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Abstract. Expressively equivalent logical languages can enunciate logical notions in 

notationally diversified ways. Frege’s Begriffsschrift, Peirce’s Existential Graphs, and the 

notations presented by Wittgenstein in the Tractatus all express the sentential fragment of 

classical logic, each in its own way. In what sense do expressively equivalent notations differ? 

According to recent interpretations, Begriffsschrift and Existential Graphs differ from other 

logical notations because they are capable of ‘multiple readings’. We refute this 

interpretation by showing that there are at least three different kinds of such multiple 

readings. While readings of the first kind do not capture any essential difference among 

notations but only among vocabularies, corresponding to readings of the second and the third 

kind two general parameters according to which notations may differ are defined: linearity vs. 

non-linearity, and tabularity vs. non-tabularity. This answers the question of how there can be 

substantially different but expressively equivalent logical notations. 

 

Keywords: Begriffsschrift; Existential Graphs; truth-tables; Frege; Peirce; Wittgenstein; 

philosophy of notation; vocabulary; linearity; tabularity. 

 

 

 

1. Introduction 

 

Expressively equivalent logical languages can enunciate logical concepts and 

operations in notationally diversified ways. We know what it means for two or more 

logical languages to be expressively equivalent, but we do not know what it means 

for languages that are expressively equivalent to differ from each other in some 

meaningful and substantial ways. This paper investigates the meaning of such 

‘notational differences’.1 

Peirce and Frege, two pioneers of modern logic, invented logical 

notations that differed in significant ways from the notations of their predecessors as 

well as from their followers. Frege invented the Begriffsschrift (BS) in 1879 (Frege 

1879). Peirce created the system of Existential Graphs (EGs) (Peirce 1896, 1903, 

 
1 To pre-empt misinterpretations from the get-go: one must not conflate expressive equivalence with 

notational or syntactic equivalence. Two notations are expressively equivalent if they characterize the 

same logic (anything expressible in one is also expressible in the other; in model-theoretic terms, have 

the same models). But two expressively equivalent notations, such as BS and EGs, may clearly differ 

in terms of not being notationally equivalent. For the sake of clarity and conciseness, the present paper 

is concerned only with languages expressively equivalent to propositional calculus PC in the sense of 

being two-element Boolean algebras (Ma & Pietarinen 2018b). 

mailto:francesco.bellucci4@unibo.it
mailto:ahti.pietarinen@gmail.com
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1906, 2019) after having devoted his best efforts to the development of a number of 

algebraical systems of logic (Peirce 1880, 1883, 1885). Wittgenstein presented in the 

Tractatus Logico-Philosophicus a notation for sentential logic in which truth-tables 

are propositional signs, and later a notation with one truth-operation ‘N’, equivalent 

to a generalization of the joint denial. All these notations can express classical 

propositional logic and so are Boolean algebras. Yet it is evident that each of these 

systems represents propositional logic in ways that significantly differ from standard 

languages we find in typical definitions of logic. Different notations may have the 

same logic. The question thus arises: In which senses are these notations different? 

According to the proposal recently advanced by Macbeth (2005),2 BS is 

peculiar in the sense that its formulas can have multiple equivalent analyses or 

readings. A similar interpretation concerning EGs has been proposed by Shin 

(2002).3 According to these authors, the fact that in BS and EGs a formula can have 

multiple, logically equivalent readings is a characteristic feature of both BS and EGs. 

They take BS and EGs to be qualitatively different from other, expressively 

equivalent notations that define languages of propositional logic. For other reasons 

but with similar results, Landini (2007) proposed an interpretation of what 

Wittgenstein’s notations could be thought to achieve, namely that logically 

equivalent formulas have exactly one and the same representation. The present paper 

analyses these views and subjects them under critical scrutiny.  

We show that the fact that formulas of BS and EG are capable of multiple 

readings is insuffient to characterize either of these notations. The Macbeth–Shin 

claim that formulas of BS and EGs are capable of multiple readings boils down to the 

interdefinability of primitive sentential operators. Other notations exist which differ 

as to how many and which primitive sentential operators they adopt. The claim that 

only BS and EGs manifest multiple readings cannot hold, because there are notations 

which share with BS and EGs the set of primitive operators and whose formulas have 

the same multiple readings as formulas of BS and EGs. On the other hand, the claim 

that BS and EGs do manifest, like other notations, such multiple readings, though 

true, ceases to be of theoretical interest, because what one wants to know is how BS 

and EGs differ from expressively equivalent notations, not what properties they share 

with them.  

Landini’s analysis allows us to differentiate between what in section 4 we 

label ‘tabular’ and ‘non-tabular’ notations. As it will be shown, Landini’s argument 

only holds for Wittgenstein’s truth-tabular notation presented at TLP 4.442 (which is, 

in our terminology, a tabular notation), but it fails for the N-notation introduced at 

TLP 5.502 (which is a non-tabular notation).4  

From the Macbeth-Shin point of view, formulas in tabular notations have 

multiple readings in formulas of non-tabular notations. But, as we show here, the 

sense in which the formulas of BS and EGs have multiple readings is different from 

the sense in which Wittgenstein’s truth-tabular notation has multiple readings in non-

 
2 See also Thiel 1995, Shin & Moktefi 2012, and Cook 2013. Bellucci, Moktefi & Pietarinen (2018) is 

a recent study of Frege, Peano’s and Peirce as pioneers of philosophy of logical notations. 
3 See also Shin & Moktefi 2012, Macbeth 2012, Shin & Hammer 2014, and Shin 2015; for a rebuttal, 

see Bellucci & Pietarinen 2016. 
4 Landini holds that it was Wittgenstein’s mistaken view that his N-operator captures what the ab-

notation captures. In our terminology, Landini thinks that Wittgenstein thought his N-notation, which 

is non-tabular, to be tabular. Whether Landini is right or not, nothing in our arguments depends on this 

concern. 
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tabular notations. There thus emerge the necessity of differentiating between different 

kinds of multiple readings. We also show that a third kind of multiplicity of readings, 

irreducible either to the kind identified by Macbeth and Shin or to the kind discussed 

by Landini, depends on whether the notation is ‘linear’ or ‘non-linear’, in the sense to 

be specified in Section 3.  

In this manner, three different senses in which a formula can be said to have 

the alleged ‘multiple readings’ can be recognized, so that we are obliged to recognize 

(at least) three different kinds of ‘multiple readings’. We identify readings of the first, 

second, and third kind, related to the vocabulary, linearity, and tabularity of the 

notation, respectively. Corresponding to the second and the third kind, we define two 

general parameters according to which notations may differ: linearity vs. non-

linearity, and tabularity vs. non-tabularity. Corresponding to the readings of the first 

kind, only a difference among the vocabulary, or sets of truth-functional operators, 

can be defined.5 In conclusion, this argument provides a new answer to the question 

of how there can be subtantially different logical notations of languages that are 

expressively equivalent. 

 

2. Vocabulary: Multiple readings of the first kind 

 

The sentential fragment of BS is based on two primitive sentential operators, 

negation and material implication. The rules of construction of complex sentential 

formulas given by Frege in the Begriffsschrift are generally known. According to 

Macbeth (2005), BS formulas can be ‘read’ or ‘analyzed’ in various, provably 

equivalent ways. For example, the BS formula in Fig. 1 can be read both as (1a) and 

as (1b). Likewise, the BS formula in Fig. 2 can be read as (2a–d). 

