
09 March 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Wei, L., Luo, Z., Baldacci, R., Lim, A. (2020). A new branch-and-price-and-cut algorithm for one-
dimensional bin-packing problems. INFORMS JOURNAL ON COMPUTING, 32(2), 428-443
[10.1287/ijoc.2018.0867].

Published Version:

A new branch-and-price-and-cut algorithm for one-dimensional bin-packing problems

Published:
DOI: http://doi.org/10.1287/ijoc.2018.0867

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/772786 since: 2025-02-08

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1287/ijoc.2018.0867
https://hdl.handle.net/11585/772786

Submitted to INFORMS Journal on Computing

manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

A New Branch-and-Price-and-Cut Algorithm for
One-Dimensional Bin Packing Problems

Lijun Wei
Key Laboratory of Computer Integrated Manufacturing System, School of Electromechanical Engineering, Guangdong

University of Technology, 510006, P.R. China, villagerwei@gmail.com

Zhixing Luo
School of Management and Engineering, Nanjing University, Nanjing 210093, P.R. China

Department of Industrial & Systems Engineering, National University of Singapore, Singapore, luozx.hkphd@gmail.com

Roberto Baldacci
Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, 47521

Cesena, Italy, r.baldacci@unibo.it

Andrew Lim
Department of Industrial & Systems Engineering, National University of Singapore, Singapore

School of Management and Engineering, Nanjing University, Nanjing 210093, PR China, alim.china@gmail.com

In this paper, a new branch-and-price-and-cut algorithm is proposed to solve the one-dimensional bin packing

problem (1D-BPP). The 1D-BPP is one of the most fundamental problems in combinatorial optimization

and has been extensively studied for decades. Recently, Delorme et al. (2016) proposed 500 new test instances

for the 1D-BPP; the best exact algorithm proposed in the literature can optimally solve 167 of these new

instances, with a time limit of one hour imposed to each execution of the algorithm.

The exact algorithm proposed in this paper is based on the classical set-partitioning model for the 1D-

BPP and the subset-row inequalities proposed by Jepsen et al. (2008). We describe an ad-hoc label-setting

algorithm to solve the pricing problem, dominance and fathoming rules to speedup its computation and a new

primal heuristic. The exact algorithm can easily handle some practical constraints, like the incompatibility

between the items, and therefore we also apply it to solve the 1D-BPP with conflicts (1D-BPPC).

The proposed method is tested on a large family of 1D-BPP and 1D-BPPC classes of instances. For the

1D-BPP, the proposed method can optimally solve 237 instances of the new set of difficult instances; the

largest instance involves 1003 items and bins of capacity 80,000. For the 1D-BPPC, the experiments show

that the method is highly competitive with state-of-the-art methods, and successfully closed several open

1D-BPPC instances.

Key words : bin packing; bin packing with conflicts; branch-and-price-and-cut; exact algorithm

History :

1

Author: Article Short Title
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

1. Introduction

In this paper, we investigate the famous one-dimensional bin packing problem (1D-BPP)

(Kantorovich 1960) and one of its classic variants, the one-dimensional bin packing problem

with conflicts (1D-BPPC) (Gendreau et al. 2004).

Given a set N = {1,2, . . . , n} of n items, each having an integer weight wj , j ∈N , and

an unlimited number of identical bins of integer capacity c, the 1D-BPP requires to deter-

mine a minimum number of bins to pack all the items, subject to the constraint that the

total weight of the items in a bin cannot exceed its capacity c. The 1D-BPPC extends

the 1D-BPP by considering incompatibilities between pairs of items. That is, any pair

of incompatible items cannot be packed into the same bin. In the 1D-BPPC, the incom-

patibilities of the items are usually given by an undirected conflict graph where a vertex

represents an item and an edge between a pair of vertices represents the incompatibility

of the pair of the vertices. Thus, the 1D-BPPC can be viewed as a combination of the

1D-BPP and the vertex coloring problem (Malaguti et al. 2008). Both the 1D-BPP and

1D-BPPC have attracted attentions from many researchers in the past few decades for their

challenging combinatorial structures and wide-range applications in engineering, logistics

and manufacturing (Johnson et al. 1974, Laporte and Desroches 1984, Jansen 1999).

The cutting stock problem (CSP) is another combinatorial optimization problem closely

related to the 1D-BPP. Given an order for n types of rolls, each having an integer width wj

(j = 1, . . . , n) and an integer demand dj (j = 1, . . . , n), and an unlimited number of larger

rolls of integer width c, the objective of the CSP is to determine the minimum number of

larger rolls cut into smaller widths to fulfill the order. The CSP originated from the steel

industry (Wolfson (1965)), but it has then found applications in several other industries,

such as paper and wood industries. According to the definition, the 1D-BPP is a special

case of the CSP where the demand for each type of roll is fixed to 1. Therefore, solution

approaches for the CSP can also be applied to solve the 1D-BPP.

In this paper, we propose a new branch-and-price-and-cut (BPC) algorithm for the

1D-BPP that can also solve the 1D-BPPC. Our BPC algorithm is based on the classic set-

partitioning model of the 1D-BPP and the subset-row (SR) inequalities for strengthening

the LP-relaxation of the set-partitioning formulation. The SR inequalities belong to famous

Chvatal-Gomory rank-1 cuts and are valid for the general set-partitioning model. They were

first proposed by Jepsen et al. (2008) for the vehicle routing problem with time windows

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 3

(VRPTW) to strengthen the LP-relaxation of the set-partitioning formulation. After that,

the SR inequalities have been widely used in BPC algorithms for many vehicle routing

problems (Archetti et al. 2011, Contardo and Martinelli 2014, Contardo et al. 2013) and

other combinatorial optimization problems which can be formulated as set-partitioning

models (Xue et al. 2015, Plum et al. 2014), since in many cases they substantially improve

the lower bound yielded by the LP-relaxation of the set-partitioning formulation. However,

to our knowledge, the SR inequalities have not been used to strengthen the set-partitioning

model for the 1D-BPP, even though a number of branch-and-price (BP) algorithms have

been proposed for the 1D-BPP or its variants in the literature.

1.1. Literature review

The literature on the 1D-BPP is vast and in this section we only present a review about

exact algorithms for the 1D-BPP and the 1D-BPPC and, in particular, of the best exact

methods for the 1D-BPP and the 1D-BPPC.

A comprehensive review on exact algorithms for the 1D-BPP can be found in Delorme

et al. (2016). Exact algorithms for the 1D-BPP can be classified into branch-and-bound

(BB) algorithms, constraint programming, pseudo-polynomial formulations based meth-

ods, and BP (or BPC) algorithms.

Eilon and Christofides (1971) proposed the first BB algorithm for the 1D-BPP, which

utilizes lower bounds from the LP-relaxation of an assignment model and the general

enumeration scheme proposed by Balas (1965). Martello and Toth (1990) improved the

previous BB algorithm by several primal heuristics and reduction procedures. After that,

a more powerful BB algorithm, referred to as the BISON, was proposed by Scholl et al.

(1997) and was later improved by Schwerin and Wäscher (1998). BB algorithms have been

also proposed by Mukhacheva et al. (2000), Korf (2002) and by Schreiber and Korf (2013).

Constraint programming solves the 1D-BPP through a set of pruning and propagation

rules incorporating knapsack-based reasoning as well as lower bounds on the number of

bins needed. Several researchers have successfully developed constraint programming based

algorithms for the 1D-BPP, including Shaw (2004), Cambazard and O’Sullivan (2010),

Dupuis et al. (2010) and Schaus et al. (2012).

Different pseudo-polynomial formulations have been proposed for the 1D-BPP. An effec-

tive CSP pseudo-polynomial formulation, denoted arc-flow, was presented by Valério de

Carvalho, M. (1999). Very recently, Brandão and Pedroso (2016) proposed an arc-flow

Author: Article Short Title
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

formulation with side constraints that generalises the arc-flow formulation by Valério de

Carvalho, M. (1999). Both Valério de Carvalho, M. (1999) and Brandão and Pedroso (2016)

proposed exact methods for solving 1D-BPP and CSP problems.

BP (or BPC) algorithms have been the leading exact algorithms for the 1D-BPP in the

past decade. Vance et al. (1994) proposed the first BP algorithm for the 1D-BPP, based on

the traditional Gilmore-Gomory set-partitioning model for the CSP (Gilmore and Gomory

1961). At each node of the BB tree, the BP algorithm branches on a pair of items which are

packed together by a fractional number of bins and forces the selected items to be packed

either together or separately in the children nodes. Vance (1998) studied the influence of

two branching schemes, one suggested in Barnhart et al. (1998) and the other in Vance et al.

(1994), on BP algorithms and used the CSP as a case study. Valério de Carvalho, M. (2002)

reviewed and analyzed LP models for the 1D-BPP and the CSP, and implemented several

BP algorithms based on these LP models. Vanderbeck (1999) proposed a more efficient BP

algorithm with several enhancement features such as variable fixing, cutting planes, early

branching, and rounding heuristics. Degraeve and Schrage (1999) proposed a BP algorithm

which branches on a column with fractional value for the CSP. This BP algorithm was

improved later in Degraeve and Peeters (2003) by using heuristic algorithms, pruning

rules, and a sub-gradient procedure to accelerate the convergence of column generation.

Scheithauer et al. (2001) proposed a BPC algorithm with Chvátal-Gomory cuts (Chvátal

1973) to strengthen the LP-relaxation for the CSP. Belov and Scheithauer (2006) also

proposed a BP algorithm for the CSP. The computational analysis reported in Delorme

et al. (2016) shows that, among the different exact algorithms proposed for the 1D-BPP,

the exact methods of Belov and Scheithauer (2006) and Brandão and Pedroso (2016) are

the best ones.

