virtually
all methods produced acceptable χ2 metric distributions, while in
Rung 2 the submissions that returned an answer for every system
(i.e. high efficiency) sometimes paid the price in the sense that they
underestimated their uncertainties.

The third important lesson is that more information translates to
higher precision. Therefore, if one wishes to extract high precision
from time delay measurements, it is crucial to use all the information
available, not just the positions of the point sources (or their flux).
However, an important caveat is that information content by itself
does not necessarily guarantee accuracy if the modelling technique
is not sufficiently flexible, as discussed above. Rungs 1 and 2
provide a useful test, but much remains to be done to explore the
right degree of flexibility.

After unblinding Rung 1, the EPFL team discovered that small
systematic uncertainties in the position of the multiply imaged
quasars at the level of a fraction of a pixel could introduce a noticeable
bias in the inference given the precision of the time delays. Thus, in
Rung 2, the EPFL team introduced nuisance parameters to describe
this uncertainty and marginalized over it. The effect is evident by
comparing their blind results in Rungs 1 and 2. This is an example of
the importance of modelling technique flexibility to ensure accuracy,
and the fourth key lesson from Rungs 1 and 2 is that astrometric
precision needs to be commensurate with the time delay precision.
As discussed by Birrer & Treu (2019), the requirements can be at
the level of milli-arcseconds if the time delay is known to percent
precision. For HST-like images, the requirements correspond to a
small fraction of a pixel, a challenging requirement for point sources
superimposed on an extended and unknown source. It is thus impor-
tant to consider explicitly this source of uncertainty and marginalize
it, transforming a potential source of bias into a decrease in precision.

4.3 Notes about Student-T’s submissions for Rungs 2 and 3

After unblinding, it was discovered that in Rung 2 (and Rung 3) the
Student-T team used the non-drizzled PSF, drizzled lens image, and
drizzled noise map, owing to clerical errors. The team’s unblinded
(post) analyses show that this mismatch was the main source of biases

Figure 11. Mass profile of a typical deflector in Rung 3, illustrating the
unphysical core in the central regions and the departure of the dark matter
halo from a standard (Navarro et al. 1997) form.

in the blinded analysis. In Fig. 10, we find that the Rung 2’s result
after using the correct file is much improved. The corresponding
metrics of the post analysis are also given in Table 5. We stress that
these post-submissions only corrects the input file; the modelling
algorithms remain unchanged. These post-submissions are not used
while calculating the combined (i.e. averaged) metrics.

5 L I M I TAT I O N S O F RU N G 3 , I N C L U D I N G
POST-UNBLI NDI NG DI SCOV ERI ES

Rung 3 was inconclusive because of the limitations of the procedure
used to construct the lenses for this rung. We discuss here some
of the limitations of the hydrodynamical simulations used to con-
struct Rung 3. The ‘Evil’ team was aware of some of them while
constructing the challenge, while others only became apparent post-
unblinding. We introduce them in the following subsection.

5.1 Limitations known before unblinding

The main known limitations of the simulations pre-unblinding are
twofold.

First, the resolution of the simulations we used is insufficient to
describe the inner regions of early-type galaxies. This is illustrated in
Fig. 11, where we show a typical mass profile, decomposed in dark
and total mass. The total mass profile has a core of approximately 0.′′1,
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Figure 12. Mock images of the lensed arcs in the simulations of Rungs 2 and 3. Due to the unphysical core of Rung 3 deflector’s mass profile, the lensed arcs
appear the feature of ‘central’ lensed image (bottom-second plane). However, after entire simulation process this feature is not distinct anymore and would be
overwhelmed by deflector light.

about half a kpc at the redshift of our sources. We also note that the
adopted numerical simulations have softening lengths of 200–700 pc,
which have partially contributed to the core sizes in these simulated
galaxies. Despite that some cored massive elliptical galaxies have
been found (Thomas et al. 2016) and could be produced in highly ac-
curate dynamical simulations (Rantala et al. 2018), they are unlikely
to be present in real lens galaxies with mass like Rung 3 ones. A recent
detailed analysis of the mass density profiles of massive lens galaxies
(Shajib et al. 2020a) in terms of stars and dark matter haloes shows
that the dark matter halo is well described by a ‘cuspy’ unperturbed
Navarro, Frenk & White (1997) halo and that the population of the
lens galaxies’ total mass density profile is close to a power-law profile
(within ∼5 per cent near the Einstein radius). Although simulations
have made a lot of progress in reproducing massive elliptical galaxies,
Shajib et al. (2020a) show that they still fall short in simultaneously
reproducing the mass density profile and the dark matter fraction of
real galaxies at the level of detail needed for this test.

