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Abstract: This research delves into the complexities of backflow phenomena in finite-length and flat-
walled fractures with elastic walls, specifically focusing on power-law fluids, whose shear-thinning
behavior distinguishes them from Newtonian fluids. We model the backflow process under the
lubrication approximation and by incorporating the linear Navier slip law. We numerically examine
the influence of parameters such as slip length, fluid rheology, and external pressure on the backflow
propagation of the carrier fluid. Our findings underscore the significant role played by the rheological
index in determining the fracture closure rate. Additionally, our investigations highlight the marked
effect of external pressure variations on pressure distribution within the fracture. Notably, the
friction coefficient at the fracture walls, as denoted by a dimensionless slip number, exhibits limited
influence on the fundamental dynamics of the problem. These insights advance our understanding of
power-law fluid backflow and have wide-ranging applications across various engineering disciplines.

Keywords: elastic fracture; backflow; power-law fluid; Navier slip law; Winkler foundation

1. Introduction

Interest in the exploitation of the energy generated by the subsurface natural pro-
cess of radioactive decay in the earth’s crust is expected to steadily increase in the next
decades [1–3]. The high potential of deep geothermal reservoirs constitutes an abundant,
renewable, carbon-neutral, green energy source, either for heating or electrical power [4,5].
Advances in subsurface industrial operations aiming at oil and gas recovery [6–8], carbon
storage [9], as well as water supply [10], contributed to the development of both enhanced
geothermal systems (EGS) and hot dry rock (HDR). These technologies recover geothermal
energy at depths ranging from 3 to 10 km, injecting and/or withdrawing heat-exchange
fluids in fractured geological formations [11].

The characterization of hydrodynamics and thermal transport in geothermal reservoirs
is typically performed with an inter-well [12–14] or a Thermal Injection Backflow Test
(TIBT) [15]. The former is a reliable technique for inferring the connectivity, the inter-well
volume of the flow path, and the flow velocity between the injector and producer well.
The latter is more effective in determining heat transport parameters: heat capacities and
fracture/matrix thermal conductivity [13]. In particular, TIBT is a single-well technique
that may involve both heat and chemical/radioactive tracers and consists of three phases:
(i) a slug chemical/radioactive tracer is added into a low-temperature fluid, (ii) the carrier
is continuously injected into the geological formation, and finally, (iii) the fluid backflows
to the borehole. The tracer is recovered when the temperature of the carrier fluid tends to
the pre-injection temperature of the reservoir. The temperature transients during backflow
are interpreted to determine heat transport parameters [13], while the characteristics of the
tracer’s breakthrough allow estimating interface areas [16].
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An advantage of TIBT with respect to inter-well tests is the reduced impact of medium
heterogeneity as insensitive to variations in the advective process induced by spatial
variability. Indeed, the fluid retraces the same paths when it backflows. This results in a
clearer signal of matrix properties and fracture-matrix interaction parameters. However,
TIBT is sensitive to diffusive exchange of conservative or reactive solutes between fractures
and rock matrix.

Water is commonly used as the working fluid in subsurface industrial activities, mainly
because of its availability. The re-injection of the reservoir’s brine is a convenient solution,
also providing for its disposal. However, it induces premature breakthrough curves [17]
and undesired injection-induced reservoir cooling [18]. CO2 has been recently proposed in
EGS for its high compressibility, expansivity, and low viscosity [19,20]. From a rheological
point of view, fluids that exhibit a shear-thinning behavior (ST) may be considered for their
capability to promote a flow-enhancing behavior of the formation [21,22], to increase its
solute carrying capacity [23,24], and/or transport properties [25].

Different constitutive laws have been proposed to reproduce the non-linear relation-
ship between stress and shear rate shown by these fluids. The most popular ST law is the
Ostwald–de Waele model for its ease of use. It must be noted that its apparent viscosity
increases unbounded as the shear rate vanishes; vice versa, it decreases to zero as the
shear rate grows. There exist numerous constitutive laws that better represent the com-
plex nature of these fluids: the Ellis rheology is a three-parameter model that exhibits a
quasi-Newtonian plateau at low shear rates for the apparent viscosity, while the Carreau
rheology is a four-parameter model with two plateaus that bound the apparent viscosity
for both high and low shear rates. However, the lower number of rheological parameters
and the simpler power law that relates the apparent viscosity to the shear rates make the
Ostwald–de Waele model an effective choice for preliminary analysis.

