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ABSTRACT
We study the orbital phase space of dark matter (DM) haloes in the AURIGA suite of
cosmological hydrodynamics simulations of Milky Way (MW) analogues. We characterize
haloes by their spherical action distribution, F (Jr, L), a function of the specific angular
momentum, L, and the radial action, Jr, of the DM particles. By comparing DM-only and
hydrodynamical simulations of the same haloes, we investigate the contraction of DM haloes
caused by the accumulation of baryons at the centre. We find a small systematic suppression
of the radial action in the DM haloes of the hydrodynamical simulations, suggesting that the
commonly used adiabatic contraction approximation can result in an underestimate of the
density by ∼ 8 per cent. We apply an iterative algorithm to contract the AURIGA DM haloes
given a baryon density profile and halo mass, recovering the true contracted DM profiles with
an accuracy of ∼ 15 per cent, that reflects halo-to-halo variation. Using this algorithm, we
infer the total mass profile of the MW’s contracted DM halo. We derive updated values for
the key astrophysical inputs to DM direct detection experiments: the DM density and velocity
distribution in the Solar neighbourhood.

Key words: Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure – galaxies:
haloes – galaxies: kinematics and dynamics.

1 I N T RO D U C T I O N

The past three decades have seen tremendous advances in our
understanding of galaxies and the dark matter (DM) haloes in which
they form. From a theoretical perspective, much effort has been
directed at understanding structure formation in collisionless N-
body simulations, in which both DM and baryons are modelled as
a single dissipationless fluid (see e.g. Zavala & Frenk 2019, for a
recent review). These are often referred to as ‘dark matter-only’
(hereafter DMO) simulations. Such cosmological simulations show
that overdense regions first collapse to form small haloes, with larger
structures forming hierarchically through mergers of smaller objects
and accretion of diffuse mass (Frenk et al. 1988). The resulting DM
haloes have universal density profiles that are well fit by the NFW
form (Navarro, Frenk & White 1996, 1997):

ρ (r) = ρs

r
rs

(
1 + r

rs

)2 , (1)
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which is characterized by two free parameters: the scale radius,
rs, and the characteristic density, ρs. The scale radius is related
to the size of the halo, R200,1 through the concentration, c200 =
R200/rs The origins of this simple profile are still debated, with
suggestions including a close connection to the halo merger history
or an attractor solution to entropy-driven relaxation (e.g. Pontzen &
Governato 2013; Ludlow et al. 2014).

This conformity of haloes in DMO simulations is broken when
baryonic physics are included in fully hydrodynamical simulations
(hereafter ‘Hydro’). Such simulations include many of the physical
processes thought to be important in the formation of galaxies,
such as gas cooling and heating, stellar winds, chemical evolution,
and supernova and active galactic nucleus feedback (e.g. see
Somerville & Davé 2015); they thus have a much more complex
and rich behaviour than their DMO counterparts. In particular,
gas cools and condenses at the halo centre, where it forms stars.
This results in DM haloes that have higher central densities than
an NFW profile, and that are often referred to as having been
‘contracted’. The amount of DM contraction depends on many

1This is defined as the radius within which the mean density is equal to
200 times the critical density.
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factors including the mass of the central galaxy, its assembly history
and the orbital distribution of DM particles (e.g. Barnes & White
1984; Blumenthal et al. 1986; Gnedin et al. 2004; Abadi et al. 2010;
Duffy et al. 2010; Dutton et al. 2016; Schaller et al. 2016; Artale et al.
2019).

DM haloes cannot be observed directly, of course, but some
of the properties of the Milky Way (MW) halo can be inferred
from observations of tracers of the gravitational potential. The latest
Gaia data release (DR2, Gaia Collaboration et al. 2018) provides a
remarkable data base of full 6D phase-space measurements of stars
in the inner regions of the MW. Combined with other data sets,
such as SDSS (Abolfathi et al. 2018) and APOGEE (Majewski et al.
2017), the Gaia data have been used to place tight constraints on the
MW’s circular velocity curve (Eilers et al. 2019) and local escape
velocity (e.g. Deason et al. 2019), and thus have helped constrain
the total mass distribution of the MW. The simplest models of the
MW assume that the DM halo can be described as an NFW profile.
Far from the Galactic Centre, this is a reasonable assumption for the
total mass profile (Callingham et al. 2019, hereafter, Callingham19).
However, to model the inner regions of our Galaxy it is essential
to include the mass distributions of its baryonic components such
as the thin and thick discs, the bulge, and the stellar halo (e.g.
McMillan 2011, 2017). Previous studies (e.g. Deason et al. 2012;
McMillan 2017) have typically found a high halo concentration
(∼11–12), which is unusually large compared to the predictions
for MW-sized haloes from cosmological simulations (typically ∼8
in the EAGLE cosmological simulation; Schaller et al. 2016). This
could be a symptom of the neglect of the contraction of the DM
halo and underlines the importance of properly accounting for the
changes in the DM distribution induced by the baryonic distribution
(e.g. see Cautun et al. 2020).

Several methods have been developed to predict the contracted
DM halo profile in the presence of baryons. The simplest are
different versions of the adiabatic contraction approximation which
assumes that particle orbits are adiabatic invariants (Eggen, Lynden-
Bell & Sandage 1962; Barnes & White 1984). An early example
of this approach Blumenthal et al. (1986) effectively assumes that
all particles are on circular orbits, a rather crude approximation
that leads to excessive compression of the orbits. This method
was improved by Gnedin et al. (2004), Gnedin et al. (2011), who
modified it to take into account that DM particles are typically
on non-circular orbits. However, these improved versions neglect
the fact that DM particles have a distribution of orbits. Cautun
et al. 2020, (hereafter, Cautun20) have studied the contraction of
DM density profiles in the EAGLE and AURIGA simulations and
derived an analytic prescription for the average halo contraction;
their approach is unbiased and recovers the profiles of DM haloes
in hydro simulations with an accuracy of ∼ 10 per cent that reflects
the halo-to-halo scatter.

While these methods are easy to apply, they neglect important
information and provide only limited understanding. To model
the effects of contraction properly it is necessary to consider the
complex dynamics within the DM halo. While often viewed as
static profiles, haloes are made up of particles moving on various
orbits (Zhu et al. 2017) that conspire to give a steady density profile.
For a halo in equilibrium it follows from the Jeans theorem that the
distribution of the DM particles is solely dependent on integrals of
motion (IoM), with no dependence on phase. The halo can therefore
be described as a collection of orbits defined by IoM instead of
particles. The natural choice for this description are the action
integrals [Ji]i = 1, 2, 3. One significant advantage that the actions have
over other IoM is that they are adiabatic invariants, and thus largely

unchanged by sufficiently slow changes in the potential (Binney &
Tremaine 1987).

The distribution function (DF) of DM particle actions, F ( J), can
be thought of as an orbital blueprint of DM haloes that may be use
to calculate various halo properties, such as the density and velocity
anisotropy profiles. If the growth of the baryonic component is a
slow, adiabatic process, then the DM halo is described by the same
F ( J) as in the absence of baryons, that is as in DMO simulations.
Given this adiabatic assumption, the differences between haloes
in DMO and Hydro simulations is induced solely by the deeper
gravitational potential of the baryons which are more centrally
concentrated in the Hydro than in the DMO simulations. While
the haloes are composed of DM particles on orbits with the same
J values, the deeper potential compresses the DM orbits to lower
radii in physical space, resulting in a higher central density in the
Hydro simulations.

The extent to which the adiabatic assumption holds is unclear
and depends on the time-scale on which the baryons cool and
accumulate at the centre. If the cooling time-scale is shorter than
the free-fall time-scale, then the gas undergoes rapid cooling, a
non-adiabatic process. Alternatively, if the cooling time-scale is
much larger than the free-fall time-scale, the growth of the baryonic
component is adiabatic. There is evidence from analytic arguments
(White & Frenk 1991) and simulations (e.g. Correa et al. 2018)
that the MW-mass haloes are in the slow cooling regime. Once the
baryons have settled in the centre of the halo in a quasi-hydrostatic
state they dominate the central gravitational potential. Subsequent
violent events, such as gas blowouts, can change the inner mass
profile rapidly over short time-scales, transferring energy to DM
particles in the central region of haloes. For haloes that host dwarf
galaxies, this process could form cores in their DM distribution (e.g.
Navarro et al. 1996; Pontzen & Governato 2012; Benitez-Llambay
et al. 2018; Burger & Zavala 2019).

To perform action angle modelling, it is necessary to chose a
specific DM action DF, F ( J). Typically and, in particular, for
isolated DMO haloes, the DF is derived analytically, often assuming
that the DM particle orbits have an isotropic velocity distribution.
Under the adiabatic assumption, these orbits can then be combined
with a given baryon potential to construct a contracted DM halo.
This approach was tested by Sellwood & McGaugh (2005) against
N-body simulations that included a slowly grown analytic baryonic
component. By using simple action DFs, Sellwood and McGaugh
found that radially biased haloes resist compression, while isotropic
distributions end up more compressed (in agreement with the results
of Gnedin et al. 2004). In the past decade, there have been significant
technical advances in the numerical calculation of action angles and
in the overall modelling framework (Vasiliev 2019). More complex
action DFs, including one that produces an approximate NFW
density profile in isolation, were analytically derived by Posti et al.
(2015) and used in a series of papers of increasing complexity, in
which the MW is modelled with multiple baryon components (Piffl,
Penoyre & Binney 2015; Binney & Piffl 2015). In the most recent
study, by Cole & Binney (2017), the DF of Posti et al. was modified
assuming a non-adibiatic, baryon-driven upscattering of low action
orbits, generating a cored DM profile.