The literature about exact algorithms for the 1D-BPPC is limited compared to the

1D-BPP literature. Fernandes Muritiba et al. (2010) proposed a hybrid multi-phase exact

algorithm for the 1D-BPPC, whose core component is a BP algorithm that is applied in

the last phase of the algorithm. The hybrid exact algorithm involves a population heuristic

based on tabu search to find high-quality feasible solutions and several bounding pro-

cedures to tighten the lower bounds. Only if the bounding procedures cannot prove the

optimality of the solution obtained by the heuristic, the BP is executed to find the final

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

optimal solution. Elhedhli et al. (2011) proposed another BP algorithm with two key fea-

tures that greatly contribute to its efficiency. First, a special branching scheme based on

the conflicting constraints, which is able to preserve the structure of the pricing problem

after branching. Secondly, maximal clique inequalities that are generated according to the

conflicting constraints and are added to the pricing problems. Sadykov and Vanderbeck

(2013) developed a generic BP algorithm relying on generic branching schemes and primal

heuristics. Depending on the structure of the conflict graph, the BP algorithm either uses

a dynamic programming or a depth-first BB algorithm to solve the pricing problem. The

computational results reported by Sadykov and Vanderbeck (2013) show that their BP

algorithm outperforms the existing algorithms on instances from the literature. Brandão

and Pedroso (2016) also presented the results obtained using their arc-flow formulation for

several cutting and packing problems, including the 1D-BPPC.

1.2. Contributions of this paper

Our distinct contributions in this paper are as follows:

• We propose a new BPC algorithm to solve the 1D-BPP and the 1D-BPPC based on

the set-partitioning model with SR inequalities.

• We describe a new label-setting algorithm to solve the pricing problem associated with

the mathematical formulation and dominance and fathoming rules used to speed up its

computation.

• We perform extensive computational experiments on both 1D-BPP and 1D-BPPC

classes of instances proposed in the literature. In particular, for the 1D-BPP, we compare

our results with state-of-the-art methods for the CSP that also represent the best exact

methods for the 1D-BPP.

The results show that the SR inequalities can improve the lower bounds yielded by

the LP-relaxation of the set-partitioning formulation and that the new BPC is highly

competitive with state-of-the-art exact methods. For both the 1D-BPP and the 1D-BPPC

the proposed method successfully closed several open instances.

The remainder of the paper is organized as follows. In Section 2, we introduce the math-

ematical formulation for the 1D-BPP and the 1D-BPPC together with a description of

the corresponding pricing problems. The details of the BPC algorithm, including a label-

setting algorithm used to solve the pricing problems, dominance and fathoming rules, a

Author: Article Short Title
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

primal heuristic and a branching strategy, are given in Section 3. Section 4 presents and

analyses the computational results of the BPC algorithm on several classes of 1D-BPP

and 1D-BPPC instances proposed in the literature. Finally, we conclude the paper and

indicate future research directions in Section 5.

2. Set-partitioning formulation with SR inequalities

In this section, we introduce a set-partitioning formulation with SR inequalities for the

1D-BPP and the 1D-BPPC.

A pattern S is a subset of the item set N such that
∑

j∈S wj ≤ c. In the case of the

1D-BPPC, the set of items is also characterized by a conflict graph G= (N,E), where E

is a set of edges such that {i, j} ∈ E when i and j are in conflict. For the 1D-BPPC, a

pattern S cannot contain any pair of items i, j, i 6= j, if {i, j} ∈ E. Let P be the index

set of all patterns for the 1D-BPP (1D-BPPC), and let Np be the set of items of pattern

p ∈P. We denote with aip, i ∈N , p ∈P, a (0-1) coefficient equal to 1 if item i ∈Np, 0

otherwise.

Let C ⊆ {S ⊂ N : |S| = 3} be a subset of all items triplets, and let P(S) ⊆P be the

subset of the index set of all patterns containing at least two items in S (i.e.,P(S)= {p∈

P : |Np∩S| ≥ 2}). Let xp, p∈P, be a binary variable equal to 1 if and only if pattern p is in

the optimal solution. The 1D-BPP (1D-BPPC) formulation based on the set-partitioning

model and SR inequalities, hereafter called F , is

(F) z(F) =min
∑

p∈P

xp (1)

s.t.
∑

p∈P

aipxp = 1, ∀i∈N (2)

∑

p∈P(S)

xp ≤ 1, ∀S ∈C (3)

xp ∈ {0,1}, ∀p∈P.

The objective (1) states to minimize the number of bins. Constraints (2) ensure that each

item i ∈N has to be assigned to exactly one bin. Constraints (3) correspond to a subset

of SR inequalities involving sets of items having cardinality equal to three.

Let LF be LP-relaxation of formulation F and let LF ′ be the LP-relaxation of formu-

lation F without SR inequalities (3), denoted as formulation F ′. We denote by z(LF) and

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 7

by z(LF ′) the optimal solution costs of problems LF and LF ′, respectively. A 1D-BPP

instance is said to have the Integer Round-Up Property (IRUP) if the rounded up value

of z(LF ′) (i.e., ⌈z(LF ′)⌉) is equal to z(F ′). It was conjectured in the seventies that the

IRUP held for all the 1D-BPP instances. However, this conjecture was disproved after

Non-IRUP instances were discovered by Marcotte (1986). Scheithauer and Terno (1995,

1997) conjectured that a difference equal to one between the rounded up lower bound and

the optimal solution holds for any 1D-BPP and CSP instance (Modified Integer Round-Up

Property, MIRUP). The MIRUP conjecture is still open both for the 1D-BPP and the

CSP, but a number of interesting results have been obtained while attempting to close

it. In particular, Caprara et al. (2015) produced a large set of Non-IRUP instances by

using a relationship between the 1D-BPP and the edge coloring problem. They also gave a

method to transform an IRUP instance into a Non-IRUP one. The IRUP for the CSP has

also been investigated by Kartak et al. (2015). The MIRUP does not hold for the Vertex

Coloring Problem (see, for example, Malaguti et al. 2011), a special case of the 1D-BPPC,

and therefore it does not hold also for the 1D-BPPC.

Relaxations LF ′ and LF can be solved by column generation by iteratively solving a

restricted master problem (RMP) and the pricing problem, that determines whether there

exists a variable p ∈P to be added to RMP to improve its current solution. In the case

of the 1D-BPP, the pricing problem associated with relaxation LF ′ is the well-known

Knapsack Problem (KP) whereas in the case of the 1D-BPPC the pricing problem is a

Knapsack Problem with Conflicts (KPC). SR inequalities can strengthen the lower bound

obtained from LF ′ but the complexity of the corresponding pricing problem (KP or KPC)

is sensitive to the addition of those cuts, since the values of the corresponding dual variables

cannot be translated into subproblem costs.

2.1. The pricing problems

In this section, we describe the mathematical formulations associated with the pricing

problems of formulation LF . In Section 3.1, we then describe an efficient algorithm for

their solution based on dynamic programming.

The variables of the dual of problem LF are given by the vectors µ= (µ1, µ2, . . . , µn) and

λ = (λ1, λ2, . . . , λ|C |), where µ1, µ2, . . . , µn are associated with constraints (2), and λ ≤ 0

Author: Article Short Title
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

with constraints (3). The reduced cost of a pattern p∈P with respect to a dual solution

(µ,λ) can be computed as

1−
∑

i∈N

aipµi−
∑

S∈C s.t.
|Np∩S|≥2

λS.

Let yi, i∈N , be a binary variable equal to 1 if and only if item i is packed into the optimal

pattern, and let zS, S ∈ C , be a binary variable equal to 1 if and only if the dual value

λS of the SR inequality associated with set S is subtracted from the reduced cost of the

optimal pattern. The pricing problem for the 1D-BPP is formulated as

(SP1) z(SP1) =min 1−
∑

i∈N

µiyi−
∑

S∈C

λSzS (4)

s.t.
∑

i∈N

yiwi ≤ c (5)

zS ≥ yi + yj − 1, ∀i, j ∈ S, i 6= j,∀S ∈C (6)

yi ∈ {0,1}, ∀i∈N (7)

zS ∈ {0,1}, ∀S ∈C . (8)

The objective (4) states to minimize the reduced cost of the pattern. Constraints (5)

ensure that the total weight of the items in a pattern cannot exceed the capacity whereas

constraints (6) are linking constraints between variables y and z.

The formulation of the pricing problem associated with the 1D-BBPC can be derived

from formulation SP1 as

(SP2) z(SP2) =min 1−
∑

i∈N

µiyi−
∑

S∈C

λSzS

s.t.(5), (6), (7) and (8)

yi+ yj ≤ 1, ∀{i, j} ∈E. (9)

where the additional set of constraints (9) avoid joint assignments of items that are in

conflict.

Section 3.1 describes a dynamic programming label-setting algorithm to solve the prob-

lems associated with formulations SP1 and SP2, and dominance and fathoming rules used

to speed up the computation.

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 9

3. Branch-and-Price-and-Cut algorithm

In this section, we describe an exact algorithm for solving the 1D-BBP and the 1D-BBPC

based on a BPC method.

The master problem at the root node of the enumeration tree is defined as the LP-

relaxation of formulation F where the equality constraints (2) are relaxed to covering

constraints and the set of patterns P and the set of SR inequalities C are substituted

by sets P and C , respectively. Set P is defined as the set of single-item patterns, i.e.,

P = {1,2, . . . , n}, where Nj = {j}, ∀j ∈N , and set C is set to the empty set, i.e., C = ∅.

Set P also ensures that the master problem admits a feasible solution. SR inequalities (3)

are separated by complete enumeration.

In the following section, we describe a label-setting algorithm used to solve the pricing

problems described in Section 2.1 together with dominance and fathoming rules. Section

3.2 describes the primal heuristic used to find good feasible solutions whereas Section 3.3

delineates the branching scheme adopted in the algorithm.

3.1. Pricing algorithm

In this section, we describe an algorithm to solve the pricing problem SP2 associated

with the 1D-BPPC (and thus the pricing problem SP1 associated with the 1D-BPP). The

structure of the algorithm is such that branching rules based on whether a pair of items are

required or forbidden to be packed in a same bin can be easily handled by the algorithm.