The main evidence against cores is from the search for central
images of gravitational lenses themselves. The central slope of the
mass density profile controls the magnification of the central image.
The fact that the central image is almost always absent in galaxy scale
lenses (not in clusters-scale lenses), is a strong argument against
cores. For example, radio observations (e.g. Rusin & Ma 2001;
Keeton 2003; Winn, Rusin & Kochanek 2004; Boyce et al. 2006;
Zhang et al. 2007; Quinn et al. 2016) usually present a non-detection
of the ‘central’ lensed image, which gives an upper limit of the core
(<5∼100 pc). Likewise, in the TDCOSMO project, which models
the high-resolution lensed AGN images based on HST observations,
the fifth image has not been detected, although as we show below
at optical/infrared wavelengths contamination by the deflector light
limits the sensitivity.

A simple ‘gedanken experiment’ shows that the cores present in
the Rung 3 simulations are unphysical, and therefore justifies our
caution interpreting them. As shown in Fig. 12, Rung 3 predicts a
central image, while Rung 2 does not. Unfortunately, in the optical

and near-infrared such central image is difficult to disentangle from
the light of the deflector.

In contrast, if we could perform the observations of the Rung 3
systems in the radio, assuming the multiple-imaged point source is
radio loud, the test would be conclusive. The mean value of the
magnification of the central source μc for Rung 3’s simulations
is ∼0.032, which is significantly larger than the upper limit level
reported by Keeton (2003, i.e. μc < 0.001). Furthermore, we
calculated the ratio between the μc and the magnification of the
standard lensed point sources (μbright) and found that the mean value
of μbright/μc is ∼192, which is inconsistent with the values reported in
the literature (Boyce et al. 2006; Zhang et al. 2007; Quinn et al. 2016,
i.e. >2500, >1000, >10000, respectively). These results indicate that
the core feature in Rung 3’s simulations is not realistic.

The second argument to use Rung 3 with caution is that since
simulations do not match perfectly the mass profile of real massive el-
liptical galaxies, as shown by Fig. 11, generalizing the results of such
a test is always going to be complicated. For example, if the modellers
were to assume the mass density profile to be cuspy in the inner
regions and thus do not match the cores in the simulations, would this
be a problem in analysing real galaxies, which should be cuspy? The
recent study by Enzi et al. (2020) shows that without kinematic infor-
mation, departures from a single power law (in this case, in the form
of a core) can lead to a bias on the inference of H0 of up to 25 per cent.
A similar concern about the realism of simulations is illustrated by
Xu et al. (2017), who analysed Illustris simulations and showed that
the simulations do not match exactly the detailed properties of real
galaxies in terms of central dark matter fraction and slope of the mass
density profile (see also Shajib et al. 2020a; Wang et al. 2020).

These limitations were known to the ‘Evil’ team while design-
ing the challenge. The ‘Evil’ team considered these limitations a
‘necessary evil’, to be kept in mind in the interpretation of the results.
Indeed, when simulating the mock images, the ‘Evil’ team was aware
that the Rung 3’s lensed arcs demonstrated the fifth image feature,
compared to Rung 2’s simulation, see Fig. 12. However, this feature
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is not detectable in the simulated images due the contamination
from the deflector light (the fifth image flux ratio is < 0.1 per cent,
compared to the deflector light).

In the end, the benefit of knowing the three-dimensional ‘truth’
for a complex system was considered to outweigh the downside of
the system not being fully realistic.

Future challenges may want to pursue some form of empirically
driven models (perhaps based on observations of local massive ellip-
tical galaxies) until the fidelity of simulations improves significantly.

5.2 Limitations discovered post-unblinding

Additional limitations were discovered post-unblinding because of
collaborative efforts by the ‘Evil’ and ‘Good’ teams. However, these
limitations do not necessarily invalidate the mock data or introduce
a major bias to ‘Good’ team’s inference of H0.

5.2.1 Substructure and dynamics

In Rung 3, 12/16 simulations dynamically bound substructures (i.e.
satellite haloes) were identified and removed before producing the
lensing quantities. This procedure renders the kinematics inconsis-
tent with the lensing quantities because the motion of the stars and
gas was pre-computed based on the full mass distribution including
substructure. Substructure accounts for approximately 1 per cent of
the total mass at the relevant scales, so this is not a large effect, but
can potentially introduce a bias at the percent level when combining
lensing and kinematic tracers.

5.2.2 Halo truncation

For computational reasons, only the particles within the virial radius
(R200) or twice the virial radius were considered when projecting
the mass distribution to calculate lensing quantities. This introduces
two main outcomes. First, not taking into account mass beyond R200

may introduce a negative mass-sheet transform, biasing H0 below
the percent level. Secondly, the spherical truncation at R200 does
not follow the isodensity contours of the mass profile, introducing
an artificial shear (Van de Vyvere et al. 2020). At this radius, the
artificial shear created by the truncation is small and may bias H0

by less than 1 percent. Both truncation effects (i.e. artificial shear
introduction and negative mass-sheet bias) have low amplitude for
truncation at the virial radius. They then may introduce a small bias
on the H0 inference but should not be the major cause of bias in
Rung 3 results.