Action angle modelling of haloes is frustrated by the lack of
a standard NFW action distribution; currently there is no well
established F ( J) model that has been rigorously tested in cos-
mological simulations. The scatter in DM halo properties, such as
concentration and velocity anisotropy (Navarro et al. 2010), adds
further complexity to the task of parametrizing a general action
DF of a DM halo. This scatter likely causes haloes described
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by different DFs to undergo different amounts of contraction for
a given baryonic profile; it is therefore important to capture the
variation with an accurate and flexible parametrization of the DF.
An alternative approach is to use DFs that are directly measured in
simulations, especially given the recent increase in the resolution
and number of zoom-in simulations of MW-mass haloes (e.g. Fattahi
et al. 2016; Sawala et al. 2016; Grand et al. 2017; Garrison-Kimmel
et al. 2019).

In this paper, we determine the DF, F ( J), of DM haloes from
the AURIGA simulation suite. This allows us to infer accurate
DM DFs and, at the same time, sample the breadth of halo-to-
halo scatter in cosmologically representative samples of MW-mass
haloes. Each simulation volume has a DMO and a Hydro simulation.
By comparing the haloes in one to their counterparts in the other, we
can investigate the validity of the ansatz that the formation of MW-
like galaxies is an adiabatic process. To do so, we first discuss how a
halo’s density and velocity profiles can be inferred from the action
DF, and then test if the halo in the Hydro simulation (hereafter,
Hydro halo) can be recovered by adiabatically contracting the DF
measured in the corresponding DMO simulation (hereafter, DMO
halo).

We illustrate the usefulness of modelling DM haloes with an
action DF by a few applications targeted at our Galaxy. Our
approach has implications beyond the mass profile since it pro-
vides accurate predictions for the DM velocity distribution and its
moments. Since we use the observed baryonic component of the
MW, these predictions are specific to our Galaxy and unmatched
by conventional approaches. We illustrate this by predicting the
density and velocity distribution function (VDF) of DM particles
in the Solar neighbourhood, key inputs for direct DM detection
experiments (Green 2010, 2017). In the literature, the VDF is
usually given by the standard halo model (SHM), a isothermal DM
mass distribution with a Gaussian VDF; however, high-resolution N-
body simulations indicate a somewhat different VDF (Vogelsberger
et al. 2009). In principle, there is a variety of possible DM DFs,
which, in turn, would result in a variety of VDFs at the Solar
neighbourhood (e.g. Mao et al. 2013). The sizeable sample of halo
DFs that we can measure in the AURIGA simulation suite allows us
to characterize the dispersion in the predicted VDF at the Sun’s
location, and thus quantify some of the uncertainties in direct DM
detection experiments.

The structure of the paper is as follows. In Section 2, we introduce
our sample of haloes and compare physical profiles and orbital
distributions in the DMO and Hydro cases. In Section 3, we
construct individual orbits, investigate the effects of compression
and develop an iterative method for constructing and contracting
physical haloes. We apply this to haloes in our sample and study the
effects of adiabatic contraction in general. In Section 4, we contract
our halo sample according to the MW baryon distribution and
present our main results, including predictions for the properties of
the MW’s local DM distribution. Finally, in Section 5 we summarize
our main conclusions.

2 SIMULATED HALOES

In this paper, we use a sample of haloes from the AURIGA project,
a suite of 30 high-resolution cosmological zoom-in simulations of
individual MW-like haloes (Grand et al. 2017) with halo masses be-
tween 1–2 × 1012M�. The haloes were selected from the 1003 Mpc3

periodic cube of the EAGLE project, a �-cold dark matter (�CDM)
cosmological hydrodynamical simulation (Schaye et al. 2015).
Using the N-body and moving mesh magnetohydronymic (MHD)

AREPO code (Springel 2011), these haloes were resimulated to
produce both a dark-matter-only and a full hydrodynamic (hereafter
referred to as DMO and Hydro respectively) zoom-in simulation of
each halo. We primarily use the level 4 resolution sample of 30
haloes, which we label as Au1–Au30. The haloes in the Hydro
simulations have a DM particle mass of ∼3 × 105 M� and an
initial gas resolution element of mass ∼5 × 104 M�. For the DMO
simulations, the particle mass is ∼3.5 × 105 M�. Both the DMO
and Hydro simulations assume the Planck1 (Planck Collaboration
XVI 2014) cosmological parameters.

In our analysis, we treat the haloes as being in near spherical
equilibrium. In reality, no halo perfectly satisfies this criterium
and haloes are often out of equilibrium after following minor or
major mergers, before relaxing to equilibrium. To characterize the
dynamical state of a halo, we employ the Neto et al. (2007) criteria
according to which a halo is relaxed if:

(i) The total mass of substructure within R200 is less than
10 per cent of the total halo mass, M200.

(ii) The distance between the centre of mass and the centre of
potential of the halo is less than 0.07R200.

(iii) The virial ratio 2T/|U| < 1.35, where T is the total kinetic
energy and U the gravitational potential energy of DM particles
within R200.

These criteria identify 13 out of the 30 AURIGA haloes as
unrelaxed in either the Hydro or the DMO simulations. These
haloes are included in our sample in order to investigate the
dependence and sensitivity of our analysis to departures from
equilibrium. Typically, the haloes relax from the inside out, and
the halo outskirts (approximately around and beyond R200) are the
least virialized and phase mixed regions. We have checked that most
of the relaxed AURIGA haloes are reasonably spherical, especially
in the inner regions. For example, the DM particles within R200/2
are characterized by the moment of inertia with minor-to-major
axes ratio, c/a, of 0.76+0.08

−0.03 in the DMO simulations and 0.87+0.03
−0.06

in the Hydro simulations. The presence of baryons in the Hydro
simulations systematically leads to the formation of more spherical
haloes, as shown by earlier studies (e.g. Abadi et al. 2010; Zhu et al.
2016; Prada et al. 2019). Throughout this work, we have checked
that there are no systematic trends that correlate with the degree
of halo asphericity, which suggests that our spherical dynamics
treatment represents a reasonable approximation.

While not explicitly shown, we have performed the same analysis
on the six AURIGA haloes that were simulated at 8 times better mass
resolution than the level 4 simulations considered. While the baryon
profiles can differ due to the dependence of subgrid physics on
resolution and due to stochastic effects, we find the same results as
for the level 4 simulations. As such, we have chosen to show the
results obtained using the larger level 4 simulation sample to better
characterize the halo-to-halo variability.

2.1 Halo properties

We fit NFW profiles to the spherically averaged DM density profile
of our haloes using least-squares fitting in log r within the range
R200/100 < r < R200. We find that the NFW profile provides a good fit
to the DMO haloes, especially the relaxed ones; however it provides
a poorer description of the DM distribution in the Hydro simulations
(see also e.g. Schaller et al. 2016; Cautun et al. 2020). None the
less, for completeness we calculate the best-fitting NFW profile
for the DM haloes in the Hydro simulation as well. In this case,
because of the poor fits, the inferred scale radius and concentration
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Figure 1. The concentrations, c200 = R200/rs, of the 30 AURIGA haloes in
the DMO and Hydro simulations, obtained by fitting an NFW profile to the
DM distribution in each case. The points are green circles or red squares if
the haloes are relaxed or unrelaxed. The contraction of the DM haloes in the
Hydro simulations increases their concentration relative to the DMO case.

can strongly depend on the radial range used for the fitting. The
resulting concentrations of the DMO and Hydro haloes are shown
in Fig 1. The concentration of the Hydro haloes is systematically
higher, indicating an increase in DM density in the inner regions.
It can also be seen that unrelaxed haloes typically have slightly
lower concentration, in agreement with previous studies (Neto et al.
2007).

The effects of contraction may be seen in more detail by
comparing the spherically averaged profiles of a halo in the DMO
and Hydro simulations. This is shown in Fig. 2, which presents the
shell mass, MShell = 4πr2ρ, the velocity dispersion, σ V, and the
velocity anisotropy, β = 1 − σ 2

T /σ 2
r (where σ t and σ r represent the

tangential and radial velocity dispersions, respectively) for one of
the relaxed haloes, AU5. The DMO density is scaled by 1 − fBaryon

to subtract the cosmic baryon fraction, fBaryon = �Baryon/�Matter.
As expected, the DMO halo density (top panel) is well fitted by
the NFW form, with the best-fitting NFW profile shown by the red
solid curve. The velocity dispersion (top middle panel) of the DMO
halo peaks just inside the scale radius, which corresponds to the
maximum of MShell. The density at each radius can be interpreted
as a measure of the number of different orbits at that radius, so the
peak at the scale radius reflects the relatively higher number of orbits
that pass through this radius. The velocity anisotropy, βDMO (r), is
nearly isotropic in the centre and becomes more radially biased
towards the outskirts, again in agreement with previous studies
(Tissera et al. 2010; Navarro et al. 2010). While all of our relaxed
DMO haloes conform to the NFW form, we see significant scatter
in their concentrations and variations in their velocity dispersion
and velocity anisotropy.

For the Hydro halo, we find a DM profile that is more centrally
concentrated (orange line in the top panel of Fig. 2). This is due to
response of the halo to the baryonic distribution (green line), which
is much more centrally concentrated than in the DMO simulation
(in which, by construction, the ‘baryons’ have the same profile as
the DM, but with a different normalization). The baryons deepen
the central potential, compressing the orbits of the DM particles
inwards and significantly increasing the DM density and total
velocity dispersion in the central regions. The velocity anisotropy,
β, profile varies only slightly between the DMO and Hydro haloes,
with the DMO haloes typically having a slightly more radially

Figure 2. An illustration of the density, velocity dispersion, and velocity
anisotropy profiles of a DM halo (AURIGA halo 5) shown for the DMO
(dashed blue) and the Hydro (solid orange) versions of the simulation.
Compared to the DMO case, the Hydro halo has a higher density in the
central regions (top panel), along with an increased velocity dispersion
(second panel). The third panel shows only small differences in the velocity
anisotropy, β. The bottom panel shows the pseudo-phase-space density,
Q(r) = ρ/σ 3, which we find is well fitted by a simple power law for both
DMO and Hydro haloes. Also plotted is the contracted DMO halo (solid
blue), which was obtained by applying the method described in Section 3.1.
This closely reproduces the Hydro halo. The grey shaded region corresponds
to r values below the convergence radius of the simulation (Power et al.
2003).

biased velocity anisotropy between the scale radius and R200 (this is
not the case for the AU5 halo shown in Fig. 2), but there is significant
halo-to-halo scatter.