The pricing algorithm is based on the classic dynamic programming algorithm for the

KP (see Martello and Toth 1990). In our case, the dynamic programming recursion needs

to include additional resources to model the contributions of the dual variables associated

with the SR inequalities to the computation of the reduced cost on a pattern.

For sake of description, we assume that a dummy item n+ 1, that is compatible with

all the items of set N , is included in set N , i.e., N =N ∪ {n+1}. Let (µ,λ), µ≥ 0 and

λ≤ 0, be the current dual solution of the master problem.

A label is a tuple L= (j, l, c, V,O,R) and is composed of the following information:

• j: the index of the last item considered in the partial pattern;

• l: the total weight of the items in the partial pattern;

• c: the reduced cost of the partial pattern;

• V : the set of items packed in the partial pattern, V ⊆ {1,2, . . . , j};

Author: Article Short Title
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

• O: the set of items in {j + 1, . . . , n, n+ 1} compatible with the items in V and such

that l+wi ≤ c, ∀i∈O;

• R: the set of binary resources associated with the binding SR inequalities in set C . For

each SR inequality associated to a item subset S we consider one binary integer resource

σ :P→{0,1}. We denote by S(σ) and by λ(σ) the item subset defining the SR inequality

and the dual variable associated, respectively.

Let Fj ⊂N be the set of items incompatible with item j. The label extension rule for

a label L = (j, l, c, V,O,R) is as follows. Let i be the item having the minimum index

among the items in set O, i.e., i= argmin{h : h ∈O(L)}. If i= n+1, then a single label

L= (n+1, l, c, V,O,R) corresponding to the complete pattern V (L) is created. Otherwise,

two new labels L1 and L2 are created according to whether item i is packed into the partial

pattern associated with L or not, respectively. The label L1 is

j(L1) = i

l(L1) = l(L)+wi

c(L1) = c(L)−µi−
∑

σ∈R s.t.
σ(L)=1, i∈S(σ)

λ(σ)

V (L1) = V (L)∪{i}

O(L1) = {h : h∈O(L) \Fi \ {i}, l(L)+wi+wh ≤ c}

σ(L1) =

mod(σ(L)+ 1,2), if i∈ S(σ)

σ(L), otherwise
∀σ ∈R,

where the function mod(x, y) returns the remainder of dividing x by y, and the label L2 is

j(L2) = i

l(L2) = l(L)

c(L2) = c(L)

V (L2) = V (L)

O(L2) =O(L) \ {i}

σ(L2) = σ(L),∀σ ∈R.

The algorithm starts from the initial label (0,0,1.0,∅,{1,2, . . . , n+1},{0}σ∈R).

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 11

To reduce the number of labels to extend, the following dominance rule is proposed to

identify labels that can be safely discarded. Dominance rules for the VRPTW based on

the SR inequalities have been investigated by Jepsen et al. (2008).

For a label L, let P(L)⊆P be the index set of all feasible partial patterns with items in

O(L) that can be used to complete the partial pattern V (L). Let (V (L),Np), p∈P(L), be

a feasible pattern obtained by joining partial pattern V (L) with a pattern Np, p ∈P(L),

and let c(V (L),Np) be the corresponding reduced cost computed according to the dual

solution (µ,λ).

Dominance 1. Let L1 and L2 be two labels with j(L1) = j(L2) = j and such that:

c(L1)−
∑

σ∈R s.t.
σ(L1)=1,σ(L2)=0

λ(σ)≤ c(L2)−
∑

i∈O(L2)\O(L1)

µi (a)

l(L1)≤ l(L2), (b)

(10)

then label L1 dominates label L2.

Proof. For any partial pattern p2 ∈P(L2), we first construct another partial pattern Np1

which consists of all the items in Np2 ∩O(L1). From the definition of pattern p1 and due to

inequality (10)-b, we have p1 ∈P(L1). The difference between the reduced cost of pattern

(V (L1),Np1) and (V (L2),Np2) is

c(V (L1),Np1)− c(V (L2),Np2) =

c(L1)−
∑

i∈Np1

µi−
∑

σ∈R s.t
σ(L1)=1,|Np1

∩S(σ)|=1

λ(σ)−
∑

σ∈R s.t
|Np1

∩S(σ)|≥2

λ(σ)−

c(L2)+
∑

i∈Np2

µi +
∑

σ∈R s.t
σ(L2)=1,|Np2

∩S(σ)|=1

λ(σ)+
∑

σ∈R s.t
|Np2

∩S(σ)|≥2

λ(σ).

(11)

We have:

(i) Np2 \Np1 =Np2 \ (Np2 ∩O(L1)) =Np2 \O(L1).

(ii) {σ ∈R : σ(L1) = 1, |Np1 ∩S(σ)|= 1}=

{σ ∈R : σ(L1) = 1, σ(L2) = 0, |Np1 ∩S(σ)|= 1}∪

{σ ∈R : σ(L1) = 1, σ(L2) = 1, |Np1 ∩S(σ)|= 1}=

({σ ∈R : σ(L1) = 1, σ(L2) = 0} \ {σ ∈R : σ(L1) = 1, σ(L2) = 0, |Np1 ∩S(σ)| 6= 1})∪

{σ ∈R : σ(L1) = 1, σ(L2) = 1, |Np1 ∩S(σ)|= 1}.

Author: Article Short Title
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

(iii) {σ ∈R : σ(L2) = 1, |Np2 ∩S(σ)|= 1}=

{σ ∈R : σ(L1) = 0, σ(L2) = 1, |Np2 ∩S(σ)|= 1}∪

{σ ∈R : σ(L1) = 1, σ(L2) = 1, |Np2 ∩S(σ)|= 1}=

{σ ∈R : σ(L1) = 0, σ(L2) = 1, |Np2 ∩S(σ)|= 1}∪

{σ ∈R : σ(L1) = 1, σ(L2) = 1, |Np1 ∩S(σ)|= 1}∪

{σ ∈R : σ(L1) = 1, σ(L2) = 1, |(Np2 \Np1)∩S(σ)|=1}.

(iv) {σ ∈R : |Np2 ∩S(σ)| ≥ 2}=

{σ ∈R : |Np1 ∩S(σ)| ≥ 2}∪ {σ ∈R : |Np2 ∩S(σ)| ≥ 2, |Np1 ∩S(σ)| ≤ 1}.

Equation (11) then becomes:

c(V (L1),Np1)− c(V (L2),Np2) =

c(L1)− c(L2)+
∑

i∈Np2
\O(L1)

µi−
∑

σ∈R s.t.
σ(L1)=1,σ(L2)=0

λ(S)+
∑

σ∈R s.t.
σ(L1)=1,σ(L2)=0,|Np1

∩S(σ)|6=1

λ(S)+

∑

σ∈R s.t.
σ(L1)=0,σ(L2)=1,|Np2

∩S(σ)|=1

λ(S)+
∑

σ∈R s.t.
σ(L1)=1,σ(L2)=1,|(Np2

\Np1
)∩S(σ)|=1

λ(S)+

∑

σ∈R s.t.
|Np2

∩S(σ)|≥2,|Np1
∩S(σ)|≤1

λ(S).

(12)

Since µ≥ 0, λ≤ 0 and Np2 ⊆O(L2), from equation (12) we obtain:

c(V (L1),Np1)− c(V (L2),Np2) ≤ c(L1)− c(L2)+
∑

j∈O(L2)\O(L1)

µi−
∑

σ∈R s.t
σ(L1)=1,σ(L2)=0

λ(σ) ≤ 0,

and the last inequality holds due to inequality (10)-a.�

Condition (10)-b ensures that the feasible extensions of L1 about the bin capacity are

also feasible extensions for L2. Inequality (10)-b aims at considering all resources from

which a common extension of L1 and L2 would result in increasing the reduced cost of

L1 without increasing that of L2. The inequality thus represents the impossibility for the

reduced cost of L1 to exceed that of L2. It follows that L2 can be safely discarded as it will

never produce patterns better than those that can be produced from extending L1.

The number of labels can be further reduced by removing any label L that cannot lead

to any negative reduced cost pattern according to the following rule.

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 13

Fathoming 1. Let lb(L) be a lower bound on the reduced cost of any pattern p∈P(L).

Any label L such that

c(L)+ lb(L)≥ 0

cannot lead to any negative reduced cost pattern.

Lower bound lb(L) can be computed by ignoring the conflicting constraints and the dual

variables associated with the SR inequalities as follows:

lb(L) =min

n
∑

i=j(L)+1

−µizi

s.t.
n

∑

i=j(L)+1

wizi ≤ c− l(L)

zi ∈ {0,1},∀i∈ {j(L)+ 1, . . . , n},

where zi ∈ {0,1}, ∀i ∈ {j(L) + 1, . . . , n}, is a binary variable taking value 1 if item i is

selected in solution and 0 otherwise.

Algorithm 1 illustrates the dynamic programming algorithm used to solve the pric-

ing problem. In the algorithm, set Lj, j = 0,1, . . . , n , represents the set of all labels at

stage i of the algorithm. The algorithm returns a subset Ln+1 of set Ln+1 of at most

∆ negative reduced cost patterns with respect to the dual solution (µ,λ) and such that

maxL∈Ln+1
c(L)≤minL∈Ln+1\Ln+1

c(L), where ∆ is a parameter defined a priori.

Implementation issues Each set Li is stored using an array of data structures, where

each data structure corresponds to a state or label with the corresponding information.

Every time a new label is generated, its data are appended at the end of the corresponding

array. In order to reduce the space requirements, the different sets of a label are encoded

by bit strings, i.e., we use a bitmask representation where every single bit of a computer

word is used separately to indicate whether an item is included in the set or not and bitset

operations are used to implement the basic set operations of intersection and union.

During the execution of preliminary experiments, we observed that the Dominance rule

1 applied at Step 4 of Algorithm 1 can be time consuming, therefore, to speed up the

whole solution process, we first sort the labels in set Li for increasing values of the reduced

costs. Then, only the pair of consecutive labels are compared to check the dominance rule.

