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Environmental efficiency and methane abatement costs of dairy farms from Minas Gerais, Brazil 1 

2 

Abstract 3 

4 

Increasing dairy farm productivity while simultaneously mitigating greenhouse gases emissions is 5 

a common policy goal in many countries. In this paper, we assess trade-offs and synergies between 6 

these goals for pasture-based dairy farms in Brazil. We apply stochastic frontier analysis within a 7 

translog hyperbolic distance function specification, including methane emissions as an undesirable 8 

output and accounting for annual climatic types. Our results indicate that on average, farmers can 9 

improve their production by 9.4% while simultaneously reducing methane emissions by 8.7%. The 10 

adoption of more productive cows and improved pastures have a positive effect on the 11 

environmental efficiency of the farms. Farmers operating in warmer and dryer climate types tend 12 

to have lower environmental efficiency. Calculating shadow prices for methane emitted on farms 13 

indicates that the mean abatement costs of methane are US $2,254 per tonne. Overall, by reducing 14 

inefficiency, dairy farmers can significantly increase farm production while simultaneously 15 

reducing emissions and thus contribute to national commitments to eradicate hunger and mitigate 16 

methane emissions.  17 
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1 Introduction 33 

Dairy farming is fundamental to the economy of many countries, markedly low- and 34 

middle-income countries (LMICs), where it plays a pivotal role in employment generation, 35 

livelihoods and food security in rural areas (FAO, 2010; OECD-FAO, 2021). Estimates indicate 36 

that worldwide 133 million farm holdings keep dairy animals (FAO and GDP, 2018). In LMICs, 37 

smallholder famers also rely on milk production for a less risky and regular source of income and 38 

food, adding to the income of seasonal crop harvests. Moreover, dairy activities are traditionally 39 

conducted by women in many of these countries, contributing to their empowerment, income and 40 

household food security (FAO et al., 2020; Ravichandran et al., 2020), especially in households 41 

where men outmigrate seeking work in other regions (Ravichandran et al., 2020). In terms of 42 

nutrition, milk serves as a high-quality source of protein, vitamins and minerals for humans, 43 

playing an indispensable role for nutrition in LMICs, where the rate of undernourished children 44 

remains high. For instance, there is strong evidence that the consumption of cow’s milk and 45 

products by undernourished children has positive effects on their growth (FAO, 2013; FAO et al., 46 

2020; Weaver et al., 2013), while households owning dairy cattle also have children with higher 47 

growth and lower rates of undernourishment (FAO et al., 2020). Moreover, dairy is critically 48 

important for sustain local food security in rural areas during commercial food shortages, e.g., due 49 

to pandemics (OECD-FAO, 2021). 50 

Concurrently, dairy farming contributes to greenhouse gas (GHG) emissions, which are 51 

major drivers of global warming. Globally, the dairy herd is responsible for emitting around 2.1 Gt 52 

of CO2eq.1, representing ~ 30% of all emissions in the livestock sector (Gerber et al., 2013; Herrero 53 

et al., 2016). These emissions comprise carbon dioxide, nitrous oxide and remarkably methane, 54 

which represents more than 50% of all emissions. GHG emissions from dairy farming considerably 55 

vary across countries and production systems, although a strong negative correlation between the 56 

carbon footprint of milk and animal productivity has been identified (FAO and GDP, 2018; Gerber 57 

et al., 2011; Vogel and Beber, 2022). Moreover, regions that present milk with a higher carbon 58 

footprint (or lower productivity) are also those with higher rates of undernourished children and 59 

people suffering from chronic food deprivation (FAO and GDP, 2018; Gerber et al., 2011). These 60 

                                                 

1Carbon dioxide equivalent (CO2eq.) based on the Global Warming Potential 100 years-time horizon (GWP100).  
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findings suggest that improving the productivity of dairy cows is an effective strategy to improve 61 

the environmental sustainability of dairy farms and increase food security in LMICs. Consequently, 62 

dairy farmers can be considered as key players for achieving the sustainable development goals 63 

(SDGs) linked to eradicating hunger and undertaking actions against climate change.  64 

Globally, policy-makers face the challenge of designing strategies to mitigate GHG 65 

emissions to comply with international climate commitments and national laws while maintaining 66 

and improving socioeconomic and ecosystem services provided by dairy farms (Brazil, 2021a; 67 

Clay et al., 2020; Gerber et al., 2013; Ravichandran et al., 2020). However, the implementation of 68 

such strategies at farms is complex and context-specific, generating outcomes that are likely to 69 

produce synergies as much as trade-offs (Campbell et al., 2018; Clay et al., 2020; Novo et al., 70 

2015). Unveiling these complexities and finding the most suited strategies is keen for the design of 71 

adapted policies to promote the dairy sector and contribute to development goals in LMICs. 72 

In this study, we assess economic and environmental synergies and trade-offs of pasture-73 

based dairy farms managed under the influence of sustainable development strategies. We analyse 74 

a sample of Brazilian dairy farmers participating in Embrapa’s 2 Balde Cheio (Full Bucket-FB) 75 

programme in the state of Minas Gerais and investigate their ability to maximise desirable outputs 76 

while minimising methane emissions. We estimate a stochastic translog hyperbolic distance 77 

function, allowing for asymmetric treatment of desirable and undesirable outputs in the multi-78 

output production frontier (Cuesta et al., 2009; Le et al., 2020; Mamardashvili et al., 2016; Skevas 79 

et al., 2018). Moreover, this approach enables identifying drivers of environmental inefficiency 80 

and calculating shadow prices for methane, the most concerning GHG emitted on dairy farms 81 

(Reisinger et al., 2021; UN-CCAC, 2021). 82 

The Brazilian dairy farming is rapidly evolving and has become one of the main 83 

components of the national agri-food sector. According to the most recent agricultural census, in 84 

the 2006-2017 period the number of dairy farms in the country decreased from 1.35 M to 1.17 M 85 

farms (13%), while the number of milked animals declined by 9% from 12.7 M to 11.5 M cows, 86 

and conversely milk production increased by 70% in the same period. In 2020, national milk 87 

production reached 36.5 Mt, generating around US $12 billion in value for farmers and placing 88 

Brazil as the third-largest dairy milk producer in the world (Embrapa, 2021; Rocha et al., 2020). 89 

                                                 
2 Brazilian Agricultural Research Corporation (https://www.embrapa.br/en/international). 
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Moreover, national dairy production contributes to local food security in rural areas. For instance, 90 

more than one-quarter of the milk produced in the country does not enter the dairy processing 91 

industry (IBGE, 2018), indicating that it is either consumed directly by the household or 92 

commercialised locally through short supply chains. On the environmental side, Brazilian dairy 93 

farms play an important role in the conservation of grassland and key biodiversity areas in the form 94 

of Legal Reserve and Permanent Preservation Areas, which are spared on farms (Embrapa 95 

Territorial, 2020). Nevertheless, by hosting one of the largest dairy herds in the world, the country 96 

substantially contributes to GHG emissions. In 2019, dairy farming in Brazil was responsible for 97 

emitting 53.8 Mt CO2eq., representing 2.5% of the national and 9.3% of the agri-food sector CO2eq. 98 

emissions (SEEG, 2020). Overall, the national dairy herd presents low productivity and high GHG 99 

intensity, with methane accounting for almost three-quarters of all emissions (SEEG, 2020).  100 

A number of studies have analysed the environmental efficiency of dairy farms. Early 101 

approaches treated externalities as inputs in the production function, focusing on farmers’ ability 102 

to minimise the surplus of nitrogen (N) and phosphorus (P) compounds in Dutch dairy farming 103 

(Reinhard et al., 2002, 2000, 1999). Mamardashvili et al. (2016) investigated the environmental 104 

efficiency and abatement costs of N surplus in Swiss dairy farms located in mountainous areas. 105 

The authors applied hyperbolic and enhanced hyperbolic distance functions to investigate the 106 

farmers’ ability to expand the production of desirable outputs while reducing Nitrogen N pollution. 107 