The bottom panel of Fig. 2 shows the so-called peudo-phase-
space density, Q(r) = ρ/σ 3. Surprisingly, in DMO haloes this quan-
tity has been shown to closely follow a simple power law, Q ∝ r−q,
with a theoretically predicted slope, q ∼ 1.875 (Bertschinger 1985),
that is consistent with our results, q ∼ 1.84+0.04

−0.07. The origin of this
relation remains unclear, and whether it is a fundamental feature or
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a dynamical ‘fluke’ is debated in the literature (e.g. Ludlow et al.
2010; Navarro et al. 2010; Ludlow et al. 2011; Arora & Williams
2019). We find that the Hydro haloes also conform to this power
law (in agreement with Tissera et al. 2010), with similar scatter but
with a shallower slope QBaryon ∼ 1.62+0.08

−0.08. We leave this interesting
observation for future work.

2.2 Orbital phase space

As we discussed in the Introduction, we are interested in describing
DM haloes in terms of their action distribution, F ( J). This provides
a complete description of the orbits of particles in the halo, which
can be used as the blueprint to reconstruct various halo properties,
as we shall see in the next section.

We model haloes as spherically symmetric distributions for which
the gravitational potential, 	(r), is related to the total density profile,
ρ(r), by:

	 (r) = −4πG

(
1

r

∫ r

0
r ′2ρ

(
r ′) dr ′ +

∫ ∞

r

r ′ρ
(
r ′) dr ′

)
, (2)

where G is Newton’s gravitational constant. Spherical symmetry
reduces the number of actions needed to describe each orbit to two
as the third action is identically zero and the orbit stays in a plane
between its pericentre, rmin, and apocentre, rmax.

The two non-zero actions are the specific angular momentum, L,
and the radial action, Jr, given by:

L = |r × v| = rvt

Jr = 1

π

∫ rmax

rmin

vr (r) dr
(3)

An alternative IoM commonly used in dynamical modelling is
the (specific) energy, E, defined as:

E = 1

2
|v|2 + 	 (r) (4)

While convenient to calculate, E is not an adiabatic invariant. The
energy DF, F(E), is therefore expected to differ systematically
between the DMO and the Hydro simulations, whereas F(L) and
F (Jr) are expected to remain approximately the same. Note that in
this paper all distributions, F, are normalized to integrate to 1.

Here, the distributions are found for each halo by selecting,
from the centre outwards, the same number of DM particles for
each DMO and Hydro counterpart halo, contained within R200

of the Hydro halo. In general, haloes in the DMO and Hydro
simulations are well matched. However, the stochastic nature of
galaxy formation, as well as the small inherent numerical effects,
cause small differences in the distributions of DM particles. On
average, we find that ∼ 90 per cent of the DM particles within R200

in the Hydro case are also found within R200 in the DMO case.
We have checked that differences in the haloes’ orbital distributions
discussed in this study are not caused by unmatched DM particles
between the Hydro and DMO cases; distributions of matched
particles differ by similar amounts.

To compare the distributions of different mass haloes, the IoMs
(of both the Hydro and DMO haloes) are rescaled to give values
that are independent of the host halo mass (see Zhu et al. 2016;
Callingham et al. 2019). The actions, L and Jr, are normalized by
the characteristic angular momentum of a circular orbit at R200,
Lh = √

GM200R200. The energy is similarly normalized by this
orbit’s energy, Eh = GM200/R200.

In Fig. 3, the distributions of L, Jr, and E for one example halo
(AU5) are shown in the top subpanels. The lower subpanels show the

Figure 3. The distributions of angular momentum, L, radial action, Jr,
and energy, E, of the DM particles in the Hydro and DMO simulations for
an example relaxed halo, AU5 (top subpanels). In general, we find small
differences between the DFs of the adiabatic invariant actions, F(L) and
F (Jr), in the DMO and Hydro cases. The distribution of the non-adiabatic
invariant energy, F(E), shows larger differences. To check if these differences
are systematic, the bottom subpanels show the median (black solid line) and
68 percentiles (green shaded region) of the difference between the DMO
and Hydro distributions, 
F = FDMO − FHydro, for all relaxed AURIGA

haloes. To compare different haloes, the orbital values are scaled to be
independent of halo mass (for further details, see the main text). The DM
energy distributions (bottom panel) are most affected by the presence of
baryons, with about 10 per cent of the particles changing energy. These are
mainly inner DM particles shifting to lower energies in the deeper Hydro
potential. The distributions of the actions, L and Jr, experience smaller
changes, 3 per cent and 4 per cent, respectively.

difference between the distributions in the DMO and Hydro cases,

F = FDMO − FHydro, for all of the relaxed level 4 AURIGA haloes;
the solid line is the median and the shaded region indicates the 68
percentiles of the distribution. To estimate the difference between
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the various distributions, we calculate the overall difference, 
,
which is effectively the fraction of DM particles whose IoM are
distributed differently between the Hydro and DMO cases. This is
defined as:


X = 1

2

∫ ∣∣FDMO(X) − FHydro(X)
∣∣ dX

≡ 1

2

∫
|
F (X)| dX, (5)

where X denotes the IoM under consideration, either L, Jr, or E. With
this normalization, 
X = 1 when the distributions are completely
different.

The distributions F(L) (top panel) and F (Jr) (middle panel)
are similar to those found in previous simulations (Pontzen &
Governato 2013). Between the DMO and Hydro simulations, there
is a small, seemingly stochastic difference, in angular momentum
(
L ∼ 3 per cent) at low L. The difference in Jr is also small,

Jr

∼ 4 per cent, but systematic, with a slight increase towards low
Jr for the DM particles in the Hydro case. The energy distributions,
F(E) (bottom panel), have distinct peaks and features unique to
the individual halo that are not present in the other IoM. These
are remnants of a complex merger history, with similar features in
the counterpart halo. The energy distributions are most affected by
contraction with 
E ∼ 10 per cent as the deeper central potential
of the Hydro halo reduces the energy of the inner DM particles.

We saw that the Jr and L 1D distributions are roughly conserved
between the Hydro and DMO simulations. But what about the joint
2D F (Jr, L) distribution? Is it also conserved? This question is
relevant since we find correlations between Jr and L, as illustrated
in the top panel of Fig. 5. These correlations vary between haloes and
potentially encode important information about the halo’s density
and velocity profiles. To find the answer, we calculate the differences
in the F (Jr, L) distributions between the DMO and Hydro cases;
similarly to equation (5), the action difference, 
(Jr ,L), is defined
as:


(Jr ,L) = 1

2

∫ ∣∣FDMO (Jr , L) − FHydro (Jr , L)
∣∣ dLdJr . (6)

For relaxed haloes, 
(Jr ,L) ∼ 8 ± 1 per cent. This is larger than the
differences in the 1D distributions, but none the less it is still rather
small indicating that the joint distribution is roughly invariant too.
The value of 
(Jr ,L) is used in Appendix B to study the extent to
which differences in action distribution are related to differences
between the contracted DMO haloes and their Hydro counterparts.

Fig. 4 shows the action distributions F(L) and F (Jr) of our relaxed
AURIGA halo sample. While the individual action distributions have
qualitatively similar form, differences in the peak of the distributions
suggest object-to-object scatter in the DFs, which could arise from
different halo formation histories. This is to be expected as NFW
profiles fit the majority of haloes very well, but the concentration
and β(r) profiles vary from halo to halo. We leave the precise
characterization of these distributions and a potential concentration
parametrization to future work. Here, we investigate the effects of
halo-to-halo variation by calculating the contracted DM halo using
multiple F ( J) distributions.

3 C O N S T RU C T I N G T H E H A L O F RO M
PARTICLE ORBITS

In the previous section, we calculated the distribution of DM particle
orbits as described by their spherical actions distribution, F (Jr, L).
We now calculate the individual orbits in physical space to find

Figure 4. The distributions of angular momentum, L, and radial action, Jr,
of DM particles in the DMO simulation for our sample of relaxed haloes.
The black solid line shows the median of our sample and the green shaded
region the 68 percentile and full halo-to-halo scatter. To compare haloes, L
and Jr are scaled to be independent of halo mass (for details, see the main
text).

their contribution to the structure of the DM halo. We will use this
information in the next subsection where we construct the physical
properties of the DM halo, such as its density and velocity dispersion
profiles, by summing over the orbital distribution, F (Jr, L). Instead
of considering a particle as a point contribution to the halo, we
consider the physical contribution of its orbit sampled uniformly
in phase, that is we consider the contribution of the particle
spread around its orbit in time. The radial distribution of an
orbit, F (r|Jr, L), is defined as the proportion of time that orbit
spends at radius r, normalized so that it integrates to unity. This is
approximately:

F (r|Jr, L) ≈ 2

T |Jr,L

1

vr (r) |Jr,L

, (7)

where T is the radial time period and vr is the radial velocity (see
Han et al. 2016). However, this is only an approximation and great
care is needed at the endpoints where vr −→ 0. For a more detailed
derivation and further details, please see Appendix A. The density
can then be reconstructed by integrating over the distribution of
these orbits:

ρ (r) = MDM

4πr2

“
F (r|Jr, L) F (Jr, L) dJrdL, (8)

where MDM is the total mass of the DM halo.
When contracting a DMO halo to account for its baryon distribu-

tion, the cosmic baryon fraction must be removed in order to obtain
the correct DM halo mass. That is, the mass of the DM halo in
the DMO case is given by (1 − fBaryon) times the total halo mass.
When constructing the halo, F (Jr, L) must include all DM particles
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within (and orbits calculated up to) 3R200 to ensure all significant
contributions to the halo are included.