Here, we focus on the final phase after the injection of the fracturing fluid and in-
vestigate the hydrodynamics of the backflow of an Ostwald–de Waele fluid in a smooth
fracture with rigid walls yielding a linear elastic response to the pressure field within.
This scheme was first adopted in the pioneering paper of Dana et al. [26], who studied
the backflow of a Newtonian fluid; later works of theoretical and experimental nature
expanded on the topic of relaxation-induced flow in fractures by adopting a power-law [27]
non-Newtonian constitutive equation. More recently, slipping walls [28] were added to
the schematic in conjunction with Newtonian flow; the main finding was that slip at the
fracture walls is a delaying factor towards the fracture closure. In the present work, we
combine the power-law rheology with slip flow, which, in turn, is often associated with
non-Newtonian flow behavior [29]. The analysis aims to provide new insight into the use
of shear-thinning fluids in TIBT, understanding the evolution of the temporal evolution of
the aperture and discharge rate, and the spatio-temporal dependency of the pressure field
and the time-to-drain of the fracture volume.

The manuscript is organized as follows: in Section 2 the mathematical problem is
derived in both dimensional and dimensionless form; Section 3 presents the semi-analytical
solution of the problem; Section 4 shows results, which are then interpreted for different
shear-thinning fluids; Section 5 discusses our conclusions.

2. Problem Formulation

We consider the flow, devoid of temperature effects, of an incompressible fluid in a
rectangular fracture of length L and width W along the x and y directions, respectively,
see Figure 1. The fracture is the void space limited by two smooth elastic walls of time-
dependent aperture h = h(t) along the z direction, and volume V(t) = h(t)LW. The
aperture h(t) is much smaller than the other two fracture dimensions. The initial separation
h0 = h(t = 0) results from the uniform pressure pe = p(x, 0) imposed at the outlet, while
the no-flow condition, the least impacting among boundary conditions, is considered at the
other end (x = L). As the fluid flows out of the fracture at the origin, the pressure drops
and the elastic walls relax, squeezing the fluid out of the fracture.
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Figure 1. The (a) 3D and (b) 2D schematics of a fracture with a finite length of L and a uniform
aperture of h0 varying over time and elastic wall behaving as an elastic foundation.

We hypothesize that a power-law constitutive law adequately reproduces the shear-
thinning behavior of polymer fluids; expressing the relationship between shear stress and
shear rate in terms of the apparent viscosity µapp as τzx = −µapp∂u(z, t)/∂z allows writing

µapp = −m
∣∣∣∣∂u(z, t)

∂z

∣∣∣∣ 1
n−1

(1)

where m is the consistency index, n is the shear-thinning exponent, and u is the velocity in
the x direction. The flow of an incompressible fluid between two parallel plates is governed
by the momentum balance

∂

∂z

(
µapp

∂u(z, t)
∂z

)
=

∂p(x, t)
∂x

. (2)

Substituting Equation (1) in Equation (2) and integrating leads to

−m
∣∣∣∣∂u(z, t)

∂z

∣∣∣∣ 1
n−1

∂u(z, t)
∂z

=
∂p(x, t)

∂x
z + c1, (3)
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where c1 is a constant of integration that is null due to the symmetry of the velocity profile
with respect to the mid-plane of the fracture, ∂u(z, t)/∂z(0, t) = 0, that has been imposed
as a boundary condition.

Subsequently, by imposing the Navier’s linear slip condition at both walls [29], i.e.,

u(0, t) = u(h, t) = sign
(

∂u(z, t)
∂x

)
k

∂u(z, t)
∂z

∣∣∣∣
z=0,h

= k
(

h(t)
2m

) 1
n
∣∣∣∣∂p(x, t)

∂x

∣∣∣∣ 1
n−1

∂p(x, t)
∂x

(4)

where k is the slip length (or friction coefficient) of dimensions [L] , the velocity profile is
further integrated to yield

u(z, t) = −
[

n
1 + n

(
1

2n+1m

) 1
n
(

h(t)
1+n

n − |z− h(t)|
1+n

n

)
− k
(

h(t)
2m

) 1
n
]∣∣∣∣∂p(x, t)

∂x

∣∣∣∣ 1
n−1

∂p(x, t)
∂x

. (5)

