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Abstract— Edge Computing is becoming more and more 

essential for the Industrial Internet of Things (IIoT) for data 

acquisition from shop floors. The shifting from central (cloud) 

to distributed (edge nodes) approaches will enhance the 

capabilities of handling real-time big data from IoT. 

Furthermore, these paradigms allow moving storage and 

network resources at the edge of the network closer to IoT 

devices, thus ensuring low latency, high bandwidth, and 

location-based awareness. This research aims at developing a 

reference architecture for data collecting, smart processing, and 

manufacturing control system in an IIoT environment. In 

particular, our architecture supports data analytics and 

Artificial Intelligence (AI) techniques, in particular 

decentralized and distributed hybrid twins, at the edge of the 

network. In addition, we claim the possibility to have distributed 

Machine Learning (ML) by enabling edge devices to learn local 

ML models and to store them at the edge. Furthermore, edges 

have the possibility of improving the global model (stored at the 

cloud) by sending the reinforced local models (stored in different 

shop floors) towards the cloud. In this paper, we describe our 

architectural proposal and show a predictive diagnostics case 

study deployed in an edge-enabled IIoT infrastructure. 

Reported experimental results show the potential advantages of 

using the proposed approach for dynamic model reinforcement 

by using real-time data from IoT instead of using an offline 

approach at the cloud infrastructure. 

Keywords—Edge Computing; Industrial IoT; Machine 

Learning; Predictive Diagnostics; Apache Kafka 

I. INTRODUCTION 

One of the major challenges of the Industrial Internet of 
Things (IIoT) is to take advantage of the IoT technology in 
industrial decisions. IoT today generates a myriad of data by 
the billions of connected devices, including sensors and 
actuators, that are usually aggregated and stored on cloud 
platforms [1]. Mainly for manufacturing industries, the 
interaction and the management of IoT devices become 
enablers for new service opportunities including predictive 
maintenance, continuous monitoring of the parts subjected to 
wear, scheduling and remote running of maintenance 
interventions, and simulation of operation through digital twin 
implementation. However, the IIoT is quite different from the 
general IoT in terms of communication bandwidth needed to 
handle big data transmission in real-time, with reduced cost, 
improved latency and robust connectivity, such that real-time 
decisions that will result to efficiency, safety and stability of 
large scale IIoT. IIoT, as a promising tool and platform for 
Industry 4.0, has been widely studied and employed in various 
scenarios [2]. Essentially, IIoT deploys an integrated 
infrastructure to collect information from different kinds of 

sensors, transmit it to the cloud, and update the related 
parameters in the form of a closed-loop system [3]. For an 
effective IIoT platform, the need to handle big data timely and 
efficiently must be satisfied in order to enable automatic 
services from IoT devices. 

The growth of Edge Computing has moved the computing 
from centralized data centers to the edge of the network. Edge 
computing aims to address these challenges by moving core 
capabilities such as networking, computing, storage, and 
applications closer to the devices. It has enabled intelligent 
services close to the manufacturing unit to meet the key 
requirements such as agile connection, data analytics via edge 
nodes, highly responsive cloud services, and privacy-policy 
strategy [4]. In this work, we claim that Edge Computing is a 
possible key enabler for the creation of a distributed digital 
twin infrastructure. Digital twins are essentially models that 
accurately represent a system (processes or machines) by 
using, generally, data generated by IoT. Among the many 
things these models enable: i) the description of systems; ii) 
the prediction of systems evolution; iii) the management and 
maintenance of systems. They are used to detect and diagnose 
anomalies, to determine an optimal set of actions that 
maximize key performance metrics, to effectively and 
efficiently enforce on-line quality management of production 
processes under latency and reliability constraints, and to 
provide predictions for strategic planning to help companies 
to significantly improve their profitability through 
digitalization, as well as to open up new opportunities for them 
for the creation of new services and business models. 

