
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Machine Learning for Predictive Diagnostics at the Edge: An IIoT Practical Example / Bellavista P.; Penna
R.D.; Foschini L.; Scotece D.. - ELETTRONICO. - (2020), pp. 9148684.1-9148684.7. (Intervento presentato
al convegno IEEE International Conference on Communications, ICC 2020 tenutosi a Convention Centre
Dublin, irl nel 07-11 June 2020) [10.1109/ICC40277.2020.9148684].

Published Version:

Machine Learning for Predictive Diagnostics at the Edge: An IIoT Practical Example

Published:
DOI: http://doi.org/10.1109/ICC40277.2020.9148684

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/797170 since: 2021-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICC40277.2020.9148684
https://hdl.handle.net/11585/797170

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

P. Bellavista, R. D. Penna, L. Foschini and D. Scotece, "Machine Learning for

Predictive Diagnostics at the Edge: an IIoT Practical Example," ICC 2020 - 2020 IEEE

International Conference on Communications (ICC), Dublin, Ireland, 2020, pp. 1-7

The final published version is available online at

https://dx.doi.org/10.1109/ICC40277.2020.9148684

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ICC40277.2020.9148684

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Machine Learning for Predictive Diagnostics at the
Edge: an IIoT Practical Example

Paolo Bellavista, Roberto Della Penna, Luca Foschini, Domenico Scotece
 Computer Science and Engineering Dept. (DISI) University of Bologna

Viale del Risorgimento, 2 – 40136 Bologna, Italy
{paolo.bellavista, luca.foschini, domenico.scotece}@unibo.it, roberto.dellapenna@studio.unibo.it

Abstract— Edge Computing is becoming more and more

essential for the Industrial Internet of Things (IIoT) for data

acquisition from shop floors. The shifting from central (cloud)

to distributed (edge nodes) approaches will enhance the

capabilities of handling real-time big data from IoT.

Furthermore, these paradigms allow moving storage and

network resources at the edge of the network closer to IoT

devices, thus ensuring low latency, high bandwidth, and

location-based awareness. This research aims at developing a

reference architecture for data collecting, smart processing, and

manufacturing control system in an IIoT environment. In

particular, our architecture supports data analytics and

Artificial Intelligence (AI) techniques, in particular

decentralized and distributed hybrid twins, at the edge of the

network. In addition, we claim the possibility to have distributed

Machine Learning (ML) by enabling edge devices to learn local

ML models and to store them at the edge. Furthermore, edges

have the possibility of improving the global model (stored at the

cloud) by sending the reinforced local models (stored in different

shop floors) towards the cloud. In this paper, we describe our

architectural proposal and show a predictive diagnostics case

study deployed in an edge-enabled IIoT infrastructure.

Reported experimental results show the potential advantages of

using the proposed approach for dynamic model reinforcement

by using real-time data from IoT instead of using an offline

approach at the cloud infrastructure.

Keywords—Edge Computing; Industrial IoT; Machine

Learning; Predictive Diagnostics; Apache Kafka

I. INTRODUCTION

One of the major challenges of the Industrial Internet of
Things (IIoT) is to take advantage of the IoT technology in
industrial decisions. IoT today generates a myriad of data by
the billions of connected devices, including sensors and
actuators, that are usually aggregated and stored on cloud
platforms [1]. Mainly for manufacturing industries, the
interaction and the management of IoT devices become
enablers for new service opportunities including predictive
maintenance, continuous monitoring of the parts subjected to
wear, scheduling and remote running of maintenance
interventions, and simulation of operation through digital twin
implementation. However, the IIoT is quite different from the
general IoT in terms of communication bandwidth needed to
handle big data transmission in real-time, with reduced cost,
improved latency and robust connectivity, such that real-time
decisions that will result to efficiency, safety and stability of
large scale IIoT. IIoT, as a promising tool and platform for
Industry 4.0, has been widely studied and employed in various
scenarios [2]. Essentially, IIoT deploys an integrated
infrastructure to collect information from different kinds of

sensors, transmit it to the cloud, and update the related
parameters in the form of a closed-loop system [3]. For an
effective IIoT platform, the need to handle big data timely and
efficiently must be satisfied in order to enable automatic
services from IoT devices.

