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Abstract: The use of plant extracts (e.g., essential oils and their active compounds) represents an
interesting alternative to chemical additives and preservatives applied to delay the alteration and
oxidation of foods during their storage. Essential oils (EO) are nowadays considered valuable
sources of food preservatives as they provide a healthier alternative to synthetic chemicals while
serving the same purpose without affecting food quality parameters. The natural antimicrobial
molecules found in medicinal plants represent a possible solution against drug-resistant bacteria,
which represent a global health problem, especially for foodborne infections. Several solutions related
to their application on food have been described, such as incorporation in active packaging or edible
film and direct encapsulation. However, the use of bioactive concentrations of plant derivatives
may negatively impact the sensorial characteristics of the final product, and to solve this problem,
their application has been proposed in combination with other hurdles, including biocontrol agents.
Biocontrol agents are microbial cultures capable of producing natural antimicrobials, including
bacteriocins, organic acids, volatile organic compounds, and hydrolytic enzymes. The major effect of
bacteriocins or bacteriocin-producing LAB (lactic acid bacteria) on food is obtained when their use
is combined with other preservation methods. The combined use of EOs and biocontrol agents in
fruit and vegetables, meat, and dairy products is becoming more and more important due to growing
concerns about potentially dangerous and toxic synthetic additives. The combination of these two
hurdles can improve the safety and shelf life (inactivation of spoilage or pathogenic microorganisms)
of the final products while maintaining or stabilizing their sensory and nutritional quality. This
review critically describes and collects the most updated works regarding the application of EOs in
different food sectors and their combination with biocontrol agents and bacteriocins.

Keywords: natural antimicrobials; food preservatives; biocontrol agents; food safety

1. Introduction

Medicinal plants are a valuable source of new antibacterial, antifungal, and antioxidant
compounds due to the large biological and structural diversity of their constituents [1–3].
Botanical species and their derivatives, including EOs, extracts, and bioactive compounds
(BACs), have been discovered to be key contributors to the pharmaceutical, agricultural,
and food industries.

Traditionally, medicinal plants are used to treat diseases, but they are also well suited
for the food industry as natural antimicrobial preservatives [4–7]. Chemicals (benzoates,
propionates, sorbates, nitrates, nitrites, etc.) commonly used as food additives are reported
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to be the cause of health problems such as allergies, asthma, liver damage, and cancer [8–12].
These concerns reinforce the interest in using natural antimicrobials in food formulations.

Alcohols, ethers or oxides, aldehydes, ketones, esters, amines, amides, phenols,
heterocycles, terpenes (an oxygenated derivative of terpenoids), and polyphenols rep-
resent the chemical classes to which belong the constituents of EOs and plant extracts.
Some terpene compounds identified in EOs are limonene, β-caryophyllene, β-pinene, α-
pinene, α-terpinene, sabinene, β-myrcene, γ-terpinene, cinnamyl alcohol, δ-3-carene, and
p-cymene. Limonene is mainly distributed in citrus EOs: orange [13], grapefruit [14], and
pomelo [15]. Thymol, carvacrol, and eugenol, deriving from Thymus [16], Origanum [17],
and Ocimum [18], represent the main phenolic terpenes associated with EOs obtained from
medical and aromatic plants (Figure 1).
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A large variety of these compounds are recognized to have strong and effective
antimicrobial activity [19–22]. EOs from the Lamiaceae family aromatic plants (Table 1)
(i.e., oregano and thyme) and their constituents (like carvacrol and thymol) have been
described in the literature as potential preservatives with significant effects on food
shelf-life [23–29]. For instance, clove (Syzygium aromaticum), thyme (Thymus vulgaris),
and rosemary (Rosmarinus officinalis) have high antibacterial activity against pathogenic
bacteria, including Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella enteritidis,
and Pseudomonas aeruginosa, and can be used safely as food preservatives [30]. Plant-based
EOs and extracts’ antibacterial modes of action have been discovered to be dependent on
their influence on bacterial cell membranes by lowering cytoplasmic pH and promoting
cell membrane hyperpolarization [30].

The lipophilic nature of EOs is directly related to their antibacterial activity. EOs desta-
bilize the membrane potential of bacterial cells by disrupting the permeability of the plasma
membrane [31]. Degradation of membrane lipid fractions by the EO component thymol
leads to destabilization of membrane permeability [32]. EOs affect quorum sensing signal-
ing and can inhibit cell-to-cell communication, e.g., biofilm formation in bacterial cells [33].
Bouyahya et al. (2019) [34] reported the antimicrobial activity of Origanum compactum EO
in the context of disrupting cell membrane stability and integrity and increasing membrane
permeability, leading to leakage of cellular material (DNA and RNA). Moreover, the effect
of EOs on inhibiting biofilm formation in bacterial communities triggers the breakdown
of their sensing communication [35]. Few studies report that the mechanisms of action
of phenolic compounds in EOs are mainly related to their activity on cell viability and



Foods 2023, 12, 3288 3 of 27

interaction with transcriptional regulators of quorum sensing communication and biofilm
formation [36,37]. In addition, EOs can inhibit cell-cell communication and biofilm for-
mation in bacterial cells [33,35]. Martínez et al. (2021) [38] reported the inhibitory effect
of Lippia origanoides and Thymus vulgaris EOs (containing thymol–carvacrol) against the
biofilm formation of S. aureus and E. coli. In addition, EOs cause leakage of cytoplasmic
materials and damage to the plasma membrane, leading to the efflux of DNA, RNA, and
proteins in bacteria [39]. Han et al. (2020) [40] investigated the antibacterial activity of
limonene against Listeria monocytogenes and concluded that limonene at a concentration
of 20 mL/L can destroy the cell wall and cell membrane, leading to leakage of proteins
and nucleic acids. By inhibiting ATPase activity, limonene could inhibit ATP synthesis and
respiratory chain complex activity. The effect of EOs during biosynthesis occurs via proton
motive force through degradation of the plasma membrane, potential disruption of the
electron transport system, proton pump disintegration, and ATP depletion [34].

Several EOs, including those of thyme, marjoram, oregano, basil, ginger, lemongrass,
and clove, were shown to be highly effective in inhibiting spoilage bacteria in meat [41],
dairy products [42–46], and beverages [47]. It is generally accepted that plants are an
important source of antimicrobial metabolites, including flavonoids, phenolic compounds,
tannins, terpenoids, saponins, and alkaloids. Other than being endowed with antibacterial
and antioxidant properties, BACs may help to enhance the food’s sensory and organoleptic
properties and its acceptability, including its shelf life [48].

Many EOs and plant extracts have the GRAS (generally recognized as safe) status
obtained by the Food and Drug Administration (FDA) and the European Food Safety
Authority (EFSA), (Table 1 and Figure 2). Therefore, they can be applied in the food
industry, meeting in this way the consumer requirement for natural food preservatives [4].

Foods 2023, 12, x FOR PEER REVIEW 3 of 28 
 

 

compactum EO in the context of disrupting cell membrane stability and integrity and 
increasing membrane permeability, leading to leakage of cellular material (DNA and 
RNA). Moreover, the effect of EOs on inhibiting biofilm formation in bacterial 
communities triggers the breakdown of their sensing communication [35]. Few studies 
report that the mechanisms of action of phenolic compounds in EOs are mainly related to 
their activity on cell viability and interaction with transcriptional regulators of quorum 
sensing communication and biofilm formation [36,37]. In addition, EOs can inhibit cell-
cell communication and biofilm formation in bacterial cells [33,35]. Martínez et al. (2021) 
[38] reported the inhibitory effect of Lippia origanoides and Thymus vulgaris EOs (containing 
thymol–carvacrol) against the biofilm formation of S. aureus and E. coli. In addition, EOs 
cause leakage of cytoplasmic materials and damage to the plasma membrane, leading to 
the efflux of DNA, RNA, and proteins in bacteria [39]. Han et al. (2020) [40] investigated 
the antibacterial activity of limonene against Listeria monocytogenes and concluded that 
limonene at a concentration of 20 mL/L can destroy the cell wall and cell membrane, 
leading to leakage of proteins and nucleic acids. By inhibiting ATPase activity, limonene 
could inhibit ATP synthesis and respiratory chain complex activity. The effect of EOs 
during biosynthesis occurs via proton motive force through degradation of the plasma 
membrane, potential disruption of the electron transport system, proton pump 
disintegration, and ATP depletion [34]. 

