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In the context of canonical quantum gravity, we consider the effects of a nonstandard expression for
the gravitational wave function on the evolution of inflationary perturbations. Such an expression and its
effects may be generated by a sudden variation in the (nearly constant) inflaton potential. The resulting
primordial spectra, up to the leading order, are affected in the short and in the long wavelength regime,
where an oscillatory behavior with a non-negligible amplitude is superimposed on the standard
semiclassical result. Moreover, a novel, nonperturbative, approach is used to study the evolution. Finally,
a simplified application is fully illustrated and commented.
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I. INTRODUCTION

In the last few years, the quest for the theory of quantum
gravity (QG) has entered a new era. A series of increasingly
precise observations, ranging from cosmic microwave
background (CMB) to gravitational wave signals and the
direct observation of the horizon of black holes (BHs), are
now in support of the theory and may soon lead us to a
consistent description of gravitational interactions at energy
scales which have never been probed before and where
quantum effects may be observable.
Among the several approaches to QG, canonical

quantum gravity [1] has an important role. It is obtained
from the canonical quantization of the classical con-
straints emerging from the spacetime diffeomorphism
invariance of general relativity. The resulting Wheeler-
DeWitt (WDW) equation for the wave function of the
Universe is similar to a time-independent Schrödinger
equation in nonrelativistic quantum mechanics. For sim-
ple cases, the WDWequation can be solved and a suitable
interpretation of the wave function of the Universe can
be given. Matter-gravity systems where the effective
number of relevant degrees of freedom is small, such
as BHs and inflationary cosmology, are amenable to the
WDW description [2]. Despite several conceptual issues,
the canonical quantum gravity framework presents sev-
eral advantages with respect to (w.r.t.) other approaches,
and we expect that it is a predictive mathematical
description of the QG regime, at least when quantum
gravitational effects are small.

In this paper, we shall investigate some possible quantum
gravitational effects in the early Universe at the energy
scale of inflation [3], which may leave “footprints” in the
CMB spectrum. Such effects must be small in order to fit
observations but their magnitude need not be tiny and
dependent on the “usual” H=MP ratio, i.e., the ratio
between the Hubble parameter and the Planck mass (see
for example [4]). As shown in [5], the small (quantum)
fluctuations which seed the structures we observe today can
be described within this framework by a set of separate
wave functions obtained through the traditional Born-
Oppenheimer (BO) decomposition [6] applied to the entire
inflaton-gravity system. The approach leads to a modified
Mukhanov-Sasaki (MS) equation [7] which accounts for
diverse quantum gravitational effects. Nonadiabatic QG
effects are obtained as a consequence of the traditional BO
treatment and are tiny, being proportional to ðH=MPÞ2.
Further QG effects related to the “BO introduction of time”
can also be present [8].
Within this traditional BO scheme, the emergence of

time in QG is usually associated with the “probability
current” of the gravitational wave function. In an expanding
universe, one generally assumes that the direction of such a
current follows (and determines) the direction of time.
However, since the gravitational wave function obeys a
second-order differential equation, solutions with opposite
probability fluxes always exist, and, in principle, a quantum
superposition of these solutions may be considered. In any
case, physical initial conditions must be imposed in order to
fix the form of the gravitational wave function [9], and the
possibility of having a small contribution to the gravita-
tional wave functions evolving in the opposite direction
with respect to the expanding inflationary universe has
been examined [10] with the hypothesis of a bouncing
universe. Here, we consider a different scenario wherein
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a (small) variation of the cosmological constant (inflaton
potential) generates a reflected gravitational wave which
influences the evolution of inflationary perturbations.
The amplitude of the reflected wave will depend on the
variation of the cosmological constant and its effects may
be much larger than the nonadiabatic QG effects which are
always present in the traditional BO approach. On a more
technical level, we note that the formalism we shall employ
to solve the perturbed Schrödinger-like equation, which
governs the evolution of inflationary perturbations, is
novel, and it consists in solving “exactly” (and numerically)
the perturbed equation.
The resulting spectra are affected in the long wave-

length region and in the short wavelength interval as well.
In particular, in the short wavelength limit, the QG effects
can be analytically well understood, as the equations can
be solved with accurate approximations. In the opposite,
long wavelength limit, the effects may be large but
approximations are less precise. It is also important to
note that we restrict our study to the case where QG effects
modify the evolution of the “CMB modes” when such
modes are still well “inside” the horizon. In such a case,
the evolution of the perturbation modes would be insen-
sitive to the shape of the inflaton potential, and, therefore,
any variation of this potential (which is here approximated
by a cosmological constant) would have no significant
effect on the spectra when the QG effects derived from the
WDW equation are neglected.
The article is organized as follows: In Sec. II, the

general formalism is introduced; in Sec. III, the traditional
BO approach is illustrated and the gravity equation is
solved in the presence of a sudden variation of the
cosmological constant; in Sec. IV, the matter equation
in the presence of QG corrections is formally solved, and
the primordial spectrum is calculated in terms of the
solution of the so-called Pinney equation; in Sec. V, a
simplified model is considered and its observational
consequences are obtained and analyzed; finally, in
Sec. VI, we draw our conclusions.

II. FORMALISM

We consider the inflaton-gravity system described by the
following action

S ¼
Z

dηd3x
ffiffiffiffiffiffi
−g

p �
−
MP

2

2
Rþ 1

2
∂μϕ∂

μϕ − VðϕÞ
�
; ð1Þ

where MP ¼ ð8πGÞ−1=2 is the reduced Planck mass. The
above action can be decomposed into a homogeneous part
plus fluctuations around it. The fluctuations of the metric
δgμνðx⃗; ηÞ are defined as

gμν ¼ gð0Þμν þ δgμν; ð2Þ

where gð0Þμν ¼diag½aðηÞ2ð1;−1;−1;−1Þ� is a flat Friedmann-
Lamaître-Robertson-Walker (FLRW) metric and η is con-
formal time. The scalar and the tensor fluctuations imprint
their features in the CMB [11] and are therefore the relevant
perturbations during inflation. In particular, the scalar
fluctuations, which can be collectively described by a
single field (the MS field [7]), determine the CMB temper-
ature fluctuations. The homogeneous degrees of freedom
plus the linearized (scalar) perturbations dynamics are
described by the following action

S ¼
Z

dη

�
L3

�
−
M̃2

P

2
a02 þ a2

2
ðφ02

0 − 2Vðφ0Þa2Þ
�

þ 1

2

X
i¼1;2

X
k≠0

�
v0i;kðηÞ2 þ

�
−k2 þ z00

z

�
vi;kðηÞ2

��

≡ SG þ SI þ SMS; ð3Þ

where the vi;k are Fourier components of the scalar MS
field and the index i accounts for the real and imaginary
parts of each component, M̃P ¼ ffiffiffi

