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Abstract 

In the last two decades, IF1, the endogenous inhibitor of the mitochondrial F1Fo-ATPase (ATP synthase) 

has assumed greater and ever greater interest since it has been found to be overexpressed in many 

cancers. At present, several findings indicate that IF1 is capable of playing a central role in cancer cells by 

promoting metabolic reprogramming, proliferation and resistance to cell death. However, the 

mechanism(s) at the basis of this pro-oncogenic action of IF1 remains elusive. Here, we recall the main 

features of the mechanism of the action of IF1 when the ATP synthase works in reverse, and discuss the 

experimental evidence that support its relevance in cancer cells. In particular, a clear pro-oncogenic 

action of IF1 is to avoid wasting of ATP when cancer cells are exposed to anoxia or near anoxia 

conditions, therefore favoring cell survival and tumor growth. However, more recently, various papers 

have described IF1 as an inhibitor of the ATP synthase when it is working physiologically (i.e. 

synthethizing ATP), and therefore reprogramming cell metabolism to aerobic glycolysis. In contrast, 

other studies excluded IF1 as an inhibitor of ATP synthase under normoxia, providing the basis for a hot 

debate. This review focuses on the role of IF1 as a modulator of the ATP synthase in normoxic cancer 

cells with the awareness that the knowledge of the molecular action of IF1 on the ATP synthase is crucial 

in unravelling the molecular mechanism(s) responsible for the pro-oncogenic role of IF1 in cancer and in 

developing related anticancer strategies. 
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Introduction 

During the last decades, numerous proteins have been shown to express pro-oncogenic action in 

different cancers. Among these proteins a peculiar and interesting role is played by the endogenous 

inhibitor of the mitochondrial ATP synthase (F1Fo-ATPase), IF1, also called “Inhibitor Factor 1”. It is a 

low molecular mass protein first identified in bovine heart mitochondria by Pullman & Monroy [1] and 

subsequently it was found ubiquitously expressed in eukaryotes. It has been described in monocellular 

organisms [2, 3] and more extensively in mammalian tissues, where it was found present at different 

levels [4-6], and in particular in slow and fast beating hearts animals [7]. The presence of the intrinsic 

inhibitor and its interaction with the ATP synthase appear of critical importance in eukaryotic cellular 

life, therefore it is worth clarifying its role(s) also in cancer cells. 

The human mature protein, encoded by the nuclear gene ATP5IF1 in chromosome 1, is composed 

of 81 amino acids and presents a high sequence homology of about 75% with the bovine IF1 (Figure 1A).  

In aqueous solution, IF1 exists as monomers, dimers, and oligomers depending on the pH. At slightly 

acidic pH the equilibrium is forced toward the dimeric state (Figure 1B) and the ATP hydrolytic activity 

of the enzyme is fully inhibited, whereas at alkaline pH IF1 is predominantly oligomeric and inactive [8, 

9]. In addition, the oligomeric state and consequently the inhibitory potency of IF1 is sensitive to both the 

ionic strength and the nature of cationic species [8]. 

 



3 
 

Figure 1. Protein sequence alignment of bovine and human IF1 and its dimeric structure. 
(A) Pairwise alignment of the complete sequence of bovine (UniprotKB - P01096) and human 

(UniprotKB - Q9UII2) IF1 protein, performed by Clustal omega program. The N-terminal inhibitory 

and the antiparallel -helical coiled coil region are dyed in yellow and cyan, respectively. (B) 3D 

depiction of the bovine dimeric IF1 (PDB code: 1GMJ). The representation shows the monomer 

association via an anti-parallel α-helical coiled-coil in their C-terminal regions (cyan) and the N-

terminal inhibitory regions extending in opposite regions (yellow). The N-terminal domain of both 

monomers are truncated because only few residues of these domains were resolved in the structure. 

 

In eukaryotes, IF1 is found in mitochondrial matrix, but it is still unclear whether under 

physiological conditions it is free or bound to the F1Fo-ATPase. Interestingly, a very recent paper challenged 

the hypothesized contribution of IF1 to the formation of inactive ATP synthase tetramers [10]. Nonetheless, the 

coexistence of active ATP synthase dimers and inactive tetramers, resulting from the binding of IF1 to ATP 

synthase dimers in the hydrolytic mode, may be hypothesized considering that individual cristae within the same 

mitochondrion can have different membrane potentials [11]. Alternatively, under conditions leading to ATP 

synthase dimers in the hydrolytic mode, tetramers could result from insufficient IF1 to inhibit all the ATP synthase 

dimers [10]. 

