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Abstract—The search for energy efficient circuital implemen-
tations of neural networks has led to the exploration of phase-
change memory (PCM) devices as their synaptic element, with
the advantage of compact size and compatibility with CMOS
fabrication technologies. In this work, we describe a methodology
that, starting from measurements performed on a set of real PCM
devices, enables the training of a neural network. The core of the
procedure is the creation of a computational model, sufficiently
general to include the effect of unwanted nonidealities, such as
the voltage dependence of the conductances and the presence of
surrounding circuitry. Results show that, depending on the task at
hand, a different level of accuracy is required in the PCM model
applied at train-time to match the performance of a traditional,
reference network. Moreover, the trained networks are robust
to the perturbation of the weight values, up to 10% standard
deviation, with performance losses within 3.5% for the accuracy
in the classification task being considered and an increase of the
regression RMS error by 0.014 in a second task. The considered
perturbation is compatible with the performance of state-of-the-
art PCM programming techniques.

I. INTRODUCTION

Phase-change memory (PCM) has arisen as a promising
technology for the future of non-volatile memories (NVMs),
due to its compatibility with CMOS fabrication processes, its
high throughput and read/write endurance [1]. Specifically, the
embedded PCM (ePCM) technology reduces process complex-
ity, including at the same time high-power and high-voltage
integrated elements [2], [3].

A PCM device exhibits orders of magnitude of difference
in conductivity levels when in crystalline or amorphous states,
respectively called as SET and RESET. The chalcogenide
material the cell is built with can reversibly transition between
such states through a programming procedure which melts the
material and controls its rate of solidification.

A popular application of PCM technology is Analog
In-memory Computing [4], [5], where it enables the compact
storage of coefficients while providing means to compute
matrix operations within the memory block. A PCM device
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Fig. 1. (a) Traditional dense and (b) PCM-based dense neural layer structures.
The analog array is highlighted in the latter, where we assume that the
summation nodes are held at a constant voltage for it to function properly.

whose conductance has been programmed to a value wj,k,
and with a voltage xi applied across it, will output a current
ij,k = wj,kvk. This assumes that the conductance is constant,
independent of the applied voltage, and that the summation
node is kept at a 0 V level. The latter condition could
be obtained by exploiting, for example, the virtual ground
node of a non-inverting operation amplifier configuration,
however, the former condition is actually not realistic, as
physical PCM devices exhibits strong voltage dependence of
their conductance. Neglecting for a moment this dependence,
collecting the output currents of all the cells in the j-th row,
a sum of products is obtained. The operation just described,
performed on the whole structure, gives rise to the product
between a conductance matrix W of elementary conductances
wj,k and the vector of input voltages xk [6]. The “Analog
array” subcircuit in Fig. 1(a) performs this function.

There have been multiple applications of PCM arrays within
neural network layers [7]. The suitability of an analog resistive
array is immediately clear since the core operation of a
neural layer is the dot product of a coefficient matrix and
the applied inputs, as in Fig. 1(a). The issues with using an
analog array stem from the nonidealities of the elementary
conductances therein. Voltage dependence of the conductance
values, electrical and programming noise, device ageing, all
contribute to a worsening of system performance.

The goal of this work is to propose a general method of
training neural networks having a PCM-based layer, starting
from measured current/voltage characteristic of physical de-
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Fig. 2. (a) Average, normalized I/V characteristics of PCM devices in four different states. (b) Spline-based interpolation of the average, normalized PCM
behaviours, highlighting the four states depicted in (a). (c) Low-order polynomial fitting of the same data. (c) High-order polynomial fit.

vices. At the core of the methodology is the use of a spline
interpolation as the reference numerical model describing the
behavior of a PCM cell and its surrounding circuitry, while
a polynomial description, more easily manageable by neural
network libraries, is applied during the network training. This
method is potentially applicable to any other device, provided
that a polynomial description is suitable for approximating
its behavior. Eventually, physical considerations could be
introduced to obtain a more-specific model, all the way up
to a complete emulation of of the device, e.g. with a SPICE-
like model.