The mean velocity across the fracture is then

u(t) = −
[

n
2n + 1

(
h(t)1+n

21+nm

) 1
n

+ k
(

h(t)
2m

) 1
n
]∣∣∣∣∂p(x, t)

∂x

∣∣∣∣ 1
n−1

∂p(x, t)
∂x

, (6)

and enforcing the continuity equation in the form

dh(t)
dt

+ h(t)
∂u(t)

∂x
= 0 (7)

yields upon substituting Equation (6) in Equation (7)

dh(t)
dt

=

[
n

2n + 1

(
h(t)2n+1

21+nm

) 1
n

+ k
(

h(t)n+1

2m

) 1
n
]∣∣∣∣∂p(x, t)

∂x

∣∣∣∣ 1
n−1

∂2 p(x, t)
∂x2 . (8)

The backflow toward the inlet induces the relaxation of the walls due to a progressive
pressure reduction across the fracture. The fracture flow rate per unit width is defined
as q = (1/W)dV/dt = −Ldh/dt. In analogy to Winkler’s theory of linear foundations
applied to the wall (for convenience the wall reaction is concentrated in the upper wall
while in reality equally pertains to both walls), the walls’ reaction r(t), a force per unit width,
is proportional to the aperture, i.e., r(t) = Eh(t) [26], where the coefficient of subgrade
reaction E =E0/l depends on the Young modulus of the layer’s material, E0, and on the
fracture spacing l (see Figure 2). This approach holds as long as l < L < 1. Under this
conceptualization, the equilibrium at the wall requires∫ L

0
p(x, t)dx = r(t)L =

E0h(t)L
l

, (9)

Simplifying the boundary conditions by neglecting the convergence of flow lines
at the fracture outflow, the initial and boundary conditions to Equations (7) and (9) are:
h(0, t) = h0 is the initial fracture aperture, p(0, t) = pe is the pressure at the fracture
outflow, and ∂p(x, t)/∂x(L, t) = 0, is the condition at the fracture inflow, the least impacting
condition on the pressure within the fracture. The dimensionless formulation of the
problem is

1

H(T)
2n+1

n

dH(T)
dT

=

(
1 +

2(2n + 1)
n

Ns

H(T)

)∣∣∣∣∂P(X, T)
∂X

∣∣∣∣ 1
n−1

∂2P(X, T)
∂X2 , (10)

∫ 1

0
P(X, T)dX = H(T)− Pe(X, T), (11)
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in terms of the following dimensionless quantities,

X =
x
L

, T =
t
tc

, H =
h
h0

, P =
p− pe

Eh0
, Pe =

pe

pc
, Ns =

k
h0

, (12)

where Ns is a slip number expressing the slip length in the dimensionless form [28] and the
time and pressure scales tc and pc are

tc = (2n + 1)
(

m
E

) 1
n
(

2L
h0

) n+1
n

, pc = Eh0. (13)

h

h

L l

W

Horizontal Well

Figure 2. The three-dimensional schematics of wing symmetric fractures with spacing l. The arrows
in the figure indicate the fluid flow direction.

The initial and boundary conditions expressed in the dimensionless form are:

H(X, 0) = 1, P(0, T) = 0,
∂P(X, T)

∂X
(1, T) = 0. (14)

3. Solution

Solving the equations governing the problem requires the definition of an auxil-
iary function

G(T) =
1

[nH(T) + 2(1 + 2n)Ns]H(T)
1+n

n

dH(T)
dT

(15)

to integrate Equation (10) with boundary conditions given by the second and third expres-
sion in Equation (14), obtaining the pressure field as

P(X, T) =
[−G(T)]n

nn(n + 1)

[
1− (1− X)n+1

]
. (16)
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Then the final governing ordinary differential equation is derived by introducing
Equations (15) and (16) into Equation (11)

dH(T)
dT

+ n(n + 2)
1
n

(
H(T) + 2

2n + 1
n

Ns

)
H(T)

n+1
n

[
H(T)− Pe

] 1
n

= 0, (17)

which needs to be integrated over time with the initial condition given by the first expression
in Equation (14). Noteworthy, Equation (17) reduces to the following cases: (i) no-slip
Newtonian flow [26] for n = 1, Ns = 0; (ii) no-slip power-law flow [27] for Ns = 0; (iii) slip
Newtonian flow [28] for n = 1 and Ns 6= 0. The first two are amenable to an analytical
solution, while the third requires a numerical approach, as does the present case.