In practice, it is simpler first to construct orbits from a given (E, L)
pair and a potential, 	(r). The F(E, L) distribution is derived from
F (Jr, L), given a potential 	. This can be evaluated numerically
using the Jr calculated from each (E, L) pair as:

F (E, L) = F (Jr, L)
dJr

dE
, (9)

where F (Jr, L) is evaluated by interpolating the halo action
distribution. We can now rewrite equation (8) in terms of the energy
and angular momentum distribution to obtain

ρ (r) = MDM

4πr2

“
F (r|E,L) F (E, L) dEdL . (10)

To estimate the DM phase-space distribution, we sample the (E,
L) space using a grid of 5002 orbits. We find that this grid size is a
good compromise between computational time and the sufficiently
high orbit density needed to recover a smooth halo profile. We have
experimented with different methods for defining the (E, L) grid
and have selected the one that gives accurate results for the smallest
grid size. This is obtained by first choosing 500 L values, evenly
spaced in the cumulative F(L) distribution. Then, for each L bin, we
select 500 E values evenly spaced on the allowed phase space, that
is in the interval [ECirc (L) , 0]. By doing so, we neglect unbound
particles, i.e. particles with positive total energy, E > 0. However,
there is only a small fraction of such particles (∼ 0.05 per cent; see
Fig. 5) and, in practice, excluding them makes no difference.

We illustrate the transformation from (Jr, L) space to (E, L)
space in Fig. 5. The top panel shows the distribution, F (Jr, L),
of the AU5 halo in the DMO simulation. The bottom two panels
show the distribution, F(E, L), for the DMO and Hydro simulations,
respectively, which have been calculated from the action DF shown
in the top panel using the actual gravitational potential measured
in each of the two cases. The F(E, L) distributions are bounded on
the lower right edge by circular orbits, which have the minimum
energy possible for a given angular momentum. Compared to the
DMO case, the Hydro simulation is characterized by more lower
energy orbits, a manifestation of the deeper potential well of the
Hydro halo.

To gain a better understanding of how a given orbit, (Jr, L),
changes between the DMO and Hydro potentials, we select four
orbits with the same angular momentum, L = 0.12Lh, and increasing
radial action, Jr = [0, 400, 5000, 15000] km kpc s−1. These orbits
are shown as colour symbols in Fig. 5. The lower the Jr of the
orbit, the larger the decrease in energy from the DMO to the Hydro
potential, as can be determined from the bottom two panels of Fig. 5.

The change in energy of the orbits between the DMO and Hydro
potentials is accompanied by a pronounced change in the radial
range associated with a (Jr, L) orbit. This is illustrated in Fig. 6,
which shows the fraction of time, F (r|Jr, L), that a particle on orbit
(Jr, L) spends at different distances from the halo centre. The figure
shows the same four orbits highlighted in Fig. 5. To help interpret
the plot, each orbit in Fig. 6 is marked with a triangle symbol, which
shows the median radial position of the orbit: a particle spends half
its orbital time at farther distances than this. Orbit 1 is circular and
lies at the scale radius of the DMO halo. With increasing Jr, the
orbits gain radial kinetic energy and become more radial, so their
median radial position occurs further out from the circular radius.
The orbits spend most of their time at the endpoints, i.e. pericentre
and especially apocentre (note the logarithmic y-axis), while they

Figure 5. The 2D distribution, F (Jr, L), of radial action, Jr, and angular
momentum, L, of the DM particles in the DMO simulation of the AU5 halo
(top panel). Given a gravitational potential, F (Jr, L) can be used to calculate
the 2D distribution, F(E, L), of energy, E, and L. The result is illustrated in
the centre and bottom panels, which show F(E, L) for the DMO and Hydro
simulations, respectively. The deeper potential in the Hydro case leads to
overall lower energy orbits. To better illustrate the transformation, the colour
symbols show four orbits selected to have the same L, but different Jr values.
The radial profiles of these orbits are shown in Fig. 6. The actions are given
in units of Lh = √

GM200 and energy in Eh = GM200/R200.

spend the least amount of time at the circular radius for their given
angular momentum where vr is maximal.

Adding baryons deepens the potential well and the orbits are
pulled inward, leading to a compression of the DM halo. This can
be seen by comparing the DMO orbits (dashed lines) with the Hydro
ones (solid lines). The more circular orbits are compressed the most,
with fractional decreases in the median radius of orbits from 0.7 for
Orbit 1 to 0.9 for the most radial Orbit 4. This is agreement with
the suggestion that radial orbits ‘resist’ compression (Sellwood &
McGaugh 2005; Gnedin et al. 2004).

3.1 Finding a self-consistent halo

Our aim is to construct a DM halo in physical space, inferring the
density and velocity profiles solely from the DM action distribution,
F (Jr, L). In the previous section, we showed that given a fixed
potential, 	, we can obtain the DM density profile, ρDM (r), from
the action DF by calculating the radial distribution, F (r|Jr, L), of
individual orbits that is then integrated over F (Jr, L) to obtain the
overall radial distribution of DM particles (see equation 8).
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Figure 6. The radial distribution, F (r|Jr, L), for four different orbits (each
shown by a different colour). This is equivalently the fraction of time that a
particle on orbit (Jr, L) spends at a given radius, per kpc. The orbits have
the same angular momentum, L, but increasing radial action, Jr (from Orbit
1 to Orbit 4, where Orbit 1 is circular – see colour symbols in Fig. 5). We
show the orbits for the gravitational potential of the AU5 halo in the DMO
(dashed lines) and Hydro (solid lines) cases. The triangles show the median
radius of each orbit. The deeper Hydro potential pulls the orbits to lower
radius, affecting the more circular orbits the most.

Figure 7. Flowchart of an iterative scheme to calculate a halo density profile
starting from its action distribution, F (Jr, L). The method proceeds as
follows: (1) using a trial gravitational potential for the DM, 	DM, calculate
the radial range, F (r|Jr, L), of each orbit, (Jr, L); (2) integrate over all
orbits to calculate the DM density profile, ρDM; and (3) use the inferred DM
density to update the DM potential, 	DM; and repeat from step (1) until
convergence is achieved. If required, an additional baryon potential 	Baryon

can be added in step (1) to find a contracted halo.

To obtain the true halo density profile we need to know the total
gravitational potential, 	, of the baryonic and DM components. The
challenge arises from the fact that the DM gravitational potential
needs also to be calculated from the action distribution. Here, we
describe how this can be done in a self-consistent way using an
iterative approach. We first make an initial guess for the potential
which, at each iteration, is updated to a value that is ever closer to
the true potential.

Our approach is illustrated in Fig. 7 and proceeds as follows. First
a sensible trial potential, 	0

DM, is chosen, for example, the potential
of an NFW halo of average concentration for the target halo mass.
When considering the Hydro halo, we typically choose the DM
potential from the counterpart DMO halo since this achieves faster
convergence. We sum the DM and baryon2 potentials to obtain the
total potential. The DM density is then calculated using equation (8),
which, in turn, is used to determine the updated DM potential. This
is used as the input potential for the next iteration step, which is
repeated until convergence is achieved. The convergence criterion
is satisfied when the change in DM density between two iterations
is small enough. This is quantified in terms of


total
ρ =

(
log

(
100

3

))−1
R200/3∫

R200/100

∣∣
ρ (r)
∣∣ d log r , (11)

where 
ρ(r) is defined as the fractional difference between two
density profiles,


ρ (r) = 2
ρ2(r) − ρ1(r)

ρ2(r) + ρ1(r)
. (12)

The quantity 
total
ρ characterizes the integrated difference between

two density profiles in the inner region of the halo, that is for
r ∈ [ 1

100 , 1
3 ]R200. When running the iterative approach without a

convergence criterion, we find that 
total
ρ reaches a constant small

value, 
total
ρ ∈ [0.01, 0.005] per cent (the exact value varies from

halo to halo). The final equilibrium state seems to be reached inside
out, with the outskirts of the halo converging somewhat more slowly
than the inner parts. Based on this, we choose to stop the iterative
procedure to determine the potential when 
total

ρ < 0.02 per cent.
We have tested the method by applying it to relaxed AURIGA

haloes in both the DMO and Hydro simulations. For example, we
measured the F (Jr, L) distribution for a DMO halo, which was
then used to recover that halo’s density profile starting from an
initial potential given by an NFW halo of average concentration
for its mass. When compared with the ‘true’ DM halo profile
from the simulation, we find very good agreement: the density
is typically recovered to within ∼2 per cent within R200/2 with
increasing scatter of 5 per cent–10 per cent towards the outskirts
of the halo. Differences mainly arise from assuming steady state
haloes in which particles are uniformly spread in phase along their
orbits. However, recently accreted material and substructures do
not satisfy this assumption and can lead to differences between the
density profile measured in the simulations and that predicted by
our method.

3.1.1 Scaling the action distribution to haloes of different masses

In this section, we show how to scale our results from AURIGA haloes
to haloes of arbitrary mass. We do this within the context of our
method for generating a halo from a given F (Jr, L) distribution.
The goal is to take the F (Jr, L) distribution measured for a halo of
total mass, M initial

200 , and rescale it so that it can be used to predict the

2The baryon potential is kept fixed and is an input to the method, for
example the potential from the stellar distribution of an AURIGA halo or of
the MW. The method applies to DMO simulations too, in which case the
baryon potential is obtained as the cosmic baryon fraction multiplied by the
total potential measured in the simulation. The same result is obtained if
instead we take a null baryon potential and assume that the DM constitutes
100 per cent of the mass in the DMO simulation.
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profile of a target halo with total mass, M
target
200 . For this, we exploit

the fact that DM haloes, at least in DMO simulations, are universal
when scaled appropriately (for more details see the discussion in Li
et al. 2017; Callingham et al. 2019). As we saw in Fig. 3, the action
distribution for the DMO and Hydro simulations are very similar so
we expect the universality to apply to the action distribution not only
in the DMO case, but also when including a baryonic component.