6
p

MP, z≡ ϕ0
0=H,

H ¼ a0=a2 is the Hubble parameter, the prime denotes
the derivative with respect to conformal time and

L3 ≡
Z

d3x: ð4Þ

Notice that we formally split the full action into three
contributions: SG and SI are the homogeneous gravity and
inflaton actions, respectively, whereas SMS describes the
perturbations.
Henceforth, we shall set L to be equal to 1 (see [5]

for more details) to keep the notation compact. The
Hamiltonian is finally

H ¼ −
π2a
2M̃2

P

þ
�
π2ϕ
2a2

þ a4V

�
þ
X∞
k≠0

�
π2k
2
þ ω2

k

2
v2k

�
; ð5Þ

where ω2
k ¼ k2 − z00=z. For simplicity, we shall limit

ourselves to the case of a constant inflaton potential
V ¼ Λ. One has

πa ¼ −M̃2
Pa

0; πϕ ¼ a2ϕ0
0; πk ¼ v0k: ð6Þ

The canonical quantization of the Hamiltonian constraint (5)
leads to the following WDWequation for the wave function
of the Universe (matter plus gravity)

�
1

2M̃2
P

∂
2

∂a2
þ Ĥ0 þ

X∞
k≠0

Ĥk

�
Ψða;ϕ0; fvkgÞ ¼ 0; ð7Þ
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where we define

Ĥ0 ≔ −
1

2a2
∂
2

∂ϕ2
0

þ a4Λ; ð8Þ

Ĥk ≔
1

2

∂
2

∂v2k
þ ω2

k

2
v2k; ð9Þ

for k ≠ 0. Equation (7) will be the starting point in our
approach.

III. BO DECOMPOSITION

In this section, we briefly illustrate the traditional BO
decomposition for the inflaton-gravity system. This decom-
position is one of the approaches to the problem of time in
quantum gravity, i.e., to the introduction of an evolution
parameter in the seemingly stationary equation (7), and it
has a rather long history (see [12] for a review). In its
traditional version, the BO decomposition follows the
formalism described, e.g., in [13], where a factorization
of the wave function leads to the decomposition of the time-
independent Schrödinger equation [here, given by (7)] into
an equation for “heavy” variables (here, the scale factor)
and one for the “light” variables (here, the matter fields),
and both equations are, in principle, nonlinear (as they
include so-called nonadiabatic effects). The key idea of
the traditional BO decomposition, as applied to quantum
cosmology, is that the phase of the gravitational wave
function can be used to define a time variable that
dictates the evolution of matter fields. The nonlinearities
of the matter equation can be dealt with by suitable
“rephasings” of the gravitational and matter wave functions
(see [12,14,15]) and by a concrete, iterative procedure that
uses perturbation theory (usually in powers of the inverse
Planck mass, see [5,15–17] and references therein for
further details; see also [18] for an application of a
BO-inspired approach in “hybrid quantum cosmology”
with techniques used in loop quantum cosmology,
and [14] for a comparison of diverse approaches). In the
spirit of this traditional BO approach, we thus start from
the ansatz

Ψða;ϕ0; fvkgÞ ¼ ψðaÞχMða;ϕ0; fvkgÞ
¼ ψðaÞχ0ða;ϕÞ

Y
k≠0

χkða; vkÞ: ð10Þ

If we project out the matter wave function, one is then led to
a gravity equation

∂
2
aψ̃ þ 2M̃2

PhĤ0iψ̃ ¼ h∂aχ̃0j∂aχ̃0iψ̃ ; ð11Þ

where

ψ ¼ ψ̃e−i
P

k

R
a Akda0 ; ð12Þ

χk ¼ χ̃ke
i
R

a Akda0 ; ð13Þ

Ak ≔ −ihχkj∂ajχki; ð14Þ

hÔi ¼
Z þ∞

−∞

�Y
k≠0

dvk

�
dϕχ�MÔχM; ð15Þ

with k ¼ 0 indicating the homogeneous scalar field. Let us
note that we neglected the backreaction originating from
the perturbations vk in (11).
The projection of the WDW along

Q
p≠khχpj leads to

a set of equations, one for each k-mode of the inflaton, of
the following form

1

M̃2
P

∂aψ̃

ψ̃
∂aχ̃k þ ðĤk − hĤkikÞχ̃k þ

1

2M̃2
P

ð∂2a − h∂̃2aikÞχ̃k ¼ 0;

ð16Þ

where

h ˆ̃Oik ¼
Z þ∞

−∞
dvkχ̃�kÔχ̃k: ð17Þ

We note that (16) plays a central role in our approach to
the fully quantized inflaton-gravity system. Its structure is a
consequence of the BO decomposition performed and it
contains a first term with the first derivative of the matter
wave function and also dependent on gravitational wave
function (this term is usually associated with the introduc-
tion of time), the Hamiltonian contribution given by the
matter Hamiltonian minus its expectation value, and a third
term given by the second derivative of matter wave function
minus its expectation value. This latter term is associated
with the nonadiabatic effects in the traditional BO decom-
position (when such a BO decomposition is applied to
molecules it describes the effects of the “slowly” moving
nucleus on the electron cloud) and in this context it is
usually associated with quantum gravitational effects. Let
us note that also the first contribution may give rise to
quantum gravitational effects associated with the introduc-
tion/definition of time and we then keep these letter effects
distinct with respect to the former ones. Let us further note,
as discussed in detail in [14], that, the structure of (16),

apart from the first term, has the form h ˆ̃Oik − Ô, where Ô is
not necessarily Hermitian. Thus, since M̃−2

P ∂aψ̃=ψ̃ appears
as a c-number, one has

hχ̃kj∂ajχ̃ki ¼ 0; ð18Þ
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and

∂ahχ̃kjχ̃ki ¼ h∂aχ̃kjχ̃ki þ hχ̃kj∂aχ̃ki

¼ M̃2
Pψ̃

�

∂aψ̃
� ðhχ̃kjÔ† − h ˆ̃O†ikjχ̃kiÞ

þ M̃2
Pψ̃

∂aψ̃
ðhχ̃kjÔ − h ˆ̃Oikjχ̃kiÞ ¼ 0; ð19Þ

which means hχ̃kjχ̃ki normalization is conserved with
respect to the variation of a or of any function of it (and
in particular the semiclassical time).
If k ¼ 0, Eq. (16) is that of the homogeneous inflaton.