At present, IF1 is considered to be a reversible non-competitive inhibitor of ATP hydrolysis 

catalyzed by isolated F1-ATPase and in situ F1Fo-ATPase  under conditions of collapsed proton motive 

force [8] (see scheme, Figure 2). This occurs in the ischemic heart (for review see [12, 13]) and in cancer 

cells exposed to anoxia or anoxia mimicking uncoupling conditions [14]. 

The F1Fo-ATPase is a multimeric complex of about 600 kDa mass, located in the inner 

mitochondrial membrane where it phosphorylates ADP with inorganic phosphate at the expenses of the 

proton motive force (H+) produced by the respiratory chain. Its catalytic moiety, F1, constituted by 9 

subunits, 33in order of decreased molecular weight, is bound to the membrane sector, Fo, and 

protrudes within the matrix. The enzyme complex contains three equivalent catalytic sites located at the 

 interfaces that in situ differ one another for the nucleotide affinity. This affinity depends on the 

interaction of each  dimer with the -subunit. This subunit rotates during the catalytic turnover, 

therefore on a 360 degrees round, all the three catalytic sites experience the three different affinity states 

[15]. Notably, the ATP synthase is a reversible enzyme that under collapsed H+ hydrolyzes ATP, 

produced by glycolysis/glycogenolysis in the cytosol of the cells, to contribute re-establishing and 

maintaining H+. Incidentally, a similar condition occurs in vivo on an ischemic tissue. Indeed, the 

cellular energy metabolism generates acidification of both cytosolic and mitochondrial matrix 

compartments promoting the formation of the active dimeric state of IF1 that binds two F1 molecules, as 

clearly established by Cabezon et al. [16]. Under collapsed H+, cytosolic ATP can cross the inner 

mitochondrial membrane in exchange for ADP [17] and the enzyme pumps H
+
 from the matrix to the 

intermembrane space exploiting the energy released by ATP hydrolysis (Figure 2).  
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Figure 2. Schematic presentation of the mitochondrial F1Fo-ATPase catalytic activities. 
The Schematic subunit composition of mitochondrial ATP synthase is from Prof. J.E. Walker Medical 

Research Council, Mitochondrial Biology Unit, University of Cambridge (http://www.mrc-

mbu.cam.ac.uk/projects/2679/subunit-composition. Left panel: proton transport drives ATP synthesis 

in cells under physiological condition (normoxia). Central panel refers to IF1-silenced cancer cells 

exposed to anoxia or anoxia-mimicking (uncoupling) conditions. The enzyme pumps protons from the 

mitochondrial matrix to the IMS (intermembrane space; i.e. intracristae space). The right panel shows 

the block of the ATPase activity in cancer cells due to the binding of the inhibitor, as it occurs in vivo 

under anoxia. Green and red arrows indicate allowed and forbidden proton translocation through the 

ATP synthase, respectively. 

 

The reversal activity of the ATP synthase and the contribution of the ATP/ADP exchange to the 

transmembrane potential recovery allow mitochondria to save many of their functions, promoting the 

preservation of cellular homeostasis, and impede the cell death. To this aim, the inhibitory action of IF1 is 

fundamental since it allows to maintain the correct balancing between the H+ and the ATP levels, 

avoiding an excessive ATP consumption by the F1Fo-ATPase complex [13]. 

The molecular mechanism of inhibition has been described in detail by Walker and coworkers 

[18-20]. In synthesis, the same Authors proposed that the inhibitor binds F1 when it hydrolyzes ATP: IF1 

interacts with the  dimer at the lowest affinity site for nucleotides (i.e. the empty catalytic site) and 

following the hydrolysis of two molecules of ATP, it moves into the hexamer preventing the rotor 

from turning further (Figure 3).  
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Figure 3. Binding of IF1 to the F1Fo-ATPase. (A) The 3D depiction shows the binding of the N-

terminal inhibitory region of IF1 (red) to the F1Fo-ATPase. The N-terminal region of IF1 occupies an 

aqueous cleft between the C-terminal domain of the DP(green) and DP(blue) subunits of the F1 

domain and interacts with the  subunit (yellow) (PDB code: 7AJF). (B) Upper view of the transversal 

section of the F1 domain in close proximity to IF1 and -subunit interaction is shown. 

