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The problem of detecting nonlinearity in time
series generated by a state-dependent

autoregressive model. A simulation study

Fabio Gobbi*

Abstract

The aim of the paper is to try to measure, through a Monte Carlo ex-
periment, nonlinearity in time series generated by a strictly stationary and
uniformly ergodic state-dependent autoregressive process. The model under
study is intrinsically nonlinear but the choice of parameters strongly impacts
on the type of serial dependence making its identification complicated. For
this reason, the paper exploits two statistical tests of independence and linear-
ity in order to select the parameter values which ensure the joint rejection of
both hypothesis. After that, our study uses two measures of nonlinear depen-
dence in time series recently introduced in the literature, the auto-distance
correlation function and the autodependence function, in order to identify
nonlinearity induced by the proposed model.

Mathematics Subject Classification (2010): 62M10, 65C05

JEL classification: C6

Keywords: nonlinear time series, independence and linearity tests, auto-
distance correlation, autodependogram.

1 Introduction

In a recent paper Gobbi and Mulinacci (2019) have studied a state-dependent
first-order autoregressive model (SDAR(1)) in which the autoregressive coeffi-
cient is specified as a function of the lagged variable and of a set of parameters,
Yt = α+ ψ(Yt−1;γ)Yt−1 + ξt. The authors stated under what hypotheses the
process (Yt)t is strictly stationary, uniformly ergodic and can be consistently
estimated using the quasi-maximum likelihood technique (QML) showing how
these conditions are related to the functional form of the coefficient ψ but
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also to the interval of possible values assumed by the parameters γ. Since
the SDAR(1) model is intrinsically nonlinear, from a practical point of view
the most relevant aspect is the model’s ability to generate time series with
nonlinear serial dependence that is easily recognizable. However, as we shall
see, nonlinearity can be ”hidden” even when the values of the parameters are
adequately chosen. In this paper we present a Monte Carlo study to detect
nonlinearity in time series generated from a SDAR(1) model once the func-
tional form of ψ is established. The question if a time series arises nonlinearity
in its serial dependence is crucial in economics and econometrics. Therefore,
it is interesting to test whether or not a single economic time series appears
to be generated by a linear model against the alternative that it is gener-
ated by a nonlinear model. In fact, nonlinearity seems to be adequate in
explaining many properties observed in empirical time series such as volatil-
ity clustering, asymmetric cycles, extreme value dependence among others.
Furthermore, the study of serial dependence is often a preliminary step car-
ried out before modelling the data generating process in order to select the
most adequate model; for example, is a common practice in finance to study
serial dependence on returns of log-prices or exchange rates, see among others
Bera and Robinson (1989), Booth Teppo and Yli-Olli (1994) and Harris and
Küçüközmen (2001).
Inspired by these considerations, in the last few years two measures of non-
linearity in time series have been introduced into the literature: the distance
correlation function and the autodependence function. The first measure was
introduced by Szekely et al. (2007) and discussed in Szekely and Rizzo (2009),
Gretton et al. (2009) and Remillard (2009). The authors propose the distance
correlation to capture and test nonlinear dependence between two samples
generated by an i.i.d. process whereas there are few works on how to extend
a distance correlation methodology to the analysis of the temporal depen-
dence in univariate time series. Among these we mention Zhou (2012), Dueck
et al. (2014) and Davis et al. (2016). In particular, Zhou (2012) extends
the concept of distance correlation to the serial dependence in time series
and provides a corresponding measure, the auto-distance correlation function
(ADCF), to explore and test nonlinear dependence structures in time series
whose crucial feature is that it equals zero if and only if the measured time
series components are independent. Moreover, the author studies the asymp-
totic behaviour of ADCF at a fixed lag order. Psitsillou and Fokianos (2016)
provide and discuss the implementation of ADCF methodology with the R
package dCovTS.
The second measure that we use in this work is the autodependence function
(ADF) introduced by Bagnato et al. (2012). The authors graphically analyse
the serial dependence between the observed time series and the lagged series.
In this way, they fill a theoretical void represented by the fact that, differently
from the linear case where the autocorrelogram provides a graphical resource
to investigate serial correlation, in the case of general serial dependence we do
not have an analogous of this graphical device. Only few attempts are known
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in literature as in Genest and Remillard (2004), Bagnato and Punzo (2010)
and Fisher and Switzer (1985). The first two papers suggest two diagrams
allowing for a visual inspection of the subsets of lags leading to a possible
rejection of the null hypothesis of serial independence. On the other hand,
Fisher and Switzer (1985) present a graphical method to investigate possible
dependence but in a sample of bivariate measurements. Differently, Bagnato
et al. (2012) propose a graphical representation, called autodependogram,
that can be really considered as the analogous of the autocorrelogram when
the dependence structure to be analysed is the distributive one. The proposal
applies the χ2-tset to pairs of lagged variables. Bagnato et al. (2015) provide
an R package (SDD) to implement the ADF methodology.
As a preliminary step in our study, we concentrate in investigating indepen-
dence and linearity in serial dependence of time series. A large number of
independence and linearity tests are available in the literature. The interested
reader can consult, among others, Granger and Andersen (1978), Granger et
al. (2004), Dufour et al. (1982), McLeod and Li (1983), Brock et al. (1987),
Brock et al. (1996), Takala and Viren (1996) and LeBaron (1997). In this
work we use two different types of independence and linearity tests. The first
test of independence we perform is introduced in Fokianos and Pitsillou (2017)
who consider a portmanteau type statistic directly based on ADCF. The test
is based on the null that the observed time series in generated by an i.i.d.
process. The second test of linearity was introduced by White (1989) and
thoroughly studied in Lee et al. (1993) and consists a in a neural network test
for neglected nonlinearity. More specifically, this test is a Lagrange multiplier
test that statistically determines whether adding ‘hidden units’ to the linear
network would be advantageous. The null hypothesis in this case is that data
process in linear in mean based on the definition that the same authors report
and discuss. Thanks to both tests we will show for which parameter values of
our simulated models the hypotheses of independence (in the first case) and
linearity (in the second case) can be simultaneously rejected, thus highlighting
the possibility that the serial dependence is of nonlinear type.
The paper is organised as follows. In section 2 we introduce the SDAR(1)
from a theoretical point of view. Section 3 describes the adopted models
for the simulation experiment, reports and comments the results. Section 4
concludes.