                        
Figure 1                                                        Figure 2 

 

(1a)   R ⊃ (Q ⊃ P)    

(1b)  (R & Q) ⊃ P 

 

(2a)    Z ⊃ (R ⊃ (Q ⊃ P)) 

(2b)    (Z & R) ⊃ (Q ⊃ P) 

(2c)    Z ⊃ ((R & Q) ⊃ P) 

(2d)    (Z & R & Q) ⊃ P 

 

 
5 We do not claim that logical notations can differ according to our parameters only. There can be 

other parameters, aspects or undiscovered phenomena with respect to which logical notations may 

differ substantially. What we claim is that our parameters do qualitatively differentiate between logical 

notations. 
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According to Macbeth, ‘[t]he equivalence of these […] formulae, though it must be 

proven in standard (one-dimensional) notation, is a given of Frege’s two-dimensional 

notation. […] Frege’s one formula corresponds to an equivalence class of formulae in 

standard one-dimensional notation’ (2005: 51). That is, several equivalent formulas 

in standard one-dimensional notation correspond to one and the same BS formula, 

and each of those equivalent formulas is a distinct ‘analysis’ (2005: 50) of the BS 

formula in question. This, Macbeth argues, constitutes a ‘fundamental difference’ 

between the BS and standard notations: 

 
Frege’s logical language functions as a fundamentally different kind of language from that of 

quantificational logic. Rather than directly saying something about something, Begriffsschrift 

sentences display objects, concepts, and truth-values in logical relations of various kinds and can be 

analyzed in various ways. (2005: 72) 

 

It is true that one and the same BS formula can correspond to distinct, provably 

equivalent formulas in standard notation. But it does not follow from this that BS is a 

‘fundamentally different kind of language’. In the Begriffsschrift Frege explains how 

to express conjunctive or disjunctive sentences with his notational apparatus 

containing only negation and implication. For example, Fig. 3 represents ‘Q or P’ and 

Fig. 4 represents ‘Q and P’ (Frege 1879, §7):  

                        
Figure 3                                           Figure 4 

 

This indicates that Frege recognizes that BS formulas do have multiple readings, 

given that other connectives can be defined in terms of its primitives. But he was far 

from claiming that such a feature is only present in his notation. In fact, the same 

phenomenon is present in every expressively adequate sentential language which 

does not have a distinct sign for each of its truth-functions.  

Mutatis mutandis, the same argument applies to EGs. The language of the 

Alpha department of EGs, which agrees with the sentential calculus and Boolean 

algebra (Ma & Pietarinen 2017), has two primitives: conjunction, represented by 

juxtaposing propositional variables on the sheet of assertion, and negation, 

represented by an oval encircling negated sentence(s).6 According to Shin (2002), the 

fact that one and the same Alpha graph can be read in multiple ways in the standard 

notation of propositional logic makes Alpha a ‘fundamentally different kind of 

language’.  

As an example, the graph in Fig. 5 can be multiply read as (5a–c). 

 

 
Figure 5 

 

 
6 We offer a more detailed account of Alpha’s syntax in Section 3. 
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(5a) ~ (P & ~Q) 

(5b)  P ⊃ Q  

(5c) ~P ∨ Q 

 

This depends, Shin argues, on the possibility of ‘carving up’ a graph in multiple ways 

(2002: 77–80) — a possibility which is excluded in standard notations. However, the 

possibility of ‘carving up’ one and the same formula in multiple ways refers to the 

possibility of translating one configuration of signs of one language (call it the source 

language, Ls) into multiple configurations of signs in another, provably logically 

equivalent language (call it the target language, Lt). Shin’s condition for having 

multiple translations of this kind is that Lt has a greater number of primitive 

operators than Ls. In the case of BS, Ls has two primitive operators (negation and 

implication), while the Lt in which (1a–b) and (2a–d) are written has at least one 

more (conjunction). Likewise, in the case of EGs, Ls has two primitive operators 

(negation and conjunction), while the Lt in which (5a-c) are written has at least two 

more (implication and disjunction). As a matter of fact, had Lt the same primitives as 

Ls, we would be unable to distinguish (1a) from (1b), (2a) from (2b–d) and (5a) from 

(5b–c).  

In general, given a Ls with n primitive operators, a formula of Ls can be 

‘multiply analyzed’ — i.e., can correspond via translation — to a class of equivalent 

formulas of Lt only if Lt has (at least) n+1 primitive operators (n≤15). What Macbeth 

calls ‘multiple analyses’ and Shin ‘multiple readings’ of a formula are merely 

translations of a formula of a Ls into several equivalent formulas in a Lt, where Lt 

has a richer logical vocabulary than Ls, so that one single configuration of primitive 

signs in Ls can correspond to several equivalent configurations of primitive signs in 

Lt. In general, since notations exist which have the same set of primitive operators as 

BS and EGs, it follows that the possibility of multiple readings is no specific feature 

of either BS or EGs.7  

Take the language with only the Sheffer stroke in its vocabulary, for 

example. It is expressively equivalent to sentential logic.8 Following Macbeth and 

Shin, one should now say that several, equivalent formulas in Lt correspond to one 

and the same formula of the Ls with the Sheffer stroke as its sole logical operation. 

The equivalence class of formulas in (1a–b) corresponds to (6), and the equivalence 

class of formulas in (2a–d) corresponds to (7). In Macbeth’s and Shin’s terms, 

formula (6) is ‘multiply analyzed’ as (1a–b), and (7) is ‘multiply analyzed’ as (2a–d). 

 

(6)      (P | ((Q | (R | R)) | (Q | (R | R)))) 

 

(7)     (Z | ((P | ((Q | (R | R)) | (Q | (R | R)))) | (P | ((Q | (R | R)) | (Q | (R | R)))))) 

 

 
7 In a critical review of Macbeth’s book, Sullivan (2009) argues that the fact that a notation is capable 

of multiple readings says nothing of the notation itself. According to Sullivan, “[d]ifferent “readings” 

here are simply different translations into English” (2009: 93) or, as in Macbeth’s and Shin’s 

examples, into a notation richer than the BS or EGs in the amount of the primitive symbols those 

notations consist of. 
8  More appropriately speaking the Peirce Stroke, as it was Peirce who discovered the functional 

completeness of the NOR and NAND operators in 1880 (see Peirce 1989: 218–221). 
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It is obvious that, by the same token, one and the same formula of such Shefferian 

notation can be ‘multiply analyzed’, for example, in BS formulas. For example, (8) 

can be multiply read into Fig. 6 and Fig. 7.  

 

(8)  P | P 

                                    
Figure 6                                                                              Figure 7 

 

Or, as another example, take a notation with only implication as the primitive 

operator, such as positive implicational logic. A sentence in the notation of such 

logic, such as (9), would be multiply analysed into (1a-b) exactly as the formula in 

Fig. 1 is in Macbeth’s account. 

 

(9)  R  ⊃ (Q ⊃ P)    

 

We present these examples only to highlight the fact that what Macbeth and Shin call 

‘multiple analyses’ or ‘multiple readings’ of a formula are translations of a formula 

of a Ls into several, provably logically equivalent formulas, in a Lt which has a richer 

logical vocabulary than Ls has: one single configuration of primitive signs in Ls 

corresponds to several equivalent configurations of primitive signs in Lt. But then the 

possibility of multiple readings captures no essential character of either BS or EGs, 

because these systems do not depend on any specific feature of Ls. They depend on 

the relation between Ls and Lt in terms of their vocabularies.  

In other words, multiple readings in the Shin-Macbeth sense concern 

differences in the vocabularies of languages that do not differ in their expressive 

power. The ‘multiple readings’ discussed by Macbeth and Shin does not distinguish 

between logical notations, but between sets of primitive operations. If multiple 

readings in this sense really distinguished among notations, any language with 

negation and conjunction as its set of primitive operations would be in this sense the 

same notation as EGs, and any language with negation and conditional would be in 

this sense the same notation as BS. This consequence needs to be avoided.  

Macbeth suggests that the reason why the BS is capable of multiple 

readings in a language Lt is that BS is two-dimensional while Lt is one-dimensional. 

The example above concerning the Sheffer-stroke notation and some Lt shows that 

being two-dimensional is unnecessary for multiple readings to emerge. But how, 

then, is the two-dimensional character of BS linked to the possibility of multiple 

readings?  