When the inflaton potential is constant, such an equation
simplifies to

1

M̃2
P

∂aψ̃

ψ̃
∂aχ̃0 −

1

2a2

�
∂
2

∂ϕ2
0

−
	

∂
2

∂ϕ2
0



0

�
χ̃0

þ 1

2M̃2
P

ð∂2a − h∂̃2ai0Þχ̃0 ¼ 0; ð20Þ

and it is easily solved by (scale-factor independent)
eigenstates of the operator −i∂=∂ϕ0 (i.e., plane waves
χ̃0 ∼ eiPϕ0=M̃P). Correspondingly, the gravity equation (11)
becomes

∂
2
aψ̃ þ 2M̃2

P

�
P2

2a2M̃2
P

þ a4Λ
�
ψ̃ ¼ 0; ð21Þ

and it can be solved as well. In particular, its solutions
have a simple form in the large a limit. Let y ¼ M̃3

Pa
3 and

Λ≡ M̃4
Pλ, then (21) becomes

∂
2
yψ̃ þ 2

3y
∂yψ̃ þ

�
P2

9y2
þ 2

9
λ

�
ψ̃ ¼ 0; ð22Þ

and for y ≫ 1 its solution is a (quantum and coherent)
superposition of plane waves moving forward and back-
ward in “time”, respectively

ψ̃ ¼ A1e−i
ffiffiffiffi
2λ

p
y=3 þ A2ei

ffiffiffiffi
2λ

p
y=3: ð23Þ

Notice that the expression becomes increasingly accurate
in the y ≫ 1 limit provided P=y → 0 in the same limit. In
particular, for (23), the second term of Eq. (22) is ∼

ffiffiffi
λ

p
=yψ̃

and is much smaller than the remaining two if

ffiffiffi
λ

p

M̃3
Pa

3
≪ λ ⇒ a ≫

1

M̃Pλ
1=6

: ð24Þ

The matter equation (16) has three contributions: the first,
which contains the gravitational wave function, is associ-
ated with the introduction of time; the Hamiltonian

determines the evolution of the matter wave function;
and the third contribution describes the nonadiabatic
corrections and is generally proportional to H2=M̃2

P.
During inflation, when H=M̃P ≪ 1, this last contribution
is generally tiny. Still, it is a possible source of quantum
gravitational effects, and its contribution has been studied
in several articles [5].
Let us now suppose that ψ̃ ∝ e−i

ffiffiffiffi
2λ

p
y=3. Then, the first

term in the matter equation is

1

M̃2
P

ð∂ayÞ
∂yψ̃

ψ̃
∂aχ̃k ¼ −ia2

ffiffiffiffiffiffiffiffiffiffiffi
Λ

3MP
2

s
∂aχ̃k

¼ −ia0∂aχ̃k ≡ −i
dχ̃k
dη

; ð25Þ

where the classical Friedmann equation has been used to
relate the cosmological constant to the classical velocity a0,
and the “classical” time can then be introduced in the matter
equation. In the traditional BO approach, the “flow” of time
is related to the phase of the gravitational wave function.
For aM̃P small, the gravitational wave function has a
behavior that is very different from a simple plane wave,
and time cannot be introduced. Moreover, in the regime
where such a difference is small, time can still be
introduced but quantum gravitational fluctuations are also
present and may have observable consequences. These
fluctuations may be much larger than those associated with
the nonadiabatic effects. In this article we shall consider
some of their possible origins and their resulting effects.
In particular, we study how small variations in the (nearly
constant) inflaton potential may affect the gravitational
wave function and the resulting MS equation. Small
variations of the inflaton potential modify the propagation
of the MS field vk after the corresponding momenta exit the
horizon (k=ðaHÞ ∼ 1) and remains imprinted in the CMB.
However, the MS equation is nearly insensitive to such
variations in the limit k=ðaHÞ ≫ 1 when essentially vk
evolves as a plane wave. Nevertheless, in this case, the QG
effects originated by a modification of the gravitational
wave function can be present. In previous treatments of
the traditional BO approach, such effects are not present,
but they can be studied within our current approach. For
simplicity, the variation of the inflaton potential will be
modeled by sudden changes of cosmological constant
occurring at certain time (and, correspondingly, certain
values of the scale factor).

A. Potential well

Let us now consider a small variation of the cosmologi-
cal constant ΔΛ≡ M̃4

PΔλ in the interval ½y1; y2� with
y1;2 ≫ 1. In this case, one must solve the gravitational
equation (22) in 3 regions: the incoming region (I) with
y < y1, the region (II) inside the interval, and the outgoing
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region (III) with y > y2. In the latter region only an
outgoing wave must be present and, therefore, the resulting
wave functions are

ψ̃ I¼ e−iqyþreiqy; ψ̃ II¼aeipyþbe−ipy; ψ̃ III¼ te−iqy;

ð26Þ

with q ¼ ffiffiffiffiffiffiffiffiffiffi
2λ=9

p
, p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðλþ ΔλÞ=9p
and Δλ may be a

positive or negative (small) variation of λ. On imposing the
junction conditions and defining y2 ≡ y1 þ Δy, one has

t ¼ 2qpeiqΔy

2qp cosðpΔyÞ þ iðq2 þ p2Þ sinðpΔyÞ ; ð27Þ

a ¼ ðp − qÞe−iðqþpÞy2

2p
t; b ¼ ðqþ pÞe−iðq−pÞy2

2p
t; ð28Þ

r ¼ iðq2 − p2Þ sinðpΔyÞe−iqðy1þy2Þ

2qp
t: ð29Þ

The condition jtj ¼ 1 is equivalent to the requirement
pΔy ¼ nπ and r ¼ 0 and is known as the “resonant
transmission” condition. In this case, a reflected gravita-
tional wave function is only present inside the ½y1; y2�
interval, inside which the time flow is modified. The ratio

a
b
¼ p − q

pþ q
e−2ipy2 ≡ ϵe−2ipy2 ð30Þ

determines the relative weight of the ingoing and outgoing
wave and its modulus must be small in order to properly
define the “classical time flow”. The resulting, total wave
function in the “resonant transmission” case is

ψ ¼ e−iqy½θðy1 − yÞ þ θðy − y2Þ�
þ be−ipyð1þ ϵe2ipðy−y1ÞÞθðy − y1Þθðy2 − yÞ; ð31Þ

where θðxÞ is the Heaviside theta function and we used the
condition pΔy ¼ nπ to express the exponent in terms of y1.
One then has to account for the reflected wave only in a
certain time interval, outside which the time “flow” mimics
the semiclassical evolution, and no QG effects (except the
tiny nonadiabatic contributions) are present. The “resonant
transmission” case, despite being less general, has the
advantage of restricting the QG effects to a given period of
the inflationary evolution, and it does not affect the initial
state [Bunch-Davies (BD) vacuum [19]] of the inflationary
perturbations. In contrast, the presence of a reflected wave
in the interval y < y1 would require a proper reexamination
of the definition of the initial condition for the MS field.
Therefore, we restrict our attention to the “resonant
transmission” case, and avoid the complications of more
general setups.