6 D ISC U SSION AND IMPLICATIONS FOR
F U T U R E WO R K

First of all, a positive outcome of the challenge is that several teams
were able to analyse a sample of 48 lenses, the sample size needed
to reach subpercent precision (Shajib et al. 2018). Analysing this
large sample within the time constraints of the challenge required
good teams to apply fast methods as opposed to the more time and
resource consuming approaches of state-of-the-art analysis of real
data. These fast methods are necessary to make progress, and it
is essential to test them as we did in the challenge. We note that
even with the fast methods participation to the challenge was labor
intensive, and the ‘Evil’ team extended the original deadlines set in
TDLMC1 by a few months in order to allow more ‘Good’ teams to
participate.

Rungs 1 and 2 demonstrate that current fast lens modelling
technology is able to obtain precise and accurate estimates of H0

starting from a best guess of the PSF, when using the information
content of HST-like images. The expected complexity of the lensed
host galaxy of the quasar is not an obstacle to the inference, provided
that sufficiently flexible models are used to describe the source.
The common practice of reconstructing the PSF starting from an
empirical or theoretical best guess and the use of flexible source
description is validated by the two rungs and should become the
standard in future work.

Astrometry of the point sources from HST-like images can be a
source of bias at the few percent level for extremely precise time
delays. Mitigation strategies include adding nuisance parameters
to describe the astrometric noise arising from poor sampling, or
using higher resolution images, e.g. from adaptive optics or radio
interferometers.

The conclusions about modelling the gravitational potential of the
deflector are not so clear cut. Encouragingly, the teams performed
well when the deflector was described by a simply parametrized
analytic forms as in Rungs 1 and 2, with no evidence of inaccuracy.
As discussed above, and as expected, the fast methods using more
information performed better in terms of precision than the ones
which used only AGN positions and flux ratios. Rung 3 was helpful
in unveiling subtle effects that need to be considered if one wishes
to use simulations to test gravitational lens modelling techniques for
cosmological inference to high precision. Unfortunately, the same
limitations – and the known limitations in resolution and realism at
the beginning of the challenge – make it difficult to draw conclusions
based on it. More work is needed on this front, and it will require
either much higher resolution simulations than the ones adopted
here or more advanced computational techniques to calculate the
lensing quantities. Alternatively, a future challenge could find a way
to generate high precision and realistic models, perhaps inspired by
empirical data on local massive elliptical galaxies.

7 SU M M A RY A N D C O N C L U S I O N S

In this paper, we described the main results of the TDLMC. We first
revealed some of the details of the construction of the simulated
data sets that were kept blind during the challenge. Secondly, we
gave a brief description of the methods followed by the ‘Good’
teams to do the inference. Thirdly, we described a number of
limitations of Rung 3, including some numerical effects discovered
post-unblinding that preclude inferences at the percent level required
for this challenge. These limitations make Rung 3 difficult to interpret
but are reported here with the aim to inform future challenges. Finally,
we presented an overview of the performance of the methods against
four metrics (precision, accuracy, efficiency, and goodness of fit).

The main conclusions, based on Rungs 1 and 2, can be summarized
as follows:

(i) Each team came with fundamentally different methods to study
a large sample of systems. In particular, methods constrained only
by point-like images and using either analytic or free-form models,
a novel Bayesian technique assuming a locally Gaussian Fermat
potential, and modelling similar to current cosmographic analyses.
A BNN approach has also been applied on unblinded data. Several
teams developed fast methods that allowed them to analyse 48 lenses
within the duration of this challenge (∼1–2 yr). This is a much larger
number of systems per investigator time than the current state-of-
the-art models, that so far require of order ∼1 year per system (not
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considering the process of collecting ancillary data and analysing the
lens environment).

(ii) The fast methods applied to this challenge estimate their
uncertainty appropriately, yielding error bars that are statistically
comparable with the departure from the truth.

(iii) The fast methods that exploit the full information content of
the data achieve higher precision than the ones that only utilize lensed
quasars positions and fluxes to constrain the models.

(iv) The fast methods based on full image reconstruction can meet
the target precision (6 per cent per system) and accuracy (2 per cent)
when analysing mock images based on complex sources and starting
with a guess of the PSF.

(v) Astrometric requirements on the position of the point sources
can be stringent and difficult to meet for high precision time delay
measurements, given the HST PSF and pixel size. Biases arising
from the poor sampling of the PSF can be avoided by modelling the
astrometric noise explicitly.

As far as Rung 3 is concerned, one generic problem was known
before the challenge, i.e. if simulations do not reproduce real galaxies
at the percent level precision in gravitational potential, it is difficult to
generalize the outcome of the challenge. A good example of this issue
is the finite resolution of cosmological hydrodynamical resolution,
which introduces features like cores that are unlikely to be present
in real systems. A spherical redistribution of cusp to core would
not itself affect lensing observables, but it would change kinematic
and other properties. If modellers assume that galaxies are cuspy,
and do not detect the core in the simulations, what does it mean for
real galaxies? The following additional and more subtle effects were
identified post-unblinding.