 

The presence of an endogenous inhibitor of the ATP synthase appears to be of great importance in 

all the biological systems containing ATP synthases, although its mechanisms of action are still debated, 

particularly in cancer cells. Several authors from different laboratories reported that IF1 is overexpressed 

in human cancer and this has led to the hypothesis about its pro-oncogenic role [see below]. However, in 

the last two decades, besides the originally described action as an inhibitor of the ATP hydrolytic activity 

of the enzyme driven by a severe drop of the inner mitochondrial membrane potential (m) (i.e. the 

main component of H+), several other functions have been ascribed to IF1 (Table 1).  

The present review will describe and discuss two main aspects of proposed roles for IF1 in cancer.  

First, the controversial modulation of the ATP synthase activity in cancer cells [5, 21-23] and second, the 

contribution of IF1 to modulate reactive oxygen species (ROS) levels and associated protection of cancer 

cells from apoptosis [23-27].  



6 
 

This will contribute the understanding of the IF1 functions and the clarification of the molecular 

mechanisms through which the F1Fo-ATPase is controlled by its endogenous inhibitor. Considering the 

importance of the ATP synthase, the main producer of energy in human cells to which the whole cell 

metabolism is strictly associated, understanding the function(s) and defining the molecular mechanism(s) 

of IF1 action in cancer cells is essential to open new effective approaches to fight this disease. 

 

Table 1 Proposed roles for IF1 

Action Mechanism of action Citation 

IF1 regulates the ATP 

hydrolysis in hepatoma 22a 

mitochondria 

Almost all F1Fo-ATPase in hepatoma mitochondria have IF1 bound in a 

not inhibitory manner, but mitochondria preincubated with an 

uncoupler decreased the rate of ATP hydrolysis, indicating activation 

of IF1  

Chernyak et al. 1991  [28] 

IF1 contributes to the 

myocardial ischemic 

preconditioning  

IF1 contributes to the protective mechanism of myocardial 

preconditioning during the critical phase of the very early reperfusion 

of the ischemic heart by slowing down the reactivation of the ATP 

synthase 

Bosetti et al. 2000  [29] 

IF1 modulates the activity of 

angiostatin on the endothelial 

cell surface    

IF1 binding to surface F1Fo-ATPase conserves ATP particularly at low 

extracellular pH and it could contribute to modulate angiogenesis 

Burwick et al. 2005  [30] 

IF1 promotes dimerization of 

the mitochondrial F1Fo-ATP 

synthase 

Overexpression of IF1 in AS-30D hepatoma mitochondria correlated 

with an increase in the Dimer/Monomer (D/M) ratio of the ATP 

synthase. Removal of IF1 increased the F1Fo-ATPase activity and 

decreased the D/M ratio of the ATP synthase 

García et al. 2006  [31] 

IF1 protects the liver from 

sepsis in rats 

It was observed that suppression of IF1 expression caused elevated 

mitochondrial F1Fo-ATPase activity, contributing to the bioenergetic 

failure in the liver during late sepsis 

Huang et al. 2007  [32] 

IF1 could play a role in 

regulating different 

mitochondrial functions in 

proximal and distal tubule of 

nephrons 

By measuring the mitochondrial membrane potential and the 

respiration both in normal conditions and in presence of a specific 

inhibitor, the Authors hypothesized the role of IF1 in the regulation of 

the mitochondrial function of different parts of the kidney tubules 

Hall et al. 2009  [33] 

Atpif1 deficiency reduces the 

synthesis of haem 

Atpif1 regulates the catalytic efficiency of vertebrate ferrochelatase to 

synthesize haem and it loss may result in congenital sideroblastic 

anaemias and mitochondriopathies 

Shah et al. 2012  [34] 

IF1 limits the apoptotic 

signalling cascade by 

preventing mitochondrial 

remodelling 

IF1 contributes to the structural re-arrangement of mitochondria during 

apoptosis, modifying the mobilization of Cytochrome c and so altering 

the downstream cascade of events 

Faccenda et al. 2013  [35] 

IF1 as an essential factor for 

PARK2 recruitment and 

mitophagy 

In uncoupled mitochondria IF1 promotes collapse of ΔΨm and 

activation of the PINK-PARK2 mitophagy pathway by blocking the 

ATPase activity of the F1Fo-ATP synthase 

Lefebvre et al. 2013  [36] 

IF1 plays a role in the 

glucocorticoids cellular 

stress-induced program   

IF1 coimmunoprecipitate with the glucocorticoid-induced protein 

kinase, Sgk-1, at neutral pH, allowing mitochondria to contribute the 

cellular stress-induced program of the hormones 

O'Keeffe et al. 2013  [37] 