One could naturally argue that BS makes multiple readings easier to 

obtain than would happen in other notations. For example, one may argue that the 

formula in Fig. 1 is more easily read as (1a–b) than (6) or (9) are. However, this is an 

appeal to psychological convenience, which is of no concern in logic. That multiple 

readings are easier in some notations and harder in others does not affect the fact that 

such readings (in the Macbeth-Shin sense) can in principle occur among notations 

that differ in their logical vocabularies, independently of any cognitive, perceptual or 

empirical matters.   
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Shin has applied the possibility of multiple readings to the demarcation of 

‘diagrammatic’ from ‘non-diagrammatic’ (or ‘symbolic’) notations.  She situates EGs 

and the BS on the diagrammatic side and the notations into which EGs and BS 

formulas are ‘multiply read’ on the symbolic side.9 The problem with this use of the 

multiple-readings phenomenon is that other notations, which we might also consider 

‘symbolic’, do allow multiple readings: as remarked above, in principle any sentence 

in the standard notation for sentential logic with only negation and conjunction can 

have the same multiple readings as EGs have, and any sentence in the standard 

notation for sentential logic with only negation and conditional can have the same 

multiple readings as BS has.  

On the other hand, there are certain weakenings of classical Alpha that 

involve modifications to the rules of transformations and hence give rise to non-

standard logical behaviour (Ma & Pietarinen 2018). Some of them, such as semi-De 

Morgan graphs, cannot be ‘multiply read’ at all. Yet the graphs of the logic of semi-

De Morgan algebras have forms that ‘look’ exactly the same as the forms of the 

classical Alpha graphs that agree with Boolean algebras. If Shin’s argument were 

correct, these non-classical systems of graphs that are generalizations of Boolean 

algebra would not count as diagrammatic at all, while graphs of the language of a 

stronger logic that ‘look exactly the same’ would. In brief, an appeal to the ‘visual’ 

features of a language cannot be the solution. 

Shin’s explanation of what differentiates the multiple readings of 

‘diagrammatic’ notations from the multiple readings of ‘non-diagrammatic’ ones is 

that, when we ‘multiply read’ a formula of a ‘non-diagrammatic’ language, what we 

actually do is extend the vocabulary of the language (cf. Shin 2002: 84). Thus, for 

example, in order to differentiate the multiple readings of Fig. 5 into (5a–c) from 

those of (6) into (1a–b), Shin would say that while Fig. 5 is multiply read into (5a–c), 

(6) is in fact not multiply read as (1a) and as (1b). Rather, the language of (6) is 

extended into the language of (1a) and (1b) (i.e., further primitive operators are added 

to the vocabulary of the language). That is, we actually do not read the formula 

differently but we extend the vocabulary of the language. 

But this is a non sequitur. No language can extend its own vocabulary 

without producing a different, often an equally expressive, language.10 And since 

what Shin means with ‘multiple readings’ are translations among languages, the 

possibility of taking one language as an extension of another is irrelevant. In fact, to 

impose such a condition — that Lt should not be an extension of Ls — is to 

significantly modify the definition of ‘multiple readings’. Under the new condition 

Shin’s ‘multiple readings’ have to be defined as ‘multiple translations of formulas of 

Ls into formulas of Lt in which Lt is not an extension of Ls’. But this new definition 

transforms a question de facto into a question de iure: de facto, a given Ls is poorer 

than Lt in its primitives. But according to the new condition, in order to speak of 

‘multiple readings’ it is requisite not just that Ls be poorer than Lt (de facto) but that 

it could not possibly be enriched (de iure). In other words, instead of simply 

differentiating languages by the set of their primitive operators, the revised definition 

would differentiate languages that can be extended from those that cannot. It is 

wholly unclear how one could pass from the notion of a ‘language incapable of being 

extended’ to the notion of a ‘diagrammatic language’. Nor is it clear why and to what 

 
9 See Shin 2002: 4; Moktefi & Shin 2012: 664; Shin 2015: 56. 
10 Cf. e.g. Church 1956: 48, 48n111. 
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extent EGs are a non-extendible language. The situation, however, seems to be this: 

either we accept the new condition, classifying EGs as a sui generis system whose set 

of primitives cannot be enriched (thus falling short of demarcating between 

diagrammatic and non-diagrammatic systems), or we refuse to accept the new 

condition, in which case we can only conclude that the whole multiple-readings 

argument (in the Macbeth-Shin sense) is only a roundabout way of saying that when 

two languages differ in their primitive truth-functional operations, one single 

configuration of primitive signs in one language corresponds to several equivalent 

configurations of primitive signs in the other. 

Hence the ‘multiple readings’ argument fails to shed light on the question 

of notational difference. Two languages may be expressively equivalent and yet they 

may differ in the set of primitive operators. If two languages with different sets of 

primitive operators were really two different languages, as the proponents of the 

‘multiple readings’ argument seem to hold, then one might be led to think that 

languages with the same set of primitive operators should be the same notation. But 

of course, languages with the same set of primitive operators may be different under 

several, other respects. In the sequel we will propose a more fine-grained analysis in 

order to capture the gist of the idea erroneously termed ‘multiple readings’. 

Furthermore, if the multiple-readings argument is intended (as it is 

according to Shin) to isolate either or both BS and EGs from other major classes of 

notations, such as ‘diagrammatic’ from ‘symbolic’, it fails to do so because any 

notation equivalent to either BS or EGs in the set of primitives allows precisely those 

multiple readings that BS and EGs allow. If we wish the multiple readings 

phenomenon to capture some essential property of either or both the BS and EGs but 

not, say, of the Sheffer stroke notation, then we should — as Shin tacitly does — add 

the condition that the language into which we multiply translate (Lt) should not be an 

extension of the language from which we translate (Ls). This condition does not solve 

the original problem, however, because then an argument has to be provided why BS 

and EGs cannot be extended in the same manner in which the Sheffer notation can be 

extended, namely by introducing further primitives by definition. No argument for 

the unextendability of these notations has been provided in Shin’s account. 

 

3. Linearity: Multiple Readings of the second kind 

 

Not all ‘multiple readings’ are of the kind just described. Some of Macbeth’s 

examples of multiple readings of a BS formula depend on certain other conditions, 

and the same holds of another kind of multiple readings that seem to characterize 

Peirce’s Alpha EGs. We now show that while the multiple readings per vocabulary 

characterized above depend on the difference between primitive operators in Ls and 

Lt, the multiple readings of this second kind depend on a difference between Ls and 

Lt with respect to what can be called their ‘abstract syntax’. 

Macbeth says:  

 
Once we have learned to read Frege’s notation in this way, it is easy to see, in Frege’s notation, that 

interchanging subcomponents is permissible. Changing the order of subcomponents does need to be 

justified, which is why interchange of subcomponents is given as a rule in Grundgesetze and is proved 

as a theorem in Begriffsschrift; but in Frege’s notation one such rule can cover all cases of this form of 

embedding. In our standard notations, by contrast, having proved that, say, ‘(P & Q) ⊃ R’ is 

equivalent to ‘(Q & P) ⊃ R’ will not save one the trouble of having also to prove that, say, ‘P ⊃ ((Q & 

R) ⊃ S)’ is equivalent to ‘Q ⊃ ((R & P) ⊃ S)’. Indeed, these look, in standard notation, to be quite 

different sorts of cases. Where Frege has one rule and a two-dimensional notation to fix the 

equivalence of the four linear sentences discussed earlier, as well as all twenty variants with ‘Q’, ‘R’, 
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and ‘S’ in different orders, a standard linear notation brings with it the demand that one prove, for each 

pair of the twenty-four sentences involved, that they are equivalent. (Macbeth 2005: 52–53) 

 

The equivalencies (2a–d) above, which are multiple readings per vocabulary in the 

sense specified, are insufficient to guarantee the equivalence of (10a) and (10b), 

however: 
 

(10a)  P ⊃ ((Q & R) ⊃ S)   

(10b)  Q ⊃((R & P) ⊃ S) 

 

A further principle is required which combines with (2a–d). This principle, obviously 

enough, is the principle of the transposition of the antecedents (TA) in a conditional. 