B. Potential barrier

A slightly simplified setup with respect to that described
above is illustrated in what follows. Let us suppose that a
small variation of the cosmological constant is present at
some value of the scale factor y0. Then, one must solve the
gravitational equation (22) in 2 regions: the incoming
region (in) with y < y0 and the outgoing region (out)
with y > y0

ψ̃ in ¼ e−ipy þ reipy; ψ̃out ¼ te−iqy: ð32Þ

On imposing the junction conditions one finds

r ¼ p − q
pþ q

e−2ipy0 ; t ¼ 2p
pþ q

eiðq−pÞy0 ; ð33Þ

and jrj must be small in order to define a “classical time
flow” and a (quantum gravitational) perturbation originated
by the reflected wave in the (in) region. The smallness of jrj
is equivalent to the condition

p − q
pþ q

≡ ϵ; jϵj ≪ 1: ð34Þ

The resulting, total wave function is

ψ ¼ e−ipyð1þϵe2ipðy−y0ÞÞθðy0−yÞþ te−iqyθðy−y0Þ: ð35Þ

As already discussed previously, the presence of a reflected
wave for y < y0 necessarily leads to a problematic dis-
cussion on initial conditions (of the MS field) and we shall
not consider this case in the final analysis.1

IV. MUKHANOV-SASAKI EQUATION

If we neglect the nonadiabatic contributions (which are
tiny during inflation), the matter equation (16) simplifies to

1

M̃2
P

∂aψ̃

ψ̃
∂aχ̃k þ ðĤk − hĤkiÞχ̃k ¼ 0; ð36Þ

where henceforth the subscript k in the expectation values
in the MS equation will be omitted in order to keep the
notation compact. When the gravitational wave function
is a “simple” outgoing wave, apart from an overall
phase redefinition, Eq. (36) reduces to the Schrödinger

1It is worthwhile to mention that the two cases considered here
are relatively simple: one in which there is just one barrier, and
hence a reflected wave; and the other (resonant transmission) for
which there is no reflection of the incoming wave. These by
themselves generate observable effects. Further refinements in
the model can, of course, be contemplated, but similar results to
our current setup are expected, e.g., for the nonresonant case.
However, the presence of a reflected wave in the first interval
would lead to more complicated calculations and heavier
numerical simulations.
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representation of the standard MS equation. The presence
of a small ingoing (reflected) contribution still allows one
to properly define the classical time flow but one must
also account for a small quantum gravitation perturbation
around it. In this case, the perturbed gravitational wave
function has the general form

ψ̃ ∝ e−ipyð1þ ϵe2ipðy−y0ÞÞ; ð37Þ

and y0 → y2 in the resonant transmission case, where ϵ is a
real constant. The first term in (36) becomes

1

M̃2
P

∂aψ̃

ψ̃
∂a ¼ −3ipM̃Pa2

�
1 −

2ϵe2ipðy−y0Þ

1þ ϵe2ipðy−y0Þ

�
∂a

≡ −i
p
q

�
1 − ϵe2ipðy−y0Þ

1þ ϵe2ipðy−y0Þ

�
d
dη

; ð38Þ

and it is continuous on varying y due to the junction
conditions imposed on the gravitational wave function.
However, we observe that ∂að∂aψ̃=ψ̃Þ is necessarily dis-
continuous due to the discontinuity of the source term
(cosmological constant) in the gravity equation (21). A
more realistic scenario would include a smooth variation
of a slowly varying inflaton potential (in fact, of all of the
physical parameters and their derivatives) instead of a
sudden jump of its energy density. This more realistic
analysis would lead to equations that are considerably more
complicated without essentially adding relevant details to
the overall physical discussion.
In Eq. (38), the conformal time variable was introduced

by the following change of variable y ¼ M̃3
Pa

3 ¼
−M̃3

P=ðH3η3Þ (which is valid in de Sitter) and it is
physically related to the probability current of the leading
(outgoing) term of the gravitational wave function (37).
The perturbed MS equation then becomes

i
dχ̃k
dη

¼ 1 − ϵ

1þ ϵ
·
1þ ϵe2ipðy−y0Þ

1 − ϵe2ipðy−y0Þ
ðĤk − hĤkiÞχ̃k; ð39Þ

where (30) has been used to express p=q in terms of ϵ.
In spite of the explicit non-Hermitian form of Eq. (39),
one has

d
dη

hχ̃kjχ̃ki

¼ i
1 − ϵ

1þ ϵ
·
1þ ϵe2ipðy−y0Þ

1 − ϵe2ipðy−y0Þ
ðhĤki − hĤkiÞ þ h:c: ¼ 0;

ð40Þ

i.e., the norm of χ̃k is conserved and can be arbitrarily
set to one. Moreover hχ̃kjd=dηjχ̃ki ¼ 0 (as expected
given the general properties discussed in [14] and reviewed
in (18) and (19)].

Instead of directly solving the modifiedMS equation (39)
it is convenient to define a new function by χ̃k ¼ eiφχk,
where φ is a complex function of η given by

dφ
dη

¼ 1 − ϵ

1þ ϵ
·
1þ ϵe2ipðy−y0Þ

1 − ϵe2ipðy−y0Þ
hĤki; ð41Þ

and, finally, obtain

i
d
dη

χk ¼
1 − ϵ

1þ ϵ
·
1þ ϵe2ipðy−y0Þ

1 − ϵe2ipðy−y0Þ
Ĥkχk ≡ ˆ̄Hkχk ð42Þ

having the conventional form of the Schrödinger equation.
In the “resonant transmission” case, if we define

m ¼ ½θðy1 − yÞ þ θðy − y2Þ�

þ θðy − y1Þθðy2 − yÞ 1þ ϵ

1 − ϵ
·
1 − ϵe2ipðy−y1Þ

1þ ϵe2ipðy−y1Þ
; ð43Þ

the MS hamiltonian transforms into

Ĥk ¼
1

2
π̂2v þ

ω2

2
v̂2 → ˆ̄Hk ¼

1

2m
π̂2v þ

mω̃2

2
v̂2; ð44Þ

with a time-dependent complex mass and the new fre-
quency ω̃2 ≡ ω2=m2. We note that the definition of χk is a
matter of convenience since in terms of χk the Eq. (39)
takes explicitly the form of the Schrödinger equation
for a time dependent, non-Hermitian harmonic oscillator
and can be formally solved by the adiabatic invariant
technique [20]. Moreover d=dηhχkjχki ≠ 0, as it should
for a solution of a non-Hermitian Schrödinger equation.
Once the formal solution of (42) is obtained, one can
transform it back and obtain the correctly normalized
solution of (39).
It is important to note that one recovers the standard MS

equation in the ϵ → 0 limit. Moreover, mðyÞ is continuous
in y and is 1 for y < y1 and y > y2 but its derivative is
discontinuous. As we already mentioned, the step functions
would be replaced by smooth functions and the derivatives
of mðyÞ would be continuous in a more realistic scenario.
Let us finally note that henceforth, since the notion of time
has been introduced, we shall adopt η1, and η2 instead of the
corresponding values of y1 and y2.