IF1 is suggested to promote 

metabolic preconditioning in 

neurons   

An IF1 mutant form inhibits the F1Fo-ATPase increasing ΔΨm and 

ROS that promotes Akt/p70S6K and PARP repair pathways and Bcl-

xL protection from cell death 

Formentini et al. 2014  [38] 
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Reciprocal activation of IF1 

and NF-kB drive 

Hepatocellular Carcinoma 

Angiogenesis and Metastasis 

IF1 promoted Snai1 and vascular endothelial growth factor (VEGF) 

expression by way of activating nuclear factor kappa B (NF-kB) 

signaling and IF1was directly transcribed by NF-kB, thus forming a 

positive feedback signaling loop 

Song et al. 2014  [39] 

Inhibition of ATPIF1 

Ameliorates Severe 

Mitochondrial Respiratory 

Chain Dysfunction in 

Mammalian Cells 

A genome-wide genetic screen in haploid human cells revealed that 

loss of ATPIF1 strongly protects against antimycin-induced ETC 

dysfunction and cell death by allowing for the maintenance of 

mitochondrial membrane potential. The Authors suggested that 

inhibition of ATPIF1 can ameliorate severe ETC dysfunction in 

mitochondrial pathology 

Chen et al 2014  [40] 

IF1 is a potential prognostic 

marker for the migration and 

invasion of glioma 

IF1 may promote glioma cell migration and invasion through the 

nuclear factor-κB (NF-κB)/Snai1 axis since IF1 knockdown inhibited 

the expression of NF-κB and Snai1, and led to increased E-cadherin 

expression and reduced vimentin expression.  

Wu  et al. 2015  [41] 

IF1 mediates the tumor cell 

cycle 

IF1 knockdown on breast carcinoma cell proliferation suppresses 

cyclins and cyclin-dependent kinases related to G1/S transition and 

then induction of G0/G1 arrest 

Wei et al. 2015  [42] 

IF1 is a prognostic marker and 

contributes to proliferation 

and invasion of human gastric 

cancer 

IF1 knocked down in gastric cancer cell line SGC-7901 led to a 

significant reduction of cell proliferation and to the increase of cell 

death. IF1-expressing and -silenced SGC-7901 cells implanted in nude 

mice confirmed the in vitro results   

Yin et al. 2015  [43] 

ATPase IF1 expression is a 

prognostic factor in non-small 

cell lung cancer 

Elevated expression of IF1 may be associated with lymph node 

metastasis of non-small cell lung cancer and serves as an independent 

prognostic and recurrent indicator for the patients 

Gao et al. 2016  [44] 

IF1 contributes the control of 

mitochondrial remodelling 

and apoptosis 

IF1 activates a pro-oncogenic mechanism of evasion of apoptosis 

occurring through optic atrophy 1 (OPA1)-dependent maintenance of 

cristae shape and preservation of redox balance 

Faccenda et al. 2017  [45] 

IF1 seems to contribute the 

benzopyrene-induced 

reprogramming of cancer 

cells to the Warburg effect 

The molecular mechanism reported is mainly based on the  

IF1 expression increase induced by benzopyrene   

Hardonnière et al. 2017  [46] 

Role of IF1 in mitohormesis The authors hypothesize that the actions of IF1 on the F1Fo-ATPase are 

the bases through which the enzyme modulates signaling pathways that 

allow mitohormesis response (i.e. on ATP, ROS and target of 

rapamycin) 

Esparza-Moltó et al. 2017  

[47] 

IF1 sustains migration, 

invasion and proliferation 

pancreatic ductal 

adenocarcinoma cells 

IF1 in both pancreatic acinar cells and pancreatic ductal 

adenocarcinoma allow to maintain ΔΨm and ATP levels in conditions 

of chemical hypoxia 

Tanton et al. 2018  [48] 

Reduction of IF1 leads to 

visual impairment in 

vertebrates 

 

Alterations in IF1 expression lead to visual impairments in both 
zebrafish larvae and mice that are associated with an observed 
interlink between IF1 level and OPA1 processing 

Martín-Jiménez et al. 2018  

[49] 

IF1 regulates glucose-

stimulated insulin secretion  
IF1 in pancreatic -cells is bound to the ATP synthase also under 

normal physiological conditions and its silencing increases insulin 

secretion over a range of glucose concentrations 

Kahancová et al. 2018  [50] 