That is, the following logical equivalence holds in PC (where ‘=’ is the symbol of the 

meta-language that denotes logical equivalence):  

 

(TA)  A ⊃ (B ⊃ C) = B ⊃ (A ⊃ C). 

 

In the BS, TA allows us to pass from Fig. 8 to Fig. 9:  

 

                               
Figure 8                                            Figure 9 

 

 

Angelelli (2008) has objected that Macbeth’s account leaves it unclear in what sense 

the application of TA in BS is different from its application in standard linear 

notations. Axiom 8 of the Begriffsschrift, here reproduced in Fig. 10, expresses 

precisely this: 

 

 
Figure 10 

 

In order to establish the logical equivalence of Fig. 8 and Fig. 9, TA or some 

equivalent of it has to be applied. Just as in linear notation, the condition-stroke R in 

Fig. 8 precedes the condition-stroke Q on the horizontal stroke, so we need a 

permission to swap the two. That is, given the difference in the linear arrangement of 

the conditions P and Q, Fig. 8 is not in itself equivalent to Fig. 9: their equivalence 

needs a proof. In this respect, as Angelelli observes, nothing distinguishes BS from 

standard, linear notation. 

Macbeth acknowledges that TA is a rule of the system. But even so, we 

need an explanation of how this distinguishes BS from standard notations. If TA is an 

axiom of the BS, then BS cannot have this kind of multiple readings. If, on the 

contrary, we consider ‘R ⊃ (Q ⊃ P)’ and ‘Q ⊃ (R ⊃ P)’ as two syntactically distinct 
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but logically equivalent readings of Fig. 8, then the point must be that the 

interchangeability of the conditions is a ‘given’ of the system. In other words, in 

saying that the equivalence between formulas is ‘given’ in Frege’s notation while it is 

‘proved’ in standard linear notation, Macbeth must mean that the rule (TA) that 

justifies the equivalence is already provided at the syntactical level of the notation 

and need not be added as an axiom of the system.  

In other words, what Macbeth should be saying is that the equivalence of 

formulas is embedded in the notation of the system itself. In order for Fig. 8 to be 

multiply analyzed in linear notation both as ‘R ⊃ (Q ⊃ P)’ and as ‘Q ⊃ (R ⊃ P)’ and 

without any intervention of TA, we need to read Fig. 8 in such a way that the fact that 

the condition R is to the left of, and thus precedes, the condition Q, is not 

syntactically significant. The reason is that if R’s preceding Q in Fig. 8 is considered 

syntactically significant, the only ‘analysis’ of Fig. 8 is ‘R ⊃ (Q ⊃ P)’, from which 

we can obtain Fig. 9 only by TA. But to say that we multiply analyze Fig. 8 at once 

as ‘R ⊃ (Q ⊃ P)’ and as ‘Q ⊃ (R ⊃ P)’ can only mean that we do not consider the 

ordering on the horizontal stroke as a syntactically significant feature of the notation. 

That is, we read Fig. 8 as being the same formula as Fig. 9. Only in this sense can we 

say that Fig. 8 is ‘multiply analyzed’ by those sentences without the intervention of 

TA, as TA only applies if Fig. 8 and Fig. 9 are syntactically distinct formulas. It 

would make no sense to apply it to one and the same formula. 

In order to be exact about the sense of this ‘sameness’ we distinguish 

between token and type formulas. The distinction type/token was introduced by 

Peirce in his Syllabus of Logic for the Lowell Lectures delivered in autumn 1903, and 

it has since become canonic. Consider the following sentences:11 

 

(11a) (P ∧ Q)  

(11b) (P ∧ Q) 
(11c) (  P ∧              Q       )  

 

(12a) (P ∧ Q)  

(12b) (Q ∧ P) 

 

The difference between (11a–c) is a typographical difference, which is irrelevant at 

the syntactic level simply because qualities such as font and size are not taken to be 

representing facts. Therefore, we say that (11a–c) are sentence tokens of the same 

sentence type. In contrast, the difference between (12a) and (12b) is a difference in 

the ordering, which is syntactically relevant because order is a representing fact. 

(Rules of adjunction, commutativity and associativity need to be explicitly provided.) 

Therefore, (12a) and (12b) are not two sentence tokens of the same sentence type, but 

two sentence types logically equivalent in standard sentential logic. Given these 

 
11  Example adapted from Howse et. al. 2002. Let us ignore the special cases of non-associative 

languages, for example, in which some such differences may be non-typographic. Clearly in all cases 

in which typographical differences aquire relevant new meanings in any language or meta-language of 

logic, those differences come to life not by changing the typography but by definitions and 

conventions associated with those changes. 
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senses of ‘type’ and ‘token’, it is easy to see that in a linear language permutation 

always produces types and never tokens.12 

To have ‘R ⊃ (Q ⊃ P)’ and ‘Q ⊃ (R ⊃ P)’ as alternative and equivalent 

‘analyses’ of Fig. 8, one has to consider Fig. 8 as the same type as Fig. 9. Compare 

Euler diagrams that represent classes. The sentence ‘No X is Y’ is represented in 

Euler diagrams as in Fig. 11: 

 

                      
Figure 11                                                                  Figure 12 

 

In Euler’s system, size, shape and orientation of the circles are synctactically 

irrelevant. Only the partial or total overlaps and non-overlaps of circles are 

synctactially relevant. Thus, Fig. 11 also represents the sentence ‘No Y is X’, 

logically equivalent to the former. For two different sentences of the linear language, 

Euler’s system has just one formula: the Eulerian formula represented in Fig. 12 is 

the same Eulerian formula type as that represented in Fig. 11, and each is a distinct 

Eulerian token of the same Eulerian type. 

To save Macbeth’s ‘multiple analyses’ of the second kind, we could suppose 

that Fig. 8 and Fig. 9 are different tokens of the same type, just as Fig. 11 and Fig. 12 

are different Eulerian formula tokens of the same type. If Fig. 8 and Fig. 9 are to be 

different tokens of the same type, permuting the conditions R and Q should not 

produce a different sentence type. Consider the BS formula in Fig. 13: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 

 

In the horizontal dimension we have the upper horizontal stroke divided by the sign 

of negation into three fragments or areas. Since conditions attached to the same 

horizontal without any negation occurring between them can be interchanged without 

altering the logical value, then in order to have Fig. 8 and Fig. 9 as tokens of the same 

type the convention must be adopted that any segment of a BS horizontal in which no 

 
12 In Hjelmslev’s largely forgotten terminology (Hjelmslev 1961), a ‘permutation’ is a mutation in the 

ordering of the elements of a sentence, which mutation produces distinct types. When any two 

elements do not mute, they ‘substitute’, and substitution produces distinct tokens of the same type.  
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negation sign occurs is unordered. Under this notational convention (let us call it the 

Convention of Permutation of Conditions, CPC), Fig. 8 and Fig. 9 are not two 

different formulas that need an equivalence proof by the application of TA. Under 

this notational convention, Fig. 8 and Fig. 9 are the same formula (i.e. the same 

formula type), and TA loses its applicability. TA states a rule of logical equivalence, 

while CPC states a rule of syntactical equivalence. 

According to CPC, conditions attached to such an area can always be 

interchanged, while conditions attached to different areas cannot always be 

interchanged: switching within areas is permitted, switching across areas is not. This 

perfectly corresponds to the fact that in any composite conditional of the form ‘A ⊃ 

(B ⊃ C)’, A and B can be switched without producing a logically non-equivalent 

sentence. However, the horizontal dimension cannot be completely unordered, 

because negation introduces asymmetry in the syntactic structure of the formula. The 

horizontal is thus not totally (i.e., linearly) but only partially ordered. In the vertical 

dimension, by contrast, conditions can never be interchanged unless the switch is 

justified on the horizontal dimension. This perfectly corresponds to the fact that in 

any composite conditional of the form ‘(A ⊃ B) ⊃ C’, A and B cannot be switched 

without altering the semantic value. Permutation in the vertical dimension produces 

types, while premutation in the horizontal dimension (within areas delimited by 

negation signs) produces tokens. Since in a linear language permutation always 

produces types and never tokens, the conclusion is that BS is not linear: the vertical 

dimension is totally ordered, but the horizontal dimension is only partially ordered. 