Several EOs, including those of thyme, marjoram, oregano, basil, ginger, lemongrass, 
and clove, were shown to be highly effective in inhibiting spoilage bacteria in meat [41], 
dairy products [42–46], and beverages [47]. It is generally accepted that plants are an 
important source of antimicrobial metabolites, including flavonoids, phenolic 
compounds, tannins, terpenoids, saponins, and alkaloids. Other than being endowed with 
antibacterial and antioxidant properties, BACs may help to enhance the food’s sensory 
and organoleptic properties and its acceptability, including its shelf life [48]. 

Many EOs and plant extracts have the GRAS (generally recognized as safe) status 
obtained by the Food and Drug Administration (FDA) and the European Food Safety 
Authority (EFSA), (Table 1 and Figure 2). Therefore, they can be applied in the food 
industry, meeting in this way the consumer requirement for natural food preservatives 
[4]. 

 
Figure 2. The antimicrobial mechanisms of action of essential oils. 

However, despite EOs positive effect, their practical use as effective antimicrobial 
agents in the food sector is still a challenge due to their volatile characteristics, 
hydrophobicity, and low stability. Nowadays, new technologies and delivery strategies 
such as nanoencapsulation, encapsulation in active packaging, or polymer-based coatings 
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However, despite EOs positive effect, their practical use as effective antimicrobial
agents in the food sector is still a challenge due to their volatile characteristics, hydropho-
bicity, and low stability. Nowadays, new technologies and delivery strategies such as
nanoencapsulation, encapsulation in active packaging, or polymer-based coatings have
efficiently addressed these issues and improved the efficacy and gradual release of EOs [49].
Eventually, EO application can be limited by the sensory impact it imparts when applied at
the required active concentrations. Therefore, a possible solution to overcome this aspect is
their combination with other natural strategies. Among the ones proposed for increasing
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the safety and shelf-life of fruit, vegetables, meat, and dairy products is the application of
safe microorganisms, including lactic acid bacteria (LAB) and yeasts and their metabolites,
as biocontrol agents to inhibit the growth of pathogenic and spoiling microorganisms [50].
Due to its GRAS status, LABs are largely the most commonly used biocontrol agents;
however, yeasts are mainly used as biocontrol agents to control postharvest diseases. The
mechanism of action of LABs is linked to several factors that include competition for space
and nutrients, the production of organic acids that can enter microbiological cells, lowering
the internal pH, causing enzyme denaturation, disruption of the cell membrane, and the
collapse of the proton motive force [51]. In addition, LABs are reported to produce hydro-
gen peroxide, this compound is a strong oxidant capable of causing oxidative damage to
microbial cells, mainly targeting thiol groups within enzymes [51,52]. Diacetyl is also an
aromatic molecule largely produced by LABs, able to exert high antimicrobial activity, espe-
cially against Gram-negative bacteria, and whose mechanism of action is mainly attributed
to protein damage and interference in arginine metabolism [53].

Finally, LABs can produce different classes of antimicrobial peptides called bacteri-
ocins. These molecules are antimicrobial peptides produced by specific bacterial species
to protect themselves from other bacteria by inhibiting or killing them without harming
themselves. The bacteriocins action mechanism is mainly associated with the permeabiliza-
tion of the cell membrane, but it is reported that they can also act on protein metabolism,
DNA and RNA, and quorum sensing [54,55]. The application of bacteriocins in the food
sector has increased in recent years. They have attracted noticeable attention for their
potential application as natural and safe food preservatives since they are easily digestible
in the gastrointestinal tract. Nisin represents the most known and studied bacteriocin;
it is produced by Lactococcus lactis, and its use was authorized by the Food Drug and
Administration (FDA) in more than 50 countries [56]. Three ways of bacteriocin applica-
tions in foods are reported: inoculation of bacteriocin-producing LABs directly in the food
products (starter or protective cultures), application as a food additive, and incorporation
in food packaging of the purified or partially purified bacteriocin. Several studies have
investigated the direct application of LABs as potential biopreservatives due to their ability
to produce antimicrobial compounds such as bacteriocins, other bioactive peptides, organic
acids, and hydrogen peroxide [57]. The great advantage of this strategy is represented by
the lesser legal restriction on the use of LABs cultures in foods compared to the directed
use of pure or refined bacteriocins [58,59]. Combining EOs, or their components, with
protective microorganisms has been proposed as a promising approach to enhancing the
shelf life of ready to eat fruits and vegetables. The combined use of some EOs and LABs or
LABs products, such as bacteriocins, can be very effective against food pathogens and may
improve the sensory properties. In fact, the combination of EOs with biocontrol agents may
reduce the EO concentration necessary to achieve sufficient antimicrobial activity and can
have a synergistic effect. For example, Iseppi et al., 2020 [60] tested T. vulgaris, S. officinalis
EOs, and bacLP17 alone and in combination to control the growth of L. monocytogenes in
seafood and proved that the combined use of EOs and bacteriocins produced synergistic
effects and overcame the sensory effects of EOs. In addition, Turgis et al. (2012) [61]
tested six EOs and four bacteriocins (nisin, pediocin, and two bacteriocins isolated from
Enterococcus faecium) against foodborne pathogens. The combination of nisin and O. vulgare
EO produced a synergistic effect against L. monocytogenes, while nisin and T. vulgaris EO
together produced a synergistic effect against S. typhimurium. Two bacteriocins in combina-
tion with thyme EO and one in combination with rosemary EO showed additive activity
against L. monocytogenes and E. coli O157:H7 [62]. In the following chapters, an overall de-
scription of EOs and protective cultures, applied alone or in combination, will be provided.
Moreover, their applications in real food systems will be critically described.
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Table 1. Biological activities of medicinal plant products and their components in food model systems.

Botanical/Common Name Plant Product Bioactivity in Food Model/Product Quality Reference(s)

Artemisia dracunculus L.
(Tarragon) * EO Antimicrobial in beef burger/flavor enhancer in

meat products [63]

Allium sativum (Garlic) EO Antibacterial/in poultry meat [64]

Allium schoenoprasum (Chives) Diallyl sulfides Inhibits the growth of foodborne pathogens [65]

Anethum graveolens (Dill) EO
Antimicrobial in dairy products/improves the
physico-chemical and sensory characteristics
of yogurt

[66]

Brassica nigra (Black mustard)
Extracts combined with
oregano, Syzygium, and
cinnamon

Antimicrobial, antioxidant/chicken meat/improve
sensory attributes [67]

Carum carvi (Caraway) * EO
Improves the quality of dry-fermented
sausages/reduces the level of sodium nitrite in
dry-fermented sausages

[68]

Citrus aurantifolia (Lime) * EO, Limonene, β-Pinene,
γ-Terpinene, and Citral Antimicrobial [69]

Crocus sativus (Saffron) Stigma powder
Antimicrobial, antioxidant/chicken breast
meat/improves physico-chemical characteristics of
chicken meat

[70]

Curcuma longa (Turmeric) Rhizome
extract/curcumin

Oxidative stability of meat increases the shelf life
and quality in meat. [71,72]

Cuminum cyminum (Cumin) * EO, cuminal Antibacterial/meet protection/prolongs the
shelf life [73]

Cymbopogon citratus
(Lemon grass)

* EO combined with
ginger EO

Antimicrobial in fresh chicken meat/extends the
shelf life of chicken meat for 9 days at a temperature
of 2–7 ◦C

[74]

Foeniculum vulgare (Fennel) * EO
Antioxidant and antimicrobial nanocoating of fennel
EO in meat/fish packaging/improves the
antioxidant and antimicrobial properties of coatings

[75]

Hyssopus officinalis (Hyssop) * EO combined with
coriander EO

Prolongs the shelf life of ground beef/preserve in
vacuum-packed meat [76]

Kaempferia galanga (Kencur) Extract Antibacterial activity in poultry products/cell
membranes damage in food pathogen bacteria [77]

Laurus nobilis (Bay) * EO/leaf extract Antibacterial/increase the shelf life of lamb
meat/increases the shelf life of lamb meat [78]

Lippia graveolens
(Mexican oregano) EO mixed with basil EO

Microencapsulated EOs increases the shelf life of
refrigerated meat products and positive effect on the
sensory properties

[79]

Mentha piperita (Mint) * EO Prolongs the shelf life of beef meat/extends the
shelf life [80,81]

Melissa officinalis (Balm) * EO combined with
thyme EO

Antimicrobial/may protect the chicken meat from
decomposition during storage and extends the
shelf life

[82]

Ocimum basilicum (Basil) * EO with aloe vera

Extend the shelf-life of strawberry fruit and preserve
post-harvest quality
Combinations of EOs of O. basilicum, Cymbopogon
nardus and C. flexuosus increased banana shelf life by
up to 21 days/control post-harvest diseases, and
extended storage life.

[83,84]
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Table 1. Cont.