Applying a similar approach, Skevas et al. (2018) revisited the Dutch case to investigate the effects 108 

of agri-environmental policies and production intensification on the environmental efficiency of 109 

dairy farms. Adenuga et al. (2019) compared the environmental efficiency and abatement costs of 110 

N surplus for dairy farms on the island of Ireland. In terms of P surplus, March et al. (2016) applied 111 

the non-parametric data envelopment analysis (DEA) to assess the environmental efficiency of 112 

dairy farms in Scotland, while Adenuga et al. (2020) compared farmers from Northern Ireland by 113 

applying the stochastic hyperbolic distance function. Studies evaluating the environmental 114 

efficiency of dairy farmers in terms of GHG emissions have also gained attention in the dairy 115 

sector. A pioneering study considering GHGs in the environmental efficiency of dairy farms was 116 

proposed by Njuki and Bravo-Ureta (2015), who employed a quadratic directional distance 117 

function with a CO2eq. pollution index to investigate the impacts of GHG regulations in the US 118 

dairy sector. The same approach was applied by Njuki et al. (2016) to study the effects of dairy 119 

enterprise size on the environmental efficiency and abatment costs of CO2eq. of dairy farms in the 120 
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northeastern US. Wettemann and Latacz-Lohmann (2017) applied DEA techniques to derive 121 

ranges of efficiencies and abatement costs for specialised dairy farms in northern Germany. Le et 122 

al. (2020) employed the stochastic hyperbolic distance function to compare technical and 123 

environmental efficiency and calculate CO2eq. abatement costs for dairy production in Alberta, 124 

Canada.  125 

We expand the literature on environmental efficiency of dairy farms in multiple directions. 126 

First, most studies thus far have evaluated intensive high-productive systems in developed 127 

countries (e.g., Adenuga et al., 2019; Le et al., 2020; Njuki et al., 2016; Reinhard et al., 1999; 128 

Skevas et al., 2018; Wettemann and Latacz-Lohmann, 2017). By contrast, we analyse pasture-129 

based dairy production in Brazil, where dairy farms on average present low yields, operate with 130 

limited access to technology and face different policy incentives. Second, instead of evaluating a 131 

CO2eq. index, we focus exclusively on methane emissions as an undesirable output. Thus, we 132 

provide a better understating of the environmental efficiency of dairy farms in terms of the most 133 

important GHG emitted in the dairy sector. In this approach, we also calculate methane-specific 134 

shadow prices, providing an indication of the abatement costs of this GHG for dairy farms in Brazil. 135 

This might hold interest for national policy design, particularly given the recent commitments that 136 

the Brazilian government assumed to cut methane emissions as a signing party of the Global 137 

Methane Pledge.3 Finally, we include the annual climate type concept in our production function 138 

to evaluate the effects of climatic regions on farms’ environmental efficiency. This approach is 139 

based on the Köppen-Geiger climate classification and might be relevant since there is increasing 140 

evidence of the impact of climatic elements on the technical (Gori Maia et al., 2021; Perez-Mendez 141 

et al., 2019) and environmental efficiency (Le et al., 2020; Njuki et al., 2016; Njuki and Bravo-142 

Ureta, 2015) of dairy farms.  143 

2 Methods 144 

2.1 Theoretical framework 145 

The theoretical foundations for investigating production in a dynamic environment where 146 

a bundle of inputs is employed to produce multiple outputs were introduced by the seminal works 147 

                                                 
3 Signatory countries committed to cutting global methane emissions by 30% from 2020 levels by 2030 (EU, 

2021). 
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of Debreu (1951) and Shephard (1953, 1970). Ever since, distance functions (DF) have proved 148 

very useful in the empirical measurement of efficiency, notably by Farrell (1957) (Kumbhakar and 149 

Lovell, 2003). Under this framework, an input distance function seeks the maximum radial 150 

contraction of the input vector at a constant output. Conversely, the output distance function seeks 151 

the maximum radially expansion of output vectors at given inputs (Kumbhakar and Lovell, 2003). 152 

Despite being extensively applied to evaluate the production processes of marketable goods, the 153 

idea of radially expanding outputs altogether is limited when undesirable by-products are part of 154 

the decision-making unit outputs.  155 

These limitations gave rise to further developments of the DF taking the form of directional 156 

distance functions (DDFs) (Chambers et al., 1996). One of the advantages of this approach is the 157 

possibility of applying the output DDF to evaluate the environmental efficiency of decision-making 158 

units by seeking a maximum increment in desirable outputs while simultaneously reducing 159 

undesirable outputs (Chambers et al., 1998; Chung et al., 1997). This mechanism is enabled by 160 

introducing a directional vector into the function in an additive form to scale desirable and 161 

undesirable outputs in opposite directions (Färe et al., 2005; Färe and Grosskopf, 2000). Several 162 

empirical studies evaluating environmental efficiency follow from these developments (e.g., Njuki 163 

et al., 2016; Njuki and Bravo-Ureta, 2015; Picazo-Tadeo et al., 2005; Riera and Brümmer, 2022). 164 

Limitations associated with the DDF include the fact that the results are subjective to the selection 165 

of the directional vectors, which are normally arbitrarily chosen (Atkinson and Tsionas, 2016; 166 

Holtkamp and Brümmer, 2018). Besides, it does not satisfy the property of commensurability, i.e., 167 

the results are sensitive to measurement units (Peyrache and Coelli, 2009; Skevas et al., 2018).  168 

Another approach to estimate the environmental efficiency is the hyperbolic distance 169 

function (HDF) proposed by Färe et al. (1989), based on the work of Färe et al. (1985). Instead of 170 

projecting a straight line towards the frontier, the graph representation follows a hyperbolic path 171 

allowing inputs and outputs to be treated asymmetrically (Färe et al., 1985). Färe et al. (1989) 172 

developed their framework applying the non-parametric DEA approach. The parametric stochastic 173 

framework considering the HDF was proposed by Cuesta and Zofío (2005), while proper 174 

adjustments to accommodate undesirable outputs were amended by Cuesta et al. (2009). The HDF 175 

satisfies the commensurability property (Skevas et al., 2018) and overcomes the arbitrariness of 176 

selecting a directional vector. Moreover, the HDF also enables calculating shadow prices for non-177 

marketable by-products. One limitation often associated with the HDF is that by relying on the 178 
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weak disposability assumption, it may not comply with the mass balance principle, i.e., the first 179 

law of thermodynamics. A number of developments have been undertaken to address this limitation 180 

(e.g., Dakpo et al., 2016; Førsund, 2021; Murty et al., 2012; Murty and Nagpal, 2020). Nonetheless, 181 

these developments also have constraints that are not completely solved (see Ang and Dakpo, 2021; 182 

Dakpo et al., 2016; Murty and Russell, 2021). In addition, HDF has been used in a variety of case 183 

studies examining environmental performance and efficiency in dairy production systems, which 184 

thus enables comparability with similar work. 185 

 To characterise the technology set with undesirable by-products, an additional vector 186 

representing undesirable outputs is appended to the traditional representation. It is then represented 187 

by a feasible combination of vectors of inputs 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), desirable outputs 𝑦 =188 

(𝑦1, 𝑦2, … , 𝑦𝑛) and undesirable by-products 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑛). Following Cuesta et al. (2009), the 189 

technology can be represented by the graph set 190 

 191 

  𝑇 = {(𝑥, 𝑦, 𝑏): 𝑥 ∈ 𝑅+
𝐾, y ∈ 𝑅+

𝑀, b ∈ 𝑅+
𝑅 , 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏)}. (1)                          192 