In saying that the equivalence of formulas like those in Fig. 8 and Fig. 9 

is ‘proven’ in standard notations while it is ‘given’ in BS, Macbeth may be following 

the tendency which we find in Frege’s own presentation of the BS, namely to 

consider TA as a convention of the notation rather than as an axiom of the system 

(that is, as a rule of syntactical equivalence rather than a rule of logical equivalence). 

For example, in Grundgesetze, just after having remarked the necessity of proving 

some form of TA, Frege adds: “as not to become tied up in excessive complexity, I 

here wish to assume this interchangeability generally granted, and to make use of it in 

future without further explicit mention” (Frege 2013, §12). Likewise, in the notes 

from the lectures held in 1910-1911 and in 1913 taken by Carnap, Frege considers 

coordinate conditions to be interchangeable without treating this convention as an 

axiom of the system (see Reck & Awodey 2004: 52, 56, 71). However, insofar as TA 

is adopted as a rule of logical equivalence and not as a rule of syntactical equivalence 

(as CPC), Fig. 8 and Fig. 9 are types, not tokens of the notation.  

There are non-linear languages based on some sort of ‘generalized’ CPC. 

The Alpha system of EGs is such language. Alpha graphs have two primitives: 

conjunction and negation. Assertion is represented as the placement of the sentential 

variable on the sheet at any position, and conjunction as the unordered juxtaposition 

of variables on the sheet. The sheet, termed the sheet of assertion (SA), is in itself a 

well-formed Alpha graph. Thus Fig. 14 is the Alpha graph for ‘what is true’ or ‘the 

True’, while Fig. 15 is the assertion that P is true. Fig. 16 is the assertion that both P 

and Q are true, that is, ‘P & Q’; Fig. 17 is the assertion that P, Q and R are true, that 

is, ‘P & Q & R’, and so on. 

 

 

 

 

Figure 14 

 

P 

 

Figure 15 
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P Q 

 

Figure 16 

 

 

P Q R 

 

Figure 17 

 

Since the position of the letters on the sheet is not a representing fact (the sheet is 

unordered), not only all linear permutations of P, Q, and R but also all possible 

positions of them on the SA such as those in Fig. 18a–d must count as the same 

Alpha graph type:13 

 

 
Figure 18 

 

Each formula in Fig. 18a-d is a distinct graph token of the same graph type, and none 

of them is a different graph type. In linear notation, permutation always produces 

different sentence types; in EGs, mutations of subgraphs on the SA or within 

whatever area, just as any other movement on SA or the same area of a graph will not 

produce different graph types but different graph tokens of the same graph type. For 

this reason, EGs dispense with the standard rules of adjunction, commutativity and 

associativity.14 

The other operation, negation, is represented by an oval that encircles the 

sentential variables that are denied. Each graph instance of Fig. 19a–d is a notational 

variant (token) of the assertion that P and Q are true while R is false, or ‘P & Q & 

~R’: 

 

 
13 We refer to Roberts (1973) for the staple presentation of the basics of the system of EGs, and Peirce 

(1911, 2019) for further details on his own original accounts. It is necessary to appreciate the system 

of conventions that underlie the way Peirce’s graphical system of logic was set up. For example, given 

an area of a graph, such as the area of the Sheet of Assertion in the four examples of Fig. 23, a graph 

can be scribed on any position of that area. As noted above, properties such as commutativity of 

graphs on the same area at its different positions, as well as the properties of associativity and 

adjunction, are properties that fall from the properties of the space that the Sheet of Assertion 

represents and on which the graphs are scribed (see e.g. Pietarinen & Bellucci 2017). The role of the 

syntactic rules of transformation governing the system of permissible transformations is irrelevant. 
14 This was observed en passant by Hammer 1996 and Dipert 2006. 
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Figure 19 

 

By means of conjunction and negation, all composite sentences can be constructed. 

For example, each graph instance of Fig. 20a–d is a notational variant (token) of the 

assertion that ‘it is not true that P and Q are true and R is false’, or ‘~(P & Q & ~R)’: 

 

 
Figure 20 

 

Here is how Peirce defined these key elements of the syntax of EGs: 

 
That fine oval line […] is called a cut, and is supposed to cut off the part of the paper inside of it, 

which is called “the area of the cut” from the part of the paper outside of it, which is called “the place 

of the cut”; so that the area of the cut is no part of the place of the cut. The cut, together with its area, 

and together with the entire graph on that area is called an enclosure. This enclosure is a graph which 

means that the entire graph on the area of the cut is cut off from the place. (Peirce 1911: 8–9) 

 

To clarify, take the Alpha graph in Fig. 21: 

 

 
Figure 2115 

 

 
15 Color and shading are not part of the syntax but are may be used as a didactic aid to highlight 

distinct areas. 
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The ‘place’ of the outer cut (cut 1) is the SA, since the entire graph is scribed on the 

SA. The ‘area’ of the outer cut is the place of the inner cut (cut 2). The outer cut with 

its area and whatever is scribed on this area is an ‘enclosure’. An Alpha graph is a 

nested structure, that is, any graph can be presented as a parsing tree of finite 

sequences of areas from the SA into the areas of cuts of increasing depth. A nest 

terminating on a cut-free area is a maximal nest. The interpretation of the nested 

structure has a direction. In fact, given a nested structure, we could interpret it either 

inside-out or outside-in. EGs are interpreted in the second way, which Peirce terms 

the ‘endoporeutic’ direction of interpreting EGs. It begins with the outermost area, 

the SA, and proceeds inwardly in the nested structure.16  

With these definitions in hand, let us return to our original problem. In 

Alpha graphs, multiple readings per linearity are obtained thanks to the fact that any 

placement of two or more graphs on the same area counts as the same Alpha graph 

type and not as two distinct Alpha graph types obtained by permutation. In translating 

the content of an Alpha graph in a sentence of a linear notation we are forced to 

‘order’ that stuff which in the Alpha graphs is not ordered, namely positions in the 

same area. Thus, the Alpha graph type of which those in Fig. 18a–d are graph tokens 

can be translated in a linear notation as any of the six linear permutations in (13a–f): 

 

(13a) P & Q & R 

(13b) P & R & Q 

(13c) Q & P & R 

(13d) Q & R & P 

(13e) R & Q & P 

(13f) R & P & Q 

 

Likewise, the Alpha graph type, of which those in Fig. 19a–d are graph tokens, can 

be translated in linear notation as (14a–f). The Alpha graph type, of which those in 

Fig. 20a–d are graph tokens, can be translated in linear notation as (15a–f):  

 

(14a) P & Q & ~R 

(14b) P & ~R & Q 

(14c) Q & P & ~R 

(14d) Q & ~R & P 

(14e) ~R & Q & P 

(14f) ~R & P & Q 

 

(15a) ~(P & Q & ~R) 

(15b) ~(P & ~R & Q) 

(15c) ~(Q & P & ~R) 

(15d) ~(Q & ~R & P) 

(15e) ~(~R & Q & P) 

(15f) ~(~R & P & Q) 

 

Just like Euler diagrams and BS conditionals (when CPC is applied), one and the 

same Alpha graph type admits of multiple readings of the second kind in linear 

 
16 All of these are Peirce’s own definitions and terminology, see especially Peirce 1910. As regards the 

converse, ‘exoporeutic’ interpretation, the Alpha graph in Fig. 25 would mean ‘It is true that R or it is 

false that P and Q’. 
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notation. These multiple readings are the effect of the convention that juxtaposition 

on an area is the sign of logical conjunction (Peirce 1903). Under this convention, the 

only syntactically significant fact concerning conjunction is that the conjuncts are 

placed on the same area, that is, at any position of an area.  