The growth of Edge Computing has moved the computing
from centralized data centers to the edge of the network. Edge
computing aims to address these challenges by moving core
capabilities such as networking, computing, storage, and
applications closer to the devices. It has enabled intelligent
services close to the manufacturing unit to meet the key
requirements such as agile connection, data analytics via edge
nodes, highly responsive cloud services, and privacy-policy
strategy [4]. In this work, we claim that Edge Computing is a
possible key enabler for the creation of a distributed digital
twin infrastructure. Digital twins are essentially models that
accurately represent a system (processes or machines) by
using, generally, data generated by IoT. Among the many
things these models enable: i) the description of systems; ii)
the prediction of systems evolution; iii) the management and
maintenance of systems. They are used to detect and diagnose
anomalies, to determine an optimal set of actions that
maximize key performance metrics, to effectively and
efficiently enforce on-line quality management of production
processes under latency and reliability constraints, and to
provide predictions for strategic planning to help companies
to significantly improve their profitability through
digitalization, as well as to open up new opportunities for them
for the creation of new services and business models.

However, to extract valuable information and
consequently producing real-time analytics, Machine
Learning (ML) techniques are often applied. The definition of
ML is very broad, ranging from simple data summarization
with linear regression to multi-class classification and deep
neural networks [5]. One key enabler of ML is the ability to
train models using a very large amount of data. With the
increasing amount of data being generated by IoT devices, we
foresee that ML tasks will become a dominant workload in
distributed edge-enabled IIoT systems in the future. However,
it is challenging to perform distributed ML on resource-
constrained Edge Computing systems.

In this paper, we address the problem of enabling digital
twins for real-time analytics by leveraging ML tasks in IIoT
systems. To ensure this, we propose a three-layer architectural
solution that uses AI techniques on each layer of the
architecture. The proposed solution has the following primary
innovation elements and features. First, we presented the
primarily guidelines of our distributed architecture that

enables ML schemes applied to shop floor data retrieved from
processes, resources, and products for process optimization,
quality inspection, and preventive diagnostics. Second, in our
infrastructure raw data is collected and stored at the edge layer
without sending the raw data to the cloud, and the ML model
is trained from the cloud. Third, edge layer can stimulate an
update of the model towards the cloud if the accuracy of
prediction is improved. Fourth, the cloud may update all local
models (stored at edge layer) with the new improved model.
Finally, we present a real use case for predictive diagnostics
based on an open-source dataset for Air Pressure System
(APS) failures at Scania trucks [6] which is considered a hot
topic for IIoT applications. To demonstrate the benefits of
using Edge Computing for learning-based algorithms we
quantitatively evaluate the advantages of processing
predictive diagnostics by tacking local decisions based on
knowledge at the edge of the network in place of using off-
line optimizations at the cloud. Let us note that the activities
presented here are a first significant advancement step
accomplished within the context of a large H2020 project
called IoTwins for distributed hybrid twins exploiting edge-
enabled distributed AI techniques [7].

The remainder of this paper is organized as follows.
Section II provides the necessary background material as well
as an overview of the most important related literature.
Section III provides our proposed approach for distributed
intelligence. Section IV provides the description of the use
case and the implementation details, while Section V contains
the setup of our experiment environment and performance
evaluation. Finally, we summarize and conclude our work in
Section VI.

II. BACKGROUND & RELATED WORK

This section provides definitions for the involved
technologies and paradigms, and then summarizes the
mainstream directions of the literature.

A. Apache Kafka in IIoT environment

Most common IIoT protocols fall into two categories: i)
publish-and-subscriber (pub/sub) protocols which connect
and publish data to a topic on an intermediary broker; ii) poll-
response or client-server protocols in which clients
continually connect to the server and make requests to
determine if any data has changed. To effectively build a
highly scalable solution with a high level of efficiency, in the
field of IIoT it is best to adopt a publish-subscribe
communication protocol. Rather than connecting applications
directly to devices, publish-subscribe protocols decouple
devices and allow applications to connect to middleware.
MQTT, AMQP, DDS, and XMPP are examples of most used
pub-sub protocols.

It is now clear that for a huge and fast amount of data
coming from manufacturing machines we need a pub-sub
platform to manage all the data. The use of message-oriented
middleware (MOM) is mandatory to decouple readers and
writers, making our general architecture fitting most of the
work machines and the several monitoring and actuation tools
present in the different industrial environments.

Apache Kafka is an open source stream processing
platform that enables communication between multiple
producers and multiple consumers [8]. This tool supports the
durable retention of messages and permits to handle a huge
amount of data. Very popular use cases for Apache Kafka are:

• Real-time streaming data pipelines used for the data
aggregation, processing, and transport;

• Event-reactive streaming applications used for fraud
detection, data validation, email sending confirmation;

• Applications for real-time data analytics, stream
processing, log aggregation, messaging, audit trail,
sync for cooperative nodes.