Although not all the dominated labels are removed under this strategy, we found it to be

Author: Article Short Title
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Algorithm 1 Algorithm for the solution of the pricing problem
1: L0← (0,0,1.0,∅,{1,2, . . ., n+1},{0}σ∈R), L0←{L0}.

2: Lj←∅, j =1,2, . . . , n+1.

3: for all j = 0, . . . , n do

4: Apply Dominance rule 1 and eventually delete labels in Lj .

5: for all L∈Lj do

6: i← argmin{h : h∈O(L)}.

7: if i= n+1 then

8: Ln+1←Ln+1 ∪{L}.

9: else

10: Extend L to create two new labels L1 and L2.

11: if c(L1)+ lb(L1)< 0 (c(L2)+ lb(L2)< 0) then

12: Li←Li ∪{L1} (Li←Li ∪{L2}).

13: end if

14: end if

15: end for

16: end for

17: return Set Ln+1 ⊆Ln+1 s. t. |Ln+1| ≤∆, maxL∈L
n+1

c(L)< 0, maxL∈L
n+1

c(L)≤minL∈L
n+1\Ln+1

c(L).

computationally convenient. We also found to be computationally convenient to directly

sort the labels of each set Li since it requires O(|Li| log |Li|) operations with respect to the

option of maintaining an order list of labels, that requires O(|Li|
2) operations.

The computation of function lb(L) has been implemented as follows. Let g(i, q) be the

optimal solution cost of the KP defined by the items in {i, . . . , n} and bin capacity equal

q. Then lb(L) is computed as lb(L) = g(j(L)+ 1, c− l(L)); functions g(i, q) are computed

before starting Algorithm 1 using a standard dynamic programming implementation (see

Martello and Toth 1990). To further sped up the computation, during the execution of

Algorithm 1 we also compute the minimum reduced cost among all the reduced costs of

the labels generated so far, say cmin - each label L such that c(L) + lb(L)≥ cmin can be

discarded. In the computational results reported in Section 4, parameter ∆ has been set

equal to 10.

3.2. Primal heuristic

As shown by previous works (see, for example, Sadykov and Vanderbeck 2013), primal

heuristics can help to improve the performance significantly. Sadykov and Vanderbeck

(2013) used a generic diving heuristic that is a depth-first heuristic search in the BP tree,

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 15

1 0

1

1

0

1 0

1 0

1 0 1 00

Figure 1 The search tree of the primal heuristic

based on the heuristic proposed in Joncour et al. (2010). The solution obtained through

the initial depth-first exploration of the tree is considered as a reference incumbent solution

and it is further explored using limited backtracking as a diversification mechanism and

limited discrepancy search (Joncour et al. (2010)).

Similarly to Sadykov and Vanderbeck (2013), we designed a primal heuristic based on a

BP tree, where we adopted different branching and search strategies. The BP enumeration

is driven by a binary branching by fixing xp variables either to 1 (left branch) or to 0

(right branch). At each BP node, the master is solved by column generation, then two

branches are generated by using a greedy strategy. In a left branch, the master is updated

by deleting rows associated to items already covered and deleting columns covering those

items. In a right branch, the column associated with the selected variable is deleted from

the master. When the master is reoptimized, the columns that have been deleted due to

right branches are not added to the master problem even if they are regenerated during

the solution of the pricing problem.

The tree is explored using a modified depth-first strategy. We restrict our search on a

limited number of nodes by choosing at most one right child node in the path from the

root node to any visited node. More precisely, suppose (s1, ..., si) be a node sequence where

s1 is the root node and node sj−1 is the father of node sj, j = 2, . . . , i. Then if sj is the

left child node of sj−1, j = 2, . . . , i, then the next node explored by the algorithm, i.e. node

si+1, is the right child of si; otherwise, si+1 can only be the left child node of si and the

right child is discarded. Figure 1 illustrates the search strategy; in the figure, the nodes

which are explored are darker than the nodes that are discarded.

During the execution of preliminary experiments, we found to be computationally con-

venient to apply the primal heuristic only at the root node of the BPC tree.

Author: Article Short Title
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

3.3. Branching strategy

According to the observation of Ryan and Foster (1981), when an optimal solution of

the restrict master problem is fractional, there must exist a pair of item (i, j) such that

0< δij < 1, where δij =
∑

p∈P
aipajpxp. Variable δij can be interpreted as an auxiliary (0-1)

variable indicating whether or not items i and j are packed in the same pattern.

Therefore, a natural branching scheme is the following. We first select the pair (i, j)

whose δij value is as close as possible to 0.5 - ties are broken by selecting the pair with

maximum weight wi +wj . Then we branch by enforcing the selected pair of items being

packed into the same bin or in different bins, i.e., δij =1 or δij = 0, respectively.

The first child node, where item i and j must be assigned to the same bin, is implemented

by setting the weight of item i equal to wi +wj and by deleting item j, i.e., N =N \ {j}.

The conflict graph G= (V,E) is updated by setting V = V \ {j} and by re-connecting all

edges {j, k} ∈E to vertex i. The master is updated by deleting row j and by removing all

columns p such that aip =1 and ajp = 0 or aip = 0 and ajp =1.

The second child, where item i and j must be assigned to different bins, is easily imple-

mented by adding an incompatibility between item i and j, i.e., by setting E =E∪{{i, j}}.

All columns p such that aip+ ajp > 1 are removed from the master.

An important property of the above branching rule is that it preserves the structure of

our pricing problem. It is worth mentioning that alternative branching schemes, that also

preserve the structure of the pricing problem and that take a form closely related to the

Ryan and Foster scheme, have been proposed by Vanderbeck (2011).

4. Computational results

The BPC algorithm described in Section 3 (hereafter called “EXM”) was coded in Java

using Sun Oracle JDK 1.7.0. The experiments were carried out on an Intel Xeon E5-1603

equipped with a 2.80 GHz (Quad Core) CPU and 8GB of RAM, running under Ubuntu

4 Linux operating system. The LP-relaxation of the restricted master problem was solved

using the primal simplex optimizer of ILOG CPLEX 12.6.3 (IBM CPLEX 2016).

The source code of EXM and its results can be downloaded at the website

http://www.computational-logistics.org/orlib/, section “1D Bin Packing Prob-

lems”.

http://www.computational-logistics.org/orlib/

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 17

Table 1 1D-BPP and 1D-BPPC classes of instances proposed in literature

Problem Class #Inst Source n c

1D-BPP

Falkenauer U 80
Falkenauer (1996)

120-1000 150
Falkenauer T 80 60-501 1000
Scholl 1 720

Scholl et al. (1997)
50-500 100-150

Scholl 2 480 50-500 1000
Scholl 3 10 50-500 10,000
Wäscher 17 Wäscher and Gau (1996) 57-239 10,000
Schwerin 1 100

Schwerin and Wäscher (1998)
100 1000

Schwerin 2 100 120 1000
Hard28 28 Schoenfield (2002) 160-200 1000
Random 3840

Delorme et al. (2016)

50-1000 50-1000
AI 250 201-1002 2500-80,000
ANI 250 201-1002 2500-80,000

1D-BPPC

t-FMIMT 540
Fernandes Muritiba et al. (2010)

60-501 1000
u-FMIMT 540 120-1000 150
t-ELGN 360

Elhedhli et al. (2011)
60-249 1000

u-ELGN 360 120-500 150
ta 360

Sadykov and Vanderbeck (2013)

60-501 1000
ua 360 120-1000 150
da 270 120-500 10,000
d 270 120-500 10,000

4.1. Classes of instances

Test instances for the 1D-BPP have been proposed in the literature by different authors.

Recently, Delorme et al. (2016) have generated two new classes of difficult instances. The

first class of instances, called the augmented Non-IRUP (ANI) class, is characterized by

instances without the IRUP property. The second class, called augmented IRUP (AI) class,

has been derived from the ANI class by ensuring that the bins used in an optimal solution

are always completely filled. It is worth mentioning that the optimal solutions of these two

classes of instances are known based on the method used to generate them. The reader is

referred to Delorme et al. (2016) for further details about the ANI and AI classes.

Table 1 summarizes the classes of 1D-BPP instances proposed in the literature and used

in our experiments. In the table, for each class of instances, columns “n” and “c” give

the ranges of the number of items and the capacities of the bins, respectively; column

“#Inst” reports the number of instances of the corresponding class. The instances can be

downloaded from http://or.dei.unibo.it/library/bpplib (see Delorme et al. 2017).

For the 1D-BPPC, instances were generated by Fernandes Muritiba et al. (2010),

Elhedhli et al. (2011) and Sadykov and Vanderbeck (2013). The details of these classes of

instances are also given in Table 1. In particular, in classes “t”, “u” and “d”, conflict graphs

are interval graphs (see Sadykov and Vanderbeck (2013)). The instances are available at

https://www.math.u-bordeaux.fr/~rsadykov/tests/BPPC_test_instances.zip.

http://or.dei.unibo.it/library/bpplib
https://www.math.u-bordeaux.fr/~rsadykov/tests/BPPC_test_instances.zip

Author: Article Short Title
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

4.2. Computational results on the 1D-BPP

In this section, we compare algorithm EXM with the following two exact methods that,

according to Delorme et al. (2016), are accounted to be the best exact algorithms for the

1D-BPP:

• BELOV: the BP algorithm of Belov and Scheithauer (2006);

• VPSOLVER: the exact method of Brandão and Pedroso (2016).

It is worth mentioning that both BELOV and VPSOLVER are dedicated to the CSP. The

computational results reported by Delorme et al. (2016) are used as a basis for comparing

the results of EXM. Algorithms BELOV and VPSOLVER have been tested by Delorme

et al. on an Intel Xeon 3.10 GHz with 8 GB RAM. According to the SuperPi (1M) bench-

mark (http://www.superpi.net/), the computing time in seconds of the machine used

by Delorme et al. is equal to 9.97, and it is close to the computing time of our machine

which is equal to 9.70. The computing time of SuperPi is an estimate of the single-thread

speed of a CPU - the less computing time a CPU takes, the faster the CPU is. Therefore,

our machine is as fast as the machine used in Delorme et al. (2016).