 193 

The corresponding HDF can be defined as in eq. (2), where 𝐷𝐻(𝒙, 𝒚, 𝒃) represents the HDF 194 

and 𝜃 is a scalar. Given the available number of inputs, the HDF represents a maximum expansion 195 

of the desirable output vector and equiproportionate contraction of the undesirable output vector, 196 

placing producers at the boundary of the production technology T. 197 

 198 

𝐷𝐻(𝒙, 𝒚, 𝒃) = 𝑚𝑖𝑛 {𝜃 > 0: (𝒙,
y

𝜃
, 𝒃𝜃) ∈ 𝑇} (2)   199 

𝐷𝐻(𝒙, 𝒚, 𝒃) ranges between 0 and 1. If a farm presents 𝐷𝐻(𝒙, 𝒚, 𝒃) = 1, it is located at the boundary 200 

of the production possibility set and is considered environmentally-adjusted technical efficient 201 

(Dalheimer, 2020). If the technology satisfies the traditional axioms, then our HDF satisfies the 202 

properties P1 to P4 below (Cuesta et al., 2009; Cuesta and Zofío, 2005; Färe et al., 1985). 203 

 204 

P1. Almost homogeneity: 𝐷𝐻(𝒙, 𝜇𝒚, 𝜇−1𝒃) = 𝜇𝐷𝐻(𝒙, 𝒚, 𝒃); 𝑓𝑜𝑟 𝜇 > 0 205 

P2. Non-decreasing in desirable outputs: 𝐷𝐻(𝒙, 𝜆𝒚, 𝒃) ≤ 𝐷𝐻(𝒙, 𝒚, 𝒃); 𝜆 ∈ [0,1] 206 

P3. Non-increasing in undesirable outputs: 𝐷𝐻(𝒙, 𝒚, 𝜆𝒃) ≤ 𝐷𝐻(𝒙, 𝒚, 𝒃); 𝜆 ≥ 1  207 

P4. Non-increasing in inputs: 𝐷𝐻(𝜆𝒙, 𝒚, 𝒃) ≤ 𝐷𝐻(𝒙, 𝒚, 𝒃); 𝜆 ≥ 1  208 

 209 
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Following the almost homogeneity condition and selecting a normalising output variable 210 

M, we can set 𝜃 =
1

𝑦𝑀
, and express 𝐷𝐻(𝒙, 𝒚, 𝒃) as 211 

𝐷𝐻 (𝒙𝑖,
𝐲𝑖

𝑦𝑀
, 𝒃𝑖𝑦𝑀) =

1

𝑦𝑀
𝐷𝐻(𝒙𝑖, 𝐲𝑖, 𝒃𝑖). (3) 212 

 213 

By taking logs of both sides of eq. (3), we reach  214 

𝑙𝑛𝐷𝐻(𝒙𝑖, 𝐲𝑖 , 𝒃𝑖) = 𝑙𝑛𝐷𝐻 (𝒙𝑖,
𝐲𝑖

𝑦𝑀
, 𝒃𝑖𝑦𝑀) + 𝑙𝑛𝑦𝑀𝑖. (4) 215 

 216 

The hyperbolic efficiency is defined as 𝐻𝐸𝑖  = 𝐷𝐻(𝒙𝑖, 𝐲𝑖, 𝒃𝑖). We substitute and rearrange 217 

the equation solving for 𝑙𝑛𝑦𝑀, and finally append an error term vi to capture statistical noise: 218 

−ln𝑦𝑀𝑖 = 𝑙𝑛𝐷𝐻 (𝒙𝑖,
𝐲𝑖

𝑦𝑀
, 𝒃𝑖𝑦𝑀) − 𝑙𝑛𝐻𝐸𝑖 + 𝑣𝑖 . (5) 219 

2.1.1 Shadow price 220 

The shadow price can be interpreted as the production of desirable output that must be 221 

foregone to reduce one unit of the undesirable output under analysis (Färe et al., 2005; Zhou et al., 222 

2014). Shadow prices are particularly relevant for studying production systems where by-products 223 

are not marketable. An ingenious approach to calculating shadow prices is based on the duality 224 

between the HDF and the profitability (Return to the dollar) function (Färe et al., 2002; Färe and 225 

Grosskopf, 1998).  226 

Assuming that a producer seeks to maximise profit, she faces the problem described in 227 

eq.(6) (Cuesta et al., 2009; Färe et al., 2002).  228 

 229 

∏(𝑥,  𝑝𝑦, 𝑝𝑏) =
𝑚𝑎𝑥
𝑥, 𝑦

{ 
 𝑝𝑦𝑦

𝑝𝑏𝑏
∶  𝐷𝐻(𝑥, 𝑦, 𝑏)  ≤ 1}  (6) 231 

  230 

where py is the price of desirable output and pb is the unknown price of the undesirable output. The 232 

first-order conditions to the problem in eq. (6) are equal to eq. (7) and eq. (8), respectively.  233 

 234 

𝑝𝑦𝑦

𝑝𝑏𝑏
= 𝜆

𝜕𝐷𝐻

𝜕𝑦
𝑦 = 𝜆 (

𝜕𝑙𝑛𝐷𝐻

𝜕𝑙𝑛𝑦
) 𝐷𝐻   (7) 235 
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  236 

𝑝𝑦𝑦

𝑝𝑏𝑏
= −𝜆

𝜕𝐷𝐻

𝜕𝑦
𝑏 = −𝜆 (

𝜕𝑙𝑛𝐷𝐻

𝜕𝑙𝑛𝑏
) 𝐷𝐻. (8) 238 

  237 

The resulting price ratio equals eq. (9), which enables calculating the shadow price of the 239 

undesirable output b in terms of the main desirable output yM. 240 

 241 

  − 𝑝𝑦

𝜕𝐷𝐻
𝜕𝑏

𝜕𝐷𝐻
𝜕𝑦𝑀

=  𝑝𝑦
𝑑𝑦𝑀

𝑑𝑏
 ]𝐷𝐻=1  (9) 242 

 243 

It is noteworthy that the shadow price refers to the estimation at the frontier, assuming that 244 

the farmer is fully efficient, i.e., 𝐷𝐻 = 1.  245 

2.2 Methane emissions 246 

Given that direct measurement of methane emissions is complex and expensive, we 247 

estimate the emissions following the Guidelines for National Greenhouse Gas Inventories (IPCC, 248 

2019a). Methane originated from enteric fermentation and manure management are the two sources 249 

considered in the guidelines. Enteric fermentation emissions are derived based on the daily feed 250 

intake of the herd. We calculate the daily gross energy (GE) intake and apply the simplified tier 2 251 

method to calculate the daily dry matter intake (DMI) for each animal category declared by the 252 

farmers (i.e., cows, calves, heifers, bulls) (IPCC, 2019b). Finally, we apply the equations for 253 

predicting enteric methane based on DMI described by Ribeiro et al. (2020). Forage and 254 

concentrate ration information are presented in Appendix A, Tables A1 and A2, respectively. 255 

Methane originated from manure is derived from information on manure volatile solids 256 

(VS) content and manure management system. The VS excretion is calculated based on the daily 257 

GE intake of the animals and feed quality (IPCC, 2019a). Based on expert information, we assume 258 

that 80% of the manure from animals handled on a daily basis was deposited on pastures, while the 259 

remaining 20% was deposited onto barns, milking parlour or handling areas, and thus entered the 260 

storage system. The default value of 0.19 m³ CH4 (kg VS)-1 is adopted as the maximum methane 261 

producing capacity of VS excreted (IPCC, 2019a). 262 
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2.3 Study area and data  263 

We analyse a sample of 208 dairy farms distributed across the state of Minas Gerais (MG) 264 

in south-eastern Brazil (see Figure 1). MG has an area of ~586,522 km2 and is covered by three out 265 

of six Brazilian biomes (IBGE, 2021). The state has a long tradition in milk production and is the 266 

largest milk producer in Brazil (IBGE, 2018). In 2021, MG produced a total of 9.4 Mt milk, 267 

representing 27% of the national production (Embrapa, 2021).  268 

 269 

 270 

Figure 1. Location of the state of Minas Gerais and sampled municipalities 271 

The cross-sectional dataset was collected in 2017 as part of Embrapa’s Balde Cheio (Full 272 

Bucket-FB) programme.4 The FB programme was created by the Embrapa’s South-Eastern 273 

Livestock Research Centre in 1999 and aims at sustainable intensification of dairy farms in Brazil 274 

through technology transfer and participatory learning. The database includes a complete 275 

socioeconomic characterisation of the household and technical and economic information related 276 

to the dairy enterprise. The sample includes exclusively pasture-based producers, which is the most 277 

common dairy production system in Brazil. The descriptive statistics of selected farm variables are 278 

presented in Table 1.  279 

 280 

                                                 
4 For a complete description of the programme and its modus operandi, see Novo et al. (2015), 

https://doi.org/10.1080/14735903.2014.945320 . 

