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Abstract: Large-scale slow-moving deep-seated landslides are complex and potentially highly damag-
ing phenomena. The detection of their dynamics in terms of displacement rate distribution is therefore
a key point to achieve a better understanding of their behavior and support risk management. Due to
their large dimensions, ranging from 1.5 to almost 4 km2, in situ monitoring is generally integrated
using satellite and airborne remote sensing techniques. In the framework of the EFRE-FESR SoLoMon
project, three test-sites located in the Autonomous Province of Bolzano (Italy) were selected for testing
the possibility of retrieving significant slope displacement data from the analysis of multi-temporal
airborne optic and light detection and ranging (LiDAR) surveys with digital image correlation (DIC)
algorithms such as normalized cross-correlation (NCC) and phase correlation (PC). The test-sites were
selected for a number of reasons: they are relevant in terms of hazard and risk; they are representative
of different type of slope movements (earth-slides, deep seated gravitational slope Deformation and
rockslides), and different rates of displacement (from few cm/years to some m/years); and they
have been mapped and monitored with ground-based systems for many years (DIC results can be
validated both qualitatively and quantitatively). Specifically, NCC and PC algorithms were applied
to high-resolution (5 to 25 cm/px) airborne optic and LiDAR-derived datasets (such as hillshade and
slope maps computed from digital terrain models) acquired during the 2019–2021 period. Qualitative
and quantitative validation was performed based on periodic GNSS surveys as well as on manual
homologous point tracking. The displacement maps highlight that both DIC algorithms succeed in
identifying and quantifying slope movements of multi-pixel magnitude in non-densely vegetated
areas, while they struggle to quantify displacement patterns in areas characterized by movements
of sub-pixel magnitude, especially if densely vegetated. Nonetheless, in all three landslides, they
proved to be able to differentiate stable and active parts at the slope scale, thus representing a useful
integration of punctual ground-based monitoring systems.

Keywords: large-scale slow-moving landslides; monitoring; GNSS; LiDAR; digital image correlation;
Italian Alps

1. Introduction

Landslides contribute to the evolution of the Earth’s surface as a dominant geomor-
phic agent, and consequently human-made structures and activities are often directly or
indirectly damaged [1,2]. Under the influence of climate change, some types of landslides
are expected to increase in intensity and frequency soon, while for others, the effect of
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climate change on predisposing and triggering factors still needs to be investigated and
understood [3]. Among the first group there are shallow slides, debris flows and rockfalls
in high mountain areas, which can be triggered by short and intense rainfall events or
by the degradation of permafrost and can also evolve into gully erosion [4]. Among the
second group there are large-scale deep-seated landslides, whose time-delayed response to
the precipitation regime makes their relationship with climate change more complex and
uncertain [5]. In this framework, the detection of the dynamics and evolution at slope scale
of large-scale deep-seated landslides can certainly help. In situ Global Navigation Satellite
System (GNSS)- and Robotic Total Station-based monitoring systems [6,7] are characterized
by high accuracy but limited spatial coverage. Considering landslides covering areas of
some square kilometers, the use of remote sensing data, acquired using synthetic aperture
radar (SAR) and multispectral satellites or airborne optic and light detection and ranging
(LiDAR) surveys, can be extremely useful and informative for the study and interpretation
of dynamics occurring in such phenomena [8–10]. Specifically, airborne optic and LiDAR
surveys can be used to produce multitemporal high-resolution datasets which are suitable
for digital image correlation (DIC), one of the most widely used approaches in the fields of
mechanics and optics for measuring deformation [8,9,11–17]. The fundamental principle of
DIC is that a couple of geometrically aligned digital images can be “compared”, generally
with normalized cross correlation (NCC) and phase correlation (PC) algorithms, to assess
the deformation that took place in between the two acquisitions [11,12]. In the case of
landslides, DIC can allow the assessment of movements at the slope scale with an accuracy
which depends on factors such as the adopted DIC algorithms, the digital image resolution,
distortion, subset size, etc. [16].

In this work, NCC and PC algorithms are applied to multitemporal (i.e., 2019 and
2021) high-resolution airborne optic and LiDAR datasets of three large-scale landslides
located in South Tyrol (Northern Italy). The test sites were selected for their relevance
in terms of hazard and risk, and for the fact that they have been extensively studied and
monitored with other methods. The availability of other datasets allows the DIC results to
be evaluated and validated, in order to assess the feasibility of long-term monitoring via
airborne techniques, a goal of the EFRE-FESR SoLoMon project (funded by the Autonomous
Province of Bolzano-South Tyrol in the framework of the European Regional Development
Fund).

2. Materials and Methods
2.1. Test Sites

The test sites were located in different areas of South Tyrol (Figure 1A): the Corvara
landslide in Badia Valley (close to the town of Corvara in Badia); the Ganderberg landslide
in Passiria Valley (north of the city of Merano); the Trafoi landslide in Upper Venosta Valley
(close to the Stelvio Pass).

The Corvara landslide (Figure 1B) is a large-scale rotational earth slide-earth flow
affecting sedimentary rocks consisting of alternations of volcanoclastic sandstones, marls,
marly limestones and claystones. It extends over an area of 1.55 km2, ranging in elevation
from 1550 m to 2080 m a.s.l. The maximum depth is almost 100 m, and the estimated volume
is more than 30 million m3 [18–20]. The landslide body can be divided into source, track,
and accumulation zones. The landslide is continuously active, as demonstrated by long-
term geotechnical and geomatic monitoring [21–25]. Specifically, GNSS monitoring from
2001 to 2022, carried out as a synergic action between the Office for Geology and Building
Materials Testing and the Forestry Department of the Bolzano Autonomous Province, the
European Academy of Bolzano (Eurac) and the Chemical and Geological Department of
the University of Modena and Reggio Emilia (UniMoRe), has shown a heterogeneous
distribution of displacements. It ranges from a few cm/year in the accumulation zone
to tens of m/year in parts of the source and track zones [26]. Movements of the Corvara
landslide cause damages to the national road SS 244, ski facilities and the local golf course.
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The land cover in the landslide area is mostly meadows and bare ground, quite favorable
conditions for airborne DIC.
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Figure 1. (A) Location of the test sites in South Tyrol; (B) orthophoto of the Corvara landslide,
with an outline of the main sectors; (C) orthophoto of the Ganderberg landslide with the north-east
part not affected by deformation and the north-west one potentially influenced by rock failures;
(D) orthophoto of the Trafoi landslide with an outline of the two main units. Red arrows indicate the
main direction of displacement. Coordinate system: WGS84 32N.