4. Results

We commence our numerical investigation by solving the nonlinear governing or-
dinary differential equation (ODE) of Equation (17) subjected to the initial condition
(H(X, 0) = 1) of Equation (14) using the ’ODE15s’ subroutine in Matlab [30]. The lat-
ter is a specialized numerical method designed for tackling stiff ODE systems through
the utilization of numerical differentiation formulae. The efficiency of employing this
numerical technique for solving nonlinear ODEs has been previously validated in our
earlier research, particularly in the context of studying the one-dimensional drainage of
power-law fluids from a finite-length fracture edge [31]. In our numerical studies, we
adopt a dimensionless slip number of Ns = k/h0 ≈ 0.01 which has been derived from
experimental findings by Zheng et al. [32]. Their research reports h0 = 500 µm as the value
of the initial fracture aperture and k = 8.84 µm as the slip length. In what follows, we
present the numerical results for various combinations of model parameters.

4.1. Time Evolution of Fracture Aperture

We investigate the backflow behavior of power-law fluids by examining the time
evolution of fracture aperture, as illustrated in Figure 3. Our numerical analysis is primarily
focused on two categories of fluids: Newtonian fluids (with n = 1) and shear-thinning
fluids with varying fluid indices (n = [0.3, 0.5, 0.7]). These fluid types are commonly
encountered in the context of fracturing fluids within geological fractures [33,34].

The results for different n values are depicted in Figure 3a–d on a log-log scale, span-
ning a dimensionless time range of Tmin = 10−4 to Tmax = 104. The temporal resolution is
set at ∆T = 0.001, and the dimensionless fracture aperture H(T) spans between 0.01 and 1.
For a Newtonian fluid (as depicted in Figure 3d), as time progresses, the numerical solution
for H(T) gradually converges to zero with a negative slope of m = 1/2.53 when the external
pressure is absent. Conversely, in scenarios where Pe is non-zero, the late-time solutions
exhibit an asymptotic behavior, stabilizing at a constant value equivalent to the external
pore pressure, i.e., H(T >> 1) ≈ Pe. It is worth noting that in the absence of external
pressure, the ODE of Equation (17) admits a semi-analytical solution, as documented in
Ref. [28]. These semi-analytical results are superimposed on Figure 3d using red dots,
revealing a good agreement with our numerical predictions.

We observe that by modifying the fluid behavior index, the backflow propagation of
shear-thinning fluids significantly changes. At early times (T << 1), H(T) is approximately
unit, and it decreases more rapidly for smaller n values, as depicted in the insets of
Figure 3a–c. In contrast, for late-time solutions, H(T) reaches its asymptotic values for
Pe = 0.1 and Pe = 0.5 more rapidly by increasing the n value, as shown in Figure 3a–c.
In cases where Pe = 0, H(T) approaches zero at a swifter rate with a steeper slope for
shear-thinning fluids featuring a smaller n index. We remark that across all these case
studies, the value Pe = 1 serves as a limit one for the borehole pressure.

Figure 4 demonstrates the same results for increasing external pressure values. In
specific, Figure 4a depicts the results for Pe = 0 with variable n values. It can be inferred
from the figure that the slope of H(T) increases by increasing n, leading to an earlier
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closure of the fracture aperture. The shear-thinning behavior of the carrier fluid favors the
tracer’s recovery by fastening the backflow to the inlet, as the apparent viscosity across the
fracture’s cross-section reduces. When we increase the external pressure from 0.1 to 0.8, the
asymptotic constant value of the late-time solution is obtained earlier for shear-thinning
fluids with larger n values (see Figure 4c,d). The higher the pressure gradients, the more the
carrier fluid thins, resulting in a lower apparent viscosity. The early-time solutions visualize
the rapid change of fluids with higher n values, as shown in the insets of Figure 4a–d.

H(T) →0.5

H(T) →0.1

H(T) →0.5

H(T) →0.1

H(T) →0.5

H(T) →1.0

2.53

10-4 10-2 100
0.96

0.98

1

1

(a) n=0.3

(c) n=0.7

(b) n=0.5

(d) n=1.0

Figure 3. Time evolution of fracture aperture for Ns = 0.01 and different values of Pe. Figures (a–d)
depict the results for different rheological index values. Red dots superimposed to (d) highlight the
analytical solution for the specific case of n = 1 and Pe = 0 adopted from Ref. [28].