A. Invariant operators

Formally, the solution for the non-Hermitian harmonic
oscillator is identical to its Hermitian counterpart (see for
example [21]). One can define the following quadratic
invariant operator

Î ¼ 1

2

��
v̂
ρ

�
2

þ ðρπ̂v −mρ0v̂Þ2
�
; ð45Þ
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and the invariant vacuum state is its zeroth order eigenstate,
which is given by

χk;0 ¼
�

1

πρ2

�
1=4

exp

�
i
m
2

�
ρ0

ρ
þ i
mρ2

�
v2 −

i
2

Z
η

ηi

dη̄
mρ2

�
:

ð46Þ

In (46), ρ is the Pinney variable. It satisfies the following
second order, nonlinear “Pinney” ODE

ρ00 þm0

m
ρ0 þ ω̃2ρ ¼ 1

m2ρ3
: ð47Þ

If we employ the technique of invariants, we can obtain
the solution of a partial differential equation (PDE)—the
Schrödinger equation—from the solution of a nonlinear
ODE (the Pinney equation), which can be solved numeri-
cally in a straightforward way. Notice that (46) is the
invariant vacuum solution of (42), as can be easily checked
by direct substitution, and it is valid regardless of whether
quantum gravitational corrections (ingoing wave) are
present. Technically, in order to find the solution of the
MS vacuum wave function (46), we must solve the Pinney
equation in the unperturbed and in the perturbed regions
separately, and subsequently set the initial conditions in
each region by appropriate junction conditions. Therefore,
each region is characterized by its own initial conditions for
the Pinney variable. This guarantees the continuity of ρ and
its first derivative which, as we shall see, are the quantities
which determine the main observable of the model, the
power spectrum.
When one solves the MS equation in the standard

semiclassical case, the initial conditions are set at
ηi → −∞, and the BD vacuum is usually taken to be the
correct initial state of the inflationary perturbations.
However, the limit in which jηj is large corresponds to
the realm of QG, in the aM̃P ≤ λ−1=6 region, where time
“does not exist” [according to the usual view employed in
the traditional BO approach—see Eq. (24)] and the semi-
classical formalism is not applicable. We therefore assume
that there exists some finite time, ηP ¼ −1=ðHaPÞ, at
which aPM̃P ≫ λ−1=6 and “conservative” initial conditions
are imposed. On the de Sitter background, the exact
solution of the Pinney equation that corresponds to the
BD vacuum state is

ρdSðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2η2

k3η2

s
; ρ0dSðηÞ ¼

1

k3=2η2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2η2

p ;

ð48Þ

and we assume ρðηPÞ ¼ ρdSðηPÞ and ρ0ðηPÞ ¼ ρ0dSðηPÞ.
Although the initial conditions corresponding to the BD
vacuum are real, the Pinney equation (47) and its solution

are complex in the presence of the quantum gravitational
effects we are analyzing.2 Therefore, if these effects
are present, ρ becomes complex and the vacuum wave
function (46) has the general form

χk;0 ¼ A0ðηÞeiγ0ðηÞ exp½iðα0ðηÞ þ iβ0ðηÞÞv̂2�; ð49Þ

where A0, α0, β0, and γ0 are complex functions of time and

A0ðηÞeiγ0ðηÞ ≡
�

1

πρ2

�
e
−i
2

R
η

η1

dη̄

mρ2 ; ð50Þ

α0 ¼ Re

�
1

2

�
mρ0

ρ
þ i
ρ2

��
; β0 ¼ Im

�
1

2

�
mρ0

ρ
þ i
ρ2

��
:

ð51Þ

This general complex form is maintained when the quan-
tum gravitational effects disappear (and m ¼ 1).

B. Power spectrum

We are interested in calculating the quantum gravita-
tional effects generated by the interference between the
ingoing and the outgoing gravitational wave function on
the power spectrum. The power spectrum is defined in term
of the physical matter state χ̃k as

Δ2
s ¼ lim

−kη→0

k3

2π2
hχ̃k;0jv̂2jχ̃k;0i; ð52Þ

where jχ̃k;0i is the vacuum and its normalization is
constant [see (40)],

hχ̃k;0jχ̃k;0i ¼ 1¼ hχk;0jχk;0ie2i Imφ ⇒ e2i Imφ ¼ hχk;0jχk;0i−1:
ð53Þ

The power spectrum (52) can be rewritten in terms of jχk;0i,
given by the expression (46), and we have

Δ2
s ¼ lim

−kη→0

k3

2π2
hχk;0jv̂2jχk;0ie2i Imφ

¼ lim
−kη→0

k3

2π2
hχk;0jv̂2jχk;0i
hχk;0jχk;0i

; ð54Þ

2Although we fix initial conditions that correspond to the usual
BD vacuum, it is clear that more complicated choices can also be
made (see, for instance, [4]) but they, as in our case, will lead to
structures in the CMB spectrum. Our approach is, however, quite
distinct, since effects are introduced solely through the gravita-
tional wave function and the sudden variation in the nearly
constant inflaton potential. See also footnote 1.
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as it should be for a non-normalized wave function. Finally,
from (49), one finds

hχk;0jv̂2jχk;0i
hχk;0jχk;0i

¼
Rþ∞
−∞ v2e−2β0v

2Rþ∞
−∞ e−2β0v

2 ¼ 1

4β0
; ð55Þ

where time dependent normalization factors and complex
phases are canceled. The integral (55) only converges for
β0 > 0, which must be verified a posteriori. One is usually
interested in the power spectrum at the end of inflation
(η → 0−), when the modes are well outside the horizon
(lim−kη→0). In this limit, m ¼ 1 and