The Ganderberg landslide (Figure 1C) is a deep-seated gravitational slope deformation
(DSGSD) affecting metamorphic rocks such as paragneiss, mica-schist, and marbles. It ex-
tends over an area of 3.75 km2 with an estimated maximum depth of 100–200 m, ranging in
elevation from 1170 m to 2330 m a.s.l. The gravitational collapse of the slope is generating
a tension field along the crown where a rock slab of about 800.000 m3 displays traces of
potential detachment [27]. The morphology of the landslide body is typical of a DSGSD in
its final stage, with a convex curvature on the upper part, flat in the center and concave at
the toe. The low quality of the bedrock in conjunction with the continuous movements of
the DSGSD determines the weakening of the involved rock masses, leading to collateral
phenomena such as debris flow, avalanches, or secondary slides [28]. In particular, the
north-east part of the DSGSD crown, consisting of mica-schists, is not significantly affected
by deformations, while the north-west part, consisting of steep slopes of paragneiss, shows
transverse cracks and joints that can potentially release massive rock blocks [27]. In me-
dieval times, in 1401, a rock avalanche triggered by the collapse of a rock slab from the
north-west ridge of Mount Ganderberg led to the formation of a natural dam on the Passer
River whose breaching, in 1419, caused flooding and 400 casualties downstream in the city
of Merano [28]. Periodic GNSS monitoring (carried out by the Forestry Department of the
Bolzano Autonomous Province, IRPI-CNR of Padua and Helica S.r.l.) during the 2007–2021
period has shown that the DSGSD is characterized by an almost constant velocity of
6–8 cm/year, causing damages to the national road SS 44bis and the hamlet of Hah-
nebaum [27]. Land cover, which represents a challenge for DIC application, is mostly
characterized by woods and some limited meadows, while bare ground, which is better for
this application, is visible on scree slopes only.

The Trafoi landslide (Figure 1D) is a DSGSD evolving into a deep-seated rockslide,
affecting metamorphic rocks such as paragneiss and orthogneiss. It extends over an area of
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2.5 km2 ranging in elevation from 1550 m to 2700 m a.s.l. The maximum depth is unknown,
but given the geometry and characteristics of the phenomenon it is expected to be more
than 150 m. This leads to an estimated volume of more than 40 million m3. The landslide
can be subdivided into two main units. Unit A (1.2 km2) comprises the main deep-seated
rockslide that is located in the central part of the slope (where the rock mass is highly
fractured, generating also abundant material for debris flows) and the uppermost DSGSD,
which causes double crested ridges and trenches [29,30]. Unit B (1.3 km2) comprises a
more evolved rockslide deposit which locally evolves into earth slides. Periodic GNSS
monitoring (carried out by the Forestry Department of the Autonomous Province of Bolzano
and Helica S.r.l.) of Unit A during the 2008–2021 period has shown that the deep-seated
rockslide moves at a rate of 1.5 to 6.5 cm/year while the DSGSD is much slower, less than
1 cm/year. Movements of the rockslide are worthy of attention since further acceleration
might lead the phenomenon to evolve into a rock avalanche, an occurrence that would
have catastrophic consequences for the village of Trafoi. At the same time, inclinometers
have shown that Unit B moves locally at a few cm/year. In this portion there is no potential
for a catastrophic evolution, but nonetheless such movements have repeatedly damaged a
hotel and the national road SS 38 [29,30]. Land cover is bare ground on scree slopes and
most of the Unit A rockslide, determining a quite favorable condition for airborne DIC.
On the contrary, Unit B is mostly covered by woodland and some patches of meadows,
resulting in challenging conditions for airborne DIC.

2.2. Materials

In all three case studies, airborne surveys with a high-resolution optical camera and
a long-range multi-pulse LiDAR device were carried out in 2019, 2020, and 2021 under
snow and cloud-free conditions by the company Helica s.r.l. They extracted the LiDAR
point clouds with RIPROCESS 1.8.7 software, then filtered and classified these points
using Terrasolid 2020 Package into 4 classes: ground, over ground, low and air points;
then, full-resolution digital surface model tiles (fr-DSM) and full-resolution digital terrain
model tiles (fr-DTM) were elaborated for each site and each survey. A mean distribution
of 20 ground pts/m2 for the Corvara and Ganderberg landslides, and 12 ground pts/m2

for Trafoi landslide, was calculated by Helica s.r.l. Optical images were radiometrically
corrected and orthorectified using Agisoft Photoscan software building up full-resolution
digital Ortho-Photos tiles (fr-OPH). For extent, tiling and resolution details of the original
datasets, see Table 1.

Table 1. Characteristics of original datasets produced for each test site by Helica S.r.l.