Sampled municipalities

Minas Gerais
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Table 1. Variables overview and summary statistics 281 

Variable (N=208) Mean Std.Dev Min Max 

Capital (1,000 US$a) 2.53 2.3 0.21 12.24 

Purchased feed (1,000 US$) 15.45 13.95 0.99 78.11 

Other expenses (1,000 US$) 11.76 10.84 1.08 51.65 

Land (ha) 40.9 35.41 1 217 

Labour (working units) 1.73 0.77 1 4 

Lactating cows (N) 23.74 14.57 5 82 

Herd size (N) 62.1 38.4 9 213 

Milk sold (t FPCMb) 108.74 83.72 15.37 440.59 

Animals sold (1,000 US$) 4.66 5.11 0 29.9 

Methane CH4 (t) 4.95 3.28 0.88 20.87 

Buyer (N) 4.62 2.34 1 12 

Daily milk yield (kg cow-1) 12.45 3.55 4.12 23.12 

Experience (years) 20.73 13.62 2 60 

Improved pasture (% of pastures) 0.15 0.18 0 1 

Milk price (US$) 0.36 0.04 0.28 0.56 

Cows in the herd (%) 0.75 0.09 0.41 0.91 

Technical visits (N) 13.67 4.65 0 35 

Bull in the herd (yes: 1; no: 0) 0.71    

Hired labour (yes: 1; no: 0) 0.82    

Rent land (yes: 1; no: 0) 0.27    

aUSD-BRL: 3.192 (BACEN, 2022).b Fat and protein corrected milk. 

 282 

Variable selection for the environmental production function is based on recent studies 283 

exploring the technical and environmental efficiency of dairy farms (e.g. Adenuga et al., 2020; Le 284 

et al., 2020; Mamardashvili et al., 2016; Njuki et al., 2016; Skevas et al., 2018). The capital variable 285 

represents the opportunity cost of capital invested in buildings and machinery, plus depreciation 286 

costs. Purchased feed is the sum of all feedstuffs purchased in the year including roughage, 287 

concentrates, calve feed and mineral supplements. Other expenses include operating expenses with 288 

fertilisers, veterinary services, medicines, artificial insemination costs and overheads. Land is the 289 

area available for feed production, i.e., forage and grain. Labour is measured in terms of working 290 

units per year. Lactating cows represents the number of lactating cows in the herd. Methane is 291 

annual amount of methane emitted on the farm from enteric fermentation and manure sources (see 292 

section 2.2. for details). All monetary values have been converted to 2017 US dollars by applying 293 

the USD-BRL exchange rate of 3.192 (BACEN, 2022). 294 
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Furthermore, to investigate the influence of year-specific climate elements on 295 

environmental efficiency, we include the annual climate type (ACT) in our model (Dubreuil et al., 296 

2019). The ACT relies on the Köppen-Geiger climate classification algorithm, which accounts for 297 

seasonal temperature and precipitation variations for grouping climatic types and regions 298 

(Trewartha and Horn, 1980). Climatology data for each municipality have been retrieved from the 299 

National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) 300 

Prediction of Worldwide Energy Resource (POWER) project.5 The ‘ClimClass’ R package (Eccel 301 

et al., 2016) was employed to derive two levels of Köppen ACTs (see Table 2). 302 

Table 2. Annual climate types (ACTs), number of farms by ACT, and summary of climate elements 303 

for 2017 304 

Köppen ACT Farms P_total* P_winter P_summer T_avg T_w.m T_c.m 

Awa  87 938.6 322.4 616.2 23.6 26.6 19.2 

Cwb  100 967.6 211.3 756.2 20.9 23.3 16.4 

Csc  11 931.6 264.6 667.0 20.9 23.5 16.3 

BSd  10 550.9 239.2 311.8 23.3 25.8 18.5 
aAw: tropical with dry winter; bCw: humid subtropical with dry winter; cCs: humid subtropical with 305 

dry summer; dBS: dry semi-arid; *P_total: total precipitation depth (mm); P_winter: precipitation 306 

depth in the six coldest months (mm); P_summer: precipitation depth in the six warmest months 307 

(mm); T_avg: average temperature (°C); T_w.m: average temperature of the warmest month (°C); 308 

T_c.m: average temperature of the coldest month (°C). 309 

 310 

2.4 Empirical model 311 

We estimate the stochastic version of the translog HDF (Cuesta et al., 2009). Stochastic 312 

frontier analysis was proposed independently by Meeusen and van Den Broeck (1977) and Aigner 313 

et al. (1977) and enables separating technical inefficiency from random disturbances beyond the 314 

control of the producers (Kumbhakar and Lovell, 2003).  315 

Our model considers three outputs – including one undesirable – and six inputs. Letting i = 316 

1, 2…N represent the number of dairy farms, the main desirable output is represented by annual 317 

fat and protein corrected milk (FPCM) production (yM), and the secondary desirable output is the 318 

income of animals sold (ys). The undesirable output is methane emissions (b). The six inputs are 319 

capital (x1), lactating cows (x2), labour (x3), land (x4), feed (x5), and other expenses (x6). The ACT 320 

                                                 
5  https://power.larc.nasa.gov/data-access-viewer/ 
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(c) is a four-levels controlling variable intended to gain insights into the ACT effect on 321 

environmental efficiency. We set the ACT (Aw) as the reference, since it presents the highest mean 322 

temperature throughout the year. The final specification for the HDF to be estimated is presented 323 

in eq. (10). We scaled the variables by their geometric mean before taking logarithms. 324 

 325 
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Where 𝑏𝑖
∗ = 𝑏𝑖 × 𝑦𝑀𝑖; 𝑦𝑠𝑖

∗ = 𝑦𝑠𝑖/𝑦𝑀𝑖. The composite error term is εi= vi +ui, where vi is the 326 

error term, which captures random noise and has a normal distribution 𝑣𝑖  𝑁~(0, 𝜎𝑣𝑖
2 ), and 𝑢𝑖 =327 

−𝑙𝑛𝐻𝐸𝑖 is the hyperbolic inefficiency term following a half-normal distribution. Additionally, we 328 

considered heteroskedasticity in both vi (eq.(11)) and ui, (eq.(12)) (Caudill et al., 1995; Wang, 329 

2002). 330 

 331 

𝜎𝑢𝑖
2 = 𝑒𝑧𝑖

, 𝜁  (11) 332 

𝜎𝑣𝑖
2 = 𝑒𝑤𝑖

, 𝜏  (12) 333 

 334 

Where zi is a farm-specific vector of variables that affect the variance of the inefficiency 335 

term, while wi is a farm-specific vector of variables that affect the variance of the noise term, and 336 

ζ and τ are parameters to be estimated. A positive sign of 𝜎𝑢𝑖
2  indicates that the variable zi under 337 

consideration has a positive effect on inefficiency. Similarly, if 𝜎𝑣𝑖
2  displays a positive sign, it 338 

suggests that the variable wi under consideration increases production uncertainty (risk) 339 