Δ2
s ¼ lim

−kη→0

k3

2π2
Im−1

�
2

�
ρ0

ρ
þ i
ρ2

��
: ð56Þ

The Pinney variable in (56) can be calculated analytically
for η > η2 once ρ0 ≡ ρðη2Þ, ρ00 ≡ ρ0ðη2Þ (for the “resonant
transmission” case) are known. Indeed, the QG effects
are absent (m ¼ 1) at the end of inflation, and the
Pinney equation can be solved exactly. The difference
with respect to the standard de Sitter case is comprised only
of the initial conditions.
When η > η2, the Pinney equation takes the standard

de Sitter form with m ¼ 1 and m0 ¼ 0. Its general solution
can then be written in terms of two independent solutions
of the associated homogeneous equation,

x00 þ ω2x ¼ 0: ð57Þ

For example,

x1;2ðηÞ ¼
�
1� i

kη

�
e�ikη ⟶

−kη→0þ � i
kη

ð58Þ

and, correspondingly,

x01;2ðηÞ¼∓ i
1∓ ikη−k2η2

kη2
e�ikη ⟶

−kη→0þ ∓ i
kη2

¼∓ x1;2ðηÞ
η

:

ð59Þ

Let u and v be two independent solutions of (57). Their
Wronskian W ¼ u0v − uv0 is constant and the expression

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

W2

s
ð60Þ

is a solution to ρ00 þ ω2ρ − 1=ρ3 ¼ 0. In order to reproduce
the desired initial conditions ρ0 and ρ00 for the associated
Pinney equation at η ¼ η2, it is convenient to choose, if
possible, vðη2Þ ¼ 0 and v0ðη2Þ ≠ 0 and arbitrary. Then, if
ρ0 ≠ 0, one has

ρ0 ¼ uðη2Þ; ρ00 ¼ u0ðη2Þ; ð61Þ

i.e., the initial conditions for ρðηÞ and uðηÞ coincide. In
terms of (58), one obtains

vðηÞ ¼ x2ðηÞ −
ðkη2 − iÞ2
1þ k2η22

e−2ikη2x1ðηÞ

⟶
−kη→0þ

−
i
kη

�
1þ ðkη2 − iÞ2

1þ k2η22
e−2ikη2

�
; ð62Þ

and

uðηÞ ¼ A1x1ðηÞ þ A2x2ðηÞ⟶
−kη→0þ i

kη
ðA1 − A2Þ; ð63Þ

where

A1 ¼
e−ikη2

2k2η22
½ρ0ðk2η22 − ikη2 − 1Þ − η2ρ

0
0ðikη2 þ 1Þ�; ð64Þ

and

A2¼
eikη2

2k2η22
½ρ0ðk2η22þ ikη2−1Þ−η2ρ

0
0ð−ikη2þ1Þ�: ð65Þ

The parameters A2 ¼ A�
1 if ρ0 and ρ00 are real numbers.

Notice that

ρ0

ρ
¼ uu0 þ vv0

W2

u2 þ v2

W2

⟶
−kη→0þ

−
1

η
; ð66Þ

because v0 ¼ −v=η and u0 ¼ −u=η in the long wavelength
limit. Therefore, the expression (56) simplifies to

Δ2
s ¼ lim

η→0−

k3

2π2
Re

ρ2

2
; ð67Þ

which reduces to the standard de Sitter result when the QG
effects are absent. For the de Sitter case, we find

ρ2dS⟶
η→0− 1

k3η2
: ð68Þ

It is then convenient to introduce (and plot) the quantity

Δ̃2
s ¼ lim

η→0−

k3

2π2
Re

η2ρ2

2
; ð69Þ

which is not divergent in the η → 0− limit.
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For the modes inside the horizon at η2 (−kη2 ≫ 1), the above expressions can be rewritten as follows:

vin ¼ −
i
kη

ð1þ e−2ikη2Þ; uin ¼
1

kη

�
ρ0 sin kη2 þ

ρ00
k
cos kη2

�
; ð70Þ

where ρ0 and ρ00 are complex numbers, and, finally,

ρ2in ¼
1þ k2ρ40 þ ρ20ρ

02
0 þ ð1 − k2ρ40 þ ρ20ρ

02
0 Þ cosð2kη2Þ þ 2kρ30ρ

0
0 sinð2kη2Þ

2η2k4ρ20
: ð71Þ

In contrast, for modes well outside the horizon, we obtain

ρ2out ¼
�
η2
η

�
2 4ρ40ð1 − η2

ρ0
0

ρ0
Þ þ η22ð1þ ρ20ρ

02
0 Þ

9ρ20
: ð72Þ

V. COMPARISON WITH OBSERVATIONS

To conclude, we illustrate the potential consequences of
the model. Solving the Pinney equation is a time consum-
ing task, since it requires very high numerical accuracy in
the presence of the quantum corrections. It is not possible,
or at least not sufficiently straightforward, to span diverse
orders of magnitudes in the wave number k, and sub-
sequently plot the precise features originated by the QG
corrections, covering different choices of the parameters.
We therefore limit our analysis to a single case and to a
simplified expression for mðtÞ.
Let us first note that the phase in the gravitational wave

function is given by

e2ipðy−y1Þ ≃ e
−4iMP

2

H2

�
1

η3
− 1

η3
1

�
: ð73Þ

This unusual expression is explained by the fact that a
quantity with dimensions of a volume has been “hidden”
by setting L ¼ 1 after (3). If this quantity (we shall
rename it k̄−1, for simplicity) is made explicit again,3 the
“gravitational phase” (73) takes the form

e2ipðy−y1Þ ≡ exp

�
−iαP

�
1

η3
−

1

η31

��
with αP ¼ 4MP

2

H2�k̄3
;

ð74Þ

where k̄ is a quantity with the same dimensions as the
wave number k. Once k̄ is reintroduced, one may either
assign to the scale factor dimensions of length (whereas the
wave number and conformal time are dimensionless), or
one can consider a dimensionless scale factor and assign
dimensions of inverse length to the wave number and
length to the conformal time.