The adopted technology, its characterization and details on
the numerical modeling are described in Section II. The neces-
sity for a polynomial description is highlighted in Section III,
while the two test setups, a classification task and a regression
problem, are analyzed in Section IV. Finally, the conclusion
is drawn.

II. PCM CHARACTERIZATION AND NUMERICAL
MODELING

We have performed measurements on an ePCM test chip
designed and manufactured by STMicroelectronics [1] in
a 90-nm BJT-CMOS-DMOS (BCD) technology featuring a
specifically optimized Ge-rich Ge-Sb-Te (GST) alloy. Its target
applications are in the automotive field, where it is used as a
digital storage element, with 8 independent 256-kB macrocells
and the required analog circuitry. Each ePCM elementary cell
is addressed by an NMOS selector [8] and its area occupation
is 0.19 µm2. The chip is accessible through a custom evalua-
tion board designed specifically for testing purposes.

Device characterization begins with a programming step,
where the PCM cells are brought into highly conductive SET
states by means of a single current pulse. A higher pulse
intensity determines a more conductive state. The RESET
state, conversely is associated in this work to a null SET
intensity. The current through each of the 5120 available cells
has been measured while sweeping the voltage across each
cell, for different values of the applied programming pulses.

The “one-shot” programming phase does not include any
iterative feedback mechanism to ensure that the programmed

cell state is indeed the expected one. As our goal requires the
definition of nominal cell behaviours in different conductive
states, then the intensity of the applied current pulse does not
provide a good measure of the actual state. We have therefore
classified the cell behaviour according to the features of the
obtained I(V ) curves themselves, disregarding the intensity
of the programming pulse. Indeed, similar I(V ) curves could
be obtained by a cell programmed with a low-intensity pulse
which in reality acts stronger than intended, or a high-intensity
pulse whose result is particularly weak.

Therefore, typical behaviours of ideal PCM cells are ob-
tained by observing all the curves at a fixed voltage Vref ,
quantizing the current axis I around a set of reference currents
Iref = {I(0)ref , . . . , I

(L−1)
ref } and averaging all the cells belonging

to the same quantization bin to obtain the typical behavior
associated to that bin. A selection of curves obtained at
different I(l)ref values is shown in Fig. 2(a). More in detail, we
define the nominal behaviour of a PCM cell as the average
of all collected I/V characteristics whose current is contained
in the interval (I

(l)
ref − ∆I(l), I

(l)
ref + ∆I(l)) at voltage Vref ,

with ∆I(l)/I
(l)
ref = 5%. Having Vref fixed, we then identify

the programming state with the value of measure current.
Values have been normalized so that applied voltages V ,
programming states I(l)ref and output currents I all lie in the
[0, 1] range, as shown in Fig. 2(a). In the following, we will
only use this normalized data.

To obtain a numerical model of the type I(V, I
(l)
ref) we have

interpolated the typical behaviours, extracted according to the
above procedure, using a spline of order 3. The result is de-
picted in Fig. 2(b). This allows a reduced local complexity of
the model, while still describing accurately the features of the
underlying surface. The spline model will be here considered
as our reference PCM model. At the same time, polynomial
models of arbitrary order (in the range 3 to 27) have been fitted
to the spline. Fig. 2(c) and Fig. 2(d) highlight the difference
in approximation accuracy obtained with different polynomial
degrees. The necessity for polynomial models will be clarified
in the following section. Suffice it to say that the use of such
models within neural networks programming libraries allows
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Fig. 3. (a) Examples of Fashion-MNIST instances (b) Spectrums for a selection of of r with corresponding representative instances of length 128 in (c).
(d) Normalized histograms of input values for the two datasets being employed. A linear scale is used in the range [0, 1] of the vertical axis.

the automatic differentiator procedures to operate without
concerns.