(Mamardashvili et al., 2016; Wang, 2002).  340 
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We follow the recent literature and the availability of data variables to select z and w 341 

variables. Table 3 presents the z and w variables considered in the model and the respective 342 

expected signs. 343 

Table 3. Variables and expected signs for evaluating heteroskedasticity 344 

Variable 𝜎𝑢𝑖
2  sign  𝜎𝑣𝑖

2  sign 

Buyer z1 +  w1 - 

Milk yield z2 -  w2 +/- 

Time farming z3 +    

Improved pasture z4 +/-    

Cows in the herd z5 -    

Tech. support z6 -  w3 - 

Bull in the herd z7 +  w4 +/- 

Hired labour z8 +  w5 - 

Rent land z9 +  w6 +/- 

 345 

Following Battese and Coelli (1988), farm-specific point estimate hyperbolic efficiency 346 

(HEi) scores are calculated according to the conditional distribution of u given ε: 347 

𝐻𝐸𝑖 = E [𝑒−𝑢𝑖| ε𝑖]. (10) 348 

 349 

The estimation of the distance function parameters is conducted by maximum-likelihood 350 

using the R software (R Core Team, 2019) and the ‘npsf’ package (Badunenko et al., 2020).  351 

 352 

3 Results and discussion  353 

3.1 Production technology  354 

The first-order maximum-likelihood estimates for the production technology, determinants 355 

of environmental inefficiency and associated standard errors are presented in Table 4. The complete 356 

list of coefficients is presented in Appendix B, Table B1. All first-order coefficients presented the 357 

expected signs, with the exception of labour, which was not statistically significant. Moreover, the 358 

coefficient of undesirable output has a negative sign, confirming the existence of trade-offs 359 

between desirable and undesirable outputs.  360 
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The first-order coefficients in the translog HDF may directly be interpreted as elasticities 361 

(Cuesta et al., 2009). Thus, we observe that the number of lactating cows has the largest distance 362 

elasticity, followed by feed and other expenses. Land and capital exhibit very low elasticities when 363 

compared with the other inputs. This is in line with most recent studies evaluating environmental 364 

efficiency in dairy farming (e.g., Adenuga et al., 2020, 2019; Mamardashvili et al., 2016; Skevas 365 

et al., 2018). In terms of outputs, we observe that the desirable by-product income from livestock 366 

sold has a small contribution to the production function, which is expected in dairy enterprises 367 

(e.g., Le et al., 2020). In addition, the undesirable output presents a large elasticity and the expected 368 

negative sign, indicating that increases in methane emissions will shift farms away from the 369 

production frontier, consequently reducing their environmental efficiency (Skevas et al., 2018).  370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 
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Table 1. First-order parameters and heteroskedasticity model estimates 392 

Technology   DH a SE 

α0 (Intercept) -0.218 *** 0.040 

α1 (Capital) -0.043 *** 0.012 

α2 (Lactating cows) -0.207 *** 0.051 

α3 (Labour) 0.012  0.023 

α4 (Land) -0.019 * 0.009 

α5 (Feed) -0.154 *** 0.028 

α6 (Other expenses) -0.111 *** 0.024 

β1 (Methane) -0.257 *** 0.029 

δ2(Animals sold) 0.005 ** 0.002 

ω1 (Cw) -0.042 ** 0.013 

ω2 (Cs) -0.034 * 0.015 

ω3 (BS) -0.031  0.024 

    
Heteroskedasticity in 𝜎𝑢

2    
ζ0 (Intercept) 3.881 ** 1.425 

ζ1 (Buyer) 0.092  0.059 

ζ2 (Milk yield) -0.481 *** 0.074 

ζ3 (Time farming) -0.015  0.010 

ζ4 (Improved pasture) -1.773 * 0.880 

ζ5 (Cows in the herd) -3.807 * 1.631 

ζ6 (Tech. support) -0.055  0.036 

ζ7 (Bull in the herd) 0.239  0.312 

ζ8 (Hired labour) 0.695 * 0.370 

ζ9 (Rent land) -0.107  0.342 

    
Heteroskedasticity in 𝜎𝑣

2    
τ0 (Intercept) -16.849 *** 2.457 

τ1 (Buyer) 0.335 * 0.137 

τ2 (Milk yield) 0.683 *** 0.123 

τ3(Tech. support) 0.014  0.065 

τ4 (Bull in the herd) -1.905 ** 0.065 

τ5 (Hired labour) -0.721 
 

0.629 

τ6 (Rent land) 1.110 * 0.642 

    
Log_Likelihood 236.15   
Mean EE 0.9141   
Std.Dev 0.0873   

***p < 0.01, **p < 0.05, *p < 0.1; a Since the estimation of the production function is based on a 393 

distance function, the expected signs for first-order input variables are expected to be negative 394 

while outputs are expected to be positive. 395 

 396 

Despite the contrasting characteristics of Aw and BS (dry semi-arid) in terms of 397 

precipitation, we find no differences between the two climate types. The mean annual rainfall in 398 

the municipalities classified as BS was 58% of the volume of rain received by farmers in Aw (see 399 
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Table 2). However, in terms of temperature, the two climate types are similar, presenting a 400 

difference of 0.3°C in the annual average temperature.  401 

It is also noteworthy that we identified BS ACT in MG. Previous studies using older 402 

Climate Normals data found no semi-arid climate types in the state (e.g., Alvares et al., 2013). 403 

However, in our updated Köppen-Geiger model, we determine municipalities that presented dry 404 

semi-arid conditions. These results are consistent with more recent climatology studies, which also 405 

identify BS climate types in MG (e.g., Dubreuil et al., 2019; Martins et al., 2018). The presence of 406 

BS climate types in MG can be seen as evidence of climate change unfolding in the northern region 407 

of the state (Dubreuil et al., 2019). This trajectory is likely to continue for the coming years and 408 

further pressure milk productivity and environmental efficiency in the region. 409 

3.2 Technical-environmental performance and determinants  410 

The mean environmental efficiency of the sample is depicted in Figure 2 and was 0.91, 411 

ranging from 0.61 to 0.99, indicating that most farmers in the sample exhibit high environmental 412 

efficiency. These results suggest that on average, farmers can increase outputs by 9.4% (1/0.91) 413 

while simultaneously reducing methane emissions by 8.7% (1-0.91). By reducing inefficiency, 414 

farmers could meaningfully contribute to national commitments for reducing methane emissions 415 

and still benefit by increasing farm output at the same time. For instance, if the farmers in our 416 

sample completely eliminate inefficiency, it would represent an annual reduction of methane 417 

emissions of 86 tonnes. Moreover, since the farmers in our sample are already engaged in a 418 

programme intended to improve farm productivity, we expect that improving the performance of 419 

the average smallholder milk producer in MG can achieve higher contributions to mitigating 420 

methane emissions. 421 

 422 
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 423 

Figure 1. Environmental efficiency scores of dairy farms from Minas Gerais 424 

To put in perspective the effect of the exogenous variables on environmental inefficiency, 425 

we present their marginal effects in Table 5.  426 

 427 

Table 2. Marginal effects of determinants of inefficiency 428 

Variable Mean Std.Dev Min Max 

 Buyer 0.005 0.004 0.000 0.024 

 Milk yielda -0.024 0.022 -0.127 -0.001 

 Time farming -0.001 0.001 -0.004 0.000 

 Improved pasture -0.088 0.083 -0.468 -0.004 

 Cows in the herd -0.188 0.178 -1.006 -0.009 

 Technical support -0.003 0.003 -0.014 0.000 

 Bull in the herd 0.012 0.011 0.001 0.063 

 Hire labour 0.034 0.032 0.002 0.184 

 Rented area -0.005 0.005 -0.028 0.000 
a Variables in bold presented significance in the heteroskedasticity model, p < 0.1. 429 

 430 

Milk yield presents a negative significant influence on environmental inefficiency, which 431 

is expected and in line with previous literature (Le et al., 2020; Mamardashvili et al., 2016; 432 