(i) The kinematics of the particles in the simulations must be con-
sistent to sub-percent level with the gravitational potential generated
by the lensing data products given to the ‘Good’ teams. Removing
substructures or other parts of the simulation when generating the
lensing data may cause internal tension in the data so that the lensing
and dynamical probes cannot be combined without bias.

(ii) The standard practice of truncating simulated haloes at the
virial radius may lead to inconsistencies between the actual Fermat
potential and the one computed from truncated maps. Lensing
quantities such as the Fermat potential are non-local, and the kernel
mapping convergence into potential is logarithmic. Therefore, in
order to avoid biases in Fermat potential at the few percent level, one
has to include all particles well beyond the virial radius and carefully
consider the shape of the truncation.

In recent years, a number of works have investigated the sys-
tematic uncertainties in time-delay cosmography (e.g. Schneider &
Sluse 2013; Birrer et al. 2016; Sonnenfeld 2018; Kochanek 2020;
Millon et al. 2020). However, it is difficult to make a quantitative
comparison between our results and those in the literature because
the uncertainties depend strongly on the assumptions and methods
used.

To conclude, this work shows that blind challenges on simulated
data are a powerful tool to study and characterize a method, alongside
blind and independent analysis of real data sets (Millon et al. 2020).
The results obtained from this first TDLMC are encouraging, in the
sense that accurate and precise H0 can be derived blindly even in
the presence of complex sources and unknown PSF. However, our
results also demonstrate that much work remains to be done before
we can have conclusive end-to-end tests based on simulations. First,
state-of-the-art modelling methods exploiting the full information
content of the data need to speed up so that even larger simulated

data sets can be analysed within a practical time frame to explore
a variety of more complicated configurations. For example, the
EPFL team that used all the information employed 500 000 CPU
hours and 1700 h of investigator time, almost a full year equivalent.
This is significantly less time than currently employed per lens by
H0LiCOW or STRIDES. However, the challenge was single plane
and by design simpler in terms of satellites and perturbers along
the LOS than real lenses. So, in order to analyse samples of order
100–1000 lenses with increased complexity, further speed-ups are
necessary.

Secondly, improvements in numerical simulations of massive
elliptical galaxies and the calculation of their lensing properties are
needed before they can be used to perform lens modelling challenges
to percent level precision.
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DATA AVA ILA BILITY

The data underlying this article are available in the TDLMC website,
at https://tdlmc.github.io/.
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APPENDIX A : O RIGINA L DRAFT O F T D L M C 1

In order to allow the reader to reconstruct exactly the information
that was available to participants before unblinding, we reproduce in
this appendix the original draft of the manuscript of TDLMC1 (Ding
et al. 2018), as it was posted on arXiv on 2018 January 4 to open the
challenge. To minimize duplications, we omit the text of section 3 of
the TDLMC1 manuscript (A4 in this appendix), which is repeated in
Section 2.7 of this paper.

Title: Time delay lens modeling challenge: i. experimental
design

X. Ding, T. Treu, A. J. Shajib, D. Xu, G. C.-F. Chen, A. More,
G. Despali, M. Frigo, C. D. Fassnacht, D. Gilman, S. Hilbert, P. J.
Marshall, D. Sluse, S. Vegetti

A1 Abstract

Strong gravitational lenses with measured time delay are a powerful
tool to measure cosmological parameters, especially the Hubble
constant (H0). Recent studies show that by combining just three
multiple-imaged AGN systems, one can determine H0 to 2.4 per cent
precision. Furthermore, the number of time-delay lens systems is
growing rapidly, enabling, in principle, the determination of H0 to
1 per cent precision in the near future. However, as the precision
increases it is important to ensure that systematic errors and biases
remain subdominant. For this purpose, challenges with simulated
data sets are a key component in this process. Following the
experience of the past challenge on time delay, where it was shown
that time delays can indeed be measured precisely and accurately
at the sub-percent level, we now present the ‘TDLMC’ (TDLMC).
The goal of this challenge is to assess the present capabilities of
lens modelling codes and assumptions and test the level of accuracy
of inferred cosmological parameters given realistic mock data sets.

We invite scientists to model a set of simulated HST observations
of 50 mock lens systems. The systems are organized in rungs,
with the complexity and realism increasing going up the ladder.
The goal of the challenge is to infer H0 for each rung, given the
HST images, the time delay, and a stellar velocity dispersion of the
deflector, for a fixed background cosmology. The TDLMC challenge
starts with the mock data release on 2018 January 8. The deadline
for blind submission is different for each rung. The deadline for
Rungs 0 and 1 is 2018 September 8, the deadline for Rung 2 is 2019
April 8, and the one for Rung 3 is 2019 September 8. This first
paper gives an overview of the challenge including the data design,
and a set of metrics to quantify the modelling performance and
challenge details. After the deadline, the results of the challenge will
be presented in a companion paper with all challenge participants as
co-authors.