However, to extract valuable information and 
consequently producing real-time analytics, Machine 
Learning (ML) techniques are often applied. The definition of 
ML is very broad, ranging from simple data summarization 
with linear regression to multi-class classification and deep 
neural networks [5]. One key enabler of ML is the ability to 
train models using a very large amount of data. With the 
increasing amount of data being generated by IoT devices, we 
foresee that ML tasks will become a dominant workload in 
distributed edge-enabled IIoT systems in the future. However, 
it is challenging to perform distributed ML on resource-
constrained Edge Computing systems.  

In this paper, we address the problem of enabling digital 
twins for real-time analytics by leveraging ML tasks in IIoT 
systems. To ensure this, we propose a three-layer architectural 
solution that uses AI techniques on each layer of the 
architecture. The proposed solution has the following primary 
innovation elements and features. First, we presented the 
primarily guidelines of our distributed architecture that 



enables ML schemes applied to shop floor data retrieved from 
processes, resources, and products for process optimization, 
quality inspection, and preventive diagnostics. Second, in our 
infrastructure raw data is collected and stored at the edge layer 
without sending the raw data to the cloud, and the ML model 
is trained from the cloud. Third, edge layer can stimulate an 
update of the model towards the cloud if the accuracy of 
prediction is improved. Fourth, the cloud may update all local 
models (stored at edge layer) with the new improved model. 
Finally, we present a real use case for predictive diagnostics 
based on an open-source dataset for Air Pressure System 
(APS) failures at Scania trucks [6] which is considered a hot 
topic for IIoT applications. To demonstrate the benefits of 
using Edge Computing for learning-based algorithms we 
quantitatively evaluate the advantages of processing 
predictive diagnostics by tacking local decisions based on 
knowledge at the edge of the network in place of using off-
line optimizations at the cloud. Let us note that the activities 
presented here are a first significant advancement step 
accomplished within the context of a large H2020 project 
called IoTwins for distributed hybrid twins exploiting edge-
enabled distributed AI techniques [7]. 

The remainder of this paper is organized as follows. 
Section II provides the necessary background material as well 
as an overview of the most important related literature. 
Section III provides our proposed approach for distributed 
intelligence. Section IV provides the description of the use 
case and the implementation details, while Section V contains 
the setup of our experiment environment and performance 
evaluation. Finally, we summarize and conclude our work in 
Section VI. 

II. BACKGROUND & RELATED WORK 

This section provides definitions for the involved 
technologies and paradigms, and then summarizes the 
mainstream directions of the literature. 

A. Apache Kafka in IIoT environment 

Most common IIoT protocols fall into two categories: i) 
publish-and-subscriber (pub/sub) protocols which connect 
and publish data to a topic on an intermediary broker; ii) poll-
response or client-server protocols in which clients 
continually connect to the server and make requests to 
determine if any data has changed. To effectively build a 
highly scalable solution with a high level of efficiency, in the 
field of IIoT it is best to adopt a publish-subscribe 
communication protocol. Rather than connecting applications 
directly to devices, publish-subscribe protocols decouple 
devices and allow applications to connect to middleware. 
MQTT, AMQP, DDS, and XMPP are examples of most used 
pub-sub protocols. 

It is now clear that for a huge and fast amount of data 
coming from manufacturing machines we need a pub-sub 
platform to manage all the data. The use of message-oriented 
middleware (MOM) is mandatory to decouple readers and 
writers, making our general architecture fitting most of the 
work machines and the several monitoring and actuation tools 
present in the different industrial environments. 

Apache Kafka is an open source stream processing 
platform that enables communication between multiple 
producers and multiple consumers [8]. This tool supports the 
durable retention of messages and permits to handle a huge 
amount of data. Very popular use cases for Apache Kafka are: 

• Real-time streaming data pipelines used for the data 
aggregation, processing, and transport; 

• Event-reactive streaming applications used for fraud 
detection, data validation, email sending confirmation; 

• Applications for real-time data analytics, stream 
processing, log aggregation, messaging, audit trail, 
sync for cooperative nodes. 