Alpha EGs have a symmetric abstract syntax, because the basic mode of 

junction is juxtaposition on the sheet, and juxtaposition is a symmetric mode of 

junction: graphs juxtaposed on the same area are conjunctively asserted yet nothing is 

implied about their ordering. Thus the abstract syntax of Alpha EGs perfectly 

corresponds to the fact that in any composite conjunctive formula the conjuncts can 

be switched without thereby producing a logically distinct formula. The sheet, 

however, cannot be completely unordered, because otherwise the syntax could not 

represent asymmetric relations, that is, because otherwise logically distinct sentences 

would not be syntactically distinct, which is obviously crucial to maintain 

expressiveness. The ordering is effected by cuts that divide the sheet into non-

overlapping areas. The sheet is thus not totally (i.e., linearly) ordered, but forms a 

parsing tree with the entire graph as the unique root. Only the cuts bring asymmetry 

to the system. The relation between ‘(P and Q)’ and ‘R’ in the Alpha graph in Fig. 21 

is asymmetric and is expressed by an asymmetric mode of junction (juxtaposition on 

different areas). In contrast, the relation between ‘P’ and ‘Q’ is symmetric and is 

expressed by a symmetric mode of junction (juxtaposition on the same area). In other 

words, EGs represent order only where it is necessary (asymmetric relations), and 

leave the rest to be represented as unordered (symmetric relations). This is precisely 

what a BS (with CPC) does with compound conditionals, representing some as 

linearly ordered — those of the form ‘(A ⊃ B ) ⊃ C’ — and some as partially ordered 

— those of the form ‘A ⊃ (B ⊃ C)’.       

 

4. Tabularity: Multiple readings of the third kind 

 

In this section we propose a third mode of notational variability in terms of a third 

kind of multiplicity of readings. In brief, we call tabular notations those in which 

only the result of a truth-operation on elementary propositions is represented, while 

in non-tabular notations truth-operations are represented as operating on elementary 

propositions.  

One can introduce the idea behind multiple readings of this third kind with a 

reference to the Tractatus. Wittgenstein famously claimed that an operation is 

different from a function (TLP 5.25). The operators of the sentential calculus 

represent truth-operations, not truth-functions. An operation is the ‘expression of a 

relation between the structures of its result and its base’ (TLP 5.22). The sense of a 

proposition, moreover, is ‘its agreement and disagreement with the possibilities of the 

existence and non-existence of the atomic facts’ (TLP 4.2), that is, with the truth-

possibilities of the elementary propositions (TLP 4.3), and two propositions have the 

same sense if they agree and disagree with the same truth-possibilities of the 

elementary propositions. From these definitions of operation and sense it follows that 

the occurrence of an operation in a proposition does not characterize its sense (TLP 

5.25). For example, the occurrence of the operation ‘&’ in ‘~(P & ~Q)’ does not 

characterize its sense, because this proposition has the same sense as ‘P ⊃ Q’, and 

‘&’ does not occur in the latter. Likewise, the occurrence of negation ‘~’ in ‘~~P’ 

does not characterize its sense, because that sentence has the same sense as ‘P’, and 

‘~’ does not occur in the latter (cf. TLP 5.44).  
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As a result, different truth-operations on elementary propositions can produce 

the same truth-function of elementary propositions, and ‘all those results of truth-

operations on truth-functions are identical which are one and the same truth-function 

of elementary propositions’ (TLP 5.41). The sense of ‘P ⊃ Q’ or ‘~(P & ~Q)’ is not 

characterized by the occurrence of this or that operation in them. They represent 

distinct truth-operations on elementary propositions (P, Q) that have the same truth-

function of those propositions as a result. Their sense is the same, and this is captured 

in the truth-table, represented by Wittgenstein’s as (P, Q: TFTT). The sense of this 

proposition is unaffected by being presented either as ‘P ⊃ Q’ or as ‘~(P & ~Q)’.  

However controversial these Tractarian theses might seem,17 it is nonetheless 

clear that they agree with Wittgenstein’s idea that the truth-table that lays out the 

truth-conditions of a proposition is itself a propositional sign (TLP 4.442). For what 

the propositional sign has to represent or express is the proposition’s sense, and since 

the proposition’s sense is its agreement and disagreement with the truth-possibilities 

of elementary propositions, any sign that represents the coordination between the 

proposition in question and the truth-possibilities of elementary propositions is ipso 

facto a legitimate representation of that proposition. Accordingly, the notation 

resulting from taking the truth-table to be a propositional sign is a legitimate one.18 

Landini (2007) has persuasively argued that Wittgenstein’s goal in the 

Tractatus was to provide a notation in which all and only logical equivalent 

propositions should have the same representation: 

 
He hoped to demonstrate that a deductive calculus for logic can be supplanted by a representational 

system in which all and only logical equivalents have exactly one and the same expression. The 

representation of quantifier-free sentences in terms of their truth-conditions (or, alternatively, Venn’s 

representation) offers just such a notation. As Wittgenstein sees matters, systems that employ different 

logical particles ‘&,’ ‘∨,’ ‘⊃,’ ‘~,’ etc., hide their formal (‘internal’) nature. Wittgenstein attempted to 

exploit the truth-table representation of propositions as evidence for his view that a proper 

representation would reveal that tautologies and contradictions are scaffolding. (Landini 2007: 124).  

 

In a notation in which the truth-table is the propositional sign, all and only logically 

equivalent propositions will be represented by the same sign. In this notation, all and 

only the propositions logically equivalent to ‘P ⊃ Q’, and thus not only ‘~(P & ~Q)’ 

but also ‘(P ⊃ Q) & (Q ∨ ~Q)’, ‘~~(P ⊃ Q)’, etc. will have the same representation, 

namely the Wittgensteinian truth-table (P, Q: TFTT).19  

 
17 On the Tractarian distinction between function and operation see Anscombe 1959: ch. 8 (criticized 

in Dummett 1981: 324–325); Hylton 1997; Landini 2007: 127–129; Potter 2008: ch. 18.  
18 We mean sentential logic, for full predicate logic is not decidable and not expressible in a truth-

tabular form. 
19 A language in which all and only logical equivalents have exactly one and the same expression 

makes it easy to see that there is a decision procedure for the logic of such language. Propositional 

logic is decidable (e.g. by truth-tables), full quantification theory only semi-decidable. Landini argues 

that the undecidability of quantification theory undermined Wittgenstein’s project of finding a notation 

in which all and only logical equivalents have one and the same representation (2007: 118). As far as 

the propositional fragment is concerned, decidability is not a problem. Landini is correct that 

Wittgenstein’s notations (the truth-tabular one we are discussing) and the ab-notation (Landini 2007: 

113–114), substantially equivalent to the former, are decision procedures for propositional logic. The 

failure of the decidability of suitably large fragments of first-order (and higher-order) logics need not 

have undermined this project of Wittgenstein’s, however. For one, some useful fragments of first-order 

logic are decidable, and for the full language the set of inconsistent formulas can be effectively 

decided. On the other hand, Wittgenstein’s N-operator defines an undecidable theory of predicate 

logic. 
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If the truth-tabular notation presented by Wittgenstein at TLP 4.442 is 

admitted as a legitimate notation for sentential logic, we are at once provided with a 

means for distinguishing two kinds of notations. We label them ‘tabular’ and ‘non-

tabular’. Tabular notations are those in which only the result of a truth-operation on 

elementary propositions is represented. Non-tabular notations are those in which 

truth-operations are represented as operating on elementary propositions. Whenever 

an operation is represented, there is a possibility of representing the result of that 

operation by means of other operations, while when only the result of an operation is 

represented, this possibility is excluded. 