As we are interested in matching the total mass of a target halo
with a fixed given baryonic profile, we are only free to rescale the
mass of the DM halo, not that of the baryonic component. We define
the mass scaling factor, λ = M

target
200; DM/M initial

200; DM, which is the ratio
between the DM mass enclosed within R200 for the target and initial
haloes, respectively. For DMO haloes, we can rescale the initial
halo to the target one by rescaling the positions and velocities by
λ1/3, and the energy and actions by λ2/3. For Hydro haloes, rescaling
the position, velocities, and energy using the same procedure is
not a good strategy, especially in the inner halo regions, where
the universality of haloes is degraded by the presence of baryons.
However, as we discussed earlier, this is not the case for the actions,
which scale as in the DMO case.

The rescaled action is given by

F ′ (Jr, L) ≡ F target (Jr, L)

= λ−4/3F initial
(
Jr/λ

2/3, L/λ2/3
)
, (13)

where Ftarget and Finitial denote the action distribution in the target
and original haloes, respectively, and the λ−4/3 multiplication factor
ensures that the new distribution integrates to unity. We then use
these new actions, F ′ (Jr, L), as input to the method for constructing
the halo density profile described in Section 3.1.

The total mass, Mnew
200 , of the resulting rescaled halo is close to

the target mass, M
target
200 , but there can be small differences of order

a few per cent. These are present when baryons are included since
the baryonic distribution can either contract or expand the DM
distribution and thus introduce small variations in the total mass
within R200. We account for these small differences by applying
again the rescaling method, with the actions now rescaled by a new
factor, λ′ = M

target
200; DM/Mnew

200; DM, which is typically very close to one.
Using the new actions, we calculate again the halo density profile
and its total mass, Mnew

200 , repeating the procedure until convergence
to the target halo mass is achieved.

3.2 Contracting AURIGA haloes

We now apply the scheme of Section 3.1 to model the DM haloes
in AURIGA. The action distributions of the DM haloes, F (Jr, L),
as found in Section 2.2, are contracted to a fixed baryon potential,
	Baryon (r), taken from the corresponding counterpart halo in the
Hydro simulation.

First, we study if the F (Jr, L) distribution measured in the
DMO simulation can be used to predict the DM distribution in
the counterpart Hydro halo. We illustrate this for the AU5 halo in
Fig. 2, which shows the DM density as measured for the Hydro halo
(orange line) and the contracted DMO halo (blue line). Although
there is good overall agreement between the two, the contracted
halo density profile is slightly lower than the true one as measured
in the Hydro simulation. This systematic difference is consistently
seen in all the relaxed AURIGA haloes and is examined further in the
top panel of Fig. 8, which shows the fractional difference in density
profiles between the contracted DMO and the actual Hydro DM
haloes. The contracted halo systematically underpredicts the density
profile by ∼ 8 per cent over the radial range, r ∈ [1/100, 1/3]R200,

Figure 8. The difference in radial density profiles, 
ρ (r), between DM
haloes described by an action distribution, F (Jr, L), adiabatically contracted
according to a given baryonic profile (see the main text for details) and the
‘true’ DM haloes in the AURIGA hydrodynamical simulations. We show the
results for relaxed haloes only. The black line shows the median and the dark
and light green regions indicate the 68 per cent and 95 per cent percentiles,
respectively. In the top panel, we compare contracted DMO haloes with
their Hydro counterparts, highlighting the effects of unadibiatic differences
in the action distributions between the DMO and Hydro simulations on the
DM halo density profile. In the middle panel, we contract each DMO halo
in turn to every other Hydro halo in the relaxed sample and compare the
resulting density profiles, to additionally see the effects of halo variation. In
the bottom panel, we contract each Hydro halo in turn to every other Hydro
halo across the relaxed sample. This demonstrates the scatter expected when
modelling an unknown contracted halo due to halo variation.

while outside this range the agreement is good. This results in
M200 masses for the contracted haloes that are 5 ± 2 per cent lower
than the true masses. This underprediction suggests a systematic,
non-adiabatic, difference between the Hydro and DMO action
distributions, as we had already encountered in Fig. 3.

To investigate the effects of halo-to-halo variations in action
distributions, we contract each of our relaxed DMO haloes in turn
according to the baryonic distribution of each relaxed Hydro halo.
When doing so, we rescale the actions of the DMO halo to the total
mass of each target Hydro halo using the procedure described in
Section 3.1.1, ensuring the final contracted haloes have the correct
M200. The fractional difference between the density profiles of the
contracted and ‘true’ haloes are shown in the middle panel of Fig. 8.
The variation in the DM haloes action distributions, F (Jr, L),
produces a greater scatter in the contracted density compared to
when each halo is matched with its Hydro counterpart. The scatter
is largest in the inner third of the halo beyond which the scatter is
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noticeably tighter before spreading out again near the outskirts of
the halo. This is likely due to the variation in concentration, which
mainly effects the inner regions of the halo, r � rs. Alongside a
greater scatter, there is again an underprediction of the contracted
density profile, which is slightly reduced by fixing the mass of the
contracted haloes to be equal to that of the Hydro haloes.

We can overcome this systematic difference in the predicted
density profile by using the DFs measured in the Hydro haloes
instead of the DMO haloes, as we have done until now, as shown
in the bottom panel of Fig. 8. The resulting contracted DM profiles
are unbiased but they have a rather large, ∼15 per cent, halo-to-halo
variation. This shows that the small systematic differences we have
seen in the actions between the DMO and Hydro simulations (see
Section 2.2) have measurable effects on the DM density profiles,
and that to obtain unbiased contracted DM haloes we need to use
the action distribution measured in the Hydro simulations. Thus, to
obtain an unbiased model of the MW halo, we need to use Hydro-
derived DFs, and, because of system-to-system variations in the
DF, we can predict the MW halo density profile only to 15 per cent
accuracy.

We have studied in more detail the most important systematic
differences between the action DFs in the DMO and Hydro
simulations. The tests and the corresponding results are presented
in Appendix B. We have found that the small, systematic difference
in density profile seen in Fig. 8 is predominantly driven by the
suppression of Jr in the Hydro haloes. In the Hydro simulations,
some mechanism has caused the DM to lose radial energy in
an unadibiatic way. If the systematic decrease of radial action in
the Hydro haloes was driven by baryons through either feedback
or numerical baryon–DMO particle scattering effects we would
perhaps expect to see the strongest effects at the centre of the halo,
where the baryon density is highest. However, we see no evidence of
a radially varying effect, with the Jr suppression being, on average,
approximately the same at all radial distances from the halo centre
and at all angular momentum. Furthermore, the feedback-driven
cores found in some simulations of dwarf galaxies are formed by
increasing the energy of the DM particles, not by reducing it. We
leave a more thorough investigation of these non-adiabatic effects
to future work.

3.3 Local DM properties in AURIGA

As we discussed in the Introduction, a strength of the halo con-
traction method presented here is that it can be used to predict
all DM halo properties, including the velocity distribution. This
is in contrast to most other methods (e.g. Blumenthal et al. 1986;
Gnedin et al. 2004; Cautun et al. 2020), which apply only to the halo
density profile. In this section, we study how the contraction method
can predict dynamical properties of the DM halo, in particular the
DM velocity distribution in the Solar neighbourhood, which is a
crucial input into DM direct detection experiments. In preparation
for modelling the MW in Section 4, we first study the velocity
DF (VDF) of the relaxed DM AURIGA haloes. To validate our
methodology, we compare the contracted DMO haloes with their
Hydro counterparts. Across our sample of different size haloes,
we define an AURIGA halo’s ‘Solar radius’ as a set fraction of
its R200, 0.036R200, which was obtained by taking the following
MW values: r� = 8 kpc and RMW

200 ≈ 222 kpc (from Callingham19,
corresponding to MMW

200 = 1.17 × 1012M�).
We illustrate how well our contraction method recovers the DM

velocity distribution in the presence of a baryonic component by
studying the AU5 halo. Compared to the DMO case, the Hydro halo

Figure 9. The velocity distributions of DM particles at the Solar neigh-
bourhood in the AU5. The solid orange line shows the distribution measured
in the Hydro halo, the dashed blue line shows the corresponding quantity in
the DMO case, and the solid blue line in the DMO halo contracted with our
method to predict the Hydro quantities. In grey we show the predictions of
the SHM, based on the assumption of an isotropic isothermal sphere. The
top panel shows radial velocity, vr, the middle panel tangential velocity, vt,
and the bottom panel total velocity, v. The vertical red shaded region shows
velocities larger than the escape velocity of the Hydro halo. Estimates for
the Solar neighbourhood DM density, ρ�, and velocity anisotropy, β� are
also given (see the two tables enclosed by a thick black line in the right-hand
side of the centre and bottom panels).

has an enhanced density and especially velocity dispersion at the
Solar radius, as may be seen in Fig. 2, at the radial position, r ∼
0.04R200. The contracted DMO halo reproduces well the Hydro
halo, in particular, both the velocity dispersion as well as the
velocity anisotropy parameter, β. Thus, our contraction technique
reproduces local halo properties that are averaged over many DM
particles.