For convenience, the data, which is defined over positive
values for both the applied voltage and the programming
state, has been extended towards negative values along the
programming axis, so that I(V,−I(l)ref) = −I(V, I

(l)
ref) with

V, I
(l)
ref > 0. Even if negative values for the programming

state are not physically meaningful, the actual hardware imple-
mentation can operate so that the contribution of a particular
cell is negative on the output. A convenient side effect, is
that the artificially-introduced symmetry makes the polynomial
representation more well-behaved and reduces the number of
significant coefficients, hence the computational burden.

Although relevant metrics could be observed to determine
the optimal polynomial representation, monitoring the absolute
or relative representation errors, the ultimate validation is
obtained on the neural network test setups themselves.

III. NEURAL TRAINING WITH PCM LAYERS

In a traditional dense layer, the core operation for the
j-th neuron is hj = f(bj +

∑
i wj,ixi). Aiming towards a

circuital implementation where inputs are voltages, and they
are weighted by conductances programmed in different states,
the expression becomes hj = f(bj +

∑
i I(xi, wj,i)), where

we neglect any additional term introduced by electrical noise,
programming noise or even quantization of the inputs or the
outputs.

Training a layer defined as such does not pose any difficulty,
provided that I(xi, wj,i) is differentiable with respect to the
weights [9]. Standard software frameworks are able to auto-
matically differentiate even complex expressions if described
in terms of their library of operators [10]. To the best of our
knowledge, no spline primitives are available as elementary
operators, hence the need to have an alternative description of
the synapses, expressed in terms of available operators. Such
a description is in our case of polynomial type. Potentially, a
more physically-informed model could be used as well, though
as our measurement data includes significant effects from the
access devices surrounding the PCM cells, we have preferred

to have a unique model that could describe the behaviour of
the entire circuital block over the full voltage domain.

An additional advantage is that, at training time, the network
could be trained on a model of the neuron which is compu-
tationally simpler, though potentially less accurate, enabling a
faster exploration of different network topologies.

Two case studies will be analyzed in the following: a
classification tasks performed on the Fashion-MNIST dataset
[11], and a regression problem, in which the network has
to estimate a parameter describing the spectral content of
randomly generated signal instances.

IV. RESULTS

In the following we will show numerical results on the
training of neural networks in which one layer is PCM-based.
In all setups, the performance of a neural network employing
only conventional dense layers and having the same structure,
is used as a reference. To train the PCM-based network,
the PCM synapses are always described by their polynomial
model, with an arbitrarily selected degree and by identifying
L = 10 different reference currents. An initial performance
metric is thus obtained, related exclusively to the use of the
polynomial. The final evaluation is then performed on the same
network, preserving the trained weights, but replacing in the
PCM-based layer the polynomial model with the spline one,
representing our reference model for nominal PCM devices.

Since in a physical implementation the state of a PCM cell
cannot be programmed to arbitrary accuracy, we also test the
robustness of the network towards this kind of perturbation.
We model the variation of the PCM state with a white gaussian
noise added to the nominal values of the weights (i.e., that
suggested by training) during the final evaluation. The variance
of the weight noise is normalized to the nominal value, so
that their ratio is fixed. Clipping is then applied to ensure that
the noisy weights are still within the validity range of the
numerical models.

Two different applications are shown, trying to highlight
the different features of the setups presented in this work. The
optimizer in all setups is Adam, with parameters: learning rate



equal to 10−4 and the exponential decay rate for the 1st and
2nd moments equal to 0.9 and 0.999. Results are condensed
in Fig. 4.

A. Fashion-MNIST Classification
The dataset is made of grayscale images of clothing articles,

in a 28 × 28 pixel format. Two examples are shown in
Fig. 3(a). The neural network topology being considered has
an input-flattening layer followed by a single dense layer
with sigmoid activation functions and 10 output nodes. The
loss function is the sparse categorical cross-entropy. While
the conventional reference network has no constraints on
the weights, in the PCM-based one we have introduced a
“bathtub” regularization to force them within the [0, 1] range.
This implies a physical realization requiring only positively-
contributing PCM synapses on each layer output.