4.2. Effect of the Friction Coefficient on the Fracture Opening

We aim to examine how the dimensionless slip number (Ns), representing the friction
coefficient of elastic walls, influences the backflow phenomenon in power-law fluids. To
achieve this, we conduct a parametric analysis, specifically investigating the impact of slip
length across three scenarios: Ns = [0, 0.01, 0.1]. These values span two orders of magnitude,
aligning with experimental data from Zheng et al. [32], broadening the previous analysis
conducted for a single Ns value.

We solve the nonlinear ODE presented in Equation (17) with zero external pressure
(Pe = 0) and varying fluid behavior indices, specifically n = [0.3, 0.5, 0.7, 1.0], as depicted in
Figure 5a–d, respectively. It can be concluded that by altering the slip length values, the
fundamental characteristics of both shear-thinning and Newtonian flows are preserved.
Across all scenarios, when there is no friction between the fluid and the elastic fracture
walls, the fracture aperture approaches zero with a steeper slope. In contrast, when friction
is introduced, the fracture remains open for a more extended duration of time. Furthermore,
we observe that shear-thinning fluids reach H(T) = 0 more rapidly, particularly for lower
n values. We should also remark that our numerical solution, in the absence of slip effects
and with a Newtonian fluid, aligns with the analytical solution documented in Ref. [26],
denoted by the red dots in Figure 5d.
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H(T) →0.5

H(T) →0.8

H(T) →0.1

(a) Pe=0

(c) Pe=0.5

(b) Pe=0.1

(d) Pe=0.8

Figure 4. Time evolution of fracture aperture for Ns = 0.01 and different power-law fluid inde-
ces n. Figures (a–d) depict the results for different Pe values. The continuous, dashed, dotted,
and dashed-dot lines in the subfigures represent different rheological indices of power-law fluid:
n = [0.3, 0.5, 0.7, 1.0], respectively.

Pe=0

Pe=0Pe=0

Pe=0

(a) n=0.3

(c) n=0.7

(b) n=0.5

10-4 10-2 100
0.96

0.98

1−1

(d) n=1.0

10-4 10-2 100
0.96

0.98

1

10-4 10-2 100
0.96

0.98

1

10-4 10-2 100
0.96

0.98

1

Figure 5. Time evolution of fracture aperture for zero borehole pressure (Pe = 0) considering different
flow behavior index in (a–d) and different slip numbers (Ns variable). Again, red dots superimposed
to (d) highlight the analytical solution for n = 1 and Pe = 0, see [28].
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In the next step of our numerical investigation, we replicate the same scenarios, but this
time we consider a dimensionless external pressure (Pe = 0.1), as illustrated in Figure 6a–d.
The key observation in this scenario is that the fundamental physical characteristics of
early-stage backflow propagation within a finite-length elastic fracture remain unchanged
when increasing the external pressure from Pe = 0 to Pe = 0.1. This constancy is attributed
to the dominant role of the carrier fluid in keeping the fracture aperture open during early
times. On the contrary, the fracture aperture reaches the asymptotic value of H(T)→ Pe
in the late time solutions for the case of non-zero external pressure. Similar to the zero-
pressure cases of Figure 5, shear-thinning fluids with lower fluid behavior indices reach
zero more swiftly, while the introduction of friction prolongs the period during which the
fracture remains open. The impact of the friction coefficient, however, is not significant
in the early-time solutions, yet becomes more remarkable during the late-time stages of
hydraulic fracturing likewise the case of zero external pressure.

Pe=0.1

Pe=0.1

10-4 10-2 100
0.96

0.98

1

10-4 10-2 100
0.96

0.98

1

(a) n=0.3

Pe=0.1

(c) n=0.7

(b) n=0.5

−1

(d) n=1.0

10-4 10-2 100
0.96

0.98

1

10-4 10-2 100
0.96

0.98

1

Pe=0.1

Figure 6. Time evolution of fracture aperture for a given borehole pressure (Pe = 0.1) considering
different flow behavior indices in (a–d) and different slip numbers (Ns variable).

4.3. Pressure Distribution Inside the Fracture

We additionally aim to comprehend the temporal progression of pressure within
the fracture across its length along the x-axis. To achieve this, we numerically calculate
the pressure field defined in Equation (16), by substituting the values of G(T) and H(T)
acquired from Equations (15) and (17), respectively. These dimensionless pressure profiles
are shown for distinct dimensionless time instances, T = [0, 50, 100, 500], corresponding to
the early, middle, and late time instances.