In Fig. 9, we show that the same technique also reproduces the
actual DM velocity distribution. For this, we calculate the velocity
distribution of all DM particles found within a radial distance of
±1 kpc around the Solar radius. As expected, the DM particles in the
Hydro case are characterized by higher velocities than in the DMO
case. The small irregularities in the distribution are the result of the
merger history of the halo. The action distribution of the DMO halo
can be used to predict the velocity distribution of the contracted
DMO halo. This is similar to the approach taken in Section 3.1,
where we modelled the density profile. To obtain the VDF, we
calculate the velocity components of each F (r|Jr, L) orbit at the
solar radius, and then sum over all possible orbits, F (Jr, L) (using
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a similar weighting to equation A6). The contracted DMO halo
reproduces well the velocity distribution of the Hydro halo, with
most differences between the two being stochastic in nature. The
only large difference is seen in the radial velocity, vr, distribution
(top panel), where the contracted halo is systematically below the
Hydro case for vr −→ 0. This is due to the finite number of orbits
included in the reconstruction, with none being exactly at apocentre,
pericentre, or on perfectly circular orbits at this radius. This effect
is small and can be reduced by including a greater number of orbits
in the reconstruction.

The most popular approach in the field is to model the VDF
using the SHM (e.g. Evans, O’Hare & McCabe 2019). This is
based on the assumption of an isotropic isothermal sphere, and
predicts a Gaussian velocity distribution with velocity dispersion,
σ = vcirc/

√
2, which is truncated at the escape velocity, vesc. The

SHM predictions for the DMO and Hydro simulations of AU5 are
shown in Fig. 9 as dashed and solid grey curves, respectively.
The SHM model provides a poor description of the DMO velocity
distribution, but performs much better for the Hydro halo. However,
we still find important differences between the SHM predictions
and the actual Hydro haloes. In particular, the sharp truncation of
the SHM VDF at vesc is more abrupt than in the simulations and
typically leads to an overprediction of high velocity DM particles.
Moreover, the SHM assumes isotropic orbits whereas, in this halo
and throughout our sample, we find a small, but non-zero anisotropy
parameter at the Solar neighbourhood, β

Hydro
� = 0.21. Thus, the

isotropic SHM slightly underpredicts the vr and overpredicts the vt

distributions.

4 APPLICATION TO THE MILKY WAY

We can now apply our DM halo reconstruction method to infer the
structure of the DM halo of our own Galaxy. To do this we need to
know: the action DF, F (Jr, L), of the MW halo; the MW baryon
distribution; and the total mass, MMW

200 . The last two quantities can
be inferred from observations (e.g. Cautun et al. 2020; Wang et al.
2019). For the F (Jr, L) distribution, we assume that the MW is a
typical �CDM halo and that its DF is similar to that of our relaxed
AURIGA haloes. By considering the range of different DFs for the
MW, as spanned by the AURIGA haloes, we quantify the extent to
which the unknown DM action distribution of our Galactic DM halo
affects our predictions. Finally, as we saw in the previous section,
there are small systematic differences between the distributions of
actions in the DMO and Hydro simulations of MW-mass haloes.
Thus, to obtain predictions that are as accurate as possible, we use
the F (Jr, L) DFs measured in the Hydro simulations of the AURIGA

suite.
We adopt the MW baryon density profile advocated by Cautun20,

which we model as a spherically symmetric distribution. Cautun20
assumed parametrized density profiles of a thick and thin stellar disc,
a stellar bulge, a cold gas interstellar medium, and an analytically
contracted NFW DM halo. Through an MCMC fitting procedure,
these baryonic and DM components were fit to the latest MW
rotation curve data derived from Gaia DR2 (Eilers et al. 2019);
the data cover the radial range 5–25 kpc. We also use the total
mass of this model, 1.08 × 1012 M�, with the final mass of our
haloes set through the scheme in Section 3.1.1. This total mass
determination is in very good agreement with other measurements
based on Gaia DR2 (see fig. 5 in Wang et al. 2019), such as the
ones based on escape velocity (Deason et al. 2019; Grand et al.
2019), globular cluster dynamics (Posti & Helmi ; Watkins et al.

Figure 10. From top to bottom: the MW’s density, velocity dispersion,
circular velocity, and velocity anisotropy radial profiles predicted by our halo
contraction method. The DM haloes are contracted assuming the Cautun20
MW baryonic model and the action distributions, F (Jr, L), from 17 relaxed
haloes in the AURIGA Hydro simulations. The black line shows the median
prediction of our method, while the dark and light shaded regions show
the 68 and 95 percentiles arising from halo-to-halo variation in F (Jr, L).
The top panel also shows the Cautun20 baryonic profile (purple) and their
best-fitting DM profile (red); the third panel shows in yellow the Eilers
et al. (2019) Vcirc data, and in red the Cautun20 rotation curve for their
best-fitting MW model. For comparison to other observational estimates of
circular velocity, we include data points from Eadie & Jurić (2019), Watkins
et al. (2018), Posti & Helmi (2019), and Callingham et al. (2019).

2018), rotation curve modelling (Cautun20), and satellite dynamics
(Callingham19).

Our inferred properties of the MW DM halo are shown in Fig. 10.
In the top panel, we see that the median of the contracted density
profile closely matches that of Cautun20, although some differences
are present. This is to be expected since the Cautun et al. results
corresponds to a DM halo that, before baryon contraction, had a
concentration of 9.4 , while the 17 AURIGA haloes studied here have
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a wide range of concentrations before contraction (averaging 9.7,
see Fig. 1). Nonetheless, the Cautun et al. result lies well within
the 68 percentile scatter of our predictions, indicating good overall
agreement. Not knowing the exact F (Jr, L) distribution of the MW
halo results in a ∼ 14 per cent scatter (68 percentile range) in the
predicted density profile of the contracted halo, in good agreement
with our AURIGA results. Our model predicts that the DM velocity
dispersion is roughly constant at around 160 km s−1 in the inner
region of our Galaxy, and then decreases rapidly towards the halo
outskirts (second panel in Fig. 10).

In the third panel of Fig. 10, we compare the rotation curve
predicted by our model with the actual estimate for the MW as
determined by Eilers et al. (2019). We do not fit our model to these
data, so the good agreement with observations indicates that our
model is making sensible predictions. To compare against the data,
we add the rotation curves from both the baryons and the halo. The
latter is modelled as a spherically symmetric distribution but for
the baryons we need to take into account that their distribution is
highly flattened, that is most stars and gas are found in a disc, and
that the Eilers et al. rotation curve is measured in the plane of this
disc. In the plane of the disc, the true axisymmetric profile gives
a ∼10 per cent greater contribution to the rotation curve than the
spherical profile that we use when modelling the contraction of the
DM halo.

The distribution of rotation curves across our contracted DM
haloes are in good agreement with both the Eilers et al. data and
the Cautun20 best-fitting model. However, we see variation in the
curves when using different action DFs. This is to be expected since
the MW represents one possible realization of F (Jr, L). It is worth
stressing that the median result is not necessarily the ‘best’ model
for the MW DM halo, as the MW is unlikely to reside in a typical
�CDM halo. Instead, the point to emphasize is that we would
expect the MW to lie within the range of our halo sample, thta is
within the scatter, which it clearly does. For the data points within
30kpc, we see good agreement with the estimates by Posti & Helmi
(2019), Watkins et al. (2018), and Eadie & Jurić (2019). Further
out, we find that the Watkins et al. (2018) measurement at 40 kpc
lies just outside the 1σ uncertainty of our models, and the lower
total mass of Eadie & Jurić (2019) (0.7 × 1012 M�) leads to a faster
drop off towards R200. Since our total mass is similar, our circular
velocity curve matches well that of Callingham19 around R200. For
a more detailed discussion see section 6 of Cautun20 which presents
a comparison with several other Galactic probes.

While the Eilers et al. circular velocity curve data lie comfortably
within the 1σ range of our distribution of contracted haloes, the
individual halo curves are poor fits. This shortcoming could be
overcome by using the observations to find out which F (Jr, L)
distribution best describes the MW data. This can be achieved with
an MCMC approach in which we sample different action DFs and
concurrently constrain the MW baryonic distribution (e.g. similar
to the approach of Cautun20). It is important to marginalize over
the MW baryonic distributions, since these are uncertain and, as
Cautun20 have shown, there is a degeneracy between the baryon
content and the DM halo structure when modelling the MW rotation
curve. This approach is beyond the scope of this paper and we leave
it for future work.

4.1 MW Local DM distribution

Having inferred the likely structure of the MW DM halo by applying
the results of Section 3 based on analysis of 17 AURIGA galactic
haloes, we now investigate the implications for the key astrophysical

Figure 11. The DM velocity distribution at the Solar radius, r� = 8 kpc, as
predicted by our halo contraction model. The velocities are with respect to
the Galactic Centre. The radial, tangential, and total velocity distributions
are shown in the top, middle, and bottom panels, respectively. The median
is indicated with a solid black line and the 68 and 95percentiles are shown
in shaded green. The blue curve illustrates the velocity distributions given
by the SHM and the dashed red curve shows the ‘SHM++’ variant of Evans
et al. (2019), both using VCirc, � and VEsc, � of the Cautun20 MW-mass
model. We also give several DM properties at the Solar radius (see the text
inserts in the panels) as predicted from our model: the local DM density,
ρ�; the components of the velocity dispersion, σ�; the velocity anisotropy,
β�; and the escape velocity, V MW

Esc,� (whose value is also shown as the red
shaded region).

inputs to direct DM detection experiments: the density and velocity
distribution of the DM in our own solar neighbourhood.

From the DM density profile shown in the top panel of Fig. 10
we find that our models predict ρ� = 8.5+1.3

−0.6 × 10−3 M� pc−3

(equivalently ρ� = 0.32+0.05
−0.02 GeV−1 cm−3). These values are in

good agreement with previous estimates (see the compilation by
Read 2014). The somewhat large uncertainties in our estimate of
ρ� could be significantly reduced if we were to restrict our analysis
to those DFs that best fit the MW rotation curve, or individually
fit the MW baryon distribution for each DM halo as discussed
at the end of the previous section. We find a local speed escape
velocity 542+11

−9 km s−1, which is consistent with the recent Gaia
DR2 measurements of Deason et al. (2019) and Grand et al. (2019).