The distinction between tabular and non-tabular notations shows that, 

while it is correct to say that the truth-tabular notation that Wittgenstein presents at 

TLP 4.442 approximates the notational ideal of having all and only logically 

equivalent propositions represented by the same sign, it is not the case that the 

notation for the sentential fragment of classical logic that Wittgenstein introduces at 

TLP 5.502, namely the so called N-notation, conforms to that ideal. The N-notation 

does not conform to the notational ideal because it is non-tabular, and in non-tabular 

notations there is always the syntactic possibility of representing the result of one 

operation by means of some other operations, and therefore of representing logically 

equivalent propositions by syntactically distinct propositional signs. 

The reason is this. In the N-notation every truth-function is a result of 

successive application of the N-operator to elementary propositions (TLP 5.5). The 

application of the N-operator to one propositional argument ‘P’, represented as 

‘N(P)’, results in its negation, ‘~P’. Applied to two propositional arguments ‘P’ and 

‘Q’, represented as ‘N(P, Q)’, it results in their joint denial, ‘~P & ~Q’. Applied to an 

arbitrary number of propositional arguments, it results in the joint denial of all the 

arguments (TLP 5.502). The N-operator is more powerful than the Sheffer stroke in 

the sense that, whereas the Sheffer stroke is a binary connective, the N-operator has a 

finite number of propositional arguments, taking the joint denial of them all. 

Landini takes Wittgenstein to have thought that the N-notation has a 

truth-tabular nature akin to the truth-tabular representation of propositional logic 

Wittgenstein had presented at TLP 4.442, because in the truth-tabular notation all and 

only logically equivalents are represented by the same sign. This thought attributed to 

Wittgenstein’s cannot be quite right, however. In the N-notation, ‘NNN(P)’ and 

‘N(P)’ are logically equivalent but syntactically distinct formulas. The same is true, 

for example, of ‘NN(P,Q)’ and ‘NN(Q,P)’, which are logically equivalent but 

syntactically distinct. In order to make justice to Wittgenstein’s claim concerning the 

N-notation, Landini proposes — attributing the origins of these proposals to 

Wittgenstein himself — five equational ‘rules of operation’ (Landini 2007: 129–130) 

by means of which the equivalence of the representation of logically equivalent 

propositions is meant to be achieved: 

 

(L1) N(ξ1, … ξn) = N(ξi, …, ξj), 1 ≤ i ≤ n, and 1 ≤ j ≤ n, i ≠ j. 

(L2) N(…ξ, …, ξ...) = N(…ξ, …). 

(L3) N(… NN(ξ1, …, ξn)…) = N(…ξ1, …, ξn,…). 

(L4) N(…N(…ξ, …, Nξ, ...)…) = N(…). 

(L5) NN(γ, N(ξ1, …, ξn)) = N(N(γ, Nξ1), …, N(γ, Nξn)). 

 

Clause (L1) corresponds to a generalization of the commutation rule ‘ξγ = γξ’. Clause 

(L2) is a rule of elimination of equivalents. Clause (L3) corresponds to the rule of 

insertion and omission of double negation in whatever context it occurs (‘ξ = ~~ξ’). 
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Clause (L4) allows us to delete or insert any argument of the form ‘N(…ξ, …, Nξ, 

...)’, which is a tautology, in whatever context it occurs. Clause (L5) is a distribution 

rule.  

Landini also takes Wittgenstein to have thought that (L1—5) now make 

the N-notation tabular: ‘by application of (1)–(5) we can see how Wittgenstein 

thought that the N-operator recovers the features of truth-table representations’ 

(2007: 130). Yet, Landini avers that (L1—5) are not to be taken as rules in their 

proper sense: ‘[t]hese rules assert the sameness of certain practices of operation. 

They are not, therefore, identity statements’ (ibid.). It is far from clear in what sense 

(L1-5) are not rules of logical equivalence. A notation in which a rule of double 

negation is applicable is a notation in which in every context such as ‘ξ = ~~ξ’ 

syntactically distinct sentences appear on both sides of the equivalence sign ‘=’. 

These are sentences which the rule declares to be logically equivalent. On both sides 

of Landini’s ‘=’ in (L3), two syntactically distinct sentences in N-notation must 

appear. He states that ‘N(NN(p, q), r) is to be regarded, in some sense, as the same as 

N(p, q, r)’ (2007: 129). Now, the sense in which the former sentence is to be regarded 

as the same as the latter is that they are logically equivalent, not that they are 

syntactically equivalent. For were they syntactically equivalent, (L3) could not be 

applied, because (L3) states the logical equivalence of syntactically distinct 

sentences. One cannot apply that rule to sentences which are not syntactically 

distinct. By the same token, a notation in which a rule of commutation is applicable is 

a notation in which on both sides of the sign ‘=’ in ‘ξγ = γξ’ distinct sentences appear, 

which the rule declares to be logically equivalent. And therefore on both sides of ‘=’ 

in (L1) two syntactically distinct sentences in N-notation must appear. Whenever a 

rule of logical equivalence of syntactically distinct sentences applies, it is not true 

that all logical equivalents have the same representation. It is not sufficient to do 

what Landini thinks Wittgenstein should have done, namely to declare that these 

clauses are not rules of logical equivalence but rules of syntactical equivalence. Such 

a declaration is merely nominal and cannot transform a rule of logical equivalence 

into a rule of syntactical equivalence.20  

Landini’s Wittgenstein lands here in the same position as Macbeth does 

regarding BS: Macbeth takes TA to be operative in the BS notation in order to have 

Fig. 1 and Fig. 11 as the ‘same’ sign. Landini takes Wittgenstein to have wanted 

these quasi-rules of (L1–5) to be operative in the N-notation in order to have all and 

only logical equivalents represented by the same sign. But just as TA is a rule of 

logical equivalence and not of syntactical equivalence (like CPC), so are (L1–5). 

Labelling them ‘rules of practices of operation’ rather than ‘statements of logical 

equivalence’ does not change the fact that they must succeed in capturing exactly 

when syntactically distinct sentences are also logically equivalent. Landini is correct 

in saying that Wittgenstein’s truth-tabular notation fulfils the ideal of having all and 

only logical equivalents represented by the same sign. But the same is not true of the 

N-notation. The reason is that the truth-tabular notation is, indeed, tabular, while the 

N-notation is non-tabular. 

A notation in which TA or L1 is a ‘given’ of the notation, and in which 

for that reason nothing like the rules of TA or L1 can be applied, is Peirce’s Alpha 

fragment of EGs. In it, as we have seen, the graphs in Fig. 22a–d are not different 

 
20 To do so would be to conflate what can be done syntactically with what the semantic constrains are. 

One cannot conjure a syntactic permutation-invariance up by fiat, because whether one is able to have 

permutation-invariance in the syntax of the language depends on the semantic facts of the matter.   
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graph types whose logical equivalence is stated by TA or L1. They are different 

graph tokens of the same graph type, whose syntactical equivalence is given by the 

abstract syntax of the notation (juxtaposition on the SA is a symmetric and 

permutation-invariant operation). A symptom of this is the fact that while Landini’s 

(L2–5) exist in EGs as rules of logical equivalence, (L1) is conspicuously missing in 

that system. Of the remaining rules, they are similar to permissive rules of 

transformation in the theory of logical graphs. (L2) is in Peirce’s graphs the 

iteration/deiteration rule as applied within the same area of a subgraph. (L3) is the 

introduction/elimination of the double cut. (L4) is iteration/deiteration across the cuts 

to/from the areas in the nests of cuts. (L5) is a derived rule of distributivity from the 

basic rules. 21  But (L1) is missing because the abstract syntax of the system is 

permutation-invariant and this renders (L1) inapplicable. Alpha graphs are non-

linear. Yet, in Alpha graphs we do not have one and the same syntactic representation 

for ‘ξ’ and ‘~~ξ’, and a special permissive rule of transformation, the rule of 

erasure/insertion of double cut, has to be employed.22 This means that the system of 

Alpha graphs is non-tabular.  