Apache Kafka provides a publish-subscribe messaging 
service, where a Producer (publisher) sends messages to a 
Kafka topic in the Kafka cluster (message brokers), and a 
Consumer (subscriber) reads messages from the subscribed 
topic. A topic is a logical category of messages and can have 
many Producers and many Consumers, and it has a retention 
period after which messages can be discarded to release space 
on the machine. Moreover, a topic may be stored in one or 
more partitions, which are the physical storage of messages in 
the Kafka cluster. The Kafka cluster consists of several 
brokers (Kafka servers), and all the partitions of the same topic 
are distributed among the brokers. Each partition is physically 
stored on disks as a series of segment files that are written in 
an append-only manner, and it is replicated across the Kafka 
broker nodes for fault tolerance. Each partition can be either a 
leader or a replica for a topic, and only the leader partition 
handles all reads and writes of messages with producer and 
consumer, which is performed in a FIFO manner. The fault 
tolerance policy allows a replica to become the new partition 
leader in case of old leader fails. Kafka uses partitions to scale 
a topic across many servers for producers to write messages in 
parallel, and also to facilitate the parallel reading of 
consumers.  

The distribution of components demands a coordination 
tool that, for the Apache Kafka platform, is Zookeeper [9]. 
This orchestrator provides naming and grouping services, 
coordinating consumers and the broker and identifying the 
central point for the whole Kafka system to retrieve 
information on configuration and leadership election. 
Zookeeper also manages the modification of the cluster 
topology, catching the presence of new nodes in the system. 

B. IoTwins 

The original results presented in the following parts of this 
paper have been achieved within the context of the just started 
H2020 IoTwins Innovation Action project [7], scientifically 
coordinated by our research group. IoTwins is a large (3 years, 
20.1M€ budget) industry-driven project that puts together 23 
partners from 8 countries; it has the ambition to lower the 
barriers, in particular for SMEs, to building edge-enabled and 
cloud-assisted intelligent systems and services based on big 
data for the domains of manufacturing and facility 
management. To this purpose, IoTwins is working to design a 
reference architecture for distributed and edge-enabled digital 
twins and is experimenting its implementation, deployment, 
integration, and in-the-field evaluation in several industrial 
testbeds.  

In particular, the IoTwins digital twins are essentially 
models that accurately represent a system (either 
infrastructure or process or machine) along with its 
performance. These models enable the description of the 
system itself and its dynamics (descriptive or interpretative 
models), the prediction of its evolution (predictive models), 
and the optimization of its operation, management and 
maintenance (prescriptive models). They may be hybrid, i.e., 



by exploiting mixed and heterogeneous types of input from in-
the-field experimental measurements (online/offline 
monitoring) and from analytical models as well as 
simulations/emulations. IoTwins distributed twins are used to 
detect and diagnose anomalies, to determine an optimal set of 
actions that maximize key performance metrics, to effectively 
and efficiently enforce on-line quality management of 
production processes under latency and reliability constraints, 
and to provide predictions for strategic planning to help 
companies, especially SMEs, to significantly improve their 
profitability through digitalization, as well as to open up new 
opportunities for them for the creation of new services and 
business models. 