Botanical/Common Name Plant Product Bioactivity in Food Model/Product Quality Reference(s)

Murraya koenigii (Curry leaf) Leaf powder
Antioxidant/cooked goat meat/inhibitor of
oxidation products in raw ground and cooked
goat meat

[85]

Myristica fragrans (Nutmeg) * EO Antibacterial and antioxidant/improves the color
stability and sensory properties of beef slices [86]

Nigella sativa (Black cumin) EO EO prolongs the shelf life and improves the sensory
quality of fresh fish fillets [87]

Origanum vulgare (Oregano) * EO/carvacrol
Antibacterial/increases the shelf life of pork,
antimicrobial oregano oil nanoemulsions in fresh
lettuce, antibacterial in vacuum-packed minced beef

[23,88,89]

Pimpinella anisum (Anise) * EO Antimicrobial/antioxidant/prolongs the shelf life of
chicken fillets [90]

Rhus coriaria (Sumac) Water extract
Antimicrobial effect/extends shelf life of
refrigerated raw broiler wings, improving sensory
quality, and color

[91]

Rosmarinus officinalis
(Rosemary) * EO Antimicrobial against meat pathogens/extends the

shelf life of beef stored at 4 ◦C for 20 days [92]

Salvia officinalis (Sage)

* EO
Ethanolic extracts
Hydro-ethanol extract
Oil and ethanol extracts

Prolongs the shelf life and compositional quality of
fish burgers (4 months at frozen storage)
Antioxidant/extends the shelf life of mayonnaise
during storage
Prolongs the shelf life of trout fillets
Antibacterial/prolongs the storage stability of
vacuum-packed low pressure chicken meat

[93–96]

Satureja montana
(Winter savory) EO/supercritical extracts Antioxidants in pre-cooked pork chops/extends the

shelf life [97]

Thymus vulgaris (Thyme) * EO

Antimicrobial/prolongs the shelf life of gilthead
seabream
extends the shelf life of oranges for fresh use and
juice processing

[47,98]

Thymus capitatus
(Headed Savory) EO Antimicrobial/improves the microbial and sensory

quality of beef meat [99]

Trachyspermum ammi (Ajwan) EO
Antibacterial/chitosan-based film with EO improves
the safety of chicken fillet stored for 12 days at
refrigerated temperature

[100]

Zingiber officinale (Ginger) * EO Antimicrobial/extends the shelf life of minced meat [101]

* EOs—Essential Oils considered generally safe by the FDA—GRAS. https://www.biosourcenaturals.com/pure-
essential-oils/essential-oils-considered-safe-by-the-fda/ (accessed on 28 July 2023)

2. Use of Essential Oils and Biocontrol in Minimally Processed Fruit and Vegetables

Over recent years, the market for minimally processed fruits and vegetables has
increased steadily. Their popularity is due to their convenience, reduced waste produc-
tion, and high nutritional content. In fact, these foods represent a source of valuable
compounds such as vitamins, minerals, fibers, and antioxidants and may help prevent
chronic diseases. Nevertheless, fruits and vegetables are a suitable matrix for microbial
proliferation [102,103]. In fact, these foods can be easily spoiled due to the high nutrient
and water content and the numerous processing steps that fresh produce undergoes (i.e.,
peeling, cutting, or slicing), which can promote microbial proliferation by releasing nu-
trients and transporting the microbial population present on the surfaces of vegetables
and fruits into the cut ones [104,105]. In addition, several outbreaks of foodborne illness in
the last twenty years were attributed by the FDA and EFSA to the consumption of fruits,

https://www.biosourcenaturals.com/pure-essential-oils/essential-oils-considered-safe-by-the-fda/
https://www.biosourcenaturals.com/pure-essential-oils/essential-oils-considered-safe-by-the-fda/
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vegetables, and fresh juices. In particular, fruits and vegetables have been associated with
outbreaks of listeriosis, salmonellosis, and Shiga toxin-producing E. coli at EU and inter-
national levels (EFSA and ECDC). In addition, literature data indicated the potential pres-
ence of pathogens, including Salmonella spp., Listeria monocytogenes, Aeromonas hydrophila,
Yersinia enterocolitica, Staphylococcus aureus, and E. coli, on fresh fruit and related minimally
processed products [103].

Currently, the use of chemical sanitizers in the washing step, as well as the main-
tenance of refrigerated temperatures during processing and storage, are the only stages
capable of reducing and controlling the microbial population in minimally processed veg-
etables [106]. However, the use of chemical sanitizers, especially chlorine-based ones, is not
always effective, can result in the production of toxic molecules, and is not well accepted
by consumers [88]. Because of these drawbacks, researchers are looking to alternative
sanitizers (i.e., ozone, hydrogen peroxide, and peroxyacetic acid), physical treatments
(UV light, ultrasound, and gamma rays), and natural food additives. As a result of their
antibacterial and antioxidant properties as well as their GRAS classification, EOs have the
potential to extend the shelf life of several foods, including fresh-cut fruits and vegetables.
EOs can be used in various stages of food and vegetable processing, including the washing
step, directly on the product, or in the packaging. In fact, the incorporation of EOs and
their components in active food packaging is of high relevance. Active packaging is a solid
matrix from which EOs are gradually released during food storage. Generally, various
methods, including direct incorporation, coating, and surface modification, are applied to
incorporate EOs into active packaging [107]. Antimicrobial active packaging is designed
to enhance product safety and shelf life by inhibiting or reducing microbial growth in
packaged foods [92,108,109]. In this context, it is fundamental to use suitable solvents or
polymeric carriers, as EOs are always used in diluted form, which should be food-grade
and not interfere with the antimicrobial and antioxidant activities of EO constituents [110].

Several studies have demonstrated the potential of natural antimicrobials, including
EOs, to improve the quality and safety properties of processed fruits and juices (Table 2).
Among the EOs, those derived from citrus fruit peels are the most interesting. Citral
(3,7-dimethyl-2-7-octadienal) contains two isomers, geranial and neral, and is often applied
as a flavoring agent in citrus drinks. It is characterized by strong antimicrobial activity. Low
concentrations of citral and citron EO were shown to be effective in increasing the shelf life
of fruit-based salads in syrup [111] and improving the stability of fruit-based beverages.
Hexanal and 2-(E)-hexenal, which are volatile compounds produced by various fruits and
vegetables, are also interesting compounds that have already been tested as antimicrobials
in minimally processed fruits and vegetables [112]. These molecules are characterized by
strong antimicrobial activity against spoiling yeasts, and the addition of these molecules
in the storage atmosphere of fresh-cut apples resulted in an extended shelf life [92]. In
addition, these molecules also have a positive impact on sensorial properties and exert
antioxidant activity that prevents browning of the packaged products. These compounds
showed remarkable antibacterial activity against pathogens such as Salmonella spp., E. coli,
and Pseudomonas aeruginosa [50].

Table 2. An overview of applications of essential oils (EO) or their components in minimally processed
fruits and vegetables.

Microbial Target Food and Beverages EO or Component Concentration Used Reference(s)

Total aerobic bacteria

Lettuce and carrots
Four season salad
Table grape
Avocado
Sweet cherries
Kiwifruit and melon
Honeydew melon

Oregano and thyme EOs
Oregano EO and citral
in packaging
Eugenol thymol
Thyme EO in MAP
Eugenol, thymol,
and menthol Eucalyptol
Carvacrol and cinnamic acid
Carvacrol and cinnamic acid

Alone 250 mg/L;
combination 125 mg/L
7.5% w/w
75–150 mL in the gas used for
MAP
75 mL in the filter
1000 mL in the gas used
for MAP
5–15 mM in the
dipping solution
1 mM in the dipping solution

[2,108,113–117]
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Table 2. Cont.