Using Macbeth’s and Shin’s terminology, one might say that formulas 

written in tabular notation are ‘multiply read’ in formulas written in non-tabular 

notations. We would thus have a third kind of multiple reading, per tabularity, which 

is distinct from the multiple readings of the first kind (vocabulary) and those of the 

second kind (linearity). The tabular propositional sign (P, Q: TFTT) can be ‘multiply 

read’ in linear non-tabular notations, such as in the standard linear notation for 

sentential logic, as ‘P ⊃ Q’, ‘~(P & ~Q)’, ‘(P ⊃ Q) & (Q ∨ ~Q)’, ‘~~(P ⊃ Q)’, and 

so on. Multiple readings of this sort are nevertheless radically different from the 

multiple readings that Macbeth and Shin attribute to BS and EGs formulas. Multiple 

readings per vocabulary are only possible in non-tabular notations, because they 

depend on a difference in primitive operators between languages, and since tabular 

notations do not represent operations but the results of the operations, multiple 

readings of the first kind do not concern them.  

Likewise, the second type of multiple readings, per linearity, is only 

possible in non-tabular notations, and thus only where the multiple readings of the 

third kind are not possible. As a brief example, the ab-notation contained in the 

‘Notes’ dictated by Wittgenstein to Moore in Norway in 1914, and then presented in 

the Tractatus at TLP 6.1203, is tabular but not linear. The formula in Fig. 22 is the 

truth-table of a certain truth-function of the elementary propositions ‘p’ and ‘q’, but it 

is not linear. In this notation ‘TpF’ is the same formula type of ‘FpT’, because the 

order in which ‘TpF’ and ‘FpT’ are written down is syntactically irrelevant, and 

because it is syntactically irrelevant where or in what form the parentheses that 

connect the truth-poles are drawn. The only syntactically relevant fact is which of the 

 
21 On the derivation of distributivity, which requires Peirce’s Rule (residuation), see Ma & Pietarinen 

2017a. We note that the set of rules (L2–L5) is semantically incomplete. To have a complete system 

one also needs a rule of erasure as well as the rule of insertion, which are not equivalence rules, plus 

the axiom that the sheet of assertion represents tautology.  
22 The rule of erasure/insertion of double cut is itself a rule of transformation which Peirce derived 

from certain more primitive considerations that have to do with a conditionals (the scroll) as the 

primitive sign and observations that some graphs are blanks (SA). The rule of erasure/insertion is the 

only rule that is needed to demonstrate how residuation (Peirce’s Rule), in turn, emerges, showing the 

essentially observational nature of logical rules. The rule of erasure/insertion also achieves the same 

result as what TA does in linear languages.  
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truth-poles are connected and how. The propositional sign in Fig. 22 is not 

syntactically different from that in Fig. 23. They are tokens of the same type. 

 

                           
Figure 22                                              Figure 23 

 

 

Likewise, the ordinary two-dimensional truth-tables are non-linear. The truth-tables 

in Fig. 24 and 25 are not two different types but distinct tokens of one and the same 

type. Order of neither rows nor columns is relevant in the truth-table notation in so 

far as the correspondence between the truth-values of the bases and the truth-values 

of the result is preserved. 

 

P Q  

T T  T 

T F F 

F T T 

F F T 

Figure 24 

 

 Q P 

T T  T 

F F T 

T T F 

T F F 

Figure 25 

 

In the same way, Wittgenstein’s truth-tabular representations at TLP 5.101 are non-

linear. To see this, take the propositional signs in (16) and (17): 

 

(16) (P, Q: TFTT) 

(17) (Q, P: TFTT) 

 

In Wittgenstein’s notation, the correspondence of the truth-value of the bases and that 

of the result is supposedly fixed. Swapping ‘P’ and ‘Q’ in (16) does not affect the 

result. What one obtains is (17) — simply another way of writing (16). Once the 

correspondence between the values of the bases (the ‘T’ and ‘F’ of P and Q) and the 

values of the result is fixed, all permutations of the propositional variables and of ‘T’ 

and ‘F’ in the result are permissible; they do not change a formula type into another 

type. Such permutations only produce distinct tokens of the same formula type.23 

Tabular languages cannot be linear. Linearity only concerns non-tabular languages. 

 
23 Cf. Potter 2008, 161-162, 
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5. Conclusion 

 

How can there be substantially different notations — such as fragments of BS, EGs, 

N-notation, truth-tables, ab-notation, a system of Venn diagrams, etc. — that are 

expressively equivalent to classical propositional logic? 24  Our proposed answer 

comes, in summary, in three parts.  

The first kind of multiple readings, per vocabulary, does not delineate any 

special type of notation. To say that certain notations have multiple readings per 

vocabulary is only a disguised way of saying that there are expressively equivalent 

notations that differ in their logical vocabularies. The possibility of multiple readings 

per vocabulary is not peculiar to BS or EGs: all multiple readings per vocabulary 

possible in BS are also possible in a sentential language with ‘~’ and ‘⊃’, and all 

those readings that are possible in EGs are also possible in a sentential language with 

‘~’ and ‘&’. Such multiple readings can only occur in non-tabular notations, both 

linear and non-linear. For this reason, and unlike the other two kinds of multiple 

readings (per linearity and per tabularity), multiple readings per vocabulary do not 

differentiate between qualitatively different logical notations but only among classes 

of sets of primitive logical operators. 

The second kind of multiple readings, per linearity, distinguishes linear from 

non-linear notations. An Alpha graph can have multiple translations into a standard 

linear language for sentential logic. Euler diagrams are another kind of non-linear 

notation for the logic of classes and syllogisms. If we take TA to apply in BS as a 

rule of logical equivalence then BS is linear. This is not in conflict with BS being 

two-dimensional; it is only that both of its two dimensions are linearly ordered 

(permutation always produces sentence types). Hence, while BS might differ from a 

linear language with ‘~’ and ‘⊃’ under some other respects,25 yet BS does not differ 

from linear languages under the parameter of linearity, namely that of producing 

different types by permutation. If, on the contrary, we take CPC to be operative in the 

BS as a rule of syntactical equivalence, then BS is non-linear, because its horizontals 

are partially ordered by the negation sign and because permutation does not always 

produce distinct formula types. 

The possibility of having multiple readings of the third kind, per 

tabularity, distinguishes tabular from non-tabular notations. One and the same sign in 

a language that represents the result of truth-operations (tabular language), without 

representing those operations themselves, has multiple translations into a language in 

which the truth-operations themselves are represented (non-tabular languages). 

Wittgenstein’s ab-notation and all truth-tabular notations are tabular (and so are Venn 

 
24 The present paper is not a review of all possible notational varieties equivalent to sentential logic, let 

alone the countless other logics. Our claims are limited to what we have justifiably taken to come from 

the pool of fundamental parameters of notational variability.  
25 Landini (2012) draws attention to the fact that the Grundgezetze have a rule of the ‘amalgamation of 

the horizontals’ which is absent in the 1879 presentation of the notation, and that this difference is 

crucial. According to Landini, the amalgamation of horizontals plays an essential role in the proof of a 

theorem from Basic Law IV, and there seems to be no way of representing this operation without 

Frege’s BS (2012: 12–13, 52–57). In Landini’s view, Frege’s Grundgesetze notation is a two 

dimensional notation because only in this way it can allow for the rule of amalgamation. Whether 

Landini’s claim is correct does not affect the fact that BS is linear in our sense, although linear on both 

its dimensions, given that TA is accepted as a rule of logical equivalence, and BS is non-linear if CPC 

is accepted as a rule of syntactical equivalence. 
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diagrams, see Landini 2007). In contrast, Wittgenstein’s N-notation, as well as BS 

and EGs, are non-tabular. But unlike EGs, the N-notation is linear. Tabular notations, 

in contrast, are non-linear and can be multiply read in linear languages. Non-tabular 

notations can be either linear or non-linear.26  

These, in sum, are our reasons for what constitute and what fail to 

constitute significant and meaningful notational differences between expressively 

equivalent logical languages. 
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