A crucial focus and primary activity of the project will be 
to deliver twelve industrial testbeds, of significant interest for 
SMEs, by sharing the same underlying methodology. The 
IoTwins testbeds are grouped into three classes: (i) testbeds in 
the manufacturing sector with the goal of optimizing 
production quality and plant maintenance, (ii) testbeds for the 
optimization of facility/infrastructure management, and (iii) 
testbeds for the in-the-field verification of the replicability, 
scalability, and standardization of the proposed approach, as 
well as the generation of new business models. In particular, 
in the manufacturing sector, four industrial pilots are aimed at 
providing predictive maintenance services that exploit sensors 
data to forecast the time to failure and produce maintenance 
plans that optimize maintenance costs; this will permit to 
reduce the risk of unplanned downtime from 15% to 25%, that 
is estimated to affect up from 5% to 20% of the overall 
manufacturing productivity. In the service sector, the three 
ioTwins testbeds concern facility management, by covering 
online monitoring and operation optimization in IT facilities 
and smart grids, as well as intervention planning and 
infrastructure maintenance/renovation on sport facilities on 
the basis of data collected by sophisticated and heterogeneous 
monitoring infrastructures. These three pilots are aimed at 
improving the environmental footprint of ICT facilities, by 
increasing the efficiency and resiliency of large critical ICT 
infrastructures, and at maximizing people safety via online 
adaptation of evacuation plans (and mobility flows in general) 
in sport facilities. The five last testbeds have the original goal 
of showcasing the replicability of the proposed IoTwins 
methodology in different sectors, the scalability of the adopted 
solutions, and their capability to help SMEs to generate new 
business models. For example, some industrial partners are 
interested to customize and apply the solutions developed in 
the first set of testbeds in other more articulated deployment 
environments (larger multi-site production plants in the case 
of Guala Closures or larger stadium facilities in the case of 
Barcelona Football Club). 

IoTwins claims that IoT, edge computing, and industrial 
cloud technologies together are the cornerstones for the 
creation of distributed digital twin infrastructures that, after 
test-bed experimentation, refinement, and maturity 
improvements, can be easily adopted by SMEs: (i) industrial 
cloud, also based on HPC resources, enables the creation of 
accurate predictive models based on advanced ML for end-to-
end deep networks, which require huge computing power for 
training; (ii) elastic cloud resource availability creates the 
opportunity to boost model accuracy by fitting and 
complementing data produced by industrial IoT sensors with 
data produced by large-scale parallel simulation; (iii) edge 
computing makes it possible to close the loop between 
accurate models and optimal decisions by enabling very 

responsive on-line local management of operational 
parameters in the targeted plants and filtered/fused reporting 
to the cloud side of only significant monitoring data (e.g., 
anomalies and deviations); and (iv) edge computing can 
leverage and accelerate the adoption of digital twin techniques 
by exploiting its industry-perceived advantages in terms of 
increased reliability/autonomy (e.g., independently of 
continuous connectivity to the global remote cloud) and of 
improved locality preservation of critical production data that 
can be maintained and used directly at the plant premises (data 
sovereignty). 

C. Related Work 

Without any pretense of being exhaustive, in the 
following, we report main research activities in the three main 
related areas. 

ML is already widely used across a variety of domains to 
extract useful information from large-scale data. More 
recently, distributed ML solutions have been employed in 
Edge Computing infrastructures, including a cloud and edge 
layer. Many systems support strategies for the allocation of 
computational resources using deep reinforcement learning in 
Edge Computing networks [10]. Similarly, Chandakkar et al. 
in [11] proposed strategies for re-training a deep neural 
network (DNN) in an Edge Computing infrastructure. Both 
proposed systems leverage the Edge infrastructure both for the 
possibility to have computation close to the data source and 
for the freshness of the data.  

Research on Edge Computing supporting IoT is 
progressing rapidly. In [12], the authors have proposed a novel 
approach of using the intelligence at the edge of the network 
by leveraging resource-poor devices such as Raspberry Pi for 
IoT data analytics. Its use case can be found in intelligent 
manufacturing. In the same direction, there is the work 
proposed by Condry et al. [13] that presents a system model 
for real-time and safer response IoT control operations by 
using smart edge nodes. Moving to the field of IIoT, 
Georgakopoulos et al. [14] proposed a roadmap combining 
cloud edge computing for IoT-based manufacturing. Byers 
[15] discusses some of the more important architectural 
requirements for IoT networks in several use cases including 
real-time manufacturing, and how Edge Computing can help 
fulfill them. All of them are important references for the 
deployment of Edge Computing in IoT-based manufacturing. 
Despite several edge-enabled architectural solutions have 
been proposed to fulfill the IoT requirements, only a few 
works aim to take advantage of Edge Computing 
infrastructure for distributing the knowledge among them and 
executing real-time data analytics. 