Microbial Target Food and Beverages EO or Component Concentration Used Reference(s)

Total aerobic bacteria and
inoculated L. innocua Fresh sliced apples Oregano, lemongrass, and

vanillin used encapsulated 0.5–2.0% (w/w) [105]

Total aerobic bacteria,
Escherichia coli,
Listeria monocytogenes,
Salmonella enteritidis

Lamb’s lettuce
Fresh cut apples in MAP

oregano and thyme EOs
Citron EO, hexanal, E(2)hexenal,
citral, and carvacrol

250 mg/L
Alone 250 mg/L; combination
125 mg/L

[102,118–120]

Salmonella enteritidis,
Escherichia coli,
Listeria monocytogenes

Fruit salads
Fresh sliced apples

citral
Citron EO
Hexanal, hexyl acetate,
E(2)hexenal

25–125 ppm
300–600 ppm
50–250 ppm

[111,117]

Listeria monocytogenes,
Yersinia enterocolitica and
Aeromonas hydrophilla

Iceberg lettuce Oregano and rosemary 0.003–80 mL/m [103]

Listeria spp., E. coli
O157:H7 Fresh cut apples Vanillin

Oregano EO
12 g/L
0.7–2.1% v/w [104,121]

E. coli O157:H7 Eggplant salad
Carrots

Oregano EO
Thyme EO

0.7–2.1% v/w
0.1–10 mL/L [106,121]

Salmonella tiphymurium Lettuce Oregano EO 25–75 mg/L [122]

Streptococcus thermophilus, Pomegranate juice Thymbra capitata EO 0.06 and 0.125% v/v [123]

aerobic mesophilic
bacteria

Escherichia coli O157:H7 Apple Juice Melissa oil, carvacrol, and
oregano oil, 0.067 and 0.67% v/w [124]

Salmonella enterica Terpeineol, geraniol, lemon oil,
and citral

S. enteritidis, E. coli,
L. innocua

Apple, pear, and
melon juice

Palmarosa, clove,
and lemongrass 5–10 µL/mL [105]

Saccharomyces cerevisiae Orange and
pomegranate juices Cinnamon leaf EO 0.02–0.65 mg/mL [125]

S. cerevisiae, S. pombe,
Pichia anomala Apple juice Lemon EO 0.25 µL/mL [126]

Other researchers found that dipping sliced apples in a solution containing dissolved
hexanal (250 ppm) or the combinations hexanal/2-(E)-hexenal and citral/2-(E)-hexenal
(125 ppm of each compound) increased quality parameters and extended the shelf life by
reducing the proliferation of naturally occurring yeast [102]. In addition, sliced apples
treated with hexanal/2-(E)-hexenal, and citral better retained both color and textural
properties. The combination with an active, modified atmosphere (7% O2 and 0% CO2)
enhanced the safety and shelf life of minimally processed apples washed with a solution
containing a mixture of hexanal/2-(E)-hexenal. Other researchers discovered that active
packaging containing thymol and eugenol inhibited the growth of mesophilic bacteria
and yeasts and consequently extended the shelf life of table grapes stored in a modified
atmosphere (MAP) compared to the control group [108]. Moreover, when compared
to a control, a package containing eugenol, thymol, menthol, or eucalyptol was able to
reduce mold, yeast, and total aerobic mesophilic bacteria cell loads [113]. An edible
coating based on apple puree alginate enriched with lemongrass, oregano, and vanillin
reduced the growth kinetics of psychrophilic bacteria, yeasts, and molds on freshly cut ‘Fuji’
apples [105]. Moreover, the same active coating containing lemongrass (1.0 and 1.5% w/w)
and oregano oil (0.5% w/w) showed the highest antimicrobial activity on Listeria innocua
(4.0 log reduction) [105]. Abadias et al. (2011) [104] investigated alternative products
to reduce the unwanted chlorine by-products in the fresh-cut industry. When used at
5–15 mM in the dipping solution, cinnamic acid and carvacrol were highly efficient in
reducing microflora on fresh-cut apples, kiwifruit, and fresh-cut melon [114] (Table 2).

The use of EOs has great potential, even in minimally processed vegetables. In fact,
herbal EOs and their constituents were studied as alternative natural disinfectants for
reducing the presence of spoiling and pathogenic bacteria. Due to the strong antimicrobial
activity in vitro of oregano (Origanum vulgare) and thyme (Thymus vulgaris) EOs and their
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main constituents (carvacrol and thymol), these compounds are the most suitable to be
used in minimally processed vegetables [31,54,112,119,120].

For example, the inclusion of oregano and thyme EOs at a concentration of 250 ppm
in the washing solution of minimally processed lamb’s lettuce resulted in a product shelf
life comparable to the one obtained by using chlorine (120 ppm) in the washing step [119].
In fact, the use of EOs resulted in a preliminary decrease in the microbial population. In
addition, the color and turgidity of the lettuce were not affected throughout the storage
period while the sensorial properties were not negatively affected [119].

When used in the washing solution, oregano oil (Origanum onites) was able to inac-
tivate Salmonella typhimurium inoculated on iceberg lettuce. The effectiveness of oregano
EO treatment (75 ppm) was comparable to that of chlorine treatment at 50 ppm [122]. A
new antimicrobial active packaging made of polypropylene (PP)/ethylene-vinyl alcohol
copolymer (EVOH) film and activated with oregano EO or citral, combined with a modified
atmosphere, was successfully tested to improve the shelf life and safety of packaged sal-
ads [115]. Indeed, the addition of oregano or citral reduced the cell load of Enterobacteriaceae,
yeasts, and molds by about 2 log cycles. This active packaging also decreased the cell load
of aerobic bacteria, lactic acid bacteria, and psychrotrophic bacteria. Citral-based films, on
the other hand, showed better antimicrobial activity and sensory properties compared to
oregano-based films.

When oregano EO was applied to ready to eat lettuce and carrots, the initial decon-
tamination effect was comparable to that of chlorine [127]. Furthermore, oregano EO did
not negatively affect the color, texture, or water activity of the samples. However, sensory
acceptance of the product treated with oregano EO was only observed for carrots. Volatile
antimicrobial compounds such as borneol, carvacrol, cinnamaldehyde, eugenol, menthol,
thymol, and vanillin were able to inhibit the growth of Bacillus cereus inoculated in carrot
juice. Direct application of EOs in the food system has some drawbacks due to their strong
odor, chemical reactivity, hydrophobicity, low solubility, and potential negative interaction
with the food matrix, leading to alteration of organoleptic properties. Several technological
approaches have been tested for EO delivery in food. EO encapsulation is a novel and
advanced delivery system. It provides enhanced antimicrobial efficacy as well as control
over the release of EO flavors into the food system [128]. Numerous biopolymeric matrices,
including chitosan, alginate, starch, cellulose, and dextran, are characterized by excellent
biodegradability, biocompatibility, and non-toxicity; for these reasons, they were proposed
as carriers for the encapsulation of EOs [49]. Consequently, the encapsulation of EOs
represents a non-toxic and environmentally friendly technology.

Several studies reported that various lactic acid bacteria strains, including Lactica-
seibacillus casei, Lactiplantibacillus plantarum, Leuconostoc spp., Pediococcus parvulus, and
Lactococcus lactis, are able to enhance the shelf life and safety of minimally processed lettuce,
carrots, and apples [129]. LAB isolated from the same food matrix in which they are applied
have the best chance of being used as biocontrol agents [120]. Furthermore, combining bio-
protective cultures with additional hurdles such as EOs can have an additive or synergistic
effect. Siroli et al., 2015, [120] isolated and characterized LAB from minimally processed
vegetables and selected Lactiplantibacillus plantarum V7B3 and Lacticaseibacillus casei V4B4
as potential biocontrol agents in combination with thyme EO in lamb’s lettuce, demonstrat-
ing that the addition of Lactiplantibacillus plantarum V7B3 in the washing step increased
product shelf life and safety compared to the control. Furthermore, the nisin producer
strain Lactococcus lactis CBM21, whether combined or not with thyme EO and supple-
mented to the washing solution of minimally processed lamb’s lettuce, reduced the cell
load of L. monocytogenes and E. coli, as well as the total aerobic bacteria, without affecting
the color parameters or sensory attributes [118]. The effect of biocontrol agents has been
widely assessed in minimally processed fruit, also in combination with modified atmo-
spheres, natural antimicrobials [119], gamma radiation [130], reducing agents [131], and
heat treatments [132].
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The use of LAB as bioprotective cultures in minimally processed fruits is more limited
than in vegetables due to the higher sugar content combined with the low pH, which
favors yeast growth with respect to bacteria. Indeed, L. mesenteroides and L. citreum have
been tested as potential biocontrol agents on ready to eat Golden Delicious apples [133].
These strains strongly reduced the growth rate of L. monocytogenes. Other authors have
selected LAB strains from ready to eat apples and tested them as bioprotective cultures in
ready to eat apples (Golden Delicious) packaged in a modified atmosphere and combined
with the addition of 2-(E)-hexenal/hexanal and 2-(E)-hexenal/citral [120]. The strain
Lactiplantibacillus plantarum CIT3, added to the apple dipping solution, was able to extend
the shelf life by reducing the yeast growth. The combination of Lactiplantibacillus plantarum
with 2-(E)-hexenal/citral increased the antimicrobial activity and reduced the detrimental
effect on color parameters due to the antioxidant activity of the natural antimicrobials.
Moreover, [119,134] tested a L. lactis strain as a potential biocontrol agent for sliced apples
in combination with the mixtures 2-(E)-hexenal/hexanal and/or 2-(E)-hexenal/citral. This
approach improved the product’s safety as well as its shelf life. In fact, L. monocytogenes
was significantly inhibited, especially when the biocontrol agent was combined with
natural antimicrobials.