The results are summarized in Figure 7a–d for a Newtonian fluid propagating along the
dimensionless horizontal axis (x), which is normalized by the length of the fracture. These
results correspond to various external pressure values, specifically Pe = [0, 0.1, 0.5, 0.8]. In
all these case studies, the pressure profiles at the initial times are zero at the fracture outlet
(X = 0) and increase along the fracture length, reaching their maximum at the crack tip
located at the fracture inlet (X = 1). As time progresses, we observe a gradual flattening of
the pressure profiles, accompanied by a reduction in pressure at the crack tip. For cases
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with Pe ≥ 0.5, the pressure field eventually becomes null at later time instances, specifically
P(X, T ≥ 500) = 0, as demonstrated in Figure 7c,d. The results presented in Figure 7
lead to the conclusion that as the external pressure increases, the pressure fields within
the fracture flatten and decrease. The most reduced pressure profiles are achieved when
the external pressure is at its highest, as illustrated in Figure 7d. Conversely, the more
significant internal pressure is observed when there is no external pressure, as for the case
presented in Figure 7a.

n=1

(a) Pe=0

(c) Pe=0.5

(b) Pe=0.1

(d) Pe=0.8

n=1

n=1 n=1

Figure 7. The evolution of the dimensionless pressure distribution inside the fracture of Newtonian
fluid (n = 1) over time having different external pressures (Pe variable). The subfigures utilize
solid, dashed, dotted, and dashed-dot lines to represent different time intervals: T = [0, 50, 100, 500],
respectively.

We provide a similar analysis for a shear-thinning fluid with a power-law index of
n = 0.3, considering the influence of external pressure variation, as displayed in Figure 8a–d.
Shear-thinning fluids demonstrate a pressure distribution within the fracture that resembles
what we observed in the case of Newtonian fluids, albeit with somewhat larger magni-
tudes for all external pressure levels. The pressure initiates at zero at the fracture outlet
(X = 0) and progressively rises along the length of the fracture, reaching its peak values
at the crack tip (X = 1). In the late-time propagation of shear-thinning fluids, there is an
almost constant value close to zero for Pe ≥ 0.8, as demonstrated in Figure 8d. We also
observe that the pressure variation from the outlet to the inlet is more prominent when
the external pressure is lower. The most significant variation is evident in the case where
the external pressure is absent, as illustrated in Figure 8a. In all examined scenarios, the
late-time pressure profile inside the fracture exhibits higher values for the shear-thinning
fluid compared to the Newtonian fluid.

In our final endeavor, we focus on analyzing the impact of the slip number (Ns) on
pressure distribution within the fracture. Specifically, we examine scenarios with no slip
at the elastic walls (Ns = 0) and a relatively large slip number (Ns = 0.1) for increasing
dimensionless time instances of T = [0, 50, 100, 500]. In both instances, we conduct our
analysis using a shear-thinning fluid with n = 0.3 and a Newtonian fluid, as illustrated
in Figure 9a,b, respectively. Our numerical investigation reveals that pressure profiles
within the fracture exhibit limited sensitivity to the variations of the slip number for both
shear-thinning and Newtonian fluids. Notably, the influence of the slip number becomes
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more prominent in the context of late-time pressure profiles. Consequently, the slip effect
induced by the elastic walls of the fracture appears to be a relatively less influential factor
in shaping the internal pressure field.

(a) Pe=0

(c) Pe=0.5

(b) Pe=0.1

(d) Pe=0.8

n=0.3 n=0.3

n=0.3 n=0.3

Figure 8. The evolution of the dimensionless pressure distribution inside the fracture of a shear thin-
ning fluid (n = 0.3) over time having different external pressures (Pe variable). The subfigures utilize
solid, dashed, dotted, and dashed-dot lines to represent different time intervals: T = [0, 50, 100, 500],
respectively.

(a) n=0.3 (b) n=1.0

Ns=0.0
Ns=0.1

T↑T↑

Figure 9. The evolution of the dimensionless pressure distribution inside the fracture of a (a) shear
thinning fluid (n = 0.3) and (b) Newtonian fluid (n = 1) over time without (Ns = 0) and with slip
effect on the fracture walls (Ns = 0.1). The subfigures utilize solid, dashed, dotted, and dashed-
dot lines to represent different time intervals: T = [0, 50, 100, 500], respectively. The arrows in the
subfigures denote the progression of time instances.