Focusing on Edge Computing in Industrial IoT, only 
recently researchers started to exploit ML or intelligence at the 
edge of the network for predictive analysis or manufacturing 
control. In particular, the work by Raileanu [16] proposed an 
architectural framework for gathering heterogeneous data 
from the shop floor and aggregating them at the edge of the 
network. Successively, those data are sent to the cloud control 
platform that hosts a control system in charge of operation 
optimization, execution, and monitoring. Despite this, the 
framework proposed by the authors does not fully exploit the 
possibility of combining Edge Computing and ML 
techniques, as they do not propose control operation at the 
edge based on local knowledge. Another work that leverages 
Edge Computing in IIoT is presented in [17]. In that work, the 
authors propose an architecture of edge computing for IoT-



based manufacturing. Despite they basically analyze the role 
of Edge Computing in an IoT-based manufacturing system, 
the paper explores the idea to run ML at the edge nodes to 
utilize real-time data to make predictions and to subsequently 
update the knowledge base. This allows intelligent decision 
making at the network edge. However, this is not the main aim 
of that paper while we aim both to support IIoT devices and 
running ML algorithms at the edge for monitoring them. 

III. DISTRIBUTED ARCHITECTURE 

Our work focuses on the innovation potential of a large set 
of industrial scenarios that make use of edge-enabled and 
cloud-based big data services. That is typically the case for 
predictive maintenance and production optimization in 
manufacturing and for management optimization of large-
scale facilities. Fig. 1 depicts our proposed distributed 
architecture designed to support and manage both shop floors 
and industrial devices. The use of MOM facilitates 
communication between all involved entities; in particular, it 
facilitates the data gathering from IIoT devices at the edge. 
Our architecture includes different functionalities at each layer 
of the architecture; in general, they can work both locally with 
fresh data and in the cloud, processing also historical data.  

Fig. 2 presents our uniform approach for different 
industrial plants, where the cloud interacts with the edge and 
IoT devices for implementing our idea of distributed digital 
twins. In particular, the data streams generated from IoT in a 
shop floor reach the closest edge node, where they may be 
processed (e.g., aggregated, filtered, anonymized, etc.) and 
trigger local actuation actions with very low latency based on 
ML algorithms. Moreover, data streams may be forwarded to 
the cloud that is responsible for training ML models, and off-
line optimization, among many things. Our proposed 
architecture consists of five main building modules: i) an IoT 
management module that facilitates the communication 
between devices and edge nodes; ii) a set of ML algorithms 
including decision trees, regression trees, random forests, 
gradient boosting trees, neural networks, and deep networks 
for giving back on- off-line predictions; iii) an ML module 
trained via basic types of learning algorithms including 
Supervised Learning, Unsupervised Learning, and 
Reinforcement Learning; iv) a Model that accurately 
represents a system (infrastructure, process, machine, etc.); v) 
a Simulation module that sends feedback about models in 
order to enhance and optimize them. 

IoT Management. This module is in charge of managing 
IoT devices. In particular, the IIoT world encompasses the 
manufacturing machines, usually equipped with legacy 

software. Hence, this module contains a set of standards 
protocols for data gathering from heterogeneous devices.  

On- Off-line optimization. This module contains a 
composition of machine learning algorithms and 
mathematical models able to take decisions based on 
knowledge gained from a learning algorithm. In particular, 
ML algorithms are used, for instance, to detect and diagnose 
anomalies, to determine an optimal set of actions, to enforce 
the quality of production processes, and to provide predictions 
for strategic planning. 