Site Date Extent Original Data Format Resolution

Corvara
10, 14 August 2019

30 July 2020
24 August 2021

6.5 km2

(34 tiles)

fr-OPH tiff 0.05 m/pixel
fr-DSM ascii 0.25 m/pixel
fr-DTM ascii 0.05 m/pixel

Ganderberg
15, 16 August 2019

29 July 2020
23, 24 September 2021

11.6 km2

(66 tiles)

fr-OPH tiff 0.05 m/pixel
fr-DSM ascii 0.25 m/pixel
fr-DTM ascii 0.05 m/pixel

Trafoi
14 August 2019

28 July 2020
23 September 2021

4.3 km2

(29 tiles)

fr-OPH tiff 0.05 m/pixel
fr-DSM ascii 0.25 m/pixel
fr-DTM ascii 0.05 m/pixel

2.3. Methods

DIC is an optical-numerical measurement technique that can be employed to find
and quantify movements through multitemporal digital imagery [16]. This technique
implements algorithms that geometrically align two or more images of an area (the older
image defined as the master and the more recent one defined as the slave) obtained
during different periods [11]. Displacements are calculated by assessing the internal
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misalignment through a moving template window that compares master and slave images
taken before and after a certain deformation event. DIC usually allows the measurement of
displacements without the installation of any sensors or reflectors in the investigated area;
thus, it can be considered as a fully remote measurement system [16].

Identifying a perfect correspondence between single pixels in master and slave images
is impossible, as the value in one pixel can be equal to those of thousands of other pixels.
Comparison between images is therefore obtained considering a pixel and a discrete area
around it [11,12]. The wideness of this area is selected by the operator, and it represents
the analysis mask in which the DIC algorithms operate. The subset size must be carefully
chosen, and it should not either be too small or too large as it cannot describe small or large
heterogeneous deformations, respectively, and will affect the sub-pixel accuracy. In other
terms, the subset size strongly depends on the characteristics of the images. In addition,
another important parameter that must be selected thoroughly is the step size, which
represents the shift of the subset during the correlation process [11,12,16].

Among existing algorithms for DIC, quite commonly adopted ones are NCC and PC.
NCC operates in the spatial domain, by searching for similar-intensity contrasts between
a square template window from the master image and a square search window from the
slave image. Template and search windows move simultaneously, shifting horizontally
over the master and slave images, thus enabling offset estimates [16]. PC operates in
the frequency domain, thus searching for phase differences between master and slave
images, and it is based on the application of Fast Fourier transforms (FFT) to estimate
translative offset between them [16,31,32]. In this work, NCC and PC were applied using
IRIS software [17,33–35]. IRIS is a commercial software developed by Nhazca S.r.l. (spin-off
of the La Sapienza University of Rome) that implements different DIC algorithms and is
equipped with a graphical user interface that guides users through modules concerning
pre-processing, displacement analysis and post-processing (Figure 2).
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oped by Nhazca S.r.l.

The following derivative datasets were calculated and further tiled using Q-GIS
and IRIS software (see Table 2 for details) to be able to perform DIC analysis on a low-
end workstation (Intel i5 CPU 3.20 GHz, 8 GB RAM): (i) lowered-resolution digital RGB
orthophotos (OPH); (ii) lower/full-resolution hillshade models (HSD); (iii) lower/full-
resolution slope angle models (SLOPE). The RGB OPH datasets were resampled in Q-GIS
and pre-processed in IRIS via mean normalization with a window size of 10 pixels and a
step size of 2 pixels. Within IRIS software, pre-processing of orthophotos was required to
improve the final results, while no pre-processing was necessary for hillshade and slope
models.

In order to assess which combination of dataset vs. algorithm can lead to a better
detection and quantification of slope movements, in the Corvara landslide, which has
movement rates up to m/year and quite favorable land cover conditions, DIC analysis
took all available datasets (OPH, HSD, SLOPE) into consideration. On the other hand, for
the case studies of Ganderberg and Trafoi, which are characterized by movement rates in
the order of only a few cm/years, the DIC analysis focused solely on SLOPE datasets at
different resolution.
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Table 2. Characteristics of derivative datasets used in each test site for DIC analysis.

Site Year Extent Tiles Derivative Data Resolution

Corvara
2019 and 2021

(two-years interval) 6.5 km2
11 OPH 0.10 m/pixel
3 HSD 0.25 m/pixel
3 SLOPE 0.25 m/pixel

Ganderberg 2019 and 2021
(two-years interval) 6 km2 35 SLOPE-1 0.05 m/pixel

4 SLOPE-2 0.25 m/pixel

Trafoi
2019 and 2021

(two-years interval) 1.4 km2 9 SLOPE-1 0.05 m/pixel
2 SLOPE-2 0.25 m/pixel

This choice was based on the following considerations: (1) land cover in Ganderberg
and, to a lesser extent, in Trafoi, mostly consists of woods, making the use of orthophotos
problematic. (2) Slope maps show a lower frequency of artifacts, which increase mismatches
in DIC analysis. (3) The limited movement rates expected in these landslides should
be recognizable more easily with datasets at a higher resolution (i.e., slope maps with
5 cm/pixels resolution). Running the NCC and PC algorithms with IRIS software required
defining processing settings tailored to the specific characteristics of the test sites (i.e.,
expected movement rates) and to the resolution of the datasets under analysis. A detailed
list of the adopted processing settings is presented in Table 3, which includes search
window size, template window size (for NCC), apodization radius-search radius, subpixel
resolution, and pyramid levels. Finally, post-processing consisted of the application of a
“Correlation Coefficient Filter”, to filter off pixels with too low cross correlation values, and
of a “Brighten Factor”, to enhance the brightness of the resulting displacement maps (see
Table 3 for values).

Table 3. List of processing settings implemented in the DIC analyses.