A2 Ingredients of the simulations

We briefly introduce the key ingredients including deflector/source
surface brightness and deflector mass for simulating the lens image
in Sections A2.1 and A2.2, respectively.

A2.1 Surface brightness

To study how results change with increasing complexity, we adopted
a variety of approaches to simulate the brightness profiles of the lens
and source galaxies.

(1) As a matter of convenience, in the entry level of the challenge,
we choose a common simply parametrized description of the surface
brightness for the lens and source galaxy. This choice is meant
primarily for testing the codes, both for ‘Evil’ and ‘Good’ Teams.
In the literature, the Sérsic profile (Sersic 1968) is one of the most
commonly used models to describe the surface brightness of galaxies.
It ranges from exponential discs to de Vaucouleurs (1948) profiles.

The Sérsic profile is parametrized by

I (R) = A exp

[
−k

((
R

Reff

)1/n

− 1

)]
, (A1)

R(x, y, q) =
√

qx2 + y2/q, (A2)

where A is the amplitude and Sérsic index n controls the shape of the
radial surface brightness profile; a larger n corresponds to a steeper
inner profile and a highly extended outer wing. k is a constant that
depends on n so as to ensure that the isophote at R = Reff encloses
half of the total light (Ciotti & Bertin 1999) and q denotes the axial
ratio.

(2) For the bulk of the challenge, we use more realistic and com-
plex surface brightness distribution for the host galaxy of the lensed
AGN. For example, we use real images of galaxies appropriately
smoothed and cleaned by foreground/background contaminants as
shown in Fig. A1.

A2.2 Deflector mass

Likewise, we achieve different levels for complexity of the challenge
by increasing the realism of the deflector mass distribution stepping
up the ladder.

(1) A common simply parametrized description of the deflector
mass density profile is given by elliptical power-law models whose
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Figure A1. Illustration of real HST galaxy image as lensed source host. The
bright point source and foreground/background galaxies in the original image
(left) are replaced by interpolation of nearby pixels to obtain a clean galaxy
image (right).

surface mass density is given by

�(x, y) = �cr

3 − γ ′

2

(√
qmx2 + y2/qm

RE

)1−γ ′

, (A3)

qm described the projected axial ratio. The so-called Einstein radius
RE is chosen such that, when qm = 1 (i.e. spherical limit), it encloses
a mean surface density equal to �cr. The exponent γ

′
is the slope of

the power-law profile, for massive elliptical galaxies γ
′ ≈ 2 (Treu &

Koopmans 2002b, 2004; Koopmans et al. 2009). We refer the reader
to the reviews by Schneider (2006), Bartelmann (2010), and Treu
(2010) for more details.

(2) In order to achieve a more realistic deflector mass distribution,
we also consider massive early-type lens galaxies produced by
cosmological numerical simulations. We only consider a single
deflector, and do not include the effects of the LOS other than via
the external convergence introduced before. We choose systems with
virial mass approximately 1013 M� yielding Einstein radii of order
1 arcsec for typical source and deflector redshift (zd ≈ 0.5) and (zs

≈ 1.5).

A3 Structure of the challenge

In this section, we first describe the data sets that are made available
to the ‘Good’ Teams in Section A3.1. Then, a description of the
layers (rungs) of the challenge is given in Section A3.2.

A3.1 Data sets

The mock data available to the ‘Good’ teams consist of deep
HST images, time delays, stellar velocity dispersion, and external
convergence, as described below. The released mock data sets have
been tested by analysing a subset of them with two independent
lens modelling software and verifying that the input cosmology
(and lens parameters when applicable) could be recovered within
the uncertainties.

(1) In order to mimic a typical observational set-up in state of
the art observations, we choose to simulate high-resolution images
obtained with the HST, using the Wide Field Camera 3 (WFC3)
IR channel in the F160W band. Even though this set-up has lower
resolution than optical images taken with WFC3-UVIS or ACS,
we adopt it in order to minimize the effects of dust extinction and
optimize the contrast between the (blue) AGN and (red) host galaxy.
We adopt a range of AGN to host flux ratios so as to produce a
distribution similar to that observed in real systems (Ding et al.
2017a,b). For simplicity, we do not include any dust extinction, and
we assume AGN to be at the centre of the host galaxy. Also, multiband

Figure A2. The left-hand and middle panels illustrate the simulated HST-
like images based on two independent codes with same lens parameters. The
right-hand panel shows the difference on the same scale. The pixel scale is
0.′′08 after drizzling.

data sets or adaptive optics assisted ground-based images are left for
future challenges.

In practice, the following steps are taken in order to simulate
realistic lens configurations.

(a) For every set of lens and source parameters, compute
high-resolution images of the lensed host, and deflector light.