Apache Kafka provides a publish-subscribe messaging
service, where a Producer (publisher) sends messages to a
Kafka topic in the Kafka cluster (message brokers), and a
Consumer (subscriber) reads messages from the subscribed
topic. A topic is a logical category of messages and can have
many Producers and many Consumers, and it has a retention
period after which messages can be discarded to release space
on the machine. Moreover, a topic may be stored in one or
more partitions, which are the physical storage of messages in
the Kafka cluster. The Kafka cluster consists of several
brokers (Kafka servers), and all the partitions of the same topic
are distributed among the brokers. Each partition is physically
stored on disks as a series of segment files that are written in
an append-only manner, and it is replicated across the Kafka
broker nodes for fault tolerance. Each partition can be either a
leader or a replica for a topic, and only the leader partition
handles all reads and writes of messages with producer and
consumer, which is performed in a FIFO manner. The fault
tolerance policy allows a replica to become the new partition
leader in case of old leader fails. Kafka uses partitions to scale
a topic across many servers for producers to write messages in
parallel, and also to facilitate the parallel reading of
consumers.

The distribution of components demands a coordination
tool that, for the Apache Kafka platform, is Zookeeper [9].
This orchestrator provides naming and grouping services,
coordinating consumers and the broker and identifying the
central point for the whole Kafka system to retrieve
information on configuration and leadership election.
Zookeeper also manages the modification of the cluster
topology, catching the presence of new nodes in the system.

B. IoTwins

The original results presented in the following parts of this
paper have been achieved within the context of the just started
H2020 IoTwins Innovation Action project [7], scientifically
coordinated by our research group. IoTwins is a large (3 years,
20.1M€ budget) industry-driven project that puts together 23
partners from 8 countries; it has the ambition to lower the
barriers, in particular for SMEs, to building edge-enabled and
cloud-assisted intelligent systems and services based on big
data for the domains of manufacturing and facility
management. To this purpose, IoTwins is working to design a
reference architecture for distributed and edge-enabled digital
twins and is experimenting its implementation, deployment,
integration, and in-the-field evaluation in several industrial
testbeds.

In particular, the IoTwins digital twins are essentially
models that accurately represent a system (either
infrastructure or process or machine) along with its
performance. These models enable the description of the
system itself and its dynamics (descriptive or interpretative
models), the prediction of its evolution (predictive models),
and the optimization of its operation, management and
maintenance (prescriptive models). They may be hybrid, i.e.,

by exploiting mixed and heterogeneous types of input from in-
the-field experimental measurements (online/offline
monitoring) and from analytical models as well as
simulations/emulations. IoTwins distributed twins are used to
detect and diagnose anomalies, to determine an optimal set of
actions that maximize key performance metrics, to effectively
and efficiently enforce on-line quality management of
production processes under latency and reliability constraints,
and to provide predictions for strategic planning to help
companies, especially SMEs, to significantly improve their
profitability through digitalization, as well as to open up new
opportunities for them for the creation of new services and
business models.

A crucial focus and primary activity of the project will be
to deliver twelve industrial testbeds, of significant interest for
SMEs, by sharing the same underlying methodology. The
IoTwins testbeds are grouped into three classes: (i) testbeds in
the manufacturing sector with the goal of optimizing
production quality and plant maintenance, (ii) testbeds for the
optimization of facility/infrastructure management, and (iii)
testbeds for the in-the-field verification of the replicability,
scalability, and standardization of the proposed approach, as
well as the generation of new business models. In particular,
in the manufacturing sector, four industrial pilots are aimed at
providing predictive maintenance services that exploit sensors
data to forecast the time to failure and produce maintenance
plans that optimize maintenance costs; this will permit to
reduce the risk of unplanned downtime from 15% to 25%, that
is estimated to affect up from 5% to 20% of the overall
manufacturing productivity. In the service sector, the three
ioTwins testbeds concern facility management, by covering
online monitoring and operation optimization in IT facilities
and smart grids, as well as intervention planning and
infrastructure maintenance/renovation on sport facilities on
the basis of data collected by sophisticated and heterogeneous
monitoring infrastructures. These three pilots are aimed at
improving the environmental footprint of ICT facilities, by
increasing the efficiency and resiliency of large critical ICT
infrastructures, and at maximizing people safety via online
adaptation of evacuation plans (and mobility flows in general)
in sport facilities. The five last testbeds have the original goal
of showcasing the replicability of the proposed IoTwins
methodology in different sectors, the scalability of the adopted
solutions, and their capability to help SMEs to generate new
business models. For example, some industrial partners are
interested to customize and apply the solutions developed in
the first set of testbeds in other more articulated deployment
environments (larger multi-site production plants in the case
of Guala Closures or larger stadium facilities in the case of
Barcelona Football Club).