Trained ML model. This module is in charge of training 
the model used by the ML algorithm. Normally, the training 
phase is a time-consuming task and requires several 
computational resources. It could be challenging to perform 
training algorithms on resource-constrained edge nodes. 
Despite local updates consume computation resources of the 
edge node, this module allows training the model both at the 
edge and from the cloud. 

Digital Twins. This module contains the knowledge of 
every single node. The main idea is to host ML models, 
already trained at the cloud side, at the edge of the network 
with the possibility to improve the local model via the 
interaction with underlying devices (e.g., from mobile devices 
to Industrial IoT devices). Finally, edge nodes return feedback 
to the cloud manager in terms of model improvements, and 
update the global model at the cloud, by exploiting 
collaboration among them. 

Cloud optimization. This is a logical component that runs 
at the cloud and is in charge of optimizing the model. In 
particular, data gathered at the edge of the network may grow 
local models which are also forwarded to the cloud for ML 
models optimization. Therefore, this module selects the more 
appropriate model and sends it back to selected edge nodes. 
On the other hand, ML models already trained at the cloud 
side may be sent back for model optimizations towards edge 
nodes. 

IV. USE CASE & IMPLEMENTATION DETAILS 

This section presents a real case study in order to illustrate 
how to leverage distributed digital twins of production plants 
and facilities, enabled by off-the-shelf edge/cloud 
technologies for big data processing. In particular, this testbed 
is aimed at leveraging the intelligence at the edge of an air 
pressure system by aggregating ML models of single nodes 
for predictive maintenance. Data are used to detect the health 
status of the APS, to predict failures, and to plan maintenance 
operations for reducing unexpected breakdowns. The system 

Fig. 1  Proposed Distributed Architecture Fig. 2  Architectural Components 



will be divided into several sub-parts/systems devoted to 
specific tasks, with specific raw monitoring indicators, such 
as temperature indicators of each component part.  

Following the uniform workflow approach depicted in 
Fig. 2, each component of the system provides data for the 
monitoring system that are properly channeled by an edge-
computer; these data will be sent to the closest edge to produce 
local intelligence. ML techniques are trained to produce 
predictive models on health status and to allow the edge to 
localized anomaly detection. Trained predictive models are 
then transferred to the cloud to reinforce the global model 
which, if it is improved (e.g., in terms of accuracy), will be 
returned in each edge node. Also, the cloud simulation and 
off-line optimizations provide maintenance plans and 
guidelines for future improved design. 

In order to simulate this testbed, we used an open-source 
dataset that consists of data collected from Scania trucks in 
everyday usage [18]. The system in focus is the APS which 
generates pressurized air that are utilized in various functions 
in a truck, such as braking and gear changes. Therefore, 
failures should be predicted before they occur. Falsely 
predicting a failure has a cost of 10, while missing a failure 
has a cost of 500. This makes sense because is simpler to 
manage the case of false positive rather than the case of a 
missing a failure. The data contains a training set and a test 
set. The training set contains 60,000 rows, of which 1,000 
belong to the positive class and 171 columns, of which one is 
the class column and the test set contains 16,000 rows.  

A. Implementation Details 

As already stated in Section II, we adopted Apache Kafka 
as a messaging middleware between system entities such as 
sensors, edge nodes, and the cloud. Our testbed consists of 
four sensors (two for each edge nodes), two edge nodes, and 
the cloud. The Kafka cluster is composed of two distinct 
Kafka Broker respectively one for each edge node that 
logically represents a shop floor. All system entities 
communicate with each other via Kafka Topics and for this 
reason, we provided three distinct Topic: one for the 
communication between sensors and edge nodes, another for 
the communication between edge nodes and cloud, and vice-
versa. Then, each Topic is divided into two Partitions one for 
each Broker. Fig. 3 depicts how we implemented the scenario. 

The sensors use part of the dataset, in particular, 58,000 
over 60,000 instances, as new data. In particular, one sensor 

retrieves data from the open-source csv file and uses 58K 
records as newly produced data (each sensor uses 29K 
records). After this, it creates a Kafka Producer that is used for 
sending data via the “sensors-edge” topic.  