IF1 inhibition improves the 

antitumor effect of YC-1 

against hepatocellular 

carcinoma 

Limiting the action of IF1 the p-STAT3 level decreased, determining 

increased expression of the tumor suppressor gene E-cadherin 

Ding et al. 2018  [51] 

Overexpression of IF1 acts as 

a tumor suppressor in 

colorectal carcinomas  

Overexpression of mitochondrial IF1 prevents metastatic disease of 

colorectal cancer by enhancing anoikis and tumor infiltration of natural 

killer cells 

González-Llorente et al. 2019  

[52] 

IF1 contributes the control of 

Ca2+ homeostasis 

IF1 is required for maintaining mitochondrial Ca2+ homeostasis by 

regulating the expression of the Ca2+ uniporter (MCU) via the 

AMPK/CREB pathway 

Faccenda et al. 2021  [53] 
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IF1 is overexpressed in human cancer 

The first evidence of overexpressed IF1 in mammalian cancer was provided by Luciakova and 

Kuzela [54] who observed that the content of  F1-ATPase in mitochondria of Zajdela hepatoma and Yoshida 

sarcoma did not differ significantly from that measured in mitochondria of rat liver and heart, whereas the 

content of IF1 revealed that the tumor mitochondria contained 2-3-times more ATPase inhibitor than rat liver and 

heart. Subsequently, Capuano et al. [55] analyzing the oxidative phosphorylation enzymes in human normal and 

neoplastic cells confirmed the higher level of IF1 compared to that of the F1Fo-ATPase. In a more recent paper, Bravo 

et al. [56] agreed with previous studies and reported a 2-fold enhancement of IF1 content in hepatoma AS-30D 

submitochondrial particles compared to normal rat liver controls. Finally, Cuezva et al. [5, 25, 26] 

reported IF1 to F1Fo-ATPase ratios greater than two in different types of human and cancer cells. High 

levels of IF1 in a number of cancers have been linked to increased glycolysis, resistance to cell death, 

increased migration, and proliferation [39]. These connections and the need to define the role of this 

overexpressed protein in many cancers pushed a number of researchers to deeper investigate the 

function(s) and the mechanism(s) of action of IF1 in cancer cells. Only with a clear-cut identification of 

the molecular mechanisms of action of a pro-oncogenic factor as IF1, will the scientific basis be 

established for drug development to oppose proliferation and diffusion of cancer cells, and resistance to 

the action of drugs. 

 

IF1 and metabolic reprogramming in cancer cells 

 Cancer cell metabolism is extremely heterogeneous and it might promptly change to adapt and 

suitably interact with the microenvironment. The heterogeneity of the metabolism, the capability to interact 

with different microenvironments, and the great proliferation rate characterizing cancer cells require 

reprogramming their metabolism compared to parental, non-transformed cells. Alterations of cellular 

metabolism are considered crucial hallmarks of cancer and are essentially determined by mutational 

events that combine altering multiple and fundamental signalling pathways [57-60]. Here, the energetic 

metabolism of cancer cells, in particular the modulation of the activity of mitochondrial F1Fo-ATPase, that 

can be affected by IF1, will be addressed.  

 It is well known that many cancer cells adopt the so-called aerobic glycolysis, “Warburg effect” [61], 

consisting in a higher glycolytic flux (2-17 fold) compared to normal cells in the presence of physiological 

concentrations of oxygen [62]. Aerobic glycolysis is certainly induced by oncogenes such as MYC and the 

hypoxia inducible factor HIF-1 that increase the level of glycolytic enzymes and inhibit pyruvate oxidation, 

therefore limiting the rate of the tricarboxylic acid cycle and the coupled rate of oxidative phosphorylation 
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(OXPHOS) [63, 64]. This allows cancer cells to meet both the great requirement of glycolytic intermediates 

to produce mass, reducing equivalents (NADPH), and supply ATP to support the high anabolism necessary 

for the great proliferation rate of cancer cells [65, 66]. According to the above evidence and considering the 

tight control of ADP phosphorylation by the mitochondrial membrane potential, m, one might assume that 