In Fig. 11, we highlight the DM velocity distributions at the
Solar position predicted by our MW models. These were derived
using the method described in Section 3.3 where, for each model,
we sum the orbits of all DM particles to find the distribution
of radial, tangential and total velocity components. The resulting
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Table 1. A list of MW properties in the Solar neighbourhood inferred
from our DM halo contraction model. The third and fourth columns give
the corresponding values from Cautun20. The velocity dispersion’s and
anisotropy of these columns are not found directly in Cautun20. Instead these
values, denoted by ∗, are calculated by applying the SHM and SHM++ DM
models to the Cautun20 MW-mass distribution (see Sections 3.3 and 4.1 for
further details).

Property This work
Cautun20
+ SHM∗

Cautun20
+ SHM++∗ Units

ρ� 8.5+1.6
−0.6 9.2 9.2 10−3 M� pc−3

0.32+0.05
−0.02 0.34+0.02

−0.02 0.34+0.02
−0.02 GeV cm−3

σV, � 155+5
−6 153∗ 153∗ km s−1

σVr ,� 162+9
−8 153∗ 170∗ km s−1

σVt ,� 151+4
−5 153∗ 142∗ km s−1

β� 0.14+0.06
−0.03 0 (isotropic)∗ 0.3∗ –

VCirc, � 231+8
−2 230 230 km s−1

VEsc, � 554+12
−10 549 549 km s−1

MTotal
200 1.08 1.08 1.08 1012 M�

MDM
200 0.97 0.97 0.97 1012 M�

M
Baryons
200 0.11 0.11 0.11 1012 M�

VDFs have very similar forms to those previously discussed for
the AU5 halo (see Fig. 9) and many of the conclusions reached
for that example apply here too. In particular, we predict a small
radial bias in the velocity anisotropy, β� = 0.14+0.06

−0.03, with the radial
and tangential velocity dispersions being σ MW

Vr ,� = 162+9
−8 km s−1 and

σ MW
Vt ,� = 151+4

−5 km s−1. These and other values are summarized in
Table 1, where we also compare our results to those from the recent
MW-mass model of Cautun20. In this table, the velocity dispersion’s
and anisotropy given for Cautun et al. are the results of applying the
SHM with the parameters inferred from the Cautun et al. MW-mass
model. See Section 3.3 for further details and discussion on the
SHM.

The SHM is in good overall agreement with our inferred velocity
distribution, although we find large fractional deviations in the high
velocity tail of the distribution, the region to which DM direct
detection experiments are most sensitive (Bozorgnia et al. 2019).
The SHM model assumes an isotropic velocity distribution, at odds
with the value of β� ∼ 0.14 in our model. As a result, the SHM
does not perform as well when compared against the radial and
tangential velocity distribution of our model.

We also give the predictions of the SHM++ model of Evans
et al. (2019) in the fourth column of Table 1 and as the red dotted
line in Fig. 11. This is an SHM model modified to include a
secondary, highly radial distribution of DM, inspired by evidence
that the MW experienced a strongly radial major merger in the
past (Belokurov et al. 2018). Alongside a normal isothermal SHM
velocity distribution, a fraction of the DM, fS ≈ 0.2, is modelled
as a highly radial component, βmerger ≈ 0.9, as an approximation
of the contribution from the radial merger (see Evans et al. 2019
for further details). The resulting overall distribution has a radial
anisotropy of β++

� = 0.3, which is more highly anisotropic than
any of our AURIGA haloes. While not explicitly split into separate
distributions, the action distributions of our DM haloes reflect the
accumulated merger history of each halo. Our analysis of these
haloes suggests that, typically, DM haloes are inherently likely to
have a slightly radially biased velocity distribution in the solar
neighbourhood. Modelling individual contributions to the final DM

halo as separate distributions is an interesting possibility but is
beyond the scope of this paper, and is left to future work.

5 C O N C L U S I O N S

We have used the AURIGA suite of hydrodynamical simulations
of MW analogues to investigate the orbital distribution of DM
particles in MW-mass haloes and to study how this distribution
changes when including baryonic physics in the simulations. We
have characterized the DM haloes in terms of the distribution
of spherical actions: radial action, Jr, and angular momentum,
L. We have studied these action DFs for all our relaxed haloes
and have described how the actions can be used to (re)construct
the density and velocity distribution of the simulated DM haloes.
This can be achieved using an iterative method that, starting
from a fixed baryonic distribution and an initial guess for the
gravitational potential, constructs a DM halo density profile. At
each step in the iteration the potential is updated from the DM
mass profile obtained in the previous step until convergence is
achieved.

The actions Jr and L are useful quantities for describing DM
haloes since they are conserved during adiabatic changes (i.e.
on long time-scales) in the gravitational potential. Many galaxy
formation processes, although not all, are thought to be adiabatic
and this suggests that haloes in DMO and Hydro simulations should
have similar F (Jr, L) DFs. This idea motivated us to investigate if
indeed the action DF is conserved in the AURIGA suite between the
DMO simulations and the simulations that include galaxy formation
physics. We have found good agreement between the actions in the
DMO and Hydro haloes, with differences at the 5 − 10 per cent
level. Most of these differences are due to statistical fluctuations;
however, we also find systematic variations, with Jr being lower
in the Hydro haloes. This difference in radial action leads to
an ∼ 8 per cent underprediction of the DM density profile when
adiabatic contraction of a DMO halo is assumed. The Jr systematic
difference is the same at all radii, suggesting that it is unlikely to be
caused by effects associated with baryonic feedback which would
mainly affect the central region of a halo.

If we know the F (Jr, L) actions of a halo in a DMO simulation,
we can predict the density and velocity profile of its counterpart in
the hydrodynamical simulation with a precision of ∼5 per cent (not
withstanding the systematic effects discussed above). Most of the
scatter is due to stochastic effects as well as to small deviations from
the steady state assumption implicit in our method. This object-to-
object scatter is a factor of 2 lower than for other methods, such as
that of Cautun20. However, if we do not know the exact F (Jr, L)
distribution, we recover the density profiles only with ∼15 per cent
precision, with the major limitation being the halo-to-halo scatter
in the action distributions.

We have illustrated the contraction of a DM halo in the presence
of baryons by decomposing the halo into individual orbits of
DM particles. The deeper potential in the Hydro case leads to a
contraction, that is an inward shift, of the orbits. For a fixed orbital
angular momentum, circular orbits contract the most while highly
elliptical orbits contract the least. The DM halo is specified by the
sum of all orbits as given by the F (Jr, L) distribution. This property
can be used to determine both the density and velocity distribution
profiles of a halo.

We have applied our DM halo construction method to the halo of
the MW. Starting from the F (Jr, L) distribution of relaxed AURIGA

Hydro haloes, in combination with the Cautun20 stellar and gas
model of the MW and the value of the MW mass of Callingham19,
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we have predicted the density and velocity distribution of our
Galaxy’s DM halo. This resulted in 17 models for the Galactic
DM halo, which span possible DM distributions given the MW’s
baryonic component. We find good consistency between our in-
ferred DM halo density and that inferred by Cautun20, and between
the circular velocity curve predicted by our models and the one
measured from Gaia DR2 data (Eilers et al. 2019). The consistency
with the Cautun20 results provides an independent check that their
DM halo contraction model gives a good description of the Galactic
DM distribution.

A major advantage of our halo (re)construction method is that
it can predict the velocity distribution of DM particles. We have
tested this aspect of our method by comparing directly against mea-
surements of the AURIGA haloes and found very good agreement.
In particular, our method does better than the SHM at reproducing
the high tail of the velocity distribution, a key input into direct DM
detection experiments. We have applied the same analysis to the
MW to predict the distribution of DM particle velocities and their
components in the solar neighbourhood. Our results are in good
agreement with the literature (e.g. Evans et al. 2019; Bozorgnia
et al. 2019), and predict that the DM particles have a preference for
radial orbits, with β� = 0.14+0.07

−0.03, and that the SHM overpredicts
the high velocity tail of the velocity distribution. Furthermore, by
using multiple action distributions, we have characterized the halo-
to-halo scatter in the velocity distribution, which is important for
understanding how robust are the constraints inferred from direct
DM detection experiments.

A potential improvement to this work would be to extend
the formalism to axisymmetric models, which provide a better
description of disc galaxies such as the MW. In this case, the
DM halo is described by the 3D action distribution, F(JR, Lz, Jz),
where (R, z) denote the coordinates in the plane of the disc and
perpendicular to it. (For an example of axisymmetric modelling,
see Cole & Binney 2017.) As already discussed, the inner regions
of DM haloes in hydrodynamical simulations are close to spherical,
much more so than in their DMO counterparts, and within this work
we have found no obvious correlation between the shape of the DM
haloes and the results of our contraction method. We therefore
expect the effects of including axisymmetry to be subdominant to
the effects of halo-to-halo scatter.

Our work leaves open an important question: which baryon
processes are responsible for the systematic difference in the action
distribution between the DMO and the Hydro haloes? While such
effects are small, about a few per cent, they produce a measurable
effect on the density profile and velocity distribution. To overcame
this systematic when modelling the MW, we have used the F (Jr, L)
distribution measured directly in the Hydro simulations. It remains
to be seen if the same systematic deviations between DMO and
Hydro haloes are present in other simulations and if the size of the
effect varies between the various subgrid galaxy formation models
implemented in different simulations.

In this work, when making predictions specifically for the MW,
we employ a range of possible action DFs of an MW-mass halo
as predicted by the AURIGA project. However, given the obser-
vations, for example the MW rotation curve, some distributions
are more likely than others. This raises the question of which is
the best-fitting F (Jr, L) distribution for the MW, which we leave
for future work. To address this will require modelling the still
uncertain MW baryon mass distribution self-consistently alongside
the DM distribution, since this is degenerate when predicting
the inner (� 50 kpc) rotation curve (for details see Cautun20).
Such a study is very worthwhile and timely, especially given the

wealth of Galactic data available in the current and future Gaia
DRs.