IoTwins claims that IoT, edge computing, and industrial
cloud technologies together are the cornerstones for the
creation of distributed digital twin infrastructures that, after
test-bed experimentation, refinement, and maturity
improvements, can be easily adopted by SMEs: (i) industrial
cloud, also based on HPC resources, enables the creation of
accurate predictive models based on advanced ML for end-to-
end deep networks, which require huge computing power for
training; (ii) elastic cloud resource availability creates the
opportunity to boost model accuracy by fitting and
complementing data produced by industrial IoT sensors with
data produced by large-scale parallel simulation; (iii) edge
computing makes it possible to close the loop between
accurate models and optimal decisions by enabling very

responsive on-line local management of operational
parameters in the targeted plants and filtered/fused reporting
to the cloud side of only significant monitoring data (e.g.,
anomalies and deviations); and (iv) edge computing can
leverage and accelerate the adoption of digital twin techniques
by exploiting its industry-perceived advantages in terms of
increased reliability/autonomy (e.g., independently of
continuous connectivity to the global remote cloud) and of
improved locality preservation of critical production data that
can be maintained and used directly at the plant premises (data
sovereignty).

C. Related Work

Without any pretense of being exhaustive, in the
following, we report main research activities in the three main
related areas.

ML is already widely used across a variety of domains to
extract useful information from large-scale data. More
recently, distributed ML solutions have been employed in
Edge Computing infrastructures, including a cloud and edge
layer. Many systems support strategies for the allocation of
computational resources using deep reinforcement learning in
Edge Computing networks [10]. Similarly, Chandakkar et al.
in [11] proposed strategies for re-training a deep neural
network (DNN) in an Edge Computing infrastructure. Both
proposed systems leverage the Edge infrastructure both for the
possibility to have computation close to the data source and
for the freshness of the data.

Research on Edge Computing supporting IoT is
progressing rapidly. In [12], the authors have proposed a novel
approach of using the intelligence at the edge of the network
by leveraging resource-poor devices such as Raspberry Pi for
IoT data analytics. Its use case can be found in intelligent
manufacturing. In the same direction, there is the work
proposed by Condry et al. [13] that presents a system model
for real-time and safer response IoT control operations by
using smart edge nodes. Moving to the field of IIoT,
Georgakopoulos et al. [14] proposed a roadmap combining
cloud edge computing for IoT-based manufacturing. Byers
[15] discusses some of the more important architectural
requirements for IoT networks in several use cases including
real-time manufacturing, and how Edge Computing can help
fulfill them. All of them are important references for the
deployment of Edge Computing in IoT-based manufacturing.
Despite several edge-enabled architectural solutions have
been proposed to fulfill the IoT requirements, only a few
works aim to take advantage of Edge Computing
infrastructure for distributing the knowledge among them and
executing real-time data analytics.

Focusing on Edge Computing in Industrial IoT, only
recently researchers started to exploit ML or intelligence at the
edge of the network for predictive analysis or manufacturing
control. In particular, the work by Raileanu [16] proposed an
architectural framework for gathering heterogeneous data
from the shop floor and aggregating them at the edge of the
network. Successively, those data are sent to the cloud control
platform that hosts a control system in charge of operation
optimization, execution, and monitoring. Despite this, the
framework proposed by the authors does not fully exploit the
possibility of combining Edge Computing and ML
techniques, as they do not propose control operation at the
edge based on local knowledge. Another work that leverages
Edge Computing in IIoT is presented in [17]. In that work, the
authors propose an architecture of edge computing for IoT-

based manufacturing. Despite they basically analyze the role
of Edge Computing in an IoT-based manufacturing system,
the paper explores the idea to run ML at the edge nodes to
utilize real-time data to make predictions and to subsequently
update the knowledge base. This allows intelligent decision
making at the network edge. However, this is not the main aim
of that paper while we aim both to support IIoT devices and
running ML algorithms at the edge for monitoring them.