(b) Convolve with the PSF appropriate for WFC3/F160W.
(c) Compute the image plane positions and fluxes of the

lensed AGN images and add them as appropriately scaled PSF
in the image plane.

(d) Rebin the oversampled images to the actual data resolu-
tion. Using different rebinning patterns, one can simulate eight
dithering images in order to drizzle them9 in step (vi).

(e) Add noise based on realistic observation condition, in-
cluding background, readnoise, and Poisson noise from the
source. The exposure time of each one of the eight images
is taken to be 1200 s, thus the total exposure time is 9600 s.

(f) Drizzle the individual images to recover some of the
resolution lost due to pixelization. Following common practice,
we drizzle eight images into one final image; the corresponding
pixel size is 0.′′13 and 0.′′08, before and after drizzling. This step
introduces correlated noise. In order to allow ‘Good’ Teams to
model the original data, the eight non-drizzled images of one
lens system are provided in addition to the final drizzled image.

A detailed description of these steps is given by Ding et al. (2017a,
section 3). In order to control for numerical issues and for implicit
bias in favour of any ‘Good’ Team, we use two independent codes
to generate the simulations (half the sample with each code). An
example of mock images generated by two independent codes with
the same parameters is shown in Fig. A2. The noise maps for the
images are provided that contain the standard deviation of the noise.

(2) Once the values of lens parameters are set, the difference of
the Fermat potential between the AGN images can be calculated
with equation (2). To calculate the corresponding time delay with
equation (1), we need to assume a set of cosmological parameters.
For simplicity, we draw values randomly from a uniform distribution
between 50 and 90 km s−1 Mpc−1 for the Hubble Constant, assuming
a flat �CDM cosmological model with �m = 1 − �� = 0.27.
We then add measurement uncertainty to the time delay. As discussed
in the introduction, the time delay is supposed to be known with
sufficient precision and accuracy so that we can test the precision and
accuracy of the models. We thus assume zero bias and the smallest
random errors that can be obtained with current monitoring strategies.

9MULTIDRIZZLE is adopted for the drizzling, see http://www.stsci.edu/hst/wf
pc2/analysis/drizzle.html for more information.
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Thus, we adopt as random error the largest between 1 per cent and
0.25 d.

(3) In principle, all mass along the LOS contributes to the
deflection of light rays. In practice, however, it is often the case
that the lensing configuration can be approximated by a single main
deflector with the addition of external shear and convergence (κext).
The latter is particularly important because it does not change the
image positions and relative fluxes, but it affects the relative Fermat
potential, and hence the time delay, according to the equation (4).
If not accounted for, the κext can bias the inference of time delay
distance and thus H0. A common practice to constrain the κext is
to compare the distribution of mass along the LOS with numerical
simulations (Hilbert et al. 2009; Suyu et al. 2010; Colbert et al. 2013;
Collett et al. 2013; Greene et al. 2013; Rusu et al. 2017).

Since the focus of this challenge is single plane lens modelling,
we include the effects of the LOS contribution in the following
simplified manner. We randomly generate a κext using a random
Gaussian distribution with 0 and 0.025 as mean value and standard
deviation, respectively. This, from the point of view of modelling,
one can adopt a prior on κext of 0 ± 0.025. The uncertainty is chosen
to represent well-characterized lines of sight, and corresponds to a
random uncertainty of 2.5 per cent on H0, to first approximation.

(4) Stellar kinematic information is essential for breaking the
mass-sheet degeneracy and constraining the lensing potential. Fur-
thermore, the measurement of stellar kinematics provides extra
cosmological information (Grillo, Lombardi & Bertin 2008; Jee,
Komatsu & Suyu 2015; Jee et al. 2016; Shajib et al. 2018). Thus,
we provide the model deflector velocity dispersion in addition to
the HST images, time delays, and κext. An integrated LOS velocity
dispersion is computed by weighting the velocity field by the surface
brightness in a square aperture with 1 arcsec on a side. Typical seeing
condition is rendered by convolving the surface-brightness-weighted
LOS velocity dispersion image with a Gaussian kernel with a FWHM
of 0.′′6.

Following current practice (Wong et al. 2017; Shajib et al. 2018),
a random Gaussian noise with 5 per cent standard deviation is added
to the model velocity dispersion to account for typical measurement
errors.

A3.2 Rungs

Lens modelling is usually time-consuming both in terms of human
and computer time. Thus, the size of simulated samples is limited
by practical considerations. Based on the experience of the evil team
and consultations with members of the lensing community a sample
size of 50 was considered a good compromise between practicality
and the need to explore different conditions with sufficient statistics
to uncover potential biases. Thus, we construct the challenge in
the following manner. Similar to the TDC we provide an entry level
zeroth rung for format checking and testing purposes. The zeroth rung
consists of two simple lenses. If the teams can successfully recover
H0 from the zeroth rung, they are encouraged to participate and
submit their results for rungs consisting of the real challenge. Each
rung consists of 16 lenses. For each rung, 16 systems are simulated
including cusp, fold, cross, and double configurations; four examples
for each configuration are generated using two independent codes.