Site DIC Method-
Dataset

Search
Window

(px)

Template
Window

(px)

Apodization
Radius-
Search

Radius (px)

Subpixel
Resolution

(px)

Pyramid
Levels

Correlation
Coefficient

Filter

Brighten
Factor

Corvara

PC–OPH 32 - 0.30 0.05 3 ≤0.05 4
NCC–OPH 32 16 1 0.05 4 ≤0.05 4

PC–HSD 32 - 0.30 0.05 3 ≤0.05 4
NCC–HSD 64 32 1 0.5 4 ≤0.05 4
PC–SLOPE 32 - 0.30 0.05 3 ≤0.05 4

NCC–SLOPE 64 32 1 0.5 4 ≤0.05 4

Ganderberg

PC–SLOPE-1 8 - 0.30 0.5 3 ≤0.10 4
NCC–

SLOPE-1 128 64 1 0.05 4 ≤0.20 7

PC–SLOPE-2 32 - 0.30 0.05 3 ≤0.05 4
NCC–

SLOPE-2 128 64 1 0.05 4 ≤0.20 7

Trafoi

PC–SLOPE-1 8 - 0.30 0.5 3 ≤0.10 4
NCC–

SLOPE-1 128 64 1 0.05 4 ≤0.20 7

PC–SLOPE-2 32 - 0.30 0.05 3 ≤0.05 4
NCC–

SLOPE-2 128 64 1 0.05 4 ≤0.20 7

For quantitative validation purposes, the DIC results were compared to slope move-
ment data obtained via GNSS monitoring of permanent ground benchmarks, with periodic
measurement campaigns carried out almost simultaneously with airborne surveys (see
Table 4 for details). Furthermore, for each test-site, the DIC results have been compared to
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displacement values estimated by visual homologous points tracking (HPT), i.e., by means
of operator-based identification and digitization of the changing position of homologous
ground features (HGF) clearly recognizable in the HSD of 2019 and 2021. In addition, the
adjusted R-squared (R2) and root mean squared error (RMSE) were calculated in the R
environment [36] to assess the accuracy and precision of each application.

Table 4. List of datasets from GNSS campaigns used for validation.

Site Month/Year Operator Technique Benchmarks
(GNSS)

Corvara
10/2019,
11/2020;
09/2021

Forestry
Department Fast static 22

Ganderberg
10–11/2019,

07/2020,
09/2021

Helica S.r.l. Fast static and
RTK 23

Trafoi
10–11/2019,

07/2020,
09/2021

Helica S.r.l. Fast static and
RTK 11

3. Results

In the following section, displacement maps obtained with DIC analysis through the
IRIS software will be described, together with the validation methods implemented to
assess the capacity of this technique to detect and quantify movements. According to
Template Window dimensions, DIC analysis on a couple of images is always affected by
a no-data peripheral frame. The elaborated products show no-data strips which are a
consequence of the tile subdivision. Therefore, in the next images in this section, grey lines
may attract the attention of the reader, but they merely are the combination of such no-data
strips and the hillshade below. Regarding the validation methods, the movement values
extracted from all displacement maps correspond to a median of values falling within a
buffer circled area with a radius of 3 m, to minimize the outliers around both HPT and
GNSS points.

3.1. Corvara Landside

Results for the Corvara landslide are presented in Figure 3 and refer to slope move-
ments in a two-year period (2019 to 2021) assessed on the basis of: (i) orthophotos at a
10 cm/px resolution with Phase Correlation (PC-OPH, Figure 3A) and normalized cross
correlation (NCC-OPH, Figure 3B); (ii) hillshade at a 25 cm/px resolution with phase
correlation (PC-HSD, Figure 3C) and normalized cross correlation (NCC-HSD, Figure 3D);
(iii) slope map at a 25 cm/px resolution with phase correlation (PC-Slope, Figure 3E) and
normalized cross-correlation (NCC-Slope, Figure 3F). These results were later validated
using long-term GNSS measurements (Figure 3G) and operator-based identification and
measurement of the changing position of recognizable HGF, as shown in Figure 3H.

Displacement maps highlight, quite similarly to one another, slope movements of
variable magnitude inside the S2 zone, S3 zone, and the upper T zone. These are consistent
with field geomorphic evidence and independent long-term monitoring data, which have
identified these portions of the slope as the most active ones, with seasonal movements that
can reach the magnitude of several m/year [21,24,25]. Nevertheless, the detection capacity
and the quantification of movements change with changing datasets and algorithms, as
well as with the cumulated displacement reached during the test period. It appears that
the use of HSD and SLOPE datasets enhances the movement detection capacity in the
application of both NCC and PC algorithms as the resulting displacement maps are, in fact,
consistent with geomorphic evidence.
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Figure 3. Displacement maps related to the evolution of the Corvara landslide during the 2019–2021
period. (A) PC-OPH. (B) NCC-OPH. (C) PC-HSD. (D) NCC-HSD. (E) PC-SLOPE. (F) NCC-SLOPE.
(G) Distribution of GNSS benchmarks measured by the Forestry Department during the 2019–2021
period. (H) Position of homologous ground features recognizable on the hillshade of 2019 and 2021.
Red arrow indicates the movement direction (analysis carried out using IRIS software, developed by
Nhazca S.r.l.). Coordinate system: WGS84 32N.
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On the other hand, OPH datasets, despite the high resolution, proved to be the least ef-
fective for the analysis of movements, especially with NCC. With respect to the quantitative
assessment of movements, PC tends to compute larger movements than NCC with any of
the adopted datasets. For instance, as shown in Figure 4, movement rates of 94 HGF located
in the S2 zone calculated with PC mainly range between 0.5 m and 4 m, while movements
rates calculated with NCC range mainly between 0.5 m and 2.5 m (Figure 4A–C). The same
pattern can be recognized in the plots representing movement rates calculated in 25 HGF
along the track zone (Figure 4D–F). Overall, compared to HPT values which mainly reach
2–3 m, both algorithms tend to overestimate movements. Despite this, the best correlations
are obtained with NCC application (Figure 4B,E). As previously stated, another assessment
of DIC results was conducted comparing the calculated displacements with 22 GNSS bench-
marks. In general, quantitative correlations are poor for any kind of algorithm–dataset
combinations: GNSS measurements range from 0 to almost 0.7 m while DIC results mainly
range between 0.1 m and 1.2 m, retaining the tendency of overestimating displacements.
Nevertheless, among the three plots in Figure 5, the best correlation is reached firstly with
the SLOPE dataset (Figure 5C) and secondly with the HSD one (Figure 5B).
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Figure 4. Scatter plots representing the correlation between PC, NCC and measurements of homolo-
gous points (HPT analysis) with different datasets in the Corvara S2 zone (A–C) and in the T zone
(D–F). (A) PC-OPH (R2: 0.3, RMSE: 1.03); NCC-OPH (R2: −0.011, RMSE: 0.81). (B) PC-HSD (R2: 0.39,
RMSE: 0.82). NCC-HSD (R2: 0.41, RMSE: 0.83) (C) PC-SLOPE (R2: 0.32, RMSE: 1.3); NCC-SLOPE (R2:
0.1, RMSE: 0.8). (D) PC -OPH (R2: 0.08, RMSE: 1.17); NCC-OPH (R2: −0.02, RMSE: 1.22) (E) PC-HSD
(R2: 0.65, RMSE: 0.72); NCC-HSD (R2: 0.87, RMSE: 0.61). (F) PC-SLOPE (R2: 0.34, RMSE: 1.19);
NCC-SLOPE (R2: 0.16, RMSE: 0.99).
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Figure 5. Scatter plots representing the correlation between PC, NCC, and GNSS measurements
with different datasets in the Corvara landslide. (A) PC-OPH (R2: −0.05, RMSE: 0.53); NCC-OPH
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(C) PC-SLOPE (R2: 0.17, RMSE: 0.35); NCC-SLOPE (R2: 0.36, RMSE: 0.36).