IF1 does not play any significant role in mediating the shift of cancer cells to an enhanced aerobic 

glycolysis. Nonetheless, in several papers, proposing the involvement of IF1 in the modulation of ATP 

synthesis is proposed. Indeed, over the past decade Cuezva and coworkers reported that IF1 is as an 

important player in cancer cell acquisition of the Warburg metabolic phenotype [5, 26, 67]. The first of these 

studies was based on assays carried out in mouse hepatoma (Hepa 1–6), human hepatocarcinoma (HepG2), 

and cervix carcinoma (HeLa) cells in which IF1 was transiently overexpressed or silenced [5]. The authors 

observed that overexpression of IF1 in cells expressing low levels of IF1 triggered the upregulation of 

aerobic glycolysis and the inhibition of state 3 respiration rate (ADP-stimulated respiration rate) with 

concurrent mitochondrial hyperpolarization. In addition, the authors observed that IF1 overexpression 

mimicked the effects of cell treatment with the ATP synthase inhibitor oligomycin, and from this 

observation drew the conclusion that IF1 controls the activity of oxidative phosphorylation by inhibiting 

the F1Fo-ATPase under the physiological conditions of ATP synthesis. Subsequently, the same authors 

reported similar findings with human colon tumor cells (HCT116) [25]. Recently, Kahancova et al. [50] 

inferred that IF1 inhibits the ATP synthesis rate in a model of pancreatic -cells. Their hypothesis was 

based on the observation that both ATP concentration and state 3 respiration decreased in cells 

overexpressing IF1, and that IF1 silencing resulted in the opposite effect. However, in neither set of 

experiment was the synthetic or hydrolytic activity of the F1Fo-ATP synthase determined directly in situ, 

although it would have been crucial to do so. In addition, both overexpression and silencing of IF1 were 

transient, and therefore the cellular content of IF1 cell content was heterogeneous and cells experienced an 

unstable condition that is far from an unperturbed steady-state. 

Conversely, other researchers, working independently, reported that IF1 inhibited the ATP 

synthase complex only when it works in reverse, hydrolyzing ATP, a condition widely described in the 

earliest literature as above mentioned. Indeed, Campanella et al. [22] in HL-1, C2C12, and HeLa cells 

observed that IF1 overexpression increased the formation of dimeric ATP synthase complexes that was 

associated with an increased F1Fo-ATP synthase activity. Although the authors approached the study by 

means of an indirect method based on the assay of m in cells containing or lacking IF1, under 

conditions of fully active or oligomycin-inhibited oxidative phosphorylation, the decrease in m 

induced by IF1 was confirmed subsequently by others [14, 21, 23, 48, 68] directly measuring the ATP 

synthesis rate using reliable luminometric assays. The presence of IF1 never caused an inhibition of the 

ATP synthesis rate by OXPHOS in different cancer cell lines. In addition, Sgarbi et al. [14] showed that 
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also in severe hypoxia (up to 0.1% O2) osteosarcoma 143B cells synthesized ATP, although at a lower 

rate compared to normoxic conditions, but the rate was unchanged whether IF1 was expressed or silenced. 

These results were in line with the m measurements carried out in IF1-expressing and -silenced cells 

and crucially, m values were unaffected by the addition of oligomycin, thus excluding any contribution 

to m from ATP hydrolysis. Under anoxia-mimicking conditions (uncoupling conditions) the presence 

of IF1 allowed the m collapse, whilst in IF1-silenced cells it was significantly preserved at the expenses 

of glycolytic ATP [27]. It should be stressed, that in osteosarcoma cells the expression of IF1 was 

sufficient to inhibit the entire ATPase activity, as shown by measuring the ATP level of oligomycin-

inhibited and control cells exposed to an uncoupler [14]. Similar experiments were performed also using a 

stably IF1-silenced human embryonic kidney cell lines (HEK-293), and they fully confirmed the results 

obtained in the osteosarcoma experiments. IF1-induced m collapse matched results obtained under 

uncoupling conditions in HeLa cells [36]. Finally, ATP hydrolysis by ATP synthase reconstituted into 

phospholipid vesicles was, as expected, inhibited by IF1, and ATP synthesis could only be observed in the 

presence of IF1 to inhibit low levels of uncoupled enzyme in the vesicles, which otherwise would destroy 

any newly synthesized ATP [68]. The clear conclusion from the above investigations is that IF1 is 

excluded from contributing to the metabolic reprogramming of cancer cells towards a Warburg effect 

under normal and even in hypoxic conditions. 