III. DISTRIBUTED ARCHITECTURE

Our work focuses on the innovation potential of a large set
of industrial scenarios that make use of edge-enabled and
cloud-based big data services. That is typically the case for
predictive maintenance and production optimization in
manufacturing and for management optimization of large-
scale facilities. Fig. 1 depicts our proposed distributed
architecture designed to support and manage both shop floors
and industrial devices. The use of MOM facilitates
communication between all involved entities; in particular, it
facilitates the data gathering from IIoT devices at the edge.
Our architecture includes different functionalities at each layer
of the architecture; in general, they can work both locally with
fresh data and in the cloud, processing also historical data.

Fig. 2 presents our uniform approach for different
industrial plants, where the cloud interacts with the edge and
IoT devices for implementing our idea of distributed digital
twins. In particular, the data streams generated from IoT in a
shop floor reach the closest edge node, where they may be
processed (e.g., aggregated, filtered, anonymized, etc.) and
trigger local actuation actions with very low latency based on
ML algorithms. Moreover, data streams may be forwarded to
the cloud that is responsible for training ML models, and off-
line optimization, among many things. Our proposed
architecture consists of five main building modules: i) an IoT
management module that facilitates the communication
between devices and edge nodes; ii) a set of ML algorithms
including decision trees, regression trees, random forests,
gradient boosting trees, neural networks, and deep networks
for giving back on- off-line predictions; iii) an ML module
trained via basic types of learning algorithms including
Supervised Learning, Unsupervised Learning, and
Reinforcement Learning; iv) a Model that accurately
represents a system (infrastructure, process, machine, etc.); v)
a Simulation module that sends feedback about models in
order to enhance and optimize them.

IoT Management. This module is in charge of managing
IoT devices. In particular, the IIoT world encompasses the
manufacturing machines, usually equipped with legacy

software. Hence, this module contains a set of standards
protocols for data gathering from heterogeneous devices.

On- Off-line optimization. This module contains a
composition of machine learning algorithms and
mathematical models able to take decisions based on
knowledge gained from a learning algorithm. In particular,
ML algorithms are used, for instance, to detect and diagnose
anomalies, to determine an optimal set of actions, to enforce
the quality of production processes, and to provide predictions
for strategic planning.

Trained ML model. This module is in charge of training
the model used by the ML algorithm. Normally, the training
phase is a time-consuming task and requires several
computational resources. It could be challenging to perform
training algorithms on resource-constrained edge nodes.
Despite local updates consume computation resources of the
edge node, this module allows training the model both at the
edge and from the cloud.

Digital Twins. This module contains the knowledge of
every single node. The main idea is to host ML models,
already trained at the cloud side, at the edge of the network
with the possibility to improve the local model via the
interaction with underlying devices (e.g., from mobile devices
to Industrial IoT devices). Finally, edge nodes return feedback
to the cloud manager in terms of model improvements, and
update the global model at the cloud, by exploiting
collaboration among them.

Cloud optimization. This is a logical component that runs
at the cloud and is in charge of optimizing the model. In
particular, data gathered at the edge of the network may grow
local models which are also forwarded to the cloud for ML
models optimization. Therefore, this module selects the more
appropriate model and sends it back to selected edge nodes.
On the other hand, ML models already trained at the cloud
side may be sent back for model optimizations towards edge
nodes.

IV. USE CASE & IMPLEMENTATION DETAILS

This section presents a real case study in order to illustrate
how to leverage distributed digital twins of production plants
and facilities, enabled by off-the-shelf edge/cloud
technologies for big data processing. In particular, this testbed
is aimed at leveraging the intelligence at the edge of an air
pressure system by aggregating ML models of single nodes
for predictive maintenance. Data are used to detect the health
status of the APS, to predict failures, and to plan maintenance
operations for reducing unexpected breakdowns. The system

Fig. 1 Proposed Distributed Architecture Fig. 2 Architectural Components

will be divided into several sub-parts/systems devoted to
specific tasks, with specific raw monitoring indicators, such
as temperature indicators of each component part.

Following the uniform workflow approach depicted in
Fig. 2, each component of the system provides data for the
monitoring system that are properly channeled by an edge-
computer; these data will be sent to the closest edge to produce
local intelligence. ML techniques are trained to produce
predictive models on health status and to allow the edge to
localized anomaly detection. Trained predictive models are
then transferred to the cloud to reinforce the global model
which, if it is improved (e.g., in terms of accuracy), will be
returned in each edge node. Also, the cloud simulation and
off-line optimizations provide maintenance plans and
guidelines for future improved design.