Considering the morphologic, kinematic and land cover conditions characterizing
the Corvara landslide, a better detection and quantification performance is obtained with
HSD and SLOPE datasets. As for the algorithms, they both show inaccuracies, especially
regarding those parts of the landslide body covered with vegetation and the residential
areas, but, in general, the application of NCC proved to be the most consistent and smooth
method for this type of phenomenon.

3.2. Ganderberg Landside

Results for the Ganderberg landslide are presented in Figure 6 and refer to slope
movements in a two-year period (2019 to 2021) assessed on the basis of: (i) slope models
at a 5 cm/px resolution with phase correlation (PC-SLOPE-1, Figure 6A) and normalized
cross-correlation (NCC-SLOPE-1, Figure 6B); (ii) slope models at a 25 cm/px resolution
with phase correlation (PC-SLOPE-2, Figure 6C) and normalized cross-correlation (NCC-
SLOPE-2, Figure 6D). In Ganderberg, results differ significantly from each other, both
in terms of areas identified, or not, as moving, and in terms of computed magnitude
of movements. With respect to qualitative displacement detection, the NCC algorithm
returns a somewhat more reasonable overall picture of the moving slope, both with high-
resolution (i.e., 5 cm/px) and lower-resolution (i.e., 25 cm/px) datasets. However, it also
detects an unrealistically large number of scattered pixels with non-negligible movements
(Figure 6B) when used with high-resolution datasets (i.e., 5 cm/px), while with the lower-
resolution dataset (Figure 6D), it evidences movements mostly in the upper scree-slopes.
Nevertheless, in comparison, PC performs relatively worse in movement detection with
both the high- and the lower-resolution datasets. In fact, it unreasonably underestimates the
extent of moving areas with high-resolution data (Figure 6A) and, on the contrary, largely
overestimates their extent with low-resolution data (Figure 6C). Regarding the quantitative
assessment of movements, similarly to the Corvara landslide, a comparison with supervised
measurements of 68 HGF easily recognizable in both 2019 and 2021 hillshade (Figure 6F)
together with 23 GNSS benchmarks (Figure 6E) monitored from 2019 to 2021 was carried
out. The results of this comparison, which can be observed in Figures 7 and 8, show that PC
and NCC do not have a good correlation with either HPT analysis (Figure 7A,B) or GNSS
measurements (Figure 8A,B). Contrarily to the Corvara landslide, in this case, NCC tends
to overestimate while PC tends to underestimate the displacement magnitude. Moreover,
quantitatively, PC performs better than NCC with both low- and high-resolution datasets,
even though NCC proved to be more efficient in qualitatively detecting active areas.
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Figure 6. Displacement maps related to the evolution of the Ganderberg landslide during the
2019–2021 period. (A) PC-SLOPE-1. (B) NCC-SLOPE-1. (C) PC-SLOPE-2. (D) NCC-SLOPE-2. (E) Dis-
tribution of GNSS benchmarks measured by Helica S.r.l. during the 2019–2021 period. (F) Position of
homologous ground features recognizable on hillshade of 2019 and 2021. Red arrow indicates the
movement direction (analysis carried out using IRIS software, developed by Nhazca S.r.l.). Coordinate
system: WGS84 32N.
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SLOPE and measurements of homologous points (HPT analysis) with different dataset resolutions.
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0.20, RMSE: 0.31); NCC-SLOPE-2 (R2: 0.14, RMSE: 0.29).
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3.3. Trafoi Landside

Results for the Trafoi landslide are presented in Figure 9 and refer to slope movements
in a two-year period (2019 to 2021) assessed on the basis of: (i) slope models at a 5 cm/px
resolution with phase correlation (PC-SLOPE-1, Figure 9A) and the normalized cross-
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correlation algorithm (NCC-SLOPE-1, Figure 9B); slope models at a 25 cm/px resolution
with phase correlation (PC-SLOPE-2, Figure 9C) and the normalized cross-correlation
algorithm (NCC-SLOPE-2, Figure 9D). Like the Ganderberg landslide, the results in Trafoi
provide quite variable estimates of slope movements in the different parts of the landslide
with different datasets and methods, which are only partially consistent with geomorphic
evidence and independent long-term monitoring data. With respect to movement detection,
the NCC algorithm returns the more reasonable overall picture of movement distribution,
both with high-resolution (i.e., 5 cm/px) and lower-resolution (i.e., 25 cm/px) datasets.
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Figure 9. Displacement maps related to the evolution of the Trafoi landslide during the 2019–2021
period. (A) PC-SLOPE-1. (B) NCC-SLOPE-1 (C) PC-SLOPE-2. (D) NCC-SLOPE-2. (E) Distribution of
GNSS benchmarks measured by Helica S.r.l. during the 2019–2021 period. (F) Position of homologous
ground features recognizable on hillshade of 2019 and 2021. Red arrow indicates the movement
direction (analysis carried out using IRIS software, developed by Nhazca S.r.l.). Coordinate system:
WGS84 32N.