Delorme et al. preliminary computed lower and upper bounds through a simple procedure

and BELOV and VPSOLVER were only executed on instances for which lower and upper

bounds did not coincide. We therefore selected the same subset of instances to compare the

results of EXM. Moreover, on classes of instances of Falkenauer, Scholl et al., Wäscher and

Gau, Schwerin and Wäscher, and Schoenfield (hereafter called Easy class) and on Random

class, Delorme et al. reported the results obtained by running the codes with a time limit

of one minute and of 10 minutes.

Tables 2 and 3 summarize the results obtained with a time limit of one minute on the

Easy and Random classes, respectively. In the tables, column “#Inst” gives the number of

instances for which the codes were executed, column “#opt” gives the number of instances

that were solved to proven optimality and column “t” reports the average computing time

expressed in seconds. The last line of each table reports, for each method, the total number

of solved instances and the average computing time.

Table 2 shows that EXM, within the time limit of one minute, solved almost all instances

of the Easy class, BELOV and VPSOLVER solved 953 and 928 out of the 976 instances,

respectively. On class Random, BELOV solved all instances and EXM all but one instance.

http://www.superpi.net/

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 19

We also executed EXM with a time limit of 10 minutes. On class Random, BELOV,

VPSOLVER, and EXM solved all instances. On the easy class, BELOV also solved all

instances, VPSOLVER solved 969 out of 976 instances and EXM all but one instance

(one instance of class Hard28). The corresponding results are given in tables 4 and 5.

For methods BELOV and VPSOLVER, we report only the number of instances solved to

optimality since the corresponding average computing times have not been reported by

Delorme et al. (2016).

The results on the Easy and Random classes indicates that EXM outperforms

VPSOLVER and is highly competitive against BELOV.

Table 2 Results on classes of instances of Falkenauer, Scholl et al., Wäscher and Gau, Schwerin and Wäscher,

and Schoenfield

Class #Inst
BELOV VPSOLVER EXM

#opt t #opt t #opt t

Falkenauer U 74 74 0.0 74 0.1 74 2.0
Falkenauer T 80 57 24.7 80 0.4 80 3.8
Scholl 1 323 323 0.0 323 0.1 323 0.2
Scholl 2 244 244 0.3 208 14.0 244 7.0
Scholl 3 10 10 14.1 10 6.3 10 4.5
Wäscher 17 17 0.1 6 49.4 16 11.5
Schwerin 1 100 100 1.0 100 0.3 100 0.1
Schwerin 2 100 100 1.4 100 0.3 100 0.2
Hard28 28 28 7.3 27 14.2 26 8.5

976 953 2.7 928 5.0 973 2.8

Table 3 Results on class Random of Deloorme et al.

n #Inst
BELOV VPSOLVER EXM

#opt t #opt t #opt t

50 165 165 0.0 165 0.0 165 0.0
100 271 271 0.0 271 0.1 271 0.0
200 359 359 0.0 359 0.3 359 0.1
300 393 393 0.1 393 0.6 393 0.2
400 425 425 0.2 425 0.8 425 0.4
500 414 414 0.2 413 1.7 414 0.6
750 433 433 0.4 431 2.4 433 1.7
1000 441 441 0.7 434 3.4 440 3.3

2901 2901 0.2 2891 1.4 2900 0.8

Table 6 reports the results obtained on ANI an AI classes of instances. For these classes,

a time limit of 3600 seconds was imposed by Delorme et al., therefore, the time limit of

EXM has been set equal to 3600 seconds.

Author: Article Short Title
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 4 Results on classes of instances of Falkenauer, Scholl et al., Wäscher and Gau, Schwerin and Wäscher,

and Schoenfield with a time limit of 10 minutes

Class #Inst
BELOV VPSOLVER EXM

#opt #opt #opt t

Falkenauer U 74 74 74 74 2.0
Falkenauer T 80 80 80 80 3.8
Scholl 1 323 323 323 323 0.2
Scholl 2 244 244 242 244 7.0
Scholl 3 10 10 10 10 4.5
Wäscher 17 17 13 17 16.3
Schwerin 1 100 100 100 100 0.1
Schwerin 2 100 100 100 100 0.2
Hard28 28 28 27 27 8.5

976 976 969 975 4.7

Table 5 Results on class Random of Deloorme et al. with a time limit of 10 minutes

n #Inst
BELOV VPSOLVER EXM

#opt #opt #opt t

50 165 165 165 165 0.0
100 271 271 271 271 0.0
200 359 359 359 359 0.1
300 393 393 393 393 0.2
400 425 425 425 425 0.4
500 414 414 414 414 0.6
750 433 433 433 433 1.7
1000 441 441 441 441 3.3

2901 2901 2901 2901 0.8

In the table, column “#opt” reports the number of instances solved to optimality by the

methods and column “t” reports the corresponding average computing time in seconds.

Table 6 shows that EXM outperform BELOV and VPSOLVER; EXM solved to optimality

97 and 140 instances of classes ANI and AI, respectively. Overall, EXM could solve 70 and

84 more instances than BELOV and VPSOLVER, respectively. In particular, two instances

involving 1003 items and a bin capacity equal to 80,000 have been solved to optimality

for the first time. The table also shows that on the instances solved to optimality by all

methods, the average time of EXM is significantly lower.

The detailed results of EXM are summarized in Tables 7, 8 and 9. For sake of complete-

ness, the results are reported for all the instances of the different classes. The columns of

the tables report average values of the roundup lower bound without (“lbnoCut”) and with

(“lb”) SR inequalities, the number of bins in the optimal solution (“#bin”), the numbers

of nodes explored by EXM (“#node”), the number of nodes explored by the primal heuris-

tic (“#nodep”), the number of columns added to the restricted master problem (“#col”).

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 21

Table 6 Results on classes ANI and AI of Deloorme et al.

Class #Inst n c
BELOV VPSOLVER EXM

#opt t #opt t #opt t

ANI

50 201 2500 50 144.0 47 415.0 50 13.9
50 402 10,000 1 3556.0 6 3304.0 47 436.2
50 600 20,000 0 3602.0 0 3600.0 0 3602.7
50 801 40,000 0 3602.0 0 3600.0 0 3605.9
50 1002 80,000 - - - - 0 3637.7

AI

50 202 2500 50 91.0 50 54.0 50 4.2
50 403 10,000 45 699.0 42 1130.0 46 398.1
50 601 20,000 21 2539.0 8 3509.0 27 1759.6
50 802 40,000 0 3601.0 0 3600.0 15 2766.3
50 1003 80,000 - - - - 2 3546.1

500 167 153 237

Columns “t”, “tlp”, “tprimal” and “tprice” report the total computing time in seconds of

EXM, the primal simplex optimizer, the primal heuristic and of the label-setting algorithm,

respectively. Times tlp and tprice also include the times spent by the simplex optimizer and

by the label-setting algorithm during the execution of the primal heuristic, respectively.

The last two columns “#cutroot” and “#cut” show the number of SR inequalities added

to the restricted master problem at the root node and at all the explored nodes, respectively.

Table 7 Detailed results on classes of instances of Falkenauer, Scholl et al., Wäscher and Gau, Schwerin and

Wäscher, and Schoenfield

Class #opt lbnoCut lb #bin #node #nodep #col t tlp tprimal tprice #cutroot #cut

Falkenauer U 80 77.5 77.5 77.5 1.0 70.8 1353.6 3.8 3.3 0.2 2.2 11.7 11.7

Falkenauer T 80 188.1 188.1 188.1 1.0 8.6 1087.7 1.9 1.7 0.0 0.4 8.3 8.3

Scholl 1 720 108.9 108.9 108.9 1.0 0.5 292.7 0.2 0.1 0.0 0.0 1.2 1.2

Scholl 2 480 42.2 42.2 42.2 1.0 5.0 982.6 5.1 4.4 0.2 1.3 15.5 15.5

Scholl 3 10 56.2 56.2 56.2 1.0 9.9 972.6 4.5 0.5 3.8 0.5 15.1 15.1

Wäscher 17 17.3 17.4 17.4 424.1 14.4 1979.3 16.3 8.7 4.6 3.9 122.8 7328.5

Schwerin 1 100 18.0 18.0 18.0 1.0 0.2 409.3 0.1 0.1 0.0 0.0 7.1 7.1

Schwerin 2 100 21.9 21.9 21.9 1.0 0.3 576.4 0.2 0.2 0.0 0.0 7.1 7.1

Hard28 28 70.3 70.3 70.4 2596.4 166.8 1909.8 41.5 35.4 3.2 1.7 11.6 5837.3

The results reported in Table 9 shows that SR inequalities can improve the lower bounds

on instances where the rounded lower bound is strictly smaller than the optimal solution

cost. In Section 4.4 we also show that it is computationally convenient to use SR inequalities

at the different nodes of the BCP tree.

Author: Article Short Title
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 8 Detailed results on class Random of Deloorme et al.

Subclass #opt lbnoCut lb #bin #node #nodep #col t tlp tprimal tprice #cutroot #cut

50 480 24.0 24.0 24.0 1.0 0.0 73.2 0.0 0.0 0.0 0.0 0.1 0.1

100 480 46.7 46.7 46.7 1.0 0.2 166.8 0.0 0.0 0.0 0.0 0.4 0.4

200 480 92.1 92.1 92.1 1.0 0.6 334.4 0.1 0.1 0.0 0.0 1.0 1.0

300 480 136.9 136.9 136.9 1.0 3.0 498.0 0.2 0.1 0.0 0.0 2.6 2.9

400 480 182.1 182.1 182.1 1.0 2.8 654.1 0.3 0.2 0.0 0.0 2.0 2.0

500 480 227.3 227.3 227.3 1.0 4.6 774.0 0.5 0.4 0.0 0.1 4.2 4.2

750 480 339.7 339.7 339.7 1.0 9.7 1081.3 1.5 1.2 0.1 0.3 9.4 9.4

1000 480 452.4 452.4 452.4 1.0 43.9 1365.1 3.6 2.8 0.1 1.3 10.2 10.3

Table 9 Detailed results on classes ANI and AI of Deloorme et al.