In order to study the possible observable effects, it is
important to note that the de Sitter evolution analyzed here
must be considered as the leading order approximation to
the slow-rolling inflationary dynamics, in which the con-
stant potential acquires a small tilt that leads to the observed
amplitudes and spectral indices for scalar and tensor
perturbations (neglecting the kinetic energy of the inflaton).
Moreover, as already mentioned, we shall limit our analysis
to one particular case which does not require an unfeasible
numerical effort, and we simplify the analytical expressions
by keeping only first order terms in ϵ in the “mass” (43).
Let us recall that the observable CMB window is the

interval

k
a0

∈ ½10−4;10−1� Mpc−1 and we define
kL
a0

¼ 10−4 Mpc−1;

ks
a0

¼ 10−1 Mpc−1; ð75Þ

where a0 is the scale factor today (which is generally fixed
to one), and the interval spans three orders of magnitude.
The largest scale corresponding to the CMB modes which
re-enter the horizon today is kL with

kL
a0

∼H0 ∼ 1.4 × 10−42 GeV: ð76Þ

The 2018 Planck estimate of H�=MP for the vanilla
ΛCDM þ single field inflation sets the following upper
limit on the tensor to scalar ration r:

V�
MP

4
≡3π2As

2
r<

ð1.6×1016GeVÞ4
MP

4
ð95% confidence levelÞ;

ð77Þ

which is derived from the (non)observation of tensor
modes, and As is the amplitude of scalar perturbations,
or equivalently

H�
MP

∼ 10−4r1=2 < 2.5 × 10−5 ð95% confidence levelÞ:

ð78Þ3This can be done by replacing η → ηk̄, a → a=k̄, and k → k=k̄.
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Henceforth, we restrict the parameter space and set the
tensor to scalar ratio to r ¼ 10−4, which satisfies the
constraints above with values of r that are not too small
(and thus below the sensitivity of next-generation CMB
surveys).
Let us note that given the constraint (77) and the range

of validity of the approximation (24), one has

λ1=6 ∼ 6 × 10−2r1=6 and

a ≫
k̄

M̃Pλ
1=6

≃
102k̄

63=2r1=6
MP

−1 ≃ 3 × 101k̄MP
−1: ð79Þ

Therefore, when a is of order ∼k̄ × 102MP
−1, the plane

wave approximation (23) is acceptable and classical
time can be defined. During inflation, the modes in the
interval (75) exit the horizon at different times ηk ¼ −k−1,
and, in particular, kL exit the horizon first (at ηL). Given the
approximate scale factor evolution aðηÞ ≃ −ðH�ηÞ−1, at
a ∼ aP ≡ 100k̄MP

−1, when classical time arises, one finds

ηP ¼ −
MP

102k̄H�
∼ −

106

102k̄
∼ −

104

k̄
: ð80Þ

If, for example, k̄ ¼ 102, then ηP ¼ −102, and if we assume
that kL and ks are still well inside the horizon at ηP
(−kL;sηP ≫ 1), then we may set kL ≃ 1.
In the following example, we take k̄ ¼ 103 in order to

shorten the numerical calculations. As a consequence,
given the choice of r, we have αP ¼ 4× 103 and ηP∼−10.
We consider the resonant transmission occurring in the
interval ½η1; η2� with η1 ¼ −10 ∼ ηP and η2 ≃ −7.3, so that
a single oscillation of the gravitational wave function
occurs in this interval (therefore minimizing the QG
effects). In contrast, we take ϵ ¼ 10−1, which is quite
large, and we span the 3 orders of magnitude interval
k ∈ 2 · ½10−1; 102� in the numerical simulation. The longest
wavelength modes in this interval are very close to the
horizon exit, and, therefore, the condition −kη ≫ 1 is not
properly satisfied for them. However, in order to illustrate
the possible effects, it is worth studying the evolution of
these modes as well.

A. Numerical simulations

The qualitative behavior of the solutions of the Pinney
equation in the regime we are considering (−kη ≫ 1) can
be described as follows. First, the Pinney equation may be
conveniently rewritten in terms of y≡ ffiffiffiffi

m
p

ρ as

y00 þ
�
ω2

m2
þ 1

4

m02

m2
−
1

2

m00

m

�
y ¼ 1

y3
: ð81Þ

The initial conditions for y, at η1, are related to those of the
Pinney variable ρ by

yðη1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mðη1Þ

p
ρdSðη1Þ;

y0ðη1Þ ¼
�
1

2

m0ðη1Þ
mðη1Þ

þ ρ0dSðη1Þ
ρdSðη1Þ

�
yðη1Þ; ð82Þ

and the solutions of (81) can be written with an expression
analogous to (60), in terms of the solutions of the
homogeneous equations associated with it. In the regime
−kη ≫ 1, we have ω2 ≃ k2 and two approximate (and
independent) solutions are

yð1;2Þhom ≃
ffiffiffiffiffiffiffiffiffiffi
mðηÞ

p
e
�i
R

η

η1

k
mdη; ð83Þ

where, due to the oscillatory (complex) behavior ofmðtÞ, the
integral

R
η 1
m dη ¼ rðηÞ þ isðηÞ and rðηÞ and sðηÞ are both

positive. In particular, r ∼ ðη − η1Þ −OðϵÞ since the real part
of 1=m oscillates around 1. In contrast, its imaginary part
oscillates around zero and the area subtended by the positive
branch is larger than the area corresponding to the negative
branch. Therefore, the imaginary contribution is positive
as well. The sign of the imaginary contribution plays a
significant role, especially for k large, dampening the

solution yð1Þhom and simultaneously amplifying yð2Þhom. Then,
for k large enough (depending on ϵ), the dampened con-
tribution is subleading and

ρ2 ≃ e
−2i

R
η

η1

k
mdη: ð84Þ

The nonoscillating terms, originated by the product

yð1Þhomy
ð2Þ
hom, and those proportional to ∼ðyð1ÞhomÞ2 can therefore

be neglected. On the other hand, for smaller values of k,

the product yð1Þhomy
ð2Þ
hom remains the leading contribution and

the oscillations around this “slowly varying” solution are
very small.
In Fig. 1, the values of ρ2ðη2Þ as function of k are shown.

For the reasons discussed above, the deviation from the
unperturbed de Sitter solution (in red) increases as k gets
larger. The oscillation is essentially given by the real part ofR
η2
η1
m−1dη ∼ 2.3þ 0.07i and its frequency is Ω ∼ −2rðη2Þ.