Remote Sens. 2023, 15, 2971 14 of 21

Compared to the Ganderberg maps, the results in Trafoi are somewhat of a better
quality, since the pixel values obtained with NCC applied to high-resolution datasets
(Figure 9B), although quite scattered, nicely outline the extent of the active rockslide in Unit
A and differ significantly from values obtained in the stable areas around it. Furthermore,
even with the lower-resolution dataset (Figure 9D), the overall movement of the rockslide
is still detected by NCC. In addition, similarly to Ganderberg, the PC performs relatively,
but significantly, worse. It unreasonably underestimates the extent of moving areas when
applied to high-resolution datasets (Figure 9A) and it returns an undistinguished scattered
pixelated picture of movements when applied to lower-resolution datasets (Figure 9C).

As for the quantitative assessment of movements, like in the other test sites, a com-
parison with supervised measurements of 113 HGF easily recognizable in 2019 and 2021
hillshade (Figure 9F) together with 11 GNSS benchmarks (Figure 9E) monitored from
2019 to 2021 was carried out. The results of this comparison, which can be observed in
Figures 10 and 11, show that PC and NCC do not have a good correlation with either HPT
analysis (Figure 10A,B) or GNSS measurements (Figure 11A,B).
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Figure 10. Scatter plots representing the correlation between PC and NCC applied on Trafoi SLOPE
and measurements of homologous points (HPT analysis) with different resolutions. (A) PC-SLOPE-1
(R2: −0.009, RMSE: 0.33); NCC-SLOPE-1 (R2: −0.007, RMSE: 0.20). (B) PC-SLOPE-2 (R2: −0.001,
RMSE: 0.32); NCC-SLOPE-2 (R2: −0.002, RMSE: 0.34).



Remote Sens. 2023, 15, 2971 15 of 21Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 11. Scatter plots representing the correlation between PC and NCC applied on Trafoi SLOPE 
and GNSS measurements with different dataset resolutions. (A) PC-SLOPE-1 (R2: −0.11, RMSE: 
0.08); NCC-SLOPE-1 (R2: −0.06, RMSE: 0.10) (B) PC-SLOPE-2 (R2: −0.02, RMSE: 0.11); NCC-SLOPE-
2 (R2: −0.10, RMSE: 0.04). 

4. Discussion 
4.1. Explanation for the Observed Landslide Deformation Patterns 

Thanks to its spatial distribution, remote sensing represents a useful tool for the 
analysis of geomorphic processes occurring in a study area or over a single landslide. 

In the Corvara landslide, since it is characterized by some parts moving at a few 
meters per year [18,20], both NCC and PC, when applied to the OPH dataset (10 cm 
resolution) as well as the SLOPE and HSDs datasets (25 cm resolution), proved to be 
capable of identifying active areas at the slope scale. The quantification of movements was 
better with NCC and, in general, when using HSD datasets. In Ganderberg and Trafoi 
landslides, characterized by movements in the order of a few cm/year, by using SLOPE-1 
and SLOPE-2 datasets (i.e., 5 and 25 cm resolution) and a subpixel accuracy of 0.05 px, 
only NCC was able to map somewhat adequately the extent of moving areas, while both 
NCC and PC substantially failed to adequately quantify movements of a sub-pixel 
magnitude. 

Analysing results in more detail for the Corvara landslide, the most consistent 
displacement map resulted from the application of NCC on 25 cm-resolution HSD. The 
DIC results clearly confirm the presence of a continuous mass transfer from the source 
areas, converging into the track zone and slowly propagating into the accumulation zone 
with the development of local erosion phenomena along Rutorto river. Moreover, the 
material flowing from the S3 zone increases the pressure on the flat area immediately 
below, which is released in correspondence with the top of the T zone as rotational 
movements. Overall, DIC proved to be helpful in detecting the propagation of earthflow-
like displacements along the entire landslide body. 

The example shown in Figure 12, which represents a sector in the higher part of 
source zone S2, shows that the movements identified with the DIC analysis (Figure 12A) 
correctly correspond to true displacements recognizable by comparing Figure 12B (dated 
as 2019) and Figure 12C (dated as 2021). In this kind of contest, the DIC technique, and in 
particular NCC, is able to accurately detect the area subject to earthflow dynamics. 

Figure 11. Scatter plots representing the correlation between PC and NCC applied on Trafoi SLOPE
and GNSS measurements with different dataset resolutions. (A) PC-SLOPE-1 (R2: −0.11, RMSE: 0.08);
NCC-SLOPE-1 (R2: −0.06, RMSE: 0.10) (B) PC-SLOPE-2 (R2: −0.02, RMSE: 0.11); NCC-SLOPE-2 (R2:
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4. Discussion
4.1. Explanation for the Observed Landslide Deformation Patterns

Thanks to its spatial distribution, remote sensing represents a useful tool for the
analysis of geomorphic processes occurring in a study area or over a single landslide.