Class n c #opt lbnoCut lb #bin #node #nodep #col t tlp tprimal tprice #cutroot #cut

ANI

201 2500 50 65.0 65.8 66.0 51.0 137.5 3521.8 13.9 10.9 1.5 2.3 18.3 1591.1

402 10,000 47 132.0 132.4 133.0 272.6 1948.5 9532.6 436.2 333.0 53.6 115.7 53.1 9418.3

600 20,000 0 198.0 198.0 199.0 1187.2 4402.1 22,213.7 3602.7 2900.4 514.9 624.7 48.6 29,046.6

801 40,000 0 265.0 265.0 266.0 325.6 4476.7 22,118.8 3605.9 2632.3 861.9 1658.4 38.2 6082.0

1002 80,000 0 332.0 332.0 333.0 1.9 3709.0 23,596.6 3637.7 2226.4 1399.1 2673.1 31.8 48.4

AI

202 2500 50 65.0 65.0 65.0 1.0 61.5 2965.4 4.2 3.3 0.7 1.4 26.2 26.2

403 10,000 46 132.0 132.0 132.1 605.1 564.9 9538.8 398.1 290.5 62.8 33.9 30.7 8463.6

601 20,000 27 198.0 198.0 198.5 715.5 2850.8 16,858.3 1759.6 1297.8 332.0 424.6 45.3 12,959.1

802 40,000 15 265.0 265.0 265.7 168.2 4873.6 20,008.1 2766.3 1924.5 726.6 1601.4 36.8 3469.3

1003 80,000 2 332.0 332.0 333.0 1.8 4228.4 23,664.5 3546.1 2030.5 1504.3 2560.6 32.8 48.1

4.3. Computational results on the 1D-BPPC

This section reports the results of EXM on 1D-BPPC instances. We compare EXM with the

BP algorithm (hereafter called “GBP”) proposed by Sadykov and Vanderbeck (2013) and

with the exact method proposed by Brandão and Pedroso (2016) (called “VPSOLVER”,

as for the 1D-BPP) on the classes of 1D-BPPC instances reported in Table 1. The results

reported by Sadykov and Vanderbeck (2013) and by Brandão and Pedroso (2016) show

that GBP and VPSOLVER outperform the other algorithms proposed in the literature on

classes “t-FMIMT”, “u-FMIMT”, “t-ELGN” and “u-ELGN”.

According to the SuperPi (1M) benchmark, our computer is about 1.5 times faster than

that of GBP, whose time limit is set to 3600 seconds. Therefore, we set time limit of EXM

to be equal to 2400 seconds. In addition, the computer used by Brandão and Pedroso

(2016) is about 1.4 faster than that of GBP.

Table 10 shows the results on classes of instances with interval conflict graphs, where

all instances were solved to optimality by EXM, GBP and VPSOLVER. A symbol ‘’-”

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 23

indicates that the class has not been considered by the corresponding method. For GBP

and VPSOLVER, the table reports the average solution time (“tavg”) and the maximum

solution time (“tmax”); for VPSOLVER, only column “tavg” is reported. In the table, the

computing times of EXM have been multiplied by 1.5 and those of VPSOLVER for 1.4,

for sake of comparison with GBP.

The table shows that, on the different classes, the average times of EXM are significantly

lower than that of GBP and that of VPSOLVER on classes t501, u500 and u1000.

Table 11 shows the results on “ta”, “ua”, and “da” instances. In the table, column

“#opt” gives the number of instances solved to optimality for the corresponding class

whereas column “topt” reports the average solution time only for the instances solved to

optimality within the imposed time limit. Also in this table, the computing times of EXM

have been multiplied by 1.5 for sake of comparison with GBP. No detailed computational

results about these instances were reported by Brandão and Pedroso (2016). In their paper,

Brandão and Pedroso mentioned that most of the instances were not solved to optimality

with a time limit of 12 hours. The authors also observed that the combination of large

capacities and long patterns is a limitation of their method.

The table shows that EXM could solve to optimality 35 more instances than GBP and

that on 7 out of 11 classes EXM solved open 1D-BPPC instances; only on subclass “ua1000”

EXM solved one instance less than GBP. Taking into account of the number of instances

solved to optimality, EXM is generally faster than GBP.

The detailed computational results of EXM on the 1D-BPPC instances are summarized

in tables 12 and 13.

According to the results, only in subclass “ta120” the SR inequalities can slightly improve

the rounded lower bound, thus showing that their contribution on these classes of instances

is very limited. Concerning the time spent by the different components of EXM, the tables

show that a large portion of the total computing time is spent for the solution of the pricing

problem.

4.4. Analysis of the different components of EXM

In this section, we analyse the impact of the primal heuristic, the pricing algorithm, the

SR inequalities, and the Dominance 1 and Fathoming 1 rules on the performance of EXM.

We first compare the performance of EXM by disabling the use of the primal heuristic

described in Section 3.2 (hereafter called “EXMnoPrimal”). Then, we conducted another

Author: Article Short Title
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 10 Comparison results on 1D-BPPC classes of instances with interval conflict graphs

Class Subclass
GBP VPSOLVER EXM

tavg tmax tavg tavg tmax

d

d120 8.9 - - 0.3 3.4
d250 50.4 - - 1.6 12.4
d500 486.8 - - 10.4 105.5

t-FMIMT

t60 0.8 6.5 0.1 0.1 0.7
t120 37.8 2956.4 0.7 0.5 13.1
t249 29.3 130.6 6.7 2.0 14.4
t501 189.1 960.8 103.5 10.7 34.7

u-FMIMT

u120 2.8 26.2 0.6 0.2 6.3
u250 12.5 35.9 5.4 5.8 4.7
u500 70.3 154.9 63.2 6.1 20.7
u1000 437.6 1133.1 1066.4 48.1 187.6

t-ELGN

t60 1.3 7.7 - 0.1 1.3
t120 6.9 30.0 - 0.3 4.5
t249 53.8 383.2 - 2.0 22.9

u-ELGN
u120 3.7 9.4 - 0.2 0.8
u250 21.2 73.3 - 0.8 3.2
u500 115.2 310.4 - 5.9 22.2

Table 11 Results on 1D-BPPC classes “ta”, “ua” and “da”

Class Subclass
GBP EXM

#opt topt #opt topt

ta

ta60 90 0.2 90 0.2
ta120 90 4.2 90 0.9
ta249 84 137.3 89 108.0
ta501 65 392.6 74 170.1

ua

ua120 90 0.7 90 0.4
ua250 88 9.0 90 7.8
ua500 82 39.0 88 31.5
ua1000 82 286.2 81 146.9

da

da120 67 23.2 78 64.8
da250 50 23.3 52 148.3
da500 49 137.6 50 129.2

837 872

experiment by replacing the label-setting algorithm described in Section 3.1 with our imple-

mentation of the branch-and-bound algorithm proposed by Bettinelli et al. (2017) for the

knapsack problem with conflicts (hereafter called “EXM+BCM”) also modified to consider

the dual contributions given by the SR inequalities and to use a solution pool to store

multiple solutions that are found during the exploration of the search tree (the maximum

number of solutions generated is equal to parameter ∆, see Algorithm 1).

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 25

Table 12 Detailed results on 1D-BPPC classes of instances with interval conflict graphs

Class Subclass #opt lbnoCut lb #bin #node #nodep #col t tprimal tprice #cutroot #cut

d

d120 90 61.8 61.8 61.8 1.0 0.0 203.8 0.2 0.0 0.1 9.3 9.3

d250 90 127.9 127.9 127.9 1.0 0.9 389.2 1.1 0.2 0.5 225.6 225.6

d500 90 252.8 252.8 252.8 1.0 2.9 724.6 6.9 1.7 2.5 856.5 856.5

t-FMIMT

t60 90 33.4 33.4 33.4 1.0 0.4 200.8 0.1 0.0 0.0 0.6 0.6

t120 90 66.1 66.1 66.1 3.9 11.5 407.8 0.3 0.1 0.1 5.5 22.4

t249 90 135.8 135.8 135.8 1.0 36.7 812.5 1.3 0.6 0.4 10.5 10.5

t501 90 275.7 275.7 275.7 1.0 66.8 1515.8 7.1 3.1 2.2 28.5 28.5

u-FMIMT

u120 90 70.4 70.4 70.4 1.0 54.1 346.1 0.2 0.1 0.0 1.6 1.7

u250 90 143.7 143.7 143.7 1.0 11.1 733.8 0.6 0.1 0.2 5.4 5.4

u500 90 286.0 286.0 286.0 1.0 55.4 1414.9 4.1 1.6 1.6 22.6 22.6

u1000 90 571.9 571.9 571.9 1.0 191.9 2596.3 32.1 17.5 14.6 43.8 43.8

t-ELGN

t60 180 33.5 33.5 33.5 1.1 0.4 212.3 0.0 0.0 0.0 0.5 0.7

t120 180 66.2 66.2 66.2 1.1 10.2 397.3 0.2 0.1 0.1 4.0 4.8

t249 180 135.2 135.2 135.2 1.0 36.0 817.8 1.4 0.6 0.4 11.8 11.8

u-ELGN

u120 180 70.0 70.0 70.0 1.0 0.8 356.6 0.1 0.0 0.0 0.8 0.8

u250 180 143.7 143.7 143.7 1.0 5.6 740.1 0.5 0.1 0.2 5.3 5.3

u500 180 284.3 284.3 284.3 1.0 54.1 1420.6 4.0 1.5 1.6 20.9 20.9

Table 13 Detailed results on 1D-BPPC classes “ta”, “ua”, and “da”