 Besides the above experimental results, the inhibition of the ATP synthase by IF1 under 

physiological conditions could be excluded in principles. As described briefly in the Introduction section, 

the molecular mechanism of the IF1 mediated-ATP hydrolytic inhibition has been exhaustively clarified 

[18]. As all recognize, the ATP synthase complex is a reversible enzyme: it can catalyze both the 

synthesis of ATP driven by proton translocation from the IMS to the matrix and the reverse reaction 

pumping protons towards the IMS driven by ATP hydrolysis. Clearly, the direct and the reverse reaction 

proceed through mirror mechanisms. IF1 cannot inhibit the synthesis of ATP by the same mechanism 

adopted to block ATP hydrolysis. Indeed, as widely demonstrated, conditions leading to ATP synthesis 

(i.e. proton motive force onset and returning to matrix pH physiological value) promoted IF1 release from 

the enzyme, as occurs in reperfusion following an ischemic insult [4, 29, 69, 70]. Therefore, the proposed 

role of IF1 as inhibitor of ATP synthesis by OXPHOS lacks a clear-cut molecular mechanism. 

 Finally, some years ago, it was reported that IF1 in mitochondria can be phosphorylated and 

dephosphorylated at residue Ser-14 and that the only dephosphorylated protein binds to and inhibits the 

mitochondrial ATP synthase [67]. This observation could be of considerable scientific and translational 

interest. However, it is noteworthy that Ser-14 is not an absolutely conserved residue in mammalian IF1 

proteins, and therefore this proposed mechanism of regulation requires further investigation. 
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IF1 modulates reactive oxygen species in cancer cells 

Another important and undefined aspect of the overexpression of IF1 in cancer cells concerns its 

possible role in homeostasis of reactive oxygen species (ROS) homeostasis, given the roles of ROS in 

cancer pathogenesis and expansion. Low levels of ROS are modulators at transcriptional sites and support 

cancer development and progression [71, 72]. Elevated levels of ROS have been observed generally in 

cancer cells, and increased levels of mitochondrial ROS were shown to promote cell proliferation, 

survival, and migration [73-75]. For these reasons the targeting of mitochondria to the disruption of cell 

redox communication might be considered to be promising for the development of an anticancer strategy 

[76]. Indeed, high levels of ROS are toxic to cells [75] and the induction of their elevation by therapeutic 

intervention could represent a valid approach to cancer therapy, as supported by various studies [77-79]. 

Therefore, ROS might be considered to be a double-hedged swords in cancer.  This section will be 

focused mainly on the association between IF1, the levels of ROS, and resistance to cell death in cancer 

cells. 

 Campanella et al. [24] analyzed and compared the rate of oxidation of dihydroethidium (DHE) in 

HeLa cells with IF1 either transiently overexpressed (+IF1) or silenced (-IF1) in order to evaluate the 

respective ROS level and to assess the possible role of IF1 in regulating autophagy. The experiments 

showed that the expression of IF1 played a significant role in defining both resting rates of ROS 

generation and cellular content of mitochondria, allowing the conclusion to be drown that IF1 diminished 

mitochondrial ROS generation, limiting autophagy which was significantly increased by knockdown of 

IF1. The action of IF1 as a decreasing factor of ROS level in cells found a strong corroboration by the 

work of Fujikawa et al. [23] who showed that the ROS level Hela cells where IF1 had been knocked down 

stably was double the level in controls, and associated this to the higher m measured in IF1 knockdown 

cells. However, it is noteworthy that although ROS levels increased in IF1 knockdown HeLa cells, their 

growth was unaffected. Similar results were obtained in osteosarcoma 143B cells in our laboratory [21]. 

Further support to the assertion that IF1 is capable to limiting ROS levels in cancer cells came from a 

comparison of ROS levels in osteosarcoma cells grown under normoxic and severe hypoxic conditions 

(0.5% O2) [27]. By means of the CellROX fluorescent probe which senses peroxides and other oxidants, 

total ROS were assayed in osteosarcoma 143B cells containing IF1 and in the same cells where IF1 had 

been stably silenced. Under both normoxic and hypoxic conditions the presence of IF1 clearly correlated 

with a significantly lower level of ROS than in its absence. Concurrently, this work also showed that in 

osteosarcoma IF1-silenced cells, the superoxide level in mitochondria as measured with the MitoSOX Red 

probe, was higher than that in cells where IF1 was being expressed. Interestingly, the level of ROS in 

hypoxic osteosarcoma cells has decreased significantly compared to the normoxic conditions whether or 
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not IF1 was expressed. These findings are consistent with previously reported results obtained by 

analyzing the O2 tension-dependence of ROS levels in human fibroblasts [80]. 