Considering the quality of the data simulated here, constraints
on H0 with a precision of ∼6 per cent should be possible and thus
48 systems would deliver H0 to sub-percent precision that would
be sufficient to uncover biases at this level. We set a global value
of H0 per rung. To ensure that the ‘Good’ Teams do not infer any

information for the previous rung, we reset H0 at each rung. The
complexity and realism of the systems increase with rung level,
thus allowing us to separate different aspects of the lens models and
understand what needs improvement. Partial submissions for a subset
of the rungs will be accepted.

Detailed information for each rung’s design including the lens
components and data provided to the ‘Good’ team is given in the
following subsections.

A3.2.1 Rung 0 This rung is a training exercise that consists of two
lens systems, one two-image (double) and one four-image (quad)
configuration. The goal of this rung is to ensure that ‘Good’ Team
members understand the format of the data and that no bugs or
mistakes could potentially affect the results of the challenge for a
specific method.

In view of this goal, parametric models for surface brightness
model and mass profile are selected. We adopt a single Sérsic profile
to describe the surface brightness of both the lens and source galaxy,
and elliptical power-law models for the lens surface mass density.
Also, we randomly added an external shear to the lens potential drawn
from a typical range. The AGN images are added as a point sources
and the PSF is provided. The lens parameters and cosmological
parameters for the simulations are released with the data for the
modelling team to check.

A3.2.2 Rung 1 This rung is meant to be the easiest one of the actual
challenging ladder. Thus, the mocks in Rung 1 are generated in a
similar way as in Rung 0, except that we use the images of real
galaxies to get realistic surface brightness distribution for the lensed
AGN host and the time delays are affected by external convergence
(i.e. equation 4). For Rungs 0 and 1, we also provide an oversampled
PSF; the pixel size is 0.′′13/4 = 0.′′0325. This is to mimic the
oversampling that is generally achieved by combining several stars
in the science image.

A3.2.3 Rung 2 This rung is meant to test PSF reconstruction features
of lensing codes, in addition to the aspects tested in Rung 1. For this
purpose, we only provide a guess of the PSF but not the one actually
used to generate the data.

A3.2.4 Rung 3 This rung is the highest level in this challenge, and
thus the simulations are intended to be the most realistic. In addition
to all the complexity we have adopted for Rungs 1 and 2, the
observables are generated using massive early-type galaxies selected
from numerical cosmological simulations.

A4 Instructions for participation and evaluation metrics

The text of this section is omitted to avoid duplication. The informa-
tion can be found in section 2.7 or in section 3 of the TDLMC1 on
arXiv (Ding et al. 2018).

A5 TDLMC1 Summary

We presented the TDLMC. The structure of the challenge is as
follows. The ‘Evil’ Team produced a set of mock lenses, meant
to mimic state-of-the-art data quality. Anyone in the community
is invited to participate as a ‘Good’ Team, by modelling the data
and submitting a blind estimate of the Hubble Constant. The ‘Evil’
Team will compute four metrics aimed at quantifying the accuracy
and precision of the estimates. The overall goal of the challenge is
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to assess whether current lens modelling techniques are sufficient
to ultimately reach a 1 per cent measurement of H0. The challenge
is organized in rungs in order to help identify aspects of the lens
modelling effort that may represent bottlenecks and may require
additional improvements.

A P P E N D I X B: D E TA I L S O F RU N G 3

B1 Illustris simulations

The first group of simulated galaxies is selected from the Illustris
simulation (Vogelsberger et al. 2013, 2014) with six galaxies at z =
0.4 and six galaxies at z = 0.6. All have total dark matter halo masses
between 1 and 2 (1013 M�), and velocity dispersion ranging from 250
to 320 km s−1. In this challenge, we do not intend to test biases in the
most severe cases where the true profiles significantly deviate away
from the power-law models. For this reason, our selection was based
on the fact that the selected galaxies shall distribute fairly closely
around the best-fitting general mass–velocity dispersion relation. As
a result, the majority of the selected galaxies are not classified as the
extreme cases of deviations from power-law mass distributions; the
most severe case would result in an underestimate of Hubble constant
by 15 per cent (see Xu et al. 2016).

The convergence and potential maps (as well as potential’s first
and second derivatives) were calculated using netted-mesh based
methods through FFT with an isolated boundary condition. All
matter distribution of the selected galaxy halo is truncated at R200
with a spherical aperture (Xu et al. 2009). The results have been
cross-checked with the public software GLAMER, which is a ray-
tracing code for the simulation of gravitational lenses Metcalf
& Petkova (2014) and Petkova, Metcalf & Giocoli (2014). In
addition, we also calculated the same maps using a mesh-based
FFT algorithm, adopting smoothed-particle hydrodynamics (SPH)
kernel to smooth the simulated particles to the mesh. The two
sets of results showed expected consistency within the numerical
uncertainties.