In order to simulate this testbed, we used an open-source
dataset that consists of data collected from Scania trucks in
everyday usage [18]. The system in focus is the APS which
generates pressurized air that are utilized in various functions
in a truck, such as braking and gear changes. Therefore,
failures should be predicted before they occur. Falsely
predicting a failure has a cost of 10, while missing a failure
has a cost of 500. This makes sense because is simpler to
manage the case of false positive rather than the case of a
missing a failure. The data contains a training set and a test
set. The training set contains 60,000 rows, of which 1,000
belong to the positive class and 171 columns, of which one is
the class column and the test set contains 16,000 rows.

A. Implementation Details

As already stated in Section II, we adopted Apache Kafka
as a messaging middleware between system entities such as
sensors, edge nodes, and the cloud. Our testbed consists of
four sensors (two for each edge nodes), two edge nodes, and
the cloud. The Kafka cluster is composed of two distinct
Kafka Broker respectively one for each edge node that
logically represents a shop floor. All system entities
communicate with each other via Kafka Topics and for this
reason, we provided three distinct Topic: one for the
communication between sensors and edge nodes, another for
the communication between edge nodes and cloud, and vice-
versa. Then, each Topic is divided into two Partitions one for
each Broker. Fig. 3 depicts how we implemented the scenario.

The sensors use part of the dataset, in particular, 58,000
over 60,000 instances, as new data. In particular, one sensor

retrieves data from the open-source csv file and uses 58K
records as newly produced data (each sensor uses 29K
records). After this, it creates a Kafka Producer that is used for
sending data via the “sensors-edge” topic.

Each edge node, one per locality/Kafka Broker,
communicates with sensors in the corresponded locality and
with the cloud. Its task is to receive data from sensors,
classifies the model instances, enhancing the digital twins at
the edge, and to send the update models towards the cloud.
First, it receives the ML initial model from the cloud and then
it takes care of three major tasks including
consume_sensor_data, update_model_local, and
update_model_remote.

• consume_sensor_data. This task is in charge of
reading data from sensors and classifying instances by
using the initial model. Edge nodes use the topic
“sensors-edge” in order to read data.

• update_model_local. This task takes care of control of
the state of predictions. In particular, it compares the
predictions with the supervised data and uses the false-
negative instances for creating a new model.

• update_model_remote. This task is in charge of
updating the local model towards the cloud. In
particular, it sends the new model plus the dataset used
for its creation. Anyway, the decision to swap the
global model and therefore update all local models is
up to the cloud.

Finally, the cloud creates the initial model by using only
2,000 of 60,000 instances through a Decision Tree classifier
and then calculates the accuracy of the model. Of course, at
this moment the accuracy does not have a reasonable value, in
fact, the percentage of false-negative is greater than the
percentage of false-positive. To trace the quality of the model,
we considered also the recall and specificity that represent
respectively the percentage of negative instances within the
total and the percentage of positive instances within the total.

Fig. 3 Our implementation scenario

create the initial model
nb_model = DecisionTreeClassifier()

nb_model.fit(features_train, labels_train)

calculate the model accuracy

nb_out = nb_model.predict(features_test)

nb_accuracy = accuracy_score(labels_test, nb_out)

nb_recall = recall_score(labels_test, nb_out,

pos_label=1)

nb_specificity = recall_score(labels_test, nb_out,
pos_label=0)

calculate the accuracy

out = model.predict(features_test)

accuracy = accuracy_score(labels_test, out)

recall = recall_score(labels_test, out, pos_label=1)

specificity = recall_score(labels_test, out,

pos_label=0)

differences = [accuracy - nb_accuracy, recall -

nb_recall, specificity - nb_specificity]

if the model is better than the previous one is sent

back to edge nodes

if accuracy > 0.95 and recall > 0.75 and specificity >

0.95:

 ...

 producer.send('cloud-edge', key=b"train",

value=serialized, partition=0)

 producer.send('cloud-edge', key=b"train",

value=serialized, partition=1)
 ...

Then, each time the cloud receives a new model from an
edge node, it calculates the accuracy, recall, and specificity of
that model and it sends back only if that model is better. This
specific implementation is shown in the above snippet.