Although interest in the use of bioprotective cultures in ready to eat fruits and veg-
etables has increased recently, a critical review of the literature shows that the efficacy of
bioprotective cultures, regardless of the microorganism used, is strongly influenced by the
inoculum level, the naturally occurring microflora, the product’s physical-chemical proper-
ties and composition, and the conditions of storage. Because of the numerous variables
involved, standardizing bio-protective methods and, as a result, their industrial scaling up
is difficult.

3. Application of Essential Oils as Meat and Dairy Preservatives
3.1. Antimicrobials as Meat Preservatives

Fresh meat and fresh meat produce are extremely perishable and prone to oxidative
and microbial spoilage. These products are easily subject to oxidation, which reduces
nutritional value, affecting lipids, proteins, myoglobin (pigments), texture, and flavor [135].
Plant extracts are a natural source of compounds with antioxidants and antimicrobial activ-
ity that can be used as an alternative to synthetic ones. EOs and their constituents have been
successfully used in meat and meat products to prevent oxidation, degradation, and micro-
bial proliferation [136–138]. Promising results can be achieved with EOs from the Lamiaceae
family, including oregano, thyme, sage, and rosemary, which are commonly used as fla-
voring agents and prevent oxidative degradation. The antioxidant activity of EOs is well
documented and can be attributed to phenolic compounds including eugenol, carvacrol,
and thymol, which act as hydrogen donors and scavengers of free radicals [139,140].

Fasseas and colleagues (2007) [141] measured the antioxidant activity of pork and beef
meats (raw and cooked) treated with sage and oregano EOs over a 12 day storage period at
4 ◦C. Compared to controls without added EOs, the EO-treated meat (raw and cooked) had
higher TBA (thiobarbituric acid) scores and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical
scavenging activity. However, oregano EO showed higher antioxidant activity than sage
EOs (p < 0.001) both in raw and cooked meat samples [141].

Estévez et al. (2007) [142] reported that 0.1% of sage and rosemary EOs improved the
lipids stability to oxidation in refrigerated stored liver pates (90 days). The effects were
primarily attributed to reduced polyunsaturated fatty acid degradation, which prevented
the synthesis of lipid-derived volatiles and residual components such as malonaldehyde.
However, the application of EOs as antioxidants in meat and meat derivates requires deeper
research into their properties and antioxidant mechanisms of action [139]. Some EOs can
promote meat oxidation, depending on their concentration. The oxidation of the phenolic
compounds of EOs to phenoxyl radicals could lead to new degradative reactions [143].

Meat contaminated with spoilage microorganisms shows color changes, the develop-
ment of uncharacteristic and undesirable odors and tastes, and the formation of superficial
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slime [144,145]. Bacteria belonging to the genera Pseudomonas, Acinetobacter, Staphylococcus,
Brochothrix, Moraxella, Micrococcus, and Flavobacterium, as well as LAB and genera belonging
to the Enterobacteriaceae family, are reported to be involved in the spoilage of meat and
meat derivatives [145,146]. In addition to spoilage microorganisms, poultry, pork, beef,
sheep, and other animal meat consumed by humans can also be reservoirs or carriers of
foodborne pathogens. In fact, it has been reported that the ingestion of contaminated meat
can transmit enteropathogenic bacteria, including Escherichia coli, Salmonella spp., Yersinia
enterocolitica, Shigella spp., Campylobacter, Clostridium botulinum, Listeria monocytogenes,
Staphylococcus aureus, and Vibrio spp. [147–149].

The antimicrobial properties of EOs are generally dependent on their chemical com-
position. As mentioned earlier, in addition to phenolic compounds, EOs are a complex
mixture of terpenes (mono- and sesqui-), terpenoids, alcohols, ketones, aldehydes, esters,
and other aromatic and aliphatic compound classes [150]. A literature review indicated
that EOs can be used as antimicrobials against both meat spoilage agents and pathogens.
Some examples are given in this section.

Cell loads of foodborne pathogen L. monocytogenes deliberately inoculated on ham
(3 log CFU/g) were decreased by 10 and 19% after supplementation of Cinnamon cassia and
oregano EOs, respectively [151]. Cinnamon cassia EO was also effective in promoting the
shelf life of ground lamb meat throughout refrigerated storage at 4 ◦C. Compared to control
samples, supplementation of Cinnamon cassia EO (0.5%) reduced from the 4th to the 16th
day the lactic acid bacteria spoilage population up to 1.9 log CFU/g and Enterobacteriaceae
up to 1.1 CFU/g [152]. A reduced microbial spoilage population was also observed in
minced meat with rosemary, thyme, and oregano EOs at concentrations between 1 and
1.5% (v/w). Compared to the control group, treated samples showed reduced loads of
LAB, molds, and yeast [153]. Thyme EOs tested at two different concentrations (0.02 and
0.05 w/w) inhibited the growth of coliform in chicken hamburgers [154].

The use of EOs as antioxidants and preservatives for meat is dependent on the bioac-
tivity and stability of their components. Most EO constituents lose physical stability when
they interact with meat constituents [155], probably due to the binding ability of fats and
proteins in meat to volatiles in EOs [155]. When encapsulated EOs are added to edible
coatings, plastic films, or meat during marinating, their stability increases significantly.
The possibility of using active packaging supplemented with natural antioxidants and
antimicrobials has recently been investigated [58,156]. The use of milk protein-based film
added with 1% (w/v) of oregano EO led to a shelf life extension and the inhibition of
foodborne pathogens (E. coli O157:H7 and Pseudomonas spp.) in beef slices [157]. Oregano
oil also showed a good efficacy, when incorporated into a whey protein-based coating,
to extend the shelf life and microbial stability of Portuguese sausages without affecting
the sensorial properties of the product. In addition, a reduction in oxidation of the lipid
fraction was also observed [158] (Table 3).

The stability, antioxidant, and antimicrobial properties of rosemary EO can be enforced
by encapsulation with nanogel. Compared to samples treated with free rosemary EO,
rosemary EO encapsulated in chitosan-benzoic acid-based nanogels showed greater efficacy
in reducing the cell load of Salmonella typhimurium inoculated on beef chops during storage
at 4 ◦C [128]. Chitosan-based coatings also improved the performance of oregano EO in
reducing lipid oxidation in dry fermented sausages in comparison to control samples after
7 months of storage [159].

Another strategy to improve EO stability is to convey EOs during the meat marinating
process. Siroli et al. (2020) [160] used an oil/beer/lemon marinade solution containing
oregano, rosemary, and juniper EOs to improve the shelf life and food safety of pork loin
slices. The marinade supplemented with EOs reduced the growth of Salmonella enteritidis,
Listeria monocytogenes, and Staphylococcus aureus. A water solution of sodium lactate/lactic
acid buffer (2%) and NaCl (10%) enriched with a combination of EOs obtained by cinnamon
(Cinnamomum zeylanicum), thyme (Thymus zygis), and oregano (Oreganum compactum) was
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able to increase the shelf life of pork fillet, whereas this approach was not effective for
chicken breast fillet [161].

LABs can be added for two different purposes: as starting materials for producing fer-
mented meat products or as a bioprotective culture used only to compete with naturally oc-
curring microflora and produce antimicrobial peptides [59]. Many studies have investigated
the application of strains belonging to Pediococcus acidilactici, Latilactobacillus curvatus, and
Latilactobacillus sakei in various cured meats from the Mediterranean region to counteract
the growth of pathogens including Salmonella spp., E. coli, Listeria spp., and S. aureus [162].
Bacteriogenic cultures of L. carnosum, Lactococcus Lactis, L. sakei, and L. curvatus sprayed on
the surfaces of vacuum-packed chicken or beef, ham, bacon, and fermented sausages have
been shown to inhibit spoiling microorganisms (Enterobacteriaceae and B. thermosphacta)
and also inhibit the growth of Listeria [59,163,164]. Some commercial products are also
currently available on the market (Bactoferm™ F-LC, commercialized by Chr. Hansen, and
ALCMix1, commercialized by Danisco DuPont).

Although the use of bacteriocinogenic LAB is an appropriate approach for meat
products, not all meat products can provide suitable environmental conditions to sustain
the culture’s growth and bacteriocin production.

Direct addition of bacteriocins to meat products may result in some loss of their
activity caused by various factors, such as dilution phenomena leading to depletion of
antimicrobial peptides [165] or inactivation due to interaction with lipids and enzymes
present in meat [164,166].

Since the meat is generally contaminated by microorganisms on its surface, the inclu-
sion of bacteriocins on active packaging represents an efficient solution.