In the Corvara landslide, since it is characterized by some parts moving at a few meters
per year [18,20], both NCC and PC, when applied to the OPH dataset (10 cm resolution) as
well as the SLOPE and HSDs datasets (25 cm resolution), proved to be capable of identifying
active areas at the slope scale. The quantification of movements was better with NCC and,
in general, when using HSD datasets. In Ganderberg and Trafoi landslides, characterized
by movements in the order of a few cm/year, by using SLOPE-1 and SLOPE-2 datasets
(i.e., 5 and 25 cm resolution) and a subpixel accuracy of 0.05 px, only NCC was able to map
somewhat adequately the extent of moving areas, while both NCC and PC substantially
failed to adequately quantify movements of a sub-pixel magnitude.

Analysing results in more detail for the Corvara landslide, the most consistent dis-
placement map resulted from the application of NCC on 25 cm-resolution HSD. The DIC
results clearly confirm the presence of a continuous mass transfer from the source areas,
converging into the track zone and slowly propagating into the accumulation zone with
the development of local erosion phenomena along Rutorto river. Moreover, the material
flowing from the S3 zone increases the pressure on the flat area immediately below, which
is released in correspondence with the top of the T zone as rotational movements. Overall,
DIC proved to be helpful in detecting the propagation of earthflow-like displacements
along the entire landslide body.

The example shown in Figure 12, which represents a sector in the higher part of source
zone S2, shows that the movements identified with the DIC analysis (Figure 12A) correctly
correspond to true displacements recognizable by comparing Figure 12B (dated as 2019)
and Figure 12C (dated as 2021). In this kind of contest, the DIC technique, and in particular
NCC, is able to accurately detect the area subject to earthflow dynamics.
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Figure 12. Focus on an active part of source zone S2 in the Corvara landslide. Results are compared
with features on the orthophotos. (A) Displacement map (HSD–NCC) obtained with DIC application.
(B) 2019-OPH overlying 2019-HSD. (C) 2021-OPH overlying 2021-HSD with black arrows highlighting
the movement (analysis carried out using IRIS software, developed by Nhazca S.r.l.). Coordinate
system: WGS84 32N.

With reference to the Ganderberg landslide, a better result for the identification of
moving areas was obtained by the application of NCC on SLOPE-2 (25 cm resolution)
shown in Figure 6D, while the results with the SLOPE-1 dataset (5 cm resolution), in
Figure 6A,B, were very scattered and difficult to interpret. The DSGSD dynamics affecting
the entire slope was not detected due to the extremely low entity of displacement; on
the other hand, scree slope activity, mainly caused by weather degradation, could be
recognized. Two examples of results with SLOPE-2 are presented in Figure 13, giving an
overview of what the algorithm works on. Figure 13A,B represent an area near a scree
slope; here, NCC searches for slope angles contrasts that correspond to the alternation of
greyscale colours that leads the algorithm to clearly identify movements but is not able to
quantify it properly. Figure 13C,D represent an area of the national road SS 44bis, north of
the little village of Hahnebaum, where the active parts identified by DIC are correlated with
more continuous patches of SLOPE-2. In this case, NCC finds coherent intensity differences
more easily, which mostly correspond to true displacements.

The most consistent result for the Trafoi landslide site (likewise in the Ganderberg
case) is obtained from the application of NCC on the SLOPE-2 dataset, shown in Figure 9D.
However, contrary to the Ganderberg case, the Trafoi site results both help to discriminate
between stable and unstable areas and recognize movements within the scree slopes. In fact,
looking again at Figure 9D, we can identify a general movement of the active rockslide (Unit
A), while no significant displacement is recognized in the lower part, which corresponds to
the evolved and stable rockslide (Unit B). In Figure 14, a focus on the investigated features
of the slope map is presented. Figure 14A shows a part of the central sector of the rockslide,
where a general south-east displacement is recognized. Within this sector, NCC calculated
some movements peaks, in red patches, that can be attributed to features highlighted in
Figure 14B,C. Usually, artefacts, which are due to a DTM not properly cleared from noise
such as vegetation, lead NCC to this kind of erroneous matches (Figure 14B). On the other
hand, when artefacts are not present, NCC does not always find the true correspondence
between contrasts as the slope band shift during the two-year period is limited, thus leading
to mismatches (Figure 14C).
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Figure 14. Examples of computed active parts in the Trafoi landslide. Results are compared with
features on the SLOPE-2 dataset. (A) Displacement map (SLOPE–NCC) obtained with DIC application.
The black arrow indicates the general south-east movement of rockslide. (B,C) show the features
on which the NCC algorithm works in the slope map (analysis carried out using IRIS software,
developed by Nhazca S.r.l.). Coordinate system: WGS84 32N.
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4.2. Performances of PC and NCC in the Recognition of Slope Movements on a Qualitative Basis

Regarding the performance of PC and NCC in the recognition of slope movements on
a qualitative basis, PC seems to perform better than NCC with high movement rates, while
NCC seems to perform relatively better than PC with low movement rates. The limitation
of PC in identifying small sub-pixel movements is likely related to the fact that it computes
displacement based on the dominant phase difference. Therefore, if the morphology and
coverage of the slope are such that movements are evidenced by a few pixels only, then the
phase differences associated with these few pixels are ignored, while phase differences that
cover all frequencies (which might be related to lower sampling of ground points due to
vegetation or unfavourable slope conditions) lead to an inaccurate determination of the
dominant phase peak—that is, to an inaccurate displacement computation. In addition, PC
is more sensitive to data georeferencing, which might cause small misalignments between
multi-temporal images. In such a case, given the limited amount of real movements, the
algorithm struggles to find an agreement between phase differences in different frequencies
within the master and slave images [31]. These are probably among the reasons why
PC shows scattered pattern of movement values in Ganderberg and Trafoi landslides,
especially with high-resolution data (i.e., SLOPE-1 and 5 cm pixel size) which are affected
by dense vegetation and rock blocks spread along all the landslide bodies, and in which
imperfect georeferencing can mask actual movements. On the other hand, the NCC method
tracks sharp differences in pixel values, such as those due to colour contrasts between rocks
and grass in orthophotos or passages from steep to flat slopes in DTM-derived slope maps.
These differences must be found in both master and slave images, and their displacements
must correspond to the true landslide movement; if not, NCC generates erroneous matches
between features [31]. This requirement is satisfied in the Corvara landslide, especially
with HSD and SLOPE maps, where the faster earthflow parts in the source and track zones
(S2, S3, and T zone) preserve these contrasts along with the movements. On the other hand,
the NCC can recognize the general movement of the rockslide unit (Unit A) even in the
Trafoi landslide, as well as along the national road and the scree-slopes in the Ganderberg
landslide, thanks to the fact that abrupt changes in slope angle determine sharp differences
in pixel values which can be tracked by NCC.