V. EXPERIMENTAL RESULTS

We widely assessed and validated the advantages of our
solution; this section presents a significant selection of
experimental results obtained in our lab deployment scenario.
To thoroughly test and evaluate the performance of our
proposed architecture, we carried out several different sets of
experiments, in terms of quality of prediction model, model
size variation, and latency time. The results reported in this
section are average values; all presented measurements have
exhibited a limited variance (under 5% for 30 runs).

A. Experimental Environment

The prototype of our experimental environment is to set
up four sensors, two edge nodes, and the cloud. The edge node
is a Raspberry Pi 3 Model B equipped with 64-bit quad-core
ARM Cortex-A53 processor, 1 GB of RAM and 16 GB of
storage space, Wi-Fi and Bluetooth connection. The sensors
are a Raspberry Pi Zero W equipped with a single-core
Broadcom BCM 2835 1Ghz, 512 MB of RAM and 8 GB of
storage space, Wi-Fi and Bluetooth connection. The cloud is
a VM deployed at Amazon Web Service equipped with 8 GB
of RAM, and 4 virtual cores Intel. Unless otherwise specified,
edge nodes connect with the sensors via IEEE 802.11n
connections and their maximum nominal available bandwidth
is 40 Mbit/s, while connecting with the cloud through ethernet
with 1 Gbit/s bandwidth.

B. Model Accuracy Variation

The first test family that we have done for this testbed
regards the model accuracy variation. Please note that the edge
nodes send reinforced models, with fresh data, to the cloud.
Fig. 4 shows the model accuracy variation considering edge
updates. To trace the quality of the model we considered the
recall and specificity that represent respectively the
percentage of negative instances within the total and the
percentage of positive instances within the total. As one can
see from Figure 4, the specificity goes down from 0.98 to 0.96
but the recall rising to 0.87 with an increase of 0.3. This
because the initial dataset contains a few negative instances
compared to the total dataset. Therefore, updating the model
with fresh data allows creating a model that the total accuracy
is the same but with more accuracy for predicting negative
instances. To demonstrate this, Figure 5 shows how the
number of false-negative instances recognized at the edge
decreases over time increasing the accuracy of each edge
node. For both tests, we used the Decision Tree as the
classifier algorithm, instead of, for instance, a Naive Bayes
classifier. This is because Decision Trees are very flexible,
easy to understand, and easy to debug. Furthermore, they work
very well with classification problems. Finally, they allow
working with low power devices such as Raspberry Pi with
very interesting performance results [19].

C. Model size variation and Latency cloud - edge

For the last set of experiments, we compared how the
model size can impact the latency time between edge nodes
and the cloud. As shown in Fig. 6, for consecutive model
updates, the experimental results show that the models stored
in each edge nodes grow in a linear fashion. In our specific use
case, the model increases its size by approximately 50% (i.e.,

Fig. 4 Model accuracy variation Fig. 5 False-negative instances variation at the edge

Fig. 6 Model size variation Fig. 7 Latency edge-cloud

from 6KB to 12KB). Additionally, as shown in Fig. 7, we
measured the latency time introduced from these consecutive
model updates between edge nodes and the cloud. Actually, in
this paper, we do not consider the other side of the latency time
between the cloud and edge nodes. This because it's around
the same values: 60ms of average latency time. Anyway, in
our use case, the latency time introduced does not vary much
compared to the model size variation, rather remains the same.
Let us note that this delay is completely transparent to the
logic of the application. The model updates can be made in a
background mode.

VI. CONCLUSION

In this paper, we proposed an edge-enabled cloud-assisted
system for distributed intelligence covering advanced ML
algorithms. This work paves the way for ML at the edge by
proposing a distributing architecture and discussing a real use
case. The cornerstones of our work lie in the ability to have
local models stored at the edge and running ML algorithms on
it with the possibility to improve the global model through
reinforced local models. We present several experimental
results that show the advantages of using distributed ML at the
edge of the networks in terms of model accuracy and system
performances. The major advantage of the edge is to allow the
possibility to reinforce local models with fresh data that can
be used to enhance the accuracy of ML techniques. Although,
results show that the model accuracy increases in a significant
way while still retaining a very low latency. Fueled by these
significant results, we are working on two main ongoing
research directions. On the one hand, we are working
extensively on the Cloud Optimization module and on the
aggregation of local models (stored at the edge nodes) into the
global model (stored at the cloud) and vice versa. On the other
hand, we are deploying several testbeds solutions for smart
factories where several heterogeneous IoT devices generate
data streams. In particular, data streams originated from IoT
devices reach edge nodes, where maybe aggregated and
trigger local actions. Finally, these data streams may be also
forwarded to the global cloud.