The method we have presented here provides a very comprehen-
sive tool for modelling DM haloes in the presence of baryons and,
furthermore, it can easily account for cosmological halo-to-halo
variations in halo properties. In the age of precision MW astronomy,
it is no longer possible to neglect the contraction of the Galactic
DM halo or the diversity of DM distributions that form a halo.
Our method provides an elegant and robust approach to incorporate
these effects.
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Eadie G., Jurić M., 2019, ApJ, 875, 159
Eggen O. J., Lynden-Bell D., Sandage A. R., 1962, ApJ, 136, 748
Eilers A.-C., Hogg D. W., Rix H.-W., Ness M. K., 2019, ApJ, 871, 120
Evans N. W., O’Hare C. A. J., McCabe C., 2019, Phys. Rev. D, 99,

023012
Fattahi A. et al., 2016, MNRAS, 457, 844
Frenk C. S., White S. D. M., Davis M., Efstathiou G., 1988, ApJ, 327,

507
Gaia Collaboration et al., 2018, A&A, 616, A1
Garrison-Kimmel S. et al., 2019, MNRAS, 487, 1380
Gnedin O. Y., Ceverino D., Gnedin N. Y., Klypin A. A., Kravtsov A. V.,

Levine R., Nagai D., Yepes G., 2011, preprint (arXiv:1108.5736)
Gnedin O. Y., Kravtsov A. V., Klypin A. A., Nagai D., 2004, ApJ, 616,

16
Grand R. J. J., Deason A. J., White S. D. M., Simpson C. M., Gómez F. A.,
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A P P E N D I X A : R A D I A L D I S T R I BU T I O N O F
ORBI TS

Here, we describe how to construct the probability distribution
that a particle on a orbit defined in terms of (Jr, L) is found at
radial distance, r. We denote this radial probability distribution
as F (r|Jr, L). For simplicity, in the following we will work with
the (E, L) actions (and thus calculate F(r|E, L)), which, given a
gravitational potential, can be uniquely mapped to (Jr, L) space
and vice versa (see the main text for details).

Consider an orbit defined by (E, L) in the potential 	(r). The
velocity components at r are defined as:

v|r = 2 (E − 	 (r))

vt |r =L/r

vr |r = v|2r − vt |2r ,
(A1)

where for the radial velocity component we only consider its
absolute value. A tracer on that orbit could have either negative
or positive vr depending on whether it is approaching or receding
from the halo centre. The two points where vr = 0 correspond to
the peri- and apocentre of the orbit, rmin and rmax, with particles on
the orbit spanning the radial range, rmin < r < rmax.

As described in the main text, the radial distribution of an orbit,
either F(r|E, L) or F (r|Jr, L), is defined as the proportion of time an
orbit spends at radial distance, r, normalized to unity. To calculate
this, we first consider the amount of time, dt, taken by a test particle
to travel from r −→ r + dr . By Taylor expansion, we have

r + dr = r + vrdt + 1

2
r̈dt2 + o

(
dt3

)
, (A2)

where r̈ denotes the radial acceleration, that is the second derivative
of r with respect to time. By neglecting dt3 and higher order terms,
we can solve for dt to obtain

dt = −vr + v2
r + 2r̈dr

r̈
. (A3)

Away from the endpoints, v2
r � 2r̈dr for small dr. Then dt ≈

dr/vr, that is the time spent at r is inversely proportional to the radial
velocity component, as expected. As the test particle approaches the
endpoints, vr −→ 0 and the radial acceleration terms can no longer
be neglected. Then, the fraction of time spent at r, that is the radial
distribution F(r|E, L), can be written as

F (r|E,L) dr = 2

T |E,L

dt |r , (A4)

where the factor of 2 accounts for the fact that a particle is found at
the same r value twice along its orbit, that is once when approaching
and once when receding from the halo centre. The normalization
factor, T|E, L, is the radial time period, which is given by

T |E,L = 2
∫ rmax

rmin

dt |rdr. (A5)

To calculate F(r|E, L), we use a radial grid with 1500 cells defined
in the range [0, 3R200]; this corresponds to a grid spacing, dr =
R200/500 ∼ 0.5 kpc. Special treatment is required at the endpoints
of the orbit where better spatial resolution is needed to track the
orbit properly. The radial distribution and properties around 1 kpc
of the endpoints of each orbit are then recalculated at a higher radial
resolution of dr∗ = 5 pc.
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Averaged radial properties, such as the velocity dispersion or
the velocity components, can be evaluated at a given radius using
F (r|Jr, L) as a weight. Any general orbital property depending on
radius, X (r) |Jr ,L, can be calculated as

< X > (r) = 1

ρ(r)

M

4πr2

∫ ∫
X(r)|Jr ,LF (r|Jr, L)dJrdL . (A6)

APPENDIX B: SYSTEMATIC DIFFERENCE S I N
AC T I O N B E T W E E N D M O A N D H Y D RO

Differences between DM haloes, such as in the ρ(r), σ (r), and β(r)
profiles, can be attributed to differences in their action distributions,
F (Jr, L). It is natural to expect that the greater the action difference,

(Jr ,L), between our DMO and Hydro haloes, the greater the
difference in the contracted DM density profile. We explore this
correlation in Fig. B1, which shows the integrated difference in
the density profiles, 
total

ρ , between the contracted DMO halo
and the Hydro halo as a function of the difference in the action,

(Jr ,L), between the two haloes. In the relaxed halo sample, the

total

ρ and 
(Jr ,L) quantities are characterized by a small correla-
tion of only 0.16. This suggests a complex relationship between
action distributions and the physical halo. The relaxed sample
has consistent differences of 
total

ρ ∼ 8 per cent ± 3 per cent, while
the unrelaxed sample has a a wider scatter and a higher median

total

ρ ∼ 10+10
−3 per cent (a histogram of the results may be seen in

the side panel of Fig. B1).
To better understand the effect of systematic differences in the

F (Jr, L) distribution between the DMO and Hydro simulations,
we proceed to compare in Fig. B2 the radial profiles of several halo
properties in the main text, when constructing the DM density pro-
file given an F (Jr, L) distribution, we find the self-consistent gravi-
tational potential given the action distribution. However, differences
in actions can lead to differences in potentials that would further

Figure B1. An exploration of the extent to which galaxy formation in
the AURIGA suite is an adiabatic process. The x-axis show the difference
in the action distributions, 
(Jr ,L), of DM haloes between the DMO and
corresponding Hydro simulations. An adiabatic process would conserve the
action, i.e. 
(Jr ,L) = 0. The y-axis shows the integrated difference, 
total

ρ ,
in the DM density profiles between the contracted DMO and the Hydro
haloes. Each symbol represents one AURIGA system and the green circle
or red square indicate if the halo is relaxed or unrelaxed. (See the text
for definitions and further details.) In the relaxed sample, the 
(Jr ,L) and

total

ρ quantities show only a slight correlation (0.16), suggesting a complex
relationship between differences in action distributions and differences in
the final contacted profile.

Figure B2. The fractional differences in selected halo properties as a
function of radial distance. We plot the difference between halo quantities
calculated using the F (Jr, L) distribution measured in the DMO and in the
counterpart Hydro simulation. When reconstructing the halo properties we
use the same fixed potential, 	Hydro, measured in the Hydro simulation;
in this way any difference in the plotted quantities are due to variations
in the action distribution between the DMO and Hydro halo, and not to
changes in the potential. We show, from top to bottom, the differences in the
radial profile of: density, average radial action, average angular momentum,
average energy, and average velocity anisotropy. The black line gives the
median for our sample of relaxed AURIGA haloes, and the dark and light
green regions the 68 and 95 percentiles, respectively. The DMO density
profile, ρ (top panel), is systematically lower than in the Hydro counterpart,
driven by a systematic suppression of radial action in the Hydro halo at
every radius (second panel).
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enhance differences in DM halo properties. To control for changes in
potential, the results in Fig. B2 are obtained by constructing the DM
haloes using the same fixed potential, 	Hydro, measured in the Hydro
simulation. This allows a direct comparison of the orbital structure
in physical space, providing insight into the dependence of the dif-
ferences in density profile on the differences in action distributions.
The potential mechanisms behind non-adiabatic effects can also be
explored through the radial dependence of the action differences.

In Fig. B2, we consider the fractional differences in the density
and average actions as a function of radius. In the top panel we
see a ∼ 5 per cent underprediction of the DM density when using
actions of the DMO halo compared to the Hydro. The slightly
changed potential generated with this density profile causes the
density difference to grow with the iteration to 
total

ρ ∼ 8 per cent in
the final self-consistent profile. For L, we find very small systematic
differences, but none the less the Hydro simulations tend to have
slightly higher L values in the very inner regions and for r ∼ 0.3R200.
In contrast, the energy distribution is characterized only by small
stochastic differences.

The Jr in the DMO haloes is systematically higher at all radii
away from the very centre r � 0.1R200 (second panel). For a single
orbit, increasing Jr causes the median position of an orbit <r > |Orbit

to move radially outward, and mass to move from the radial centre
of the orbit to its endpoints, as seen in Fig. 6. This effect across all
orbits seems to drive the difference in density profile (top panel):
the density is higher in the Hydro haloes at intermediate radii, but
the density is higher in the DMO haloes at the centre and near R200.
The higher radial action gives more radial orbits in the DMO case,
increasing βDMO (see the bottom panel of Fig. B2).

For a discussion of how the results shown in Fig. B2 can be used
to understand the effects driving the non-adiabatic change in DM
actions between the AURIGA DMO and Hydro simulations, we refer
the reader to the last paragraph of Section 3.2.
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