The constant release of antimicrobial peptides from the packaging to the product
surface could help to maintain the bacteriocin concentration at the optimal level to carry
out their bioprotective effect [165]. In various studies, films containing the bacteriocin nisin
have been successfully used to preserve meat products [59]. Pullulan film containing Nisin
Z, which was used for the packaging of refrigerated vacuum-packed raw beef and deli
ham, strongly inhibited various foodborne pathogens, including Salmonella spp., S. aureus,
L. monocytogenes, and E. coli [167]. Furthermore, the efficacy of this nisin/pullulan film
was improved by the addition of lauric alginate [167]. Reduced growth of S. aureus on
chilled sliced beef was observed when packaged with an alginate-based palmitoylated
film supplemented with nisin [168]. Nisin-internalized cellulose envelopes demonstrated
anti-Listeria properties on chilled vacuum-packed frankfurters (sausages) [169,170] and
vacuum-packed hot dogs wrapped with a plastic film enriched with nisin. A combination
of nisin and Nisaplin® (a commercial product from DuPont) adsorbed in cellulose-based
packaging paper was shown to inhibit S. aureus, L. innocua, and LAB on cooked ham [171].

The use of a combination of biocontrol agent/bacteriocins and EOs, or plant actives,
in a real food system is not common. Ghalfi et al., 2007 [172] reported that bacteriocin
from Latilactobacillus curvatus combined with oregano EO was able to limit the prolifer-
ation of Listeria monocytogenes in refrigerated (4 ◦C) pork meat for up to 6 weeks, while
the single treatment maintained the cell load of the pathogen under the detection limit
only for 3–4 weeks. Other works performed in the real food system concern mainly fish.
Abdollahzadeh et al. (2014) [173] reported that the combination of thyme EO (at 0.8% or
1.2%) with nisin (at 500 or 1000 IU/g) decreased the cell load of L. monocytogenes below
2.0 log CFU/g in minced fish after two days of storage at 4 ◦C. No increases in the pathogen
cell load were observed during the 12 days of storage considered. Instead, Iseppi et al.
(2023) [174] showed that the addition of bacteriocin bacLP17 in edible coating reduced the
MIC values of Salvia officinalis, Citrus limon, Mentha piperita, or Thymus vulgaris EOs against
L. monocytogenes when tested on artificially contaminated shrimps.
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Table 3. Short overview of applications of EOs and combinations of EOs with bacteriocins/nisins in
meat or meat products.

Microbial Target Meat/Meat Products EO or Combinations Concentration Used/
Product Benefits Reference(s)

Listeria monocytogenes Ham Oregano and
Cinnamon cassia EOs

500 ppm/inhibit the growth of food
pathogens with no effect on
sensory attributes

[151]

Enterobacteriaceae Lamb meat Cinnamon cassia EO (0.5%) (w/w)/reducing bacteria
growth but worse color stability [152]

S. enteritidis, Listeria
monocytogenes,
St. auresu

Marinated pork loin Oregano, rosemary,
and juniper EO

(0.02–0.03%) (w/w)/extends shelf
life, Improve sensory characteristics [160]

Salmonella typhimurium Pork meat Micromeria dalmatica EO 0.15 mg/mL/reduces
bacterial growth [175]

E. coli, Salmonella sp. Chicken breast meat Thyme and balm EO (0.5%) (w/w)/extends the shelf life [82]

E. coli Chicken hamburgers Thyme EO 0.02 and 0.05 w/w/provides
oxidative and microbial stability [154]

Salmonella, Listeria and
E. coli Sausages Oreganum virens EO

EO incorporated in active
film/extends the shelf life and
sensory properties

[158]

psychrotrophics,
Brochothrix
thermosphacta,
Pseudomonas

Beef meat Rosemary EO 4% (w/w)/extends the shelf-life of
refrigerated beef meat [92]

L. monocytogenes Pork meat Oregano EO +
bacteriocin

50 µL/100 g/synergistic effect of EO
and bacteriocins prolongs the shelf
life for two weeks while under
storage at 4 ◦C

[172]

L. monocytogenes Minced fish Thyme EO + Nisin
EO 0.4% nisin (1000 IU/g)/control
bacteria growth and improve
sensory properties

[173]

L. monocytogenes Shrimps Salvia, Citrus, Mentha,
Thymus EO+ bacLP17

EOs 8-128 µL/mL; bacLP17
16 µL/mL /improve organoleptic
properties and reduce growth of
L. monocytogenes

[174]

Pseudomonas spp., LAB
and B. thermosphacta Marinated beef Thymol and carvacrol 0.4% and 0.8% (w/w)/extends the

shelf life [176]

Salmonella typhimurium,
Listeria monocytogenes,
and Escherichia coli
O157:H7

Beef slices Thymol
(0.5%) (w/w)/inhibited growth
aerobic bacteria inactivate
coliform bacteria

[177]

Salmonella enteritidis,
Campylobacter and
E. coli

Breast fillets
and wings

Marinade with thyme
and orange EOs (0.5%) (w/w)/inhibit microbes [178]

3.2. Essential Oils as Dairy Preservatives

Plants and spices have been used in cheese production since ancient times, often linked
to local traditions. Traditionally, spices and herbs or their extracts were rubbed directly on
the cheese. In fact, herbs and spices can be applied as antioxidant, antimicrobial, flavoring,
enriching, and functionalizing ingredients, which may improve the appearance and appeal
of the product [179].
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Although many dairy products undergo heat treatment during their manufacture,
they are perishable and can be easily contaminated by microorganisms, resulting in food
spoilage, consumer health risks, and a shortened product shelf life. Furthermore, as they
are rich in lipids, oxidative processes can lead to a loss of flavor, nutrients, and color, the
development of off-flavors, and the accumulation of compounds that may be of concern to
human health [180]. For that reason, there is growing interest in the application of plants,
extracts, and EOs as natural preservatives in the dairy sector as an alternative to synthetic
preservatives [181]. The antimicrobial activity of natural products is commonly assessed
against the main pathogens and spoilage bacteria commonly found in the dairy sector,
such as L. monocytogenes, S. aureus, E. coli, Salmonella spp., and Pseudomonas spp., as well as
yeasts and molds, such as Penicillium and Aspergillus [179]. For example, black cumin seed
oil supplemented during the manufacturing of a soft cheese inhibited several pathogenic
microorganisms generally associated with cheese [182]. The addition of green pepper and
cayenne to traditional Egyptian Kareish cheese allowed for a decrease in S. aureus cell
load [183]. Moreover, the addition in processed cheese of extracts from cinnamon, garlic,
lemongrass, cress, rosemary, sage, and oregano resulted in the inhibition of L. monocytogenes
in processed cheese [184]. Kholy et al., 2017 [185] showed that cumin, rosemary, and thyme
EOs were effective antimicrobials, preventing the growth of S. aureus, E. coli, Bacillus subtilis,
B. cereus, Salmonella typhi, and Aspergillus niger in ultra-filtrated soft cheese. Clove and
cinnamon EOs at 1% were the most effective against L. monocytogenes in low-fat cheese
within 3 days (≤1 log CFU/mL), while a similar achievement was obtained in full-fat cheese
only with clove EO. The same EO was also effective in reducing S. enteritidis population
mainly in full-fat rather than low-fat cheeses [186]. Bukvicki et al., 2018 [42] showed that the
addition of 25 µL of Thymus algeriensis EO reduced the incidence of contamination caused
by the food pathogenic mold Penicillium aurantiogriseum in soft cheese throughout 30 days
of refrigerated storage (4 ◦C). Caleja et al., 2015 [187] increased the antioxidant activity
of cheese during 14 days of storage by using Foeniculum vulgare decoction. The elevated
content of phenolic compounds, but also carotenoids, phenolic diterpenes, flavonoids
and anthocyanidins, seems to be the major reason for the strong antioxidant activity of
plant-derived compounds [179]. Natural compounds can play a crucial role in increasing
food shelf life, but they can also exert a positive effect on consumer health. For instance,
Ref. [188] showed that the functional features of cheese can be enhanced after the addition
of tomato powder at different concentrations. Fortified cheeses had a higher lycopene
content, even after two months of storage. Furthermore, the addition of Satureja hortenis
to cheese can not only inhibit microbial growth but also stimulate the intake of essential
elements (i.e., Fe), which cheese lacks [189].