REFERENCES

[1] “Cellular Networks for Massive IoT: Enabling Low Power Wide Area
Applications,” Ericsson, Stockholm, Sweden, 2016, pp. 1–13.

[2] L. D. Xu, W. He and S. Li, “Internet of Things in Industries: A Survey,”
in IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp.
2233-2243, Nov. 2014.

[3] R. Zhu, X. Zhang, X. Liu, W. Shu, T. Mao and B. Jalaian, “ERDT:
Energy-Efficient Reliable Decision Transmission for Intelligent
Cooperative Spectrum Sensing in Industrial IoT,” in IEEE Access, vol.
3, pp. 2366-2378, 2015.

[4] W. Shi and S. Dustdar, “The Promise of Edge Computing,” in
Computer, vol. 49, no. 5, pp. 78-81, May 2016.

[5] S. Shalev-Shwartz and S. Ben-David, Understanding machine
learning: From theory to algorithms. Cambridge university press, 2014.

[6] C. Gondek, D. Hafner, and O. R. Sampson, “Prediction of failures in
the air pressure system of scania trucks using a random forest and
feature engineering,” in International Symposium on Intelligent Data
Analysis. Springer, 2016, pp. 398–402.

[7] H2020 Innovation Action project IoTwins, Distributed Digital Twins
for industrial SMEs: a big-data platform, ICT-11b call, avalilable at
https://cordis.europa.eu/project/rcn/223969/factsheet/it.

[8] Kafka - documentation. Apache Software Foundation. Accessed: Oct.
28, 2019. [Online]. Available:
https://kafka.apache.org/documentation/.

[9] Zookeeper - documentation. Apache Software Foundation. Accessed:
Oct. 28, 2019. [Online]. Available: https://zookeeper.apache.org/.

[10] T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink and R. Mathar, “Deep
Reinforcement Learning based Resource Allocation in Low Latency
Edge Computing Networks,” 2018 15th International Symposium on
Wireless Communication Systems (ISWCS), Lisbon, 2018, pp. 1-5.

[11] P. S. Chandakkar, Y. Li, P. L. K. Ding and B. Li, “Strategies for Re-
Training a Pruned Neural Network in an Edge Computing Paradigm,”
2017 IEEE International Conference on Edge Computing (EDGE),
Honolulu, HI, 2017, pp. 244-247.

[12] P. Patel, M. Intizar Ali and A. Sheth, “On Using the Intelligent Edge
for IoT Analytics,” in IEEE Intelligent Systems, vol. 32, no. 5, pp. 64-
69, September/October 2017.

[13] M. W. Condry and C. B. Nelson, “Using Smart Edge IoT Devices for
Safer, Rapid Response with Industry IoT Control Operations,” Proc.
IEEE, vol. 104, no. 5, 2016, pp. 938–46.

[14] D. Georgakopoulos et al., “Internet of Things and Edge Cloud
Computing Roadmap for Manufacturing,” IEEE Cloud Computing,
vol. 3, no. 4, 2016, pp. 66–73.

[15] C. C. Byers, “Architectural Imperatives for Fog Computing: Use
Cases, Requirements, and Architectural Techniques for Fog-Enabled
IoT Networks,” IEEE Commun. Mag., vol. 55, no. 8, Aug. 2017, pp.
14–20.

[16] S. Raileanu, T. Borangiu, O. Morariu and I. Iacob, “Edge Computing
in Indust00rial IoT Framework for Cloud-based Manufacturing
Control,” 2018 22nd International Conference on System Theory,
Control and Computing (ICSTCC), Sinaia, 2018, pp. 261-266.

[17] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas and Q. Zhang, “Edge
Computing in IoT-Based Manufacturing,” in IEEE Communications
Magazine, vol. 56, no. 9, pp. 103-109, Sept. 2018.

[18] APS Failure at Scania Trucks Data Set. Accessed: Oct. 28, 2019.
[Online]. Available:
https://archive.ics.uci.edu/ml/datasets/APS+Failure+at+Scania+Truck
s.

[19] S. Buschjager, K. Chen, J. Chen and K. Morik, “Realization of Random
Forest for Real-Time Evaluation through Tree Framing,” 2018 IEEE
International Conference on Data Mining (ICDM), Singapore, 2018,
pp. 19-28.