Class Subclass #opt lbnoCut lb #bin #node #nodep #col t tprimal tprice #cutroot #cut

ta

ta60 90 21.8 21.8 21.9 1.1 1.2 260.6 0.1 0.0 0.0 0.6 0.6

ta120 90 41.4 41.4 41.4 6.5 28.4 594.9 0.6 0.2 0.2 3.3 18.7

ta249 89 83.8 83.8 83.8 1377.5 317.6 1564.6 97.8 5.3 35.7 6.0 5415.5

ta501 74 167.4 167.4 167.6 1812.2 2324.7 3497.5 520.1 99.0 247.7 7.0 6840.9

ua

ua120 90 49.3 49.3 49.3 1.1 11.2 424.5 0.3 0.1 0.1 2.2 2.6

ua250 90 100.6 100.6 100.6 56.1 110.6 895.0 5.2 1.3 2.4 4.9 161.0

ua500 88 200.7 200.7 200.7 212.5 720.2 1655.1 73.9 22.7 41.2 8.1 670.5

ua1000 81 399.9 399.9 400.0 1.0 3251.0 2904.3 328.6 309.2 149.8 16.6 16.6

da

da120 78 23.3 23.3 23.6 2714.1 36.0 2313.4 357.5 1.8 189.7 18.6 116,834.5

da250 52 43.8 43.8 44.6 3544.4 306.2 3626.7 1070.6 38.0 663.2 11.9 85,094.0

da500 50 82.5 82.5 84.1 507.2 1359.8 3989.6 1115.1 620.3 792.3 12.4 11,470.7

Table 14 summarizes the computational results obtained on the set of difficult instances

of classes “ta”, “ua”, and “da”. For each subclass, the table reports the number of instances

solved to optimality (“#opt”) and the average solution time (“t”) only for the instances

solved to optimality. The results obtained clearly show the importance of the primal heuris-

tic and the effectiveness of the label-setting algorithm when compared with our implemen-

tation of the branch-and-bound algorithm of Bettinelli et al. (2017) on the set of instances

defined by our specific pricing problem. It is worth mentioning that the algorithm of Bet-

Author: Article Short Title
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 14 Impact of the primal heuristic and of the pricing algorithm on EXM

Subclass
EXM EXMnoPrimal EXM+BCM

#opt t #opt t #opt t

ta60 90 0.1 90 0.1 90 2.5
ta120 90 0.6 90 0.6 90 20.5
ta249 89 72.0 89 42.5 83 254.8
ta501 74 113.4 64 179.1 62 463.3

ua120 90 0.3 90 0.2 90 0.5
ua250 90 5.2 90 7.2 90 12.7
ua500 88 21.0 84 61.5 87 34.9
ua1000 81 97.9 76 148.4 79 159.8

da120 78 43.2 73 143.6 55 1155.5
da250 52 98.9 40 147.3 4 3514.6
da500 50 86.1 32 191.4 0 0.0

872 818 730

tinelli et al. has also been tested on different classes of KPC and that a complete comparison

with the method of Bettinelli et al. is out of the scope of this paper. Our dynamic program-

ming algorithm is therefore not proved to be better than that of Bettinelli et al. for solving

the KPC, but, at least for the type of instances associated with our pricing problem, it

turns out to be particular efficient.

We analyse the impact of SR inequalities on EXM by disabling the use of SR inequalities

(we call the corresponding version “EXMNoCut”). For the 1D-BPP, our experiments shows

that SR inequalities can improve the rounded lower bounds for instances of classes Hard28

and Wäscher, therefore we selected some of the corresponding instances in order to test

EXMNoCut. Table 15 reports the results obtained on the selected set of instances about

EXM and EXMNoCut. For each version, column “#node” reports the final number of

nodes explored whereas column “t” shows the computing time in seconds; concerning EXM,

column “#nodeCut” reports the number of nodes explored where SR inequalities were

useful in strengthening the lower bound. From the table, we can see that, on the selected

set of instances, the use of SR inequalities significantly improves the performance of EXM.

We also run EXMNoCut on 1D-BPPC classes “ta”, “ua”, and “da”, and the correspond-

ing results are shown in Table 16. The table shows that, even if the average lower bounds at

the root node cannot be improved by SR inequalities (see Table 13), it is computationally

convenient to separate SR inequalities at the different nodes of the enumeration tree.

In order to have some details on the number of states or labels generated by Algorithm 1,

Table 16 also gives for the basic version “EXMNoCut” some statistics about the number of

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 27

labels generated at the root node of the enumeration tree. More precisely, for each instance,

we computed the minimum, average and maximum number of labels generated during the

different calls to Algorithm 1. Columns #lmin, #lavg , and #lmax report average values of

the minimum, average and maximum values of the different instances, respectively.

Table 15 Effect of SR inequalities on 1D-BPP selected instances

Class Name n
EXM EXMNoCut

#node t #nodeCut #node t

Hard28

BPP716 180 65,369 966.3 7727 278,960 3600.0
BPP419 200 256 14.1 71 338 12.7
BPP359 180 4715 78.5 600 29,605 424.3
BPP175 200 11 3.7 4 117 5.4
BPP119 200 1 0.6 1 7 4.1
BPP60 160 618 18.1 151 3443 58.6
BPP40 160 54 4.6 11 56 4.3
BPP14 160 1637 45.0 290 2799 54.6

Wäscher TEST0065 60 7193 142.6 1415 13403 177.6

Table 16 Effect of SR inequalities on 1D-BPPC classes “ta”, “ua”, and “da”

Subclass
EXM EXMNoCut

#opt t #opt t #lmin #lavg #lmax

ta60 90 0.1 90 0.1 31.4 156.0 367.6
ta120 90 0.6 90 0.6 42.2 498.6 2,008.7
ta249 89 72.0 89 70.5 45.0 1,564.3 15,703.5
ta501 74 113.4 74 132.8 42.4 5,071.8 109,151.4

ua120 90 0.3 90 0.2 37.4 287.9 878.5
ua250 90 5.2 90 5.7 72.7 584.4 2,389.1
ua500 88 21.0 89 42.1 95.7 838.4 4,206.1
ua1000 81 97.9 80 101.4 109.6 1,102.2 5,947.9

da120 78 43.2 77 59.2 156.8 3,674.3 14,785.3
da250 52 98.9 51 46.4 635.5 14,327.1 61,945.3
da500 50 86.1 50 94.1 1,776.0 43,531.2 189,230.9

872 870

We finally analyse the impact of Dominance 1 and Fathoming 1 rules on Algorithm 1.

We selected a subset of difficult 1D-BPP instances (subclasses ANI201, ANI402, AI202

and AI403) and a subset of difficult 1D-BPPC instances (subclasses ta60, ta120, ua120,

ua250, da120 and da250) for a total of 740 instances (200 1D-BPP instances and 540 1D-

BPPC instances). We run EXM by disabling only the use of Dominance 1 (we call the

corresponding version “EXMNoDom1”) and also by disabling only the use of Fathoming

Author: Article Short Title
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 17 Effectiveness of Dominance 1 and Fathoming 1 rules

Problem Subclass
EXM EXMNoDom1 EXMNoFath1

#opt t #opt t #opt t

1D-BPP

ANI201 50 13.9 50 15.2 50 16.3
ANI402 47 436.2 47 543.0 46 505.2
AI202 50 4.2 50 6.3 50 6.1
AI403 46 398.1 43 556.6 44 488.6

1D-BPPC

ta60 90 0.1 90 0.6 90 0.8
ta120 90 0.6 90 1.9 90 5.5
ua120 90 0.3 90 0.9 90 2.5
ua250 90 5.2 90 7.9 90 61.8
da120 78 43.2 75 46.3 57 890.3
da250 52 98.9 54 52.6 13 2295.2

683 100.1 679 123.1 620 427.2

1 (version “EXMNoFath1”). As for EXM, we imposed a time limit of 3600 seconds and

of 2400 seconds to the executions of EXMNoDom1 and EXMNoDom1 on 1D-BPP and

1D-BPPC instances, respectively. The results obtained on the selected set of instances are

given in Table 17 - the table shows, in addition to the results of EXM, the results of the

two versions EXMNoDom1 and EXMNoFath1. The meaning of columns “#opt” and “t”

is as described above. The last line of the table gives totals and averages computer over

the values reported in the different columns.

Table 17 shows that the combined use of the two rules is particularly useful as EXM

outperforms EXMNoDom1 and EXMNoFath1 both for the number of instances solved to

optimality and the corresponding average computing time. Fathoming 1 is particularly

effective, as shown by the results obtained without using the rule (version EXMNoFath1).

Dominance 1 is also effective but its use can be time consuming, as shown by the fact that

on subclass da250 of the 1D-BPP, EXM solved 52 instances whereas EXMNoDom1 solved

54 instances.

5. Conclusions and future research

In this paper, we considered the one-dimensional bin packing problem (1D-BPP) and the

1D-BPP with conflicts (1D-BPPC).

We designed a new branch-and-price-and-cut algorithm based on the set partitioning

formulation with additional constraints that correspond to a subset of the subset-row

inequalities. In particular, we implemented an ad-hoc label-setting algorithm and domi-

nance and fathoming rules used to speed up its computation.

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 29

Our algorithm was tested on several classes of 1D-BPP and 1D-BPPC instances from the

literature and the results compared with those obtained with state-of-the-art algorithms.

For the 1D-BPP, the proposed method successfully solved 70 difficult instances open so far;

the largest instance involves 1003 items and bins of capacity 80,000. For the 1D-BPPC, the

experiments show that the method is highly competitive with state-of-the-art algorithms

specifically designed for the CSP and that also represent the best exact methods for the

1D-BPPC, and successfully closed several open 1D-BPPC instances.

Future work will address other variants of the 1D-BPP that have been proposed to

consider different constraints arising from practical applications, such as the variable sized

bin packing problem, the bin packing with color constraints, the ordered open-end bin

packing problem, the bin packing problem with precedence constraints, to name a few.

Acknowledgments

The authors would like to thank the anonymous reviewers and associate editor for their extremely helpful

suggestions and very thorough review of the paper.