Each edge node, one per locality/Kafka Broker, 
communicates with sensors in the corresponded locality and 
with the cloud. Its task is to receive data from sensors, 
classifies the model instances, enhancing the digital twins at 
the edge, and to send the update models towards the cloud. 
First, it receives the ML initial model from the cloud and then 
it takes care of three major tasks including 
consume_sensor_data, update_model_local, and 
update_model_remote. 

• consume_sensor_data. This task is in charge of 
reading data from sensors and classifying instances by 
using the initial model. Edge nodes use the topic 
“sensors-edge” in order to read data. 

• update_model_local. This task takes care of control of 
the state of predictions. In particular, it compares the 
predictions with the supervised data and uses the false-
negative instances for creating a new model. 

• update_model_remote. This task is in charge of 
updating the local model towards the cloud. In 
particular, it sends the new model plus the dataset used 
for its creation. Anyway, the decision to swap the 
global model and therefore update all local models is 
up to the cloud. 

Finally, the cloud creates the initial model by using only 
2,000 of 60,000 instances through a Decision Tree classifier 
and then calculates the accuracy of the model. Of course, at 
this moment the accuracy does not have a reasonable value, in 
fact, the percentage of false-negative is greater than the 
percentage of false-positive. To trace the quality of the model, 
we considered also the recall and specificity that represent 
respectively the percentage of negative instances within the 
total and the percentage of positive instances within the total. 

Fig. 3  Our implementation scenario 

# create the initial model 
nb_model = DecisionTreeClassifier() 

nb_model.fit(features_train, labels_train) 

 

# calculate the model accuracy 

nb_out = nb_model.predict(features_test) 

nb_accuracy = accuracy_score(labels_test, nb_out) 

nb_recall = recall_score(labels_test, nb_out, 

pos_label=1) 

nb_specificity = recall_score(labels_test, nb_out, 
pos_label=0) 

# calculate the accuracy 

out = model.predict(features_test) 

accuracy = accuracy_score(labels_test, out) 

recall = recall_score(labels_test, out, pos_label=1) 

specificity = recall_score(labels_test, out, 

pos_label=0) 

differences = [accuracy - nb_accuracy, recall - 

nb_recall, specificity - nb_specificity] 

 

# if the model is better than the previous one is sent 

back to edge nodes 

if accuracy > 0.95 and recall > 0.75 and specificity > 

0.95: 

    ... 

    producer.send('cloud-edge', key=b"train", 

value=serialized, partition=0) 

    producer.send('cloud-edge', key=b"train", 

value=serialized, partition=1) 
    ... 



Then, each time the cloud receives a new model from an 
edge node, it calculates the accuracy, recall, and specificity of 
that model and it sends back only if that model is better. This 
specific implementation is shown in the above snippet. 

V. EXPERIMENTAL RESULTS 

We widely assessed and validated the advantages of our 
solution; this section presents a significant selection of 
experimental results obtained in our lab deployment scenario. 
To thoroughly test and evaluate the performance of our 
proposed architecture, we carried out several different sets of 
experiments, in terms of quality of prediction model, model 
size variation, and latency time. The results reported in this 
section are average values; all presented measurements have 
exhibited a limited variance (under 5% for 30 runs). 

A. Experimental Environment 

The prototype of our experimental environment is to set 
up four sensors, two edge nodes, and the cloud. The edge node 
is a Raspberry Pi 3 Model B equipped with 64-bit quad-core 
ARM Cortex-A53 processor, 1 GB of RAM and 16 GB of 
storage space, Wi-Fi and Bluetooth connection. The sensors 
are a Raspberry Pi Zero W equipped with a single-core 
Broadcom BCM 2835 1Ghz, 512 MB of RAM and 8 GB of 
storage space, Wi-Fi and Bluetooth connection. The cloud is 
a VM deployed at Amazon Web Service equipped with 8 GB 
of RAM, and 4 virtual cores Intel. Unless otherwise specified, 
edge nodes connect with the sensors via IEEE 802.11n 
connections and their maximum nominal available bandwidth 
is 40 Mbit/s, while connecting with the cloud through ethernet 
with 1 Gbit/s bandwidth. 