Natural products have also been proven in additional types of dairy products, in-
cluding milk. Jemaa et al., 2017 [190] showed that EO of Thymus capitatus ameliorated
pasteurization effectiveness in maintaining raw milk quality. Incorporation of EOs from
basil, peppermint, and zataria in the formulation of probiotic yoghurt increased the inhibi-
tion of E. coli and L. monocytogenes compared to yoghurt without EOs. However, only the
EOs of basil and peppermint showed good antioxidant and antiradical activity along with
good sensory acceptability [191]. The application of Echinophora platyloba EO and lycopene
was effective as natural preservatives for dairy products with high fat content, such as
butter and cream. Pasteurized cream treated with a mixture of EO and lycopene (0.5% and
50 ppm, respectively) showed improved shelf life (both from a microbiological and chemi-
cal point of view) compared to control samples. Sensory evaluation results showed that all
the samples have satisfactory overall acceptability, although the greatest sensorial features
were detected in creams prepared with a combination of low concentrations of Echinophora
EO and lycopene (0.1% and 20 ppm, respectively) [192] (Table 4). Other authors extended
the shelf life of butter using thyme and cumin EOs [193], while Ozkan et al. (2007) [194]
explored the potential of Satureja cilicica EO as a natural flavoring and antioxidant in the
same dairy product.
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Table 4. Use of essential oil/components in dairy products with their sources and reported properties.

Plant Name
Essential Oils/

Activity Reported Dairy Product References
Components Used

Mentha piperita Peppermint oil

Added functional properties
without negative effects on
rheological and sensorial
properties Ice-cream

[195]

Citrus limon,
Citrus reticulata,
Citrus aurantium

α- and β-Pinene, Limonene,
trans- β-Ocimene, Linalool,
α-Terpineol

Increased physiochemical,
sensorial, and antimicrobial
properties

[196]

Echinophora platyloba
Trans-b-ocimene,
2-Furanone, Myrcene,
Linalool, Cis-b-ocimene

Increase antimicrobial properties
and stability Cream [192]

Metasequoia
glyptostroboides

α-Pinene, Totarol,
α-Thujene, Bornylene,
β-Caryophyllene,
δ-3-Carene, and 2-β-Pinene

Antibacterial and
anti-listerial effect

Milk/milk samples

[197]

Cuminum cyminum Cumin oil Reduce cholesterol, LDL, and
increases HDL [198]

Thymus capitatus Thyme oil

Enhancement of oxidative and
fermentative activity, increases
physico-chemical, microbiological,
and sensory properties

[190,199]

Thymus vulgaris Thymol Antimicrobial properties [200]

Pimpinella anisum Anise oil Increased antimicrobial properties

Yogurt

[201]

Syzygium aromaticum,
Salvia rosmarinus,
Cinnamomum verum

Eugenol, Acetyl-eugenol,
Linalool, β-Caryophyllene,
Cineole, Camphor,
Camphene, Limonene,
α-Pinene, β-Pinene,
α-Terpineol, Borneol,
and Cinnamaldehyde

Increases shelf life
and antioxidant properties

[202]

Zataria multiflora,
Ocimum basilicum,
Mentha piperita

Zataria, Basil, and
Peppermint oil

Antimicrobial and
antioxidant properties

Satureja cilicica Thymol, Carvacrol,
p-Cymene, and c-Terpinene

Increases antioxidant properties
and aroma Butter [194]

Although many studies highlight the beneficial properties of herbal preservatives,
other papers report that dairy fats, carbohydrates, or proteins may interact with them and
reduce their functional properties. Consequently, higher amounts of EOs are necessary
to attain the desired effect, with subsequent drawbacks related to sensorial impacts. To
overcome this aspect, different approaches have been investigated. For instance, the use of
mixtures of EOs may produce a synergistic effect, determining in turn the requirement for
a lower amount of the individual natural compounds.

Nisin is permitted as a food additive for processed cheese by the FAO/WHO Codex
Committee at a concentration of 12.5 mg/kg product, while the US FDA is permitted to use
up to 250 mg/kg [203]. It is generally known that the effectiveness of nisin is dependent on
the dairy products considered. In particular, neutral-pH dairy products made from whole
milk are not suitable for nisin use [204]. Nisin, one of the few bacteriocins permitted as
a preservative in dairy products, was effective in controlling various pathogens such as
L. monocytogenes and S. aureus in real food matrices (Table 5).
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As reported by Arqués et al., 2011, nisin reduced L. monocytogenes and S. aureus in
refrigerated stored milk [205]. Other studies showed the inhibition of L. monocytogenes in
cheddar, cottage cheese, and ricotta after nisin addition [206]. In addition, its potential
against L. monocytogenes has also been demonstrated in pasteurized dairy products, in-
cluding clotted cream, flavored milk, chilled desserts, and evaporated milk. To exploit the
synergistic effect of natural compounds (Table 5), Chen et al., 2017 [207] used a ternary
combination of nisin (500 IU/mL), thymol (2 mg/mL), and lactobionic acid (10 mg/mL) to
reduce L. monocytogenes in whole milk.

As already reported for natural plant-derived substances, the activity of bacteriocins
can also be negatively affected by interaction with the food matrix. Various approaches
have been developed to overcome these shortcomings. Nano- or micro-encapsulation of
natural products is a promising approach that guarantees their long-term activity. For
instance, rosemary EO was microencapsulated with inulin and whey protein isolate and
then incorporated into the Minas Frescal cheese. Alternatively, natural molecules could be
incorporated into edible films and coatings. This approach allowed a gradual release over
time and long-term antimicrobial activity. For instance, Balaguer et al., 2013 [109] have
shown that a film coating incorporated with cinnamon EOs having 5% cinnamaldehyde
inhibited the growth of Apergillus niger and Penicillium expansum on spreadable cheese. So
far, a limited number of studies have studied the efficacy of coatings or films added with
bacteriocins or bacteriocin-producing LAB in dairy products. However, literature data
indicate a reduction in the growth of pathogens when foods were packed with coatings
and films enriched with LAB bioactive metabolites [208–212] or containing directly viable
LAB cells [213,214].

Table 5. Applications of nisin in combination with other natural compounds for the preservation of
dairy products.

Combined Antimicrobial

Dairy Food
Application

Target
Microorganisms

Nisin Concen-
tration

Antimicrobial
Type

Antimicrobial
Concentration

Other
Treatment Activity Reported Reference

Unpasteurized
cow milk

Escherichia coli,
S. aureus

0.008 mg/mL Magnesium oxide
nanoparticles

2 mg/mL
without heat NA *

MgO NP in combination
with nisin lead to damage

to the cell membrane,
causing the

pathogen’s death
[215]

0.5 mg/mL Heat (60 ◦C)

Pasteurized
milk

S. aureus,
L. monocytogenes 16 µg/mL Perilla oil 1 mg/mL NA *

Synergistic effect
resulting in higher cell

wall damage when nisin
and perilla oil were used

in combination

[216]

S. aureus 8 mg/mL Cinnamaldehyde 0.25 mg/mL NA *
Synergistic effect with

increased antimicrobial
activity against S. aureus

[217]

0.37 and
0.75 µg/mL

Phage-encoded
endolysin LysH5

7.5 and 15
U/mL NA *

Synergistic effect of the
absence of S. aureus was
reached only with the

combination of the
two antimicrobials

[218]

8 µg/mL p-Anisaldehyde NA * Synergistic effect
demonstrated [219]

1.5 µg/mL Bacteriophage Φ35
Bacteriophage Φ88

1:1 cocktail of
phages Φ35
and Φ88 at
103 pfu/mL

NA *

nisin activity, which can
induce surface changes

that can impair
bacteriophage activity

[220]

UHT whole milk S. aureus 400, 600, 800,
and
1200 AU/mL

Bovicin HC5 400, 600, 800,
and
1200 AU/mL

NA *

Bovicin and nisin
combinations were

effective in inhibiting
Listeria and S. aureus at
lower concentrations
than when used alone

[221]
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Table 5. Cont.