We obtained a high-precision numerical fit of the oscil-
lations in these plots with the following expression

ρ2fitðη2Þ ¼
1þ k2η22
k3η22

ð1þ eaþbkeiðΩkþcÞÞ; ð85Þ

with a ≃ −27.182, b ≃ 0.120, c ≃ −1.567. The functional
dependence of k in the expression (85) is straightforwardly
derived from (84). Correspondingly,

½ρ2fitðη2Þ�0 ¼ −2ik
1þ k2η22
k3η22

eaþbkeiðΩkþcÞ; ð86Þ
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where essentially the factor −2ik comes from the
derivative with respect to η of (84). If we insert the analytical
expressions (85) and (86) in (71), we can reproduce the final
numerical result plotted in Fig. 2, where the (leading) visible
oscillations have a frequency equal to ΩPS ≃ −2η2 −Ω ∼
19.2 as a consequence of the factors eiðΩkþcÞ in (85) and (86),
as well as of the oscillation of frequency 2η2 present in the
expression (71). In Fig. 2, the quantity log10ðΔ̃2

sÞ is plotted in
a modes’ interval which is visibly affected by the QG effects
(at k ∼ 2 × 102). The effects get larger if k is increased, and

they are essentially represented by an oscillation with
frequency ΩPS. The functional dependence of this frequency
on η2 and Ω can be easily determined and predicted if the
parameters of the model are varied. Contrariwise, the low-
energy regime of the spectrum is plotted in Fig. 3.
An oscillation with a frequency ∼ −2η2 and a decreasing

amplitude (at lower k) is present. For increasing k,
the oscillation amplitude gets smaller and finally starts
increasing as Fig. 2 shows. Notice that the oscillation is the
consequence of the factors e�2ikη2 in (71). However, the

190 200 210 220
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–1.4

FIG. 2. The wave number k is plotted on the horizontal axis. On
the vertical axis, log10 Δ2

sη
2 for de Sitter (red line) and with the

QG effects.
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FIG. 3. The log10 of the wave number k is plotted on the
horizontal axis. On the vertical axis, log10 Δ̃2

sη
2 for de Sitter

(yellow line) and with the QG effects.
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FIG. 1. The real and imaginary parts of ρ2ðη2Þ are shown in the top two figures. The red line is ρ2dSðη2Þ (unperturbed). In the two
figures below, the real and imaginary parts of 2ρðη2Þρ0ðη2Þ are plotted. We observe that k½ρ2ðη2Þ − ρ2dSðη2Þ� ∼ 2ρðη2Þρ0ðη2Þ, and, for
modes −kη2 ≫ 1, then ρ2dS ≃ 1=k. Note that the perturbed solution oscillates around the unperturbed one. Moreover, the difference of a
phase −i between the two quantities is present, −iρ2ðη2Þ ∼ 2ρðη2Þρ0ðη2Þ.
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breakdown of the approximation −kη2 ≫ 1 for the modes
in the interval ½10−1; 1� makes the analytical predictions
deviate from the numerical result. Qualitatively, a decreas-
ing amplitude is expected as the ω2 decreases near horizon,
as this “pumps” energy in the system. The oscillation
freezes for k → 0, and the decreasing amplitude plotted
in the figure is indeed just a part of an oscillation with
increasing amplitude. Therefore, the power loss illustrated
may become a power enhancement in some lower energy
(and in this case unobservable) part of the spectrum.
Can we observe these QG effects? Concerning the long

wavelength regime, the presence of oscillations is known to
be compatible with observations, especially given the large
uncertainties associated with the cosmic variance in this
part of the spectrum [22]. In the short wavelength regime, it
has been recently argued that the presence of a super-
imposed oscillation in this interval of the spectrum would
cure or alleviate some anomalies and tensions in current
cosmological data. This oscillation must involve a certain
interval of modes and have a certain amplitude and
frequency in order to improve the data fit. In particular
(see [11,23]), a frequency ωfit ∼ 300 Mpc−1 can improve
the fit with observations, especially when it is restricted to
the modes interval 2½10−2; 10−1� Mpc.While the oscillation
we obtain does not have all these peculiar features, as its
amplitude increases monotonically in k, it would still be
worth studying if its presence, with a given frequency4 and
initial amplitude, could also contribute to the reconciliation
of the tensions and anomalies in the different datasets, or
whether it could be simply an observable feature over-
looked by the data analysis. It is noteworthy that error bars
in CMB (Planck) data also increase in the large k interval,
in particular close to ks. Even so, the amplitude of the
oscillation may be large enough to be detectable but further
analysis it is necessary in order to understand to what extent
it can be observable in the CMB spectrum. A very high
frequency oscillation could be unobservable, which would
result in a coarse grained (averaged) effect.

VI. CONCLUSIONS

We have studied the possible effects arising from the
quantum superposition in the gravitational wave function in
the context of the traditional BO approach to quantum
gravity. For inflationary cosmologies in a homogeneous
background, the Hamiltonian constraint (Wheeler-DeWitt
equation) is a second-order PDE for the wave function
of the Universe, which is akin to a time-independent
Schrödinger equation. The WDW equation can be decom-
posed into an infinite set of coupled PDEs through a BO
decomposition; the equation for the gravitational wave
function (which becomes a second order differential

equation) and the remaining system of equations describing
the matter degrees of freedom (the Mukhanov-Sasaki
equations plus the equation for the homogeneous inflaton).
In this approach, time is not taken to be fundamental, but
rather it can be introduced in the quantum equations through
the “probability flux” of the gravitational wave function. If
this function is approximately like a plane wave, equations
for (quantum) matter take the traditional semiclassical form
(apart from tiny nonadiabatic corrections). In contrast, if one
considers a sum of plane waves having opposite probability
flux, the matter equations also contain other QG corrections
that result from this superposition, which can be a conse-
quence of the initial conditions of the universe (possibly
including a bounce [10]), or it can be limited in time and
originate from a sudden variation of the energy density
driving the expansion of the universe.
Concretely, we considered the cases of a potential well

and that of potential barrier. In both cases, the equations
for matter are modified but they can be formally solved.
The resulting inflationary spectra are computable provided
time can be defined, at least perturbatively. In fact, the
mathematical approach we adopted in order to solve the
modified matter equations is novel. Instead of using a
perturbative approach, we solved the equations exactly (at
least formally) expressing the exact solutions in terms of
the Pinney variable, evolution of which can be found
numerically, and thus beyond the perturbative regime.
Finally, we studied the possible observable consequences

for a simplified case, in which all the general and qualitative
physical features of the QG effects could be ascertained.
These effects can modify both the long and the short wave-
length part of the spectrum, and they superimpose an
oscillation to the standard semiclassical spectra. The frequen-
cies of the oscillation for k small is different (and smaller)
from that at large k’s. The spectrum is essentially unmodified
in the intermediate region, which can be arbitrarily enlarged
or shrunk on varying the model parameters, and this also
affects the modulation derived from the QG effects.
It was recently argued that a modifications in the high

frequency part of the spectrum may cure the anomalies that
seem to be present in Planck data and reconcile the tensions
among CMB observations and other astrophysical datasets
(for example the well-known tension coming from the local
measurement of the Hubble constant). We believe that it is
worth analyzing whether the QG effects described in this
article may have similar consequences. This would provide
an interesting connection between a conservative approach
to quantum cosmology and the detailed physics of the
early Universe. We hope to address this further analysis in
future work.
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