Reinhard et al., 2002; Shortall and Barnes, 2013), and can be associated to some extent with the 433 

genetic quality of the herd (Le et al., 2020). Therefore, our results confirm the evidence that 434 

increasing milk yield per cow is crucial for both the economic and environmental efficiency of 435 

dairy farms. Low-yield dairy cows in LMICs is one of the most pressing issues regarding the 436 

sustainability of dairy farms (González-Quintero et al., 2022; Novo et al., 2013; Vogel and Beber, 437 
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2022). Nevertheless, improving dairy farms in practice warrants a systems-thinking approach. For 438 

instance, the successful adoption of high-productive breeds depends on several factors, such as 439 

suitable feed supply, climate and rearing conditions that attend the requirements of the selected 440 

breed, and farmers with know-how to manage high-yielding animals (Novo et al., 2015). 441 

The share of improved pasture has a negative influence on environmental inefficiency. This 442 

is expected since improved pastures produce more forage per unit of land, thus reducing land use. 443 

Additionally, improved pastures tend to have higher digestibility and lower natural detergent fibre, 444 

which in turn contributes to a lower feed conversion rate (FCR) and methane production from 445 

enteric fermentation. It is unsurprising that pasture improvement ranks first in the list of activities 446 

that farmers shall focus on to improve farms’ sustainability in the FB programme (Novo et al., 447 

2015). Our results are supported by a considerable body of literature providing evidence that 448 

sustainable intensification of degraded and low-quality pastures positively contributes to land 449 

sparing, soil carbon storage, and reduction of GHG intensity of beef and dairy cattle (IPCC, 2019c; 450 

O’Brien et al., 2016; Oliveira et al., 2021; Ruviaro et al., 2015). 451 

The share of lactating cows among cows in the herd has a negative effect on inefficiency. 452 

This result provides evidence that adjusting herd structure to reach the best productive performance 453 

possible also improves the environmental efficiency of dairy farms. Fundamentally, this is a key 454 

indicator in dairy farms and should ideally be around 84% (Bachman and Schairer, 2003; Kuhn et 455 

al., 2006). Nonetheless, most dairy farms in Brazil are short of reaching this level.  456 

We find that contracting labour has a significant positive effect on farms’ inefficiency. This 457 

somewhat confirms the entrepreneurial view that farms exclusively run by the family receive better 458 

care, leading to higher efficiency. Family labour is also less expensive as it is normally informal 459 

and does not include social security expenses. The traditional efficiency literature reports no pattern 460 

regarding the influence of the share of family labour on efficiency (Zhu and Lansink, 2010).  461 

Remarkably, we observe the existence of trade-offs between production efficiency and risk 462 

for some variables. Milk yield presented a significant negative sign in the z-model and a significant 463 

positive sign in the v-model, suggesting that adopting more productive cows increases efficiency 464 

but also production risk. There are many factors that can contribute to these results, such as the fact 465 

that animals with higher production are more susceptible to diseases and metabolic disorders, 466 

inflicting abrupt and unexpected drops in production and increasing expenses with treatments 467 

(Brito et al., 2021; Knaus, 2009). They are also more demanding in terms of diet, requiring a higher 468 
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level of managerial skills to provide a balanced diet year-round, according to animals’ categories 469 

and productive cycle (Brito et al., 2021; Hoischen-Taubner et al., 2021). Moreover, the capital 470 

invested in more productive animals is higher, which also increases losses in case of unexpected 471 

culling (Hoischen-Taubner et al., 2021). The same pattern was found for renting land, which 472 

significantly increases production risk but is beneficial to production efficiency. While renting land 473 

is associated with contractual expenses, we expect that farmers use rented land to produce high-474 

quality pasture or silage, such that it improves farm environmental efficiency. Conversely, the 475 

presence of breeding bulls in the herd significantly reduces risk, but at the same time has a negative 476 

effect on environmental efficiency.  477 

3.3 Shadow price of methane emissions 478 

The farm-specific shadow price for methane emissions is calculated with respect to the 479 

desirable output milk by using the sample mean of milk price. Since input and output variables 480 

have been normalised to estimate the production frontier, we adjust the shadow price by 481 

multiplying the result of eq. (9) by the ratio of the desirable output by the undesirable output 482 

(Mamardashvili et al., 2016). The resulting mean shadow price value is US $2,254, suggesting that 483 

the opportunity cost of reducing an extra tonne of methane emitted in terms of foregone milk 484 

production would be around 6.2 t FPCM. Moreover, to compensate for all methane emitted by the 485 

farms in our sample, it would cost on average $11,160 per farm. These results indicate that 486 

compensating costs are high, representing almost one-quarter of farms’ revenue. Therefore, under 487 

the present technology, improving farming efficiency is the most cost-effective path to mitigate the 488 

emissions of dairy farms. Notwithstanding, the shadow price calculation assumes that farms are 489 

operating on the production boundary, and thus shadow price values for inefficient farms may be 490 

overestimated (Adenuga et al., 2019). 491 

To the best of our knowledge, this is the first study to apply the HDF to derive the shadow 492 

price of methane from dairy farms, making a cross-study comparison very limited. Scaling our 493 

results to CO2eq. by applying the conversion factor of 27.2 (Masson-Delmotte et al., 2021), we 494 

reach a value of US $83 per one tonne of CO2eq. The results from studies evaluating whole-farm 495 

CO2eq. emissions considerably vary. For instance, Njuki and Bravo-Ureta (2015) reported values 496 

ranging from US $43 to US $950 per tonne of CO2eq. for US dairy production. The mean value 497 
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reported for milk production in Germany was 165 € (US $186)6 per tonne of CO2eq. (Wettemann 498 

and Latacz-Lohmann, 2017), while Le et al. (2020) reported a value of Can $308.29 ( US $230) 7 499 

per tonne of CO2eq. in Canada. Naturally, direct comparisons are not only limited by differing 500 

environmental efficiency models but also by regional milk prices and assumptions in modelling 501 

GHG emissions, which considerably differ across studies.  502 

4 Policy implications 503 

Dairy farming is a key agricultural activity to support several SDGs in rural areas. More 504 

specifically, it can contribute to achieving the targets from SDG 1 (no poverty), 2 (zero hunger), 505 

12 (responsible consumption and production) and 13 (climate action). In the present study, we 506 

evaluate dairy farmers’ capability to manage their activities towards higher productivity and lower 507 

methane emissions. Reducing methane and other GHG emissions from dairy farming is a priority 508 

for meeting long-term climate goals (Gerber et al., 2013; IPCC, 2019c; Key and Tallard, 2012; 509 

Reisinger et al., 2021). However, this cannot be achieved at the expense of reducing milk 510 

production and availability, especially in LMICs, where milk plays a fundamental role in infant 511 

nutrition, food security and income generation (FAO, 2019; Grenov and Michaelsen, 2018; Hemme 512 

and Otte, 2010; Tricarico et al., 2020). Therefore, developing policies and mechanisms that reach 513 

these goals simultaneously is highly desirable.  514 

There is a growing body of literature supporting the notion that the higher environmental 515 

efficiency of dairy farms can be achieved across countries and production systems. However, it is 516 

in LMICs where the greatest benefits (marginal effects) can be achieved in terms of both reduced 517 

GHG emissions and increased food production (FAO and GDP, 2018; Gerber et al., 2013). The 518 

present study adds to this literature by identifying simple management decisions that could improve 519 

the environmental efficiency of pasture-based dairy farms (e.g., increasing the share of improved 520 

pastures at the farm and adjusting herd composition). These results are very likely to be true across 521 

other regions and countries with similar production systems. For example, Ravichandran et al. 522 

(2020) identified that many smallholder producers in India did not adopt such simple technologies 523 

as feeding troughs and practices such as chopping of forage. While production technologies and 524 

knowledge to overcome such production barriers exists and are already available in Brazil and 525 