4.3. Performances of PC and NCC Algorithms to Assess Displacement on a Quantitative Basis

Regarding the performance of the PC and NCC algorithms to assess displacement on
a quantitative basis, the results show that the smaller the real movements, the larger in
percentage the mismatch is between the DIC-computed and real displacements, and that a
better quantification is obtained with DTM-derived datasets (SLOPE and HSD). In the Cor-
vara landslide, locally characterized by moderate velocities, the PC- and NCC-computed
displacements show some decent correlation with the validation datasets (HPT and GNSS).
Looking at the HPT validation plots and the values of R2 (adjusted R-squared) and RMSE
(Root Mean Squared Error), the best combinations for the S2 and T zones are obtained
with the application of NCC on 25 cm HSD (Figure 4B,E), with an R2 of 0.41–0.87 and an
RMSE of 0.83–0.61. Looking at the GNSS validation plots, instead, the best combination is
obtained with NCC on 25 cm SLOPE, with an R2 of 0.36 an RMSE of 0.36 (Figure 5C). The
applied validation methods proved that, dealing with a phenomenon associated with a sig-
nificant cumulative displacement (at least 5 m over a two-year period), the DIC technique,
analysing HSD and SLOPE at 25 cm resolution, was capable of detecting and quantifying
movements with a sufficient spatial continuity and accuracy. In the Ganderberg landslide
site, characterized by slow to extremely slow movements, the correspondence between
NCC- and PC-computed displacements and HPT as well as GNSS measurements is rather
poor. Looking at the HPT analysis, it appears that the result given by PC applied on
SLOPE-2 (25 cm resolution) datasets (R2 of 0.20 and RMSE of 0.31) is slightly better than
that obtained with NCC (R2 of 0.14 and RMSE of 0.29) on the same datasets (Figure 7B);
this is probably due to the two outliers in the NCC plot, which compute more than 1 m
of displacement on the upper part of the plot. In fact, comparing HPT validation with
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displacement maps in Figure 6, the NCC map (Figure 6D) is still much smoother than the
PC one (Figure 6C). However, no significant correlations are highlighted with GNSS data.
Finally, in the Trafoi site, another slow to extremely slow landslide, there is no model that
leads to an adequate quantitative agreement between computed displacements and HPT
analysis or GNSS validation datasets. Looking at the HPT validation, the best combination
between R2 (−0.001 to −0.002) and RMSE (0.32 to 0.34) values with the highest precision,
but also the worst accuracy, is represented by both NCC and PC applied on the SLOPE-2
dataset (25 cm resolution) (Figure 10B). Even in this case, no significant matches were
highlighted by the GNSS validation method.

5. Conclusions

The results obtained in this study for the detection of the recent dynamics in large-
scale landslides via DIC of airborne optic and LiDAR datasets in three different test sites
in South Tyrol demonstrate that DIC’s application works quite well for the identification
and quantification of movements in a multi-pixel range of magnitude and in non-densely
vegetated areas. However, this approach encounters significant difficulties in identifying
and quantifying movements which are in a sub-pixel range of magnitude, particularly in
vegetated areas in which both types of datasets lose the capacity to depict slope features
adequately.

As a matter of fact, in the Corvara landslide, where movements were up to few meters
during the 2019–2021 period, the DIC application proved to be a powerful tool to com-
plement other monitoring technique in fast-changing landslides environments, giving a
valuable insight of the overall development patterns of the phenomenon at the slope scale.
On the other hand, in the Ganderberg and Trafoi slow-moving landslides, where GNSS
benchmarks during the two-year period showed that cumulative displacement was limited
to 11–16 cm, neither NCC nor PC in any DTM dataset was able to provide detailed infor-
mation about slope movements, since they are significantly influenced by noise and thus
compute flawed matches, which inevitably lead to inaccurate estimates of displacements.
Even the high-resolution 5 cm datasets could not provide a better result. Slow-moving
landslides are in fact characterised by such low cumulative displacement that by analysing
images with more details the number of features that could cause mismatches increases.
This highlights that the theoretical sub-pixel accuracy of DIC techniques cannot be con-
sidered practically achievable in such challenging conditions and that such techniques
should be applied over longer periods of time, to reach a properly detectable amount of
cumulative displacement.

In conclusion, in all case studies, DIC algorithms proved to be adequate, at least for
differentiating at the slope scale the active parts from the stable ones and, in one case
study, assessing movements quantitatively. These results are of significant added value for
targeting punctual in situ monitoring from the perspective of the long-term surveillance of
large-scale landslides. Once more, we stress the important role that spatially distributed
DIC results play in the comprehension and interpretation of geomorphic dynamics. In
this paper, multiple applications of the DIC methodology for landslide displacement
quantitative estimation are given: the analysis can be performed on different remote
sensing products such as hillshade and slope maps derived from high-resolution LiDAR or
optical scenes using multiple algorithms (NCC or PC). Our work adds to previous studies
where DIC has been applied to airborne and satellite acquisitions [16,26,37]. Moreover, the
tuning of DIC elaboration and subsequent results can be improved when local pointwise
displacement information (GNSS or other ground-based instruments) is present for the
study area.
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