Combined Antimicrobial

Dairy Food
Application

Target
Microorganisms

Nisin Concen-
tration

Antimicrobial
Type

Antimicrobial
Concentration

Other
Treatment Activity Reported Reference

UHT whole milk
L. monocytogenes, 400, 600, 800,

and
1200 AU/mL

Bovicin HC5
400, 600, 800,
and
1200 AU/mL

NA * [221]
Listeria innocua,

UHT processed
2% reduced-fat
milk and
whole milk

L. monocytogenes
250 and
500 IU/mL

Lactobionic acid 10 mg/mL
NA *

LBA increased the
synergistic effect between
nisin and thymol against
L. monocytogenes but not

E. coli
[207]

Thymol 1–2 mg/mL

UHT skimmed
milk with
0.04% fat

L. monocytogenes,
S. aureus, E. coli
O157:H7,
Salmonella
enterica, Yersinia
enterocolitica,
Aeromonas
hydrophila,
Campylobacter
jejuni

100 IU/mL Reuterin 8 AU6/mL NA *

Nisin and reuterin
showed a synergistic

effect in milk at
refrigerated temperatures

causing the complete
deactivation of Listeria

and S. aureus

[205]

Cow milk
Staphylococcus
aureus, Listeria
monocytogenes

1/4 MIC
Thymol, eugenol,
carvacrol, and
cinnamaldehyde

1/4 MIC NA *

Nisin combination with
phenolic compounds

showed a
synergistic effect

[222]

Whole, low, and
skimmed milk

L. monocytogenes

62.5, 125, 250,
and 500 IU/mL

Cone EO of
Metasequoia
glyptostroboides

1 and 2% NA *

Synergistic effect of nisin
and cone EO against

listeria in whole, low, and
skimmed milk

[223]

Leaf EO of
Metasequoia
glyptostroboides

1, 2, and 5% NA *

Remarkable synergism of
leaf EO and nisin against
listeria in whole, low, and

skimmed milk

[197]

Whole (3.5%),
low (1%), and
skimmed (no fat
content) milk

62.5, 125, 250,
and 500 IU/mL Garlic shoot juice 2.5 and 5% NA *

Synergistic anti-listerial
activity of nisin and

garlic shoot juice
[224]

Chocolate milk

25 µg/mL Thymol 100 µg/mL

NA *

Enhanced antilisterial
activity by the

combination of nisin with
carvacrol or

cinnamaldehyde [225]

Carvacrol 304 µg/mL

trans-
cinnamaldehyde 327.6 µg/mL

Reconstituted
powdered infant
milk formula

Cronobacter
sakazakii 60 µM and

250 µg/mL
Carvacrol 300 µg/mL NA *

Bioengineered nisin
variants showed an

increased antimicrobial
activity compared to

nisin A and an enhanced
synergistic effect
with carvacrol

[226]

Citric acid 30 mM

Homogenized
UHT skimmed
milk

S. aureus 1 to 20 IU/mL Lysozyme 300 to
5000 IU/mL

High-intensity
pulsed-
electric field:
120 to 1200 µs

Synergistic effect
[227]

Enterocin AS-48
(AS-48) 28 AU/mL

Iranian
youghurt
(Doogh)

E. coli O157:H7 250 and
500 IU/mL

Ziziphora
clinopodioides
Essential Oil

5 mg/mL NA *

Nisin and EO
combination reduced E.
coli population, showing

a synergistic effect

[228]

*: NA—not applicable.

4. Conclusions

Essential oils and bioactive compounds can be applied as food preservatives due to
their antimicrobial and antioxidant activities, which prevent spoiling processes and guaran-
tee food safety. On the other hand, an additional strategy to increase the safety and shelf life
of various types of foods, including minimally processed fruits and vegetables, vegetable
beverages, meat, and dairy products, can be represented by the use of protective cultures,
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especially lactic acid bacteria, which are able to produce antimicrobial compounds such
as bacteriocins in addition to organic acids and hydrogen peroxide. Recently, innovative
new technologies and delivery strategies such as nanoencapsulation or polymer-based
coatings have improved the efficacy and allowed the controlled release of natural antimi-
crobials. In addition, the use of EOs and bioactive plant molecules in combination with
bioprotective cultures or bacteriocins can exert an additive or synergistic effect and reduce
the applied concentration of EO. The combination of these antimicrobial agents represents
an interesting strategy to increase the shelf life and safety of food due to their antimicrobial
and antioxidant properties. The synergistic combinations of EOs and LAB metabolites
such as bacteriocins or nisins allow the exploration of promising ways to overcome both
the narrow range of antimicrobial action and the unpleasant sensory properties of foods.
Future research should focus on the efficacy of different EOs in different food and beverage
matrices. At the same time, the combined use of antimicrobial natural products could
overcome some of the drawbacks associated with their use in non-combined form. The
development of novel strategies such as edible coatings is a great benefit to the environment,
as such coatings are biocompatible and environmentally friendly.
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Horvatii Essential Oil: In Vitro Antimicrobial and Antiradical Properties and in Situ Control of Listeria monocytogenes in Pork
Meat. Meat Sci. 2014, 96, 1355–1360. [CrossRef]

139. Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with
Food Matrix Components. Front. Microbiol. 2012, 3, 12. [CrossRef]

140. Seydim, A.C.; Sarikus, G. Antimicrobial Activity of Whey Protein Based Edible Films Incorporated with Oregano, Rosemary and
Garlic Essential Oils. Food Res. Int. 2006, 39, 639–644. [CrossRef]

141. Fasseas, M.K.; Mountzouris, K.C.; Tarantilis, P.A.; Polissiou, M.; Zervas, G. Antioxidant Activity in Meat Treated with Oregano
and Sage Essential Oils. Food Chem. 2008, 106, 1188–1194. [CrossRef]

142. Estévez, M.; Ramírez, R.; Ventanas, S.; Cava, R. Sage and Rosemary Essential Oils versus BHT for the Inhibition of Lipid Oxidative
Reactions in Liver Pâté. LWT Food Sci. Technol. 2007, 40, 58–65. [CrossRef]

143. Chivandi, E.; Dangarembizi, R.; Nyakudya, T.T.; Erlwanger, K.H. Chapter 8—Use of Essential Oils as a Preservative of Meat. In
Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 85–91. [CrossRef]

144. Casaburi, A.; Piombino, P.; Nychas, G.J.; Villani, F.; Ercolini, D. Bacterial Populations and the Volatilome Associated to Meat
Spoilage. Food Microbiol. 2015, 45, 83–102. [CrossRef]

145. Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.J.E. Spoilage Microbiota Associated to the Storage of Raw Meat in Different
Conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [CrossRef] [PubMed]

146. Pennacchia, C.; Ercolini, D.; Villani, F. Spoilage-Related Microbiota Associated with Chilled Beef Stored in Air or Vacuum Pack.
Food Microbiol. 2011, 28, 84–93. [CrossRef] [PubMed]

147. Heredia, N.; García, S. Animals as Sources of Food-Borne Pathogens: A Review. Anim. Nutr. 2018, 4, 250–255. [CrossRef]
148. Hu, J.; Li, Z.; Xu, L.T.; Sun, A.J.; Fu, X.Y.; Zhang, L.; Jing, L.L.; Lu, A.D.; Dong, Y.F.; Jia, Z.P. Protective Effect of Apigenin on

Ischemia/Reperfusion Injury of the Isolated Rat Heart. Cardiovasc. Toxicol. 2015, 15, 241–249. [CrossRef]
149. Shiningeni, D.; Chimwamurombe, P.; Shilangale, R.; Misihairabgwi, J. Prevalence of Pathogenic Bacteria in Street Vended

Ready-to-Eat Meats in Windhoek, Namibia. Meat Sci. 2019, 148, 223–228. [CrossRef]
150. Bertoli, A.; Cüneyt Çõrak, Ç.; Teixeira Da Silva, J.A. Hypericum Species as Sources of Valuable Essential Oils. Med. Aromat. Plant

Sci. Biotechnol. 2011, 5, 29–47.
151. Dussault, D.; Vu, K.D.; Lacroix, M. In Vitro Evaluation of Antimicrobial Activities of Various Commercial Essential Oils, Oleoresin

and Pure Compounds against Food Pathogens and Application in Ham. Meat Sci. 2014, 96, 514–520. [CrossRef]
152. Hussain, Z.; Li, X.; Zhang, D.; Hou, C.; Ijaz, M.; Bai, Y.; Xiao, X.; Zheng, X. Influence of Adding Cinnamon Bark Oil on Meat

Quality of Ground Lamb during Storage at 4 ◦C. Meat Sci. 2021, 171, 108269. [CrossRef]
153. Amariei, S.; Poroch- Serit,an, M.; Gutt, G.; Oroian, M.; Ciornei, E. Rosemary, thyme and oregano essential oils influence on

physicochemical properties and microbiological stability of minced meat. J. Microbiol. Biotechnol. Food Sci. 2016, 2017, 670–676.
[CrossRef]

154. Sariçoban, C.; Yilmaz, M.T. Effect of Thyme/Cumin Essential Oils and Butylated Hydroxyl Anisole/Butylated Hydroxyl Toluene
on Physicochemical Properties and Oxidative/Microbial Stability of Chicken Patties. Poult. Sci. 2014, 93, 456–463. [CrossRef]

155. Sultanbawa, Y. Plant Antimicrobials in Food Applications: Minireview. In Science against Microbial Pathogens: Communicating
Current Research and Technological Advances; Mendez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; Volume 2,
pp. 1084–1093.
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