 However, a number of papers reported dissimilar results, where in contrast, the levels of ROS 

were enhancement by increases in the levels of IF1. Thus, Formentini et al. [25] observed that 

upregulation of IF1 in HCT116 cells triggered a significant increase in the production of superoxide, as 

evaluated by the MitoSOX probe and that a pretreatment with the mitochondrial antioxidant MitoQ [81] 

quenched superoxide production in IF1 overexpressing cells, and also  ameliorated the basal level of 

mitochondrial ROS in control cells. The authors also reported that overexpression of IF1 did not affect the 

levels of cellular hydrogen peroxide or the GSH/GSSG ratio. The latter observations seem quite in 

contrast due to the well-known action of the superoxide dismutases, which are ubiquitously present in 

human cells, to convert the superoxide radicals into hydrogen peroxide with high rate and efficiency [82]. 

On the basis of their findings, the authors proposed the following sequence of events: IF1 overexpression  

upregulation of the level of ROS (o superoxide)  promotion of NF-kB transcriptional activation via IkB 

downregulation and phosphorylation  increase rate of proliferation, invasiveness and Bcl-xL-mediated 

resistance to drug-induced apoptosis. The role of IF1 in conferring resistance to staurosporin-induced 

apoptosis was supported by experimental evidence carried out in different types of cancer cells [25, 26, 

45]. However, according to Faccenda et al. [45] it occurred independently from activation of the NF-kB 

pathway. Indeed, dimeric IF1 could stabilize the oligomerization of the ATP synthase binding between two 

monomeric ATP synthases in two adjacent dimers [10]. This might prevent OMA1-induced OPA1 

processing that impedes mitochondrial cristae re-modelling [45, 53], thus inhibiting cytochrome c release 

and the activation of the intrinsic apoptotic pathway. OMA1 is a mitochondrial inner membrane 

metallopeptidase and its activation may be promoted by various stress cellular signals as low cellular ATP 

level, altered m and increased oxidative stress [83]. As supported by experimental data, in addition to 

its direct role in mitochondria morphology and cristae shaping, IF1 could counteract apoptosis and confer 

chemoresistance to cancer cells by preserving ATP level that in turn contributes to the maintenance of an 

efficient antioxidant defense system (i.e. GSH and peroxiredoxins) and low cellular level of ROS [45]. To 

conclude, we should point out that in cancer cells the link between ROS and IF1 will be revealed only 

when the action of IF1 on the ATP synthase has been established definitively. 

 

 

Concluding remarks 

Three main points are clear-cut and generally agreed upon by the scientific community concerning 

the role of IF1 in cancer cells: first, IF1 is overexpressed in many cancer cells; second, IF1 displays a pro-

oncogenic potential; and third, IF1 inhibits the ATP hydrolytic activity of the mitochondrial F1Fo-ATPase 
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under conditions of collapsed H+ in cells, such as occurs under conditions of severe O2 deficiency such 

as is found in solid tumors, where oxygen deficiency occurs. In addition, other molecular mechanisms 

have been advanced to explain the pro-oncogenic activity of IF1, but until now, the experimental findings 

are contradictory and certainly insufficient. In particular, the proposed role of IF1 in metabolic 

reprogramming of cancer cells under the condition of F1Fo-ATPase synthetizing ATP requires further 

experimental validation, as this facet is advanced as a molecular explanation for the role of IF1 in 

tumorigenesis. An understanding of the biological roles and mechanism(s) of the interaction of IF1 with 

the ATP synthase is crucial for developing valuable diagnostic and therapeutic targets for cancer and 

possibly other human diseases. 

 

 

Perspectives 

 

(i) Defining the molecular mechanism(s) of the pro-oncogenic action of IF1, the main regulator 

of mitochondrial ATP synthase, is essential if the protein is to be developed as a target for 

cancer therapy. 

 

(ii) Our current knowledge of the molecular action of IF1 is that it acts to prevent ATP hydrolysis 

by the ATP synthase working in reverse (for example during anoxia). In dispute is the role of 

IF1 in normoxic cancer cells since it has been proposed that IF1 also inhibits the ATP synthase 

activity. Accordingly, divergent modulation of intracellular ROS homeostasis has been 

reported. 

 

(iii) Future reproducible experiments are required to resolve the currently opposed views 

concerning the action of IF1 in normoxic cancer cells. These experiments should also identify 

both the site of binding of IF1 to the enzyme and its molecular mechanism of action.  
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