                                                 
6  https://www.exchangerates.org.uk/EUR-USD-spot-exchange-rates-history-2017.html 
7  https://www.exchangerates.org.uk/CAD-USD-spot-exchange-rates-history-2020.html 
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many other countries, there remains a huge gap between availability and adoption. Therefore, 526 

incentive mechanisms and research focusing on context-specific technology and knowledge 527 

transfer is urgently required to bridge this gap in LMICs. Moreover, while there are technologies 528 

and practices towards low-carbon dairy farming that could be adopted by farmers with zero or very 529 

low expenses, e.g., rotational grazing, others will inevitably require affordable financing 530 

instruments, e.g., pasture improvement through seeding of more productive and nutritive grass 531 

species or genetic improvement of herds. 532 

Furthermore, our results indicate that increasing the milk production of cows improves the 533 

environmental efficiency of dairy farming. This is considered one of the most important 534 

achievements that dairy farmers should seek to reduce the carbon footprint intensity of milk 535 

(Gerber et al., 2011; Herrero et al., 2016). This goal can be reached based on two pathways: first, 536 

to increase the milk production of the actual herd by increasing the quality of cows’ diet, and 537 

improving herd and animal management; and second, the adoption of animals with higher genetic 538 

merit for producing milk, which can be achieved by either crossing the actual herd with more 539 

productive animals – normally through artificial insemination – or replacing animals in the herd 540 

with more productive animals (Novo et al., 2015; Ravichandran et al., 2020). Replacing low-541 

producing animals with more productive ones is very appealing in terms of both increasing food 542 

production and reducing GHG emissions. However, policy-makers should be aware that promoting 543 

the adoption of high-productive breeds does not solve the problem per se. Improving smallholder 544 

dairy farming must follow a planned sequence of steps based on a system thinking approach. 545 

Therefore, programmes aimed at the sustainable intensification of dairy farming. For example, Full 546 

Bucket in Brazil (Novo et al., 2015) and MilkIT in India and Tanzania (Ravichandran et al., 2020) 547 

normally first opt to implement strategies to improve the production of the actual herd through 548 

feeding, herd management, animal sanity and proper manure handling (Beber et al., 2019; Vogel 549 

and Beber, 2022). This approach takes some time to implement, requiring farmers to acquire the 550 

know-how to manage and feed more productive and demanding animals, which are promoted in a 551 

next step in the intervention cycle (Novo et al., 2015). 552 

 In the case of the Full Bucket programme, the transformation of dairy farms into showcase 553 

units (model farms) is a key strategy for creating learning clusters at the village level. In addition, 554 

technicians are trained to provide farmers with tailored support, developing strategies based on the 555 

actual farm endowments and accounting for the socioeconomic characteristics of the household. 556 
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This and similar programmes are considered successful cases for the sustainable intensification of 557 

dairy farming, increasing food security, nutrition, women’s empowerment, improving the overall 558 

livelihood of smallholders and reducing environmental impacts of dairy farms across LMICs 559 

(Gerber et al., 2013; Novo et al., 2013; Ravichandran et al., 2020). Despite being very effective, 560 

the implementation of programmes with this design requires some time to show satisfactory results 561 

(3+ years) (Novo et al., 2015, 2013; Ravichandran et al., 2020). Moreover, their development must 562 

be sustained by complimentary supply chain operations and market opportunities, which are 563 

sometimes limited in LMICs (Beber et al., 2019; de Mendonça et al., 2020; Ravichandran et al., 564 

2020). 565 

  Furthermore, promoting sustainable intensification strategies at the farm level and closing 566 

efficiency gaps may not be sufficient to meet global methane emission reduction targets on time. 567 

The pledge of reducing global methane emissions by 30% from 2020 levels by 2030 will require 568 

an extra effort by countries with large livestock herds, such as Brazil and India. Pricing instruments 569 

such as carbon and methane taxes have been suggested as an alternative to drive the reduction of 570 

externalities in the livestock sector (Key and Tallard, 2012). The shadow price found in the present 571 

study provides an indication of the abatement cost for methane emitted by pasture-based dairy 572 

farms in Brazil, which can support research for understanding the impacts of implementing pricing 573 

instruments in the dairy sector in the tropics. Nonetheless, the implementation of emission taxes in 574 

LMIC should be considered last, since the heterogeneity across farms may render the 575 

implementation of non-discriminatory emissions taxes. Moreover, advanced certification and 576 

monitoring platforms would be necessary to implement methane taxes while avoiding negative 577 

spill overs in terms reducing food security (FAO, 2019; Key and Tallard, 2012). Given the possible 578 

issues associated with the adoption of methane taxes, policy measures of incentivisation should be 579 

prioritised, e.g., payments for environmental services and other conservation-inducing incentives. 580 

Another set of solutions that have gained importance in recent years concerns on-farm 581 

carbon storage (Brazil, 2021b; COWI et al., 2020; IPCC, 2019c). Pasture improvement is at the 582 

centre of this approach for less productive dairy farms, as it generates important synergies. For 583 

instance, pasture improvement promotes carbon storage in biomass and soil as well as the 584 

production of forage with higher digestibility, consequently favouring animal productivity and the 585 

reduction of methane emissions from livestock (Congio et al., 2018; Cortner et al., 2019; O’Brien 586 

et al., 2016). Following pasture improvement, the adoption of integrated production systems has 587 
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also been promoted as an important carbon farming strategy (e.g., silvopastoral, livestock-forestry 588 

and crop-livestock-forestry). The use of fast-growing trees species on farms can also create 589 

synergies in many ways. They have strong potential to capture carbon in biomass through 590 

photosynthesis. In addition, experimental studies in Brazil have shown that implementing trees on 591 

pastures creates microclimates that protect pastures from heat and frost. This microclimate also 592 

improves animals’ thermal comfort, reducing energy use for maintenance and increasing milk 593 

production (Brazil, 2021a; Cortner et al., 2019; Resende et al., 2020; Salton et al., 2014). This set 594 

of actions has been extensively supported by financing incentives in Brazil through the Low Carbon 595 

Agriculture (ABC) plan (Brasil, 2012; Brazil, 2021b).  596 

The ABC plan has led to significant reductions in GHG emissions in the country, the 597 

development of low-carbon and adaptation research and successful certifications schemes, e.g., 598 

Low Carbon Brazilian Beef (Brazil, 2021b, 2021a; Resende et al., 2020). Despite the effectiveness 599 

of the cases developed in Brazil, the low rate of adoption of financial incentives for adopting low-600 

carbon practices in the country is a sign of lacking governance to couple financial incentives and 601 

technological transfer at the farm level (Cortner et al., 2019). Moreover, implementing 602 

silvopastoral and forestry integration on dairy farms may require on-farm structural changes, 603 

increasing the complexity of the farming systems. This in turn will require even higher technical 604 

and managerial skills as well as financial resources for farmers. This clearly indicates the need to 605 

develop and expand technology and knowledge transfer programmes based on holistic approaches 606 

guided by multidisciplinary teams, as well as the access to credit to improve feeding strategies and 607 

genetics of the dairy herd to reach satisfactory levels of productivity and reduction of GHG 608 

emissions. 609 

Given the stark heterogeneity of dairy farms across countries and regions, defining and 610 

benchmarking satisfactory levels of productivity must take into account regional pedoclimatic 611 

conditions for milk production as well as the socioeconomic conditions of farmers in the region 612 

(FAO and GDP, 2018; Gerber et al., 2011; Vogel and Beber, 2022). The greatest benefits from 613 

increasing dairy cow productivity can be achieved in systems with animals producing less than 2 614 

tonnes FPCM year. Gains are still significant in systems producing between 2 and 5 t FPCM per 615 

year, while increasing productivity above 5 tonnes FPCM per cow per year will produce only small 616 

marginal reductions in the carbon footprint of milk (FAO and GDP, 2018; Gerber et al., 2011). 617 