B. Model Accuracy Variation 

The first test family that we have done for this testbed 
regards the model accuracy variation. Please note that the edge 
nodes send reinforced models, with fresh data, to the cloud. 
Fig. 4 shows the model accuracy variation considering edge 
updates. To trace the quality of the model we considered the 
recall and specificity that represent respectively the 
percentage of negative instances within the total and the 
percentage of positive instances within the total. As one can 
see from Figure 4, the specificity goes down from 0.98 to 0.96 
but the recall rising to 0.87 with an increase of 0.3. This 
because the initial dataset contains a few negative instances 
compared to the total dataset. Therefore, updating the model 
with fresh data allows creating a model that the total accuracy 
is the same but with more accuracy for predicting negative 
instances. To demonstrate this, Figure 5 shows how the 
number of false-negative instances recognized at the edge 
decreases over time increasing the accuracy of each edge 
node. For both tests, we used the Decision Tree as the 
classifier algorithm, instead of, for instance, a Naive Bayes 
classifier. This is because Decision Trees are very flexible, 
easy to understand, and easy to debug. Furthermore, they work 
very well with classification problems. Finally, they allow 
working with low power devices such as Raspberry Pi with 
very interesting performance results [19]. 

C. Model size variation and Latency cloud - edge 

For the last set of experiments, we compared how the 
model size can impact the latency time between edge nodes 
and the cloud. As shown in Fig. 6, for consecutive model 
updates, the experimental results show that the models stored 
in each edge nodes grow in a linear fashion. In our specific use 
case, the model increases its size by approximately 50% (i.e., 

Fig. 4  Model accuracy variation Fig. 5  False-negative instances variation at the edge 

Fig. 6  Model size variation Fig. 7  Latency edge-cloud 



from 6KB to 12KB). Additionally, as shown in Fig. 7, we 
measured the latency time introduced from these consecutive 
model updates between edge nodes and the cloud. Actually, in 
this paper, we do not consider the other side of the latency time 
between the cloud and edge nodes. This because it's around 
the same values: 60ms of average latency time. Anyway, in 
our use case, the latency time introduced does not vary much 
compared to the model size variation, rather remains the same. 
Let us note that this delay is completely transparent to the 
logic of the application. The model updates can be made in a 
background mode. 

VI. CONCLUSION  

In this paper, we proposed an edge-enabled cloud-assisted 
system for distributed intelligence covering advanced ML 
algorithms. This work paves the way for ML at the edge by 
proposing a distributing architecture and discussing a real use 
case. The cornerstones of our work lie in the ability to have 
local models stored at the edge and running ML algorithms on 
it with the possibility to improve the global model through 
reinforced local models. We present several experimental 
results that show the advantages of using distributed ML at the 
edge of the networks in terms of model accuracy and system 
performances. The major advantage of the edge is to allow the 
possibility to reinforce local models with fresh data that can 
be used to enhance the accuracy of ML techniques. Although, 
results show that the model accuracy increases in a significant 
way while still retaining a very low latency. Fueled by these 
significant results, we are working on two main ongoing 
research directions. On the one hand, we are working 
extensively on the Cloud Optimization module and on the 
aggregation of local models (stored at the edge nodes) into the 
global model (stored at the cloud) and vice versa. On the other 
hand, we are deploying several testbeds solutions for smart 
factories where several heterogeneous IoT devices generate 
data streams. In particular, data streams originated from IoT 
devices reach edge nodes, where maybe aggregated and 
trigger local actions. Finally, these data streams may be also 
forwarded to the global cloud. 
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