The velocity maps were calculated on desired meshes; here no
smoothing was used. The pixel values of mean velocity and velocity
dispersions were weighted by rest-frame SDSS-r-band luminosities
of stellar particles projected to the pixel.

B2 Zoom simulations

The second set of simulations is a sample of ‘zoom’ cosmological
simulations, which have been previously used in Frigo et al. (2019).
A ‘zoom’ simulation is a higher resolution re-run of a small part
of the cosmological box of a large-scale simulation (like Illustris),
called the ‘parent’ simulation. In the set we employed, the parent
simulation is a 100 Mpc wide cosmological box simulated with dark
matter only (Oser et al. 2010), and each zoom simulation covers the
volume of a dark matter halo (at z= 0). The simulations were run with
a modified version of GADGET2 (Springel 2005), called SPHGAL (Hu
et al. 2014), which avoids some of the shortcomings of SPH codes.
Unlike the parent, the zoom simulations also include gas, stars, and
black hole particles. They include models for star formation (based on

Table B1. Metrics of blind submission for Rung 3.

Team Algorithm f log (χ2) P (%) A(%)

Metrics of Rung 3
Student-T Algorithm1 0.750 0.117 15.616 − 3.803
Student-T Algorithm2 0.812 − 0.583 26.226 6.221
Student-T Algorithm3 0.938 0.459 8.472 1.677
Student-T Algorithm4 1.000 0.213 12.869 2.512
Student-T Algorithm5 0.875 0.402 11.998 − 11.998
Student-T Algorithm6 0.938 − 0.932 26.515 3.986
Student-T Algorithm7 1.000 0.718 4.885 − 5.415
Student-T Algorithm8 1.000 0.027 12.587 − 2.786
Student-T Algorithm9 0.875 0.532 8.247 − 7.373
Student-T Algorithm10 0.938 − 0.848 15.369 4.401
Student-T Algorithm11 1.000 1.132 3.923 − 5.065
Student-T Algorithm12 1.000 0.115 9.728 − 1.195
EPFL Combined 0.438 0.893 4.276 − 9.963
EPFL CombinedDdtOnly 0.438 0.879 4.584 − 9.944
EPFL Composite 0.500 1.515 2.612 − 11.302
EPFL CompositeDdtOnly 0.500 1.500 2.559 − 11.403
EPFL Powerlaw 0.812 0.938 2.941 − 7.016
EPFL PowerlawDdtonly 0.812 0.955 3.001 − 6.973
Freeform GlassMulti 1.000 2.464 5.106 − 16.041
Freeform GlassSingleHiRes 1.000 1.954 5.809 − 17.267
Freeform GlassSingleLowRes 1.000 1.401 9.632 − 11.441
Freeform PixelensMulti 1.000 − 0.695 18.866 7.626
Freeform PixelensSingle 1.000 − 0.226 21.637 0.542
H0rton Bayesian neural network 0.312 0.637 9.056 3.356

Note. Table summarizes the metrics of the blind submission for Rung 3.

gas density and temperature), metal enrichment, gas cooling, stellar
winds, supernova feedback (Type Ia and Type II), and AGN feedback
[using the Choi et al. (2012) model]. The spatial resolution (softening
length) of the simulation is 200 pc, while the mass resolution (initial
mass of gas particles) is 7 × 105 M�. This is a higher resolution
than Illustris, but not high enough to avoid the issues presented in
Section 5. The simulations run from z = 43 to z = 0. The sample
of simulated galaxies varies in mass, size, dynamical, and stellar-
population properties. For the TDLMC project, we used snapshots
at different redshifts (0.3 < z < 0.5) of the four most massive AGN
galaxies, which have arcsec-size Einstein radii. More details on the
simulation code and on this sample can be found in Frigo et al. (2019).

The maps of convergence, lensing potential, and its deriva-
tives were calculated with the post-processing ray-tracing code
HILBERT (Hilbert et al. 2007, 2009). The whole high-resolution region
of each simulation, roughly reaching out to twice the virial radius of
the galaxy, was fed into the code and used to calculate the lensing
maps. The 3D orientation of the galaxy was chosen randomly before
the analysis. The kinematic maps were calculated on the same grid as
the lensing maps, weighting the LOS velocity of each particle with
its R-band luminosity.

B3 Rung 3 results

For completeness, we report here the full results of Rung 3. We
caution the reader that the interpretation of these results is difficult
because of the limitations and numerical issues described in Sec-
tion 5.

The metrics of each submission for Rung 3 are listed in Table B1
and plotted in Figs B1 and B2.
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Figure B1. Metrics of Rung 3 blind submissions. Note that Rung 3 was affected by issues described in Section 5 and thus great caution should be taken in
interpreting these results.

Figure B2. Panel (left) and (right) is the same as Fig. 8 and 9, separately, but for Rung 3.
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