Farms in our sample presented a production of ~3.7 t FPCM per cow per year, which is about one 618 
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tonne higher than the national average (IBGE, 2018). Thus, we can infer that commercial pasture-619 

based farms in Brazil striving to achieve 5 t FPCM per cow per year could remarkably increase 620 

milk outputs while reducing the GHG intensity of milk. 621 

5 Conclusion  622 

Dairy farming has a crucial function in generating farm income, providing food security 623 

and employment, as well as safeguarding livelihoods in rural areas in many LMICs. Nevertheless, 624 

dairy farming is also an important contributor to GHG emissions, which is an externality of global 625 

concerns. Low productive cows in adverse climate settings as much as inadequate management 626 

practices compromise farm productivity and are also likely to affect their environmental 627 

performance. However, research on the environmental performance of dairy farming is limited to 628 

developed countries and high-productive systems. In this paper, we have addressed this gap and 629 

analysed the environmental performance of pasture-based dairy production in MG state in Brazil. 630 

The stochastic translog HDF was applied considering methane emissions as an undesirable output. 631 

This approach allowed us to derive farms’ specific environmental efficiency scores, identify key 632 

variables that affect efficiency and risk in milk production, and derive the economic/environmental 633 

trade-off in the form of the shadow price for methane.  634 

Therefore, this study concludes that farmers can improve farms’ environmental 635 

performance by increasing milk and animal liveweight outputs while simultaneously reducing 636 

methane emissions and thus contribute to the Brazilian commitments for reducing methane 637 

emissions simply by becoming more efficient in the use of current level of inputs. On average, 638 

farmers can improve the environmental efficiency of their farms by increasing the milk yield of 639 

cows, increasing the share of improved pastures on farms and adjusting the herd structure. The 640 

study also provides evidence that dairy farmers operating in tropical and semi-arid climates are at 641 

a disadvantage compared with farmers from areas with a humid subtropical climate. These results 642 

reinforce the necessity of considering regional climate types for designing agri-environmental 643 

policies and instruments. The shadow price found in this study is within the range reported in the 644 

literature and was considerably high in terms of farm revenue, suggesting that mechanisms other 645 

than pricing should be given priority for reducing methane emissions in dairy farms. Given the 646 

importance and sensitivity of dairy farming for food security and infant nutrition in LMICs, climate 647 

policies for the dairy sector must take a precautionary approach in this regard. While the 648 
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development of dairy farming in LMICs must be driven by multiple strategies, providing long-term 649 

technical support and knowledge transfers must be at the core of policy strategies.  650 

Finally, we discuss some limitations of our study. Our sample exclusively comprised 651 

farmers taking part in a voluntary opt-in programme designed to improve farm efficiency, and thus 652 

extrapolating our results for the whole population of dairy farmers in Brazil warrants caution due 653 

to possible selection bias issues. Nonetheless, given the actions promoted by the FB program, we 654 

expect that smallholder farmers not engaged in the programme will on average display lower 655 

environmental performance than those who participate. The cross-sectional characteristic of our 656 

database did not allow us to explore the dynamics in climate and annual extreme weather conditions 657 

faced by farmers in MG. Moreover, due to the limited number of observations, we derived a two-658 

level ACT, which includes a main climate group and the seasonal precipitation characteristics. 659 

Further studies considering three-level ACT classification are expected to provide further insights 660 

into the climate influence on the efficiency of dairy farms. Due to the lack of feasible measurement 661 

techniques, it was necessary to calculate methane emissions indirectly and based on assumptions, 662 

e.g., manure deposition. This certainly added some uncertainty to our results. Finally, this study 663 

focused exclusively on methane, which is currently the most concerning externality in the Brazilian 664 

dairy sector, and it is necessary to further explore trade-offs between methane and other undesirable 665 

outputs in future studies in the Brazilian conditions.  666 
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 962 

Appendix A  963 

 964 

Table A1 965 

Forage characteristics 966 

Name Type DM NDF TDN CP 

Zea mays Silage 31.2 54.0 63.2 7.2 

Saccharum officinarum L. Fresh forage 28.9 53.5 62.8 2.8 

Brachiaria.spp Fresh forage 35.4 71.5 50.1 6.4 

Cynodon spp. Fresh forage 27.9 75.6 59.1 12.1 

Panicum spp. Fresh forage 28.0 70.4 58.0 10.2 

Pennisetum purpureum Schum. Fresh forage 22.04 64.91 63.66 10.78 

Generic Intensive Fresh forage 25.98 70.31 60.26 11.04 

DM: dry matter (% fresh matter); NDF: neutral detergent fiber (%DM); TDN: total digestible 967 

nutrients (% DM); CP: crude protein (%DM). Based on Valadares Filho et al. (2020). 968 

   969 

Table A2 970 

Concentrate ration formulation for lactating cows and other cattle 971 

Ingredient Lactating cows Other cattle 

Maize meal (%) 63.00 40.00 

Soybean meal (%) 24.28 20.00 

Soybean hulls (%) 2.00 5.00 

Rice meal (%) 6.75 32.58 

Dicalcium phosphate (%) 1.12 1.53 

Limestone (%) 1.07 0.00 

Salt (%) 0.79 0.78 

Urea (%) 1.00 0.10 

 972 

 973 

 974 

 975 

 976 

Appendix B 977 

 978 

Table B1 979 

Parameter estimates of the hyperbolic distance function 980 

Technology DH CH4 SE 

α0 (Intercept) -0.218 *** 0.040 

α1 (Capital) -0.043 *** 0.012 

α2 (Lactating cows) -0.207 *** 0.051 
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α3 (Labour) 0.012  0.023 

α4 (Land) -0.019 * 0.009 

α5 (Feed) -0.154 *** 0.028 

α6 (Other expenses) -0.111 *** 0.024 

β1 (Methane) -0.257 *** 0.029 

β00 0.239  0.236 

α11 0.054 *** 0.016 

α22 2.518 *** 0.581 

α33 -0.023  0.117 

α44 -0.004  0.011 

α55 0.001  0.084 

α66 0.060  0.053 

α12 -0.103 * 0.059 

α13 0.005  0.029 

α14 0.023 * 0.011 

α15 0.010  0.031 

α16 0.129 *** 0.033 

α23 -0.265  0.173 

α24 -0.026  0.064 

α25 -0.863 *** 0.178 

α26 0.051  0.144 

α34 0.025  0.023 

α35 -0.323 *** 0.063 

α36 0.105 * 0.047 

α45 0.051 * 0.021 

α46 -0.057 ** 0.019 

α56 0.102 * 0.052 

δ2(Animals sold) 0.005 ** 0.002 

δ22 0.001 ** 0.001 

χ10 -0.043  0.029 

χ20 -0.682 * 0.348 

χ30 0.230 * 0.094 

χ40 0.005  0.037 

χ50 0.317 ** 0.114 

χ60 -0.152  0.093 

γ12 0.002 * 0.001 

γ22 0.016 *** 0.005 

γ32 -0.011 *** 0.002 

γ42 0.003 *** 0.001 

γ52 0.001  0.003 

γ62 0.005 ** 0.002 

ρ20 -0.008 *** 0.003 

ω2 -0.042 ** 0.013 

ω3 -0.034 * 0.015 

ω4 -0.031  0.024 

    
Heteroskedasticity in 𝜎𝑢

2    
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ζ0 (Intercept) 3.881 ** 1.425 

ζ1 (Buyers) 0.092  0.059 

ζ2 (Milk yield) -0.481 *** 0.074 

ζ3 (Time farming) -0.015  0.010 

ζ4 (Intensive pasture) -1.773 * 0.880 

ζ5 (Cows in the herd) -3.807 * 1.631 

ζ6 (Tech. support) -0.055  0.036 

ζ7 (Bull in the herd) 0.239  0.312 

ζ8 (Hire labour) 0.695 * 0.370 

ζ9 (Rent land) -0.107  0.342 

    
Heteroskedasticity in 𝜎𝑣

2    
τ0 (Intercept) -16.849 *** 2.457 

τ1 (Buyers) 0.335 * 0.137 

τ2 (Milk yield) 0.683 *** 0.123 

τ3 (Bull in the herd) 0.014  0.065 

τ4 (Hire labour) -1.905 ** 0.629 

τ5 (Rent land) -0.721  0.642 

    
Log_Likelihood 236.15   
Mean EE 0.9141   
Std.Dev 0.0873   
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