To asses the performance we use here the accuracy defined
as the correct classification rate. Analyzing the results shown
in Fig. 4(a), a monotonic trend is clear, with networks trained
on a high-order polynomial model almost matching the per-
formance of the reference network.

The fact that the weights obtained by training a low-order
polynomial, as that depicted in Fig. 2(c) is already sufficient
to solve the classification task with ∼ 0.78 accuracy has been
associated to the statistical distribution of pixel intensities.
Being their density concentrated around the extremes of the
available range, as shown in Fig. 3(d), the inherent nonlinearity
of the models is not significantly excited. The model feature
that matters is that their output is different for low and high
input values. Both the spline and polynomials being employed
possess such a feature, resulting in a limited performance drop
with respect to the reference case.

The application of noise on the trained weights only be-
comes significant around 10% relative standard deviation,
with a performance loss still within 3.5% of the original
one. State-of-the-art iterative programming techniques of the
physical devices may indeed be able to achieve such a level
of programming accuracy [12], [13].

B. Spectral Estimation Regression
The second task being evaluated is a regression problem

artificially constructed so that the nonlinearity of the PCM
I(V ) characteristic can be excited even more.

The problem is that of estimating the properties of the
Fourier-spectrum of random signal instances. Given a value
−1 < r < 1, let us define an autocorrelation matrix K such
that Kj,k = r|j−k|, 1 ≤ j, k ≤ n, with n the length of the
signal instances being observed. The power spectrum of the
stationary stochastic process thus defined is:

Ψ(f) =
1− r2

1 + r2 − 2r cos(2πf)
.

Its profile is high-pass for −1 < r < 0, flat/white for
r = 0 and low-pass for 0 < r < 1. Examples of spectra for
different values of r are shown in Fig. 3(b), with corresponding
representative signal instances depicted in Fig. 3(c).

Given a value for r, signals can be generated by computing
instances of a multivariate gaussian distribution N (0,K).
Inverting the relationship between the power spectrum and r
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Fig. 4. Results for (a) Fashion-MNIST classification, and (b) spectrum
estimation regression. The black, dotted line represents the performance
obtained by a neural network employing standard dense layers, without noise.
Solid lines refer to the performance of networks using the spline PCM model,
with the weights trained on the polynomial description of the device, and
additional noise included during the evaluation phase.

is not possible, and the neural network has to estimate it by
looking at each signal instance and providing an answer in the
[−1, 1] range.

The network structure being tested operates on signal in-
stances of 32 samples and it has three dense layers of size 256,
256 and 1. The first two layers have relu activation functions,
while the output layer has none. The loss function is the mean
squared error, while the performance metric being observed is
the root mean squared (RMS) error. A conventional network
with such a structure achieves a 0.114 RMS estimation error.

The weighting coefficients of the PCM-based layer in this
case have been constrained in the range [-1, 1] by a “bathtub”
regularization. From an implementation point of view, this
requires a way for a PCM cell, to have a negative contribution
on the sum of synapses currents. The practical approach could
involve enabling a current mirror on the specific branch or
having two arrays of conductances, with opposite contributions
on the output [14].

Results in Fig. 4(b) highlight a monotonic trend up to order
24, with a sudden worsening of performance observed at 27.

The detrimental effect of the additive noise on the weights
is still under control for 10% relative standard deviation, with
variations on the order of 0.014 RMS error. It is striking to
observe a minimal performance increase when weight noise is
applied to the network trained on the order-27 polynomial.

V. CONCLUSION

We have proposed a way of including arbitrary synapse
models within a neural layer, targeting specifically phase-
change memory devices. Two test setups have validated the
procedure, a classification task on the Fashion-MNIST dataset
and an artificially constructed regression task. The injection
of noise on the trained weights has highlighted the robustness
of the networks to a point that makes the devices promising
candidates in actual circuital implementations.
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