This research was partially supported by the National Natural Science Foundation of China (Grant

Nos. 71501091, 71531009, 71571077, 71501075), Guangdong Natural Science Funds for Distinguished Young

Scholar (Grant No. 2015A030306007), NRF Singapore (Grant No. NRF-RSS2016-004) and MOE-AcRF-Tier

1 (Grants Nos. R-266-000-096-133, R-266-000-096-731, R-266-000-100-646).

References

Archetti C, Bouchard M, Desaulniers G (2011) Enhanced branch and price and cut for vehicle routing with

split deliveries and time windows. Transp. Sci. 45(3):285–298.

Balas E (1965) An additive algorithm for solving linear programs with zero-one variables. Oper. Res.

13(4):517–546.

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-and-price: Column

generation for solving huge integer programs. Oper. Res. 46(3):316–329.

Belov G, Scheithauer G (2006) A branch-and-cut-and-price algorithm for one-dimensional stock cutting and

two-dimensional two-stage cutting. Eur. J. Oper. Res. 171(1):85–106.

Bettinelli A, Cacchiani V, Malaguti E (2017) A Branch-and-bound Algorithm for the knapsack problem with

conflict graph. INFORMS J. Comput. 1–24.

Brandão F, Pedroso JP (2016) Bin packing and related problems: General arc-flow formulation with graph

compression. Compters & Oper. Res. 69:56–67.

Cambazard H, O’Sullivan B (2010) Propagating the bin packing constraint using linear programming. Int.

Conf. Princ. Pract. Constraint Program., 129–136 (Springer).

Author: Article Short Title
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Caprara A, Dell’Amico M, Dı́az-Dı́az JC, Iori M, Rizzi R (2015) Friendly bin packing instances without

Integer Round-up Property. Math. Program. 150(1):5–17.

Chvátal V (1973) Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4(4):305–

337.

Contardo C, Cordeau JF, Gendron B (2013) An exact algorithm based on cut-and-column generation for

the capacitated location-routing problem. INFORMS J. Comput. 26(1):88–102.

Contardo C, Martinelli R (2014) A new exact algorithm for the multi-depot vehicle routing problem under

capacity and route length constraints. Discret. Optim. 12:129–146.

Degraeve Z, Peeters M (2003) Optimal integer solutions to industrial cutting-stock problems: Part 2, bench-

mark results. INFORMS J. Comput. 15(1):58–81.

Degraeve Z, Schrage L (1999) Optimal integer solutions to industrial cutting stock problems. INFORMS J.

Comput. 11(4):406–419.

Delorme M, Iori M, Martello S (2016) Bin packing and cutting stock problems: Mathematical models and

exact algorithms. Eur. J. Oper. Res. 255(1):1–20.

Delorme M, Iori M, Martello S (2017) Bpplib: a library for bin packing and cutting stock problems. Opti-

mization Letters .

Dupuis J, Schaus P, Deville Y (2010) Consistency check for the bin packing constraint revisited. Int. Conf.

Integr. Artif. Intell. Oper. Res. Tech. Constraint Program., 117–122 (Springer).

Eilon S, Christofides N (1971) The loading problem. Manage. Sci. 17(5):259–268.

Elhedhli S, Li L, Gzara M, Naoum-Sawaya J (2011) A branch-and-price algorithm for the bin packing problem

with conflicts. INFORMS J. Comput. 23(3):404–415.

Falkenauer E (1996) A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2(1):5–30.

Fernandes Muritiba AE, Iori M, Malaguti E, Toth P (2010) Algorithms for the bin packing problem with

conflicts. Informs J. Comput. 22(3):401–415.

Gendreau M, Laporte G, Semet F (2004) Heuristics and lower bounds for the bin packing problem with

conflicts. Comput. & Oper. Res. 31(3):347–358.

Gilmore PC, Gomory RE (1961) A linear programming approach to the cutting-stock problem. Oper. Res.

9(6):849–859.

IBM CPLEX (2016) IBM ILOG CPLEX 12.6.3 callable library.

Jansen K (1999) An approximation scheme for bin packing with conflicts. J. Comb. Optim. 3(4):363–377.

Jepsen M, Petersen B, Spoorendonk S, Pisinger D (2008) Subset-row inequalities applied to the vehicle-

routing problem with time windows. Oper. Res. 56(2):497–511.

Johnson DS, Demers A, Ullman JD, Garey MR, Graham RL (1974) Worst-case performance bounds for

simple one-dimensional packing algorithms. SIAM J. Comput. 3(4):299–325.

Author: Article Short Title
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 31

Joncour C, Michel S, Sadykov R, Sverdlov D, Vanderbeck F (2010) Column Generation based Primal Heuris-

tics. ISCO 2010 - Int. Symp. Comb. Optim. 36:695–702.

Kantorovich LV (1960) Mathematical methods of organizing and planning production. Management Science,

English translation of a 1939 paper written in Russian 6:366–422.

Kartak VM, Ripatti AV, Scheithauer G, Kurz S (2015) Minimal proper non-irup instances of the one-

dimensional cutting stock problem. Discrete Applied Mathematics 187:120–129.

Korf RE (2002) A new algorithm for optimal bin packing. AAAI/IAAI, 731–736.

Laporte G, Desroches S (1984) Examination timetabling by computer. Comput. & Oper. Res. 11(4):351–360.

Malaguti E, Monaci M, Toth P (2008) A metaheuristic approach for the vertex coloring problem. INFORMS

J. Comput. 20(2):302–316.

Malaguti E, Monaci M, Toth P (2011) An exact approach for the vertex coloring problem. Discrete Opti-

mization 8(2):174–190.

Marcotte O (1986) An instance of the cutting stock problem for which the rounding property does not hold.

Oper. Res. Lett. 4(5):239–243.

Martello S, Toth P (1990)Knapsack Problems: Algorithms and Computer Implementations (Chichester: John

Wiley & Sons).

Mukhacheva EA, Belov GN, Kartack VM, Mukhacheva AS (2000) Linear one-dimensional cutting-packing

problems: numerical experiments with the sequential value correction method (SVC) and a modified

branch-and-bound method (MBB). Pesqui. Operacional 20(2):153–168.

Plum CEM, Pisinger D, Salazar-González JJ, Sigurd MM (2014) Single liner shipping service design. Comput.

& Oper. Res. 45:1–6.

Ryan D, Foster B (1981) An integer programming approach to scheduling. Comput. Sched. public Transp.

urban Passeng. Veh. crew Sched. 269–280.

Sadykov R, Vanderbeck F (2013) Bin packing with conflicts: a generic branch-and-price algorithm. INFORMS

J. Comput. 25(2):244–255.

Schaus P, Régin JC, Van Schaeren R, Dullaert W, Raa B (2012) Cardinality reasoning for bin-packing

constraint: application to a tank allocation problem. Princ. Pract. Constraint Program., 815–822

(Springer).

Scheithauer G, Terno J (1995) The modified integer round-up property of the one-dimensional cutting stock

problem. European Journal of Operational Research 84:562–571.

Scheithauer G, Terno J (1997) Theoretical investigations on the modified integer round-up property for the

one-dimensional cutting stock problem. Operations Research Letters 20:93–100.

Scheithauer G, Terno J, Müller A, Belov G (2001) Solving one-dimensional cutting stock problems exactly

with a cutting plane algorithm. J. Oper. Res. Soc. 52(12):1390–1401.

Author: Article Short Title
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Schoenfield J (2002) Fast, exact solution of open bin packing problems without linear programming. Technical

report, US Army Space and Missile Defense Command,Huntsville,Alabama,USA.

Scholl A, Klein R, Jürgens C (1997) BISON: A fast hybrid procedure for exactly solving the one-dimensional

bin packing problem. Comput. & Oper. Res. 24(7):627–645.

Schreiber EL, Korf RE (2013) Improved Bin Completion for Optimal Bin Packing and Number Partitioning.

IJCAI, 651–658.

Schwerin P, Wäscher G (1998) A new lower bound for the bin-packing problem and its integration into MTP

(Martin-Luther-Univ. Halle-Wittenberg, Wirtschaftswiss. Fak.).

Shaw P (2004) A constraint for bin packing. Int. Conf. Princ. Pract. Constraint Program., 648–662

(Springer).

Valério de Carvalho, M J (1999) Exact solution of bin-packing problems using column generation and branch-

and-bound. Ann. Oper. Res. 86(0):629–659.

Valério de Carvalho, M J (2002) LP models for bin packing and cutting stock problems. Eur. J. Oper. Res.

141(2):253–273.

Vance PH (1998) Branch-and-price algorithms for the one-dimensional cutting stock problem. Comput.

Optim. Appl. 9(3):211–228.

Vance PH, Barnhart C, Johnson EL, Nemhauser GL (1994) Solving binary cutting stock problems by column

generation and branch-and-bound. Comput. Optim. Appl. 3(2):111–130.

Vanderbeck F (1999) Computational study of a column generation algorithm for bin packing and cutting

stock problems. Math. Program. 86(3):565–594.

Vanderbeck F (2011) Branching in branch-and-price: a generic scheme. Math. Program. 130(2):249–294.

Wäscher G, Gau T (1996) Heuristics for the integer one-dimensional cutting stock problem: A computational

study. Operations-Research-Spektrum 18(3):131–144.

Wolfson ML (1965) Selecting the best lengths to stock. Oper. Res. 13(4):570–585.

Xue L, Luo Z, Lim A (2015) Two exact algorithms for the traveling umpire problem. Eur. J. Oper. Res.

243(3):932–943.

	Introduction
	Literature review
	Contributions of this paper

	Set-partitioning formulation with SR inequalities
	The pricing problems

	Branch-and-Price-and-Cut algorithm
	Pricing algorithm
	Primal heuristic
	Branching strategy

	Computational results
	Classes of instances
	Computational results on the 1D-BPP
	Computational results on the 1D-BPPC
	Analysis of the different components of EXM

	Conclusions and future research