5. Conclusions

Hydraulic fracturing has gained significant attention in recent years due to its envi-
ronmental implications, particularly with regard to the by-products and fluid wastewater
generated during the extraction of hydrocarbons from fractured wells. This wastewater, of-
ten referred to as backflow, results from the relaxation of elastic fracture boundaries, which
are pre-strained and subsequently balanced by the internal pressure of a viscous fluid.

In this study, we investigated the backflow of a power-law fluid within a two-
dimensional flat-walled fracture having a finite length, characterized by a time-dependent
aperture h(t). This aperture possessed an initial and constant gap opening. The fracture
was filled with an incompressible and viscous fluid. At the initial time instant, the fracture
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walls experienced a no-flow condition at the far end of the fracture while maintaining a
constant initial pressure at the outlet. Upon releasing the pre-strained upper plate, fluid was
expelled from the outlet, resulting in fluid pressure directed towards the outlet, described
by a time-dependent pressure distribution inside the fracture. To formulate the problem
we made the following assumptions:

• We employed the lubrication approximation, assuming the fracture aperture is signifi-
cantly smaller than its characteristic length.

• We applied the linear Navier slip law to model the friction of the fracture walls.
• We utilized the Winkler model of elastic foundations to represent the elastic deforma-

tion of the pre-strained fracture walls.

Under these assumptions, we numerically determined the time evolution of the
fracture aperture by solving the governing ODE while considering different values of the
model parameters via parametric analysis. The main conclusions of this work are:

• Our numerical results recover the semi-analytical solutions of the special case of
Newtonian fluid and zero external pressure.

• When the external pressure is non-zero, the fracture aperture reaches the asymptotic
value of H(T) → Pe in the late stages of hydraulic fracturing for both Newtonian
and non-Newtonian fluids. The asymptotic value is obtained at early times for the
shear-thinning fluids with larger n values.

• The fluid rheological index (n) remarkably modifies the backflow propagation inside
the fracture.

• The variation of slip number (Ns) does not have a significant impact on the overall
physics of the problem.

In summary, our study contributes to the backflow analysis for power-law fluids,
highlighting the fundamental role played by the fluid rheological model, friction coeffi-
cient, and external pressure. These insights are not only valuable for the field of hydraulic
fracturing and subsurface heat recovery but also have broader applications in geology, civil,
mechanical, petrochemical, and environmental engineering. The scope of this study can
be expanded by exploring alternative slip laws, more complex fluid rheological models,
including the Ellis model, and the effect of fluid compressibility. These additions offer valu-
able insights into how different boundary conditions and non-Newtonian fluid behavior
affect fracture backflow dynamics, enriching our understanding of the topic.

Author Contributions: Conceptualization, A.L., F.Z. and V.D.F.; methodology, A.L., F.Z., I.D. and
V.D.F. software, F.Z.; validation, A.L., I.D. and V.D.F.; formal analysis, A.L. and F.Z.; investigation, F.Z.
and A.L.; writing—original draft preparation, A.L., F.Z. and V.D.F.; writing—review and editing, A.L.,
F.Z., I.D. and V.D.F.; visualization, F.Z.; supervision, V.D.F.; project administration, V.D.F.; funding
acquisition, V.D.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
The following abbreviations are used in this manuscript:

k̄ Slip length (friction coefficient) [L]
µapp Apparent viscosity of the carrier fluid [ML−1Tn]
τzx Shear stress acting on the fracture wall [ML−1T−2]
E0 Elastic modulus of the fracture walls [ML−1T−2]
h(t) Time dependent fracture aperture [L]
h0 Initial fracture aperture at the initial time step (t = 0) [L]
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Ks Dimensionless slip number [-]
L Fracture length [L]
l Fracture spacing [L]
m Power-law fluid consistency index [ML−1Tn]
n Power-law fluid index [-]
p(x, t) Pressure inside the fracture [ML−1T−2]
pe Uniform external pressure [ML−1T−2]
q Fracture flow rate [L3T−1]
u(x, z, t) Fluid velocity [LT−1]
W Fracture width [L]
t Fracture flow propagation time [T]
EGS Enhanced Geothermal Systems
HDR Hot Dry Rock
ODE Ordinary Differential Equation
ST Shear-thinning Fluid
TIBT Thermal Injection Backflow Test
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