2 The SDAR(1) model

Let (Yt)t∈N be a stochastic process defined on a complete probability space
(R∞,B(R∞),P). We say that (Yt)t is a SDAR(1) process if it satisfies the
following specification{

Yt = α+ ψ(Yt−1;γ)Yt−1 + ξt, t ≥ 1,
ξt ∼ i.i.d.,

(1)
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where Y0 = 0 P-a.s. and ψ(Yt−1;γ) is a measurable function of the lagged
variable Yt−1 that depends on a p-dimensional vector of parameters γ. The
sequence of error terms, (ξt)t, is i.i.d. with gaussian distribution character-
ized by zero mean and finite standard deviation σ. Gobbi and Mulinacci
(2019) have proved that under suitable conditions on the function ψ(y;γ) the
SDAR(1) process (Yt)t is strictly stationary and uniformly ergodic. More-
over, the authors present and discuss the asymptotic properties of the QML
estimator of the model parameter vector θ = (α,γ, σ). As we can imagine,
the conditions imposed concern the functional form of ψ and the range of
values that the set of parameters may assume. For completeness, we report
the required assumptions as reported in Gobbi and Mulinacci (2019).

� a1. ψ is differentiable with respect to y and |ψ(y;γ)| +
∣∣∣y d

dyψ(y;γ)
∣∣∣ ≤

K < 1 ∀y ∈ R

� a2. ψ(y;γ)y is uniformly bounded in y.

� a3. First and second-order partial derivatives with respect to the pa-
rameters of the persistence function ψ are continuous and uniformly
bounded in y.

� a4. |ψγk(y;γ)y| ≤ C uniformly on R×Θ, for all k and |ψγkγj (y;γ)y| ≤ D
uniformly on R×Θ, for all k, j, where Θ is the compact parameter space.

Notice that the SDAR(1) model is intrinsically nonlinear and the dynamics
depends on the specification of the function ψ(y;γ). However it is necessary
to observe that the structure of the model is of the type ”coefficient times
lagged variable”, very similar to the linear AR(1). Therefore, nonlinearity
induced by the functional coefficient ψ can be confused with the linearity that
comes from the AR(1) structure of the model.

3 Simulation design

The aim of the simulation experiment is to detect nonlinearity generated by
8 different specifications of the SDAR(1) model characterized primarily by a
different choice of the function ψ. Indeed, in this simulation experiment we
also consider an extension of the model in which the sequence of errors can
be i.i.d. with Student’s t distribution with 5 degrees of freedom. In this way
we can appreciate the impact of a distribution characterized by heavy tails
on the serial dependence. The explicit from of the simulated models (which
is denoted M1-M8) is the following

M1−M4 :


Yt = α+ e−(γ0+γ1Y 2r

t−1)Yt−1 + ξt,

ξt
i.i.d.∼ N(0, σ) or ξt

i.i.d.∼ t(5),

r = 1, 2
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M5−M8 :


Yt = α+ 1

γ0+γ1Y 2r
t−1
Yt−1 + ξt,

ξt
i.i.d.∼ N(0, σ) or ξt

i.i.d.∼ t(5),

r = 1, 2

.

Clearly, both specifications of ψ satisfy assumptions a1-a4 presented in the
previous section. In particular, as shown in Gobbi and Mulinacci (2019), the
parameter γ1 has no impact on the properties of stationarity, ergodicity and
efficiency of QML estimates, which, on the contrary, depend on γ0 and r. For
this reason and in order to make consistent our simulation study, γ0 will have
a fixed value depending on the model considered. More precisely, we set two
values of r (r = 1, 2) and based on them we fix the value of γ0 according to
the condition found in Gobbi and Mulinacci (2019). For models M1-M4 we

have γ0 > ln(2r) − 1 + 1
2r , whereas for models M5-M8 we have γ0 >

(1+2r)2

8r .
With this conditions in mind, we et γ0 = 0.2 for models M1-M2, γ0 = 0.42 for
models M3-M4, γ0 = 1.13 for models M5-M6 and finally γ0 = 1.57 for models
M7-M8. To make our simulations not too expansive in terms of calculation
time, we set a discrete set of possible values of γ1. Table 1 summarizes the
adopted models and specifies the parameters values.
It is the case to notice that models differ in the amount of nonlinearity in
the serial dependence induced by the specification of ψ. In all specifications
proposed the parameter of nonlinearity is γ1, in the sense that, the presence
of nonlinearity in the serial dependence is closely connected to the value of γ1.
Moreover, notice that if γ1 = 0 all models considered in table 1 are equivalent
to a standard AR(1) process of equation Yt = α+ ϕYt−1 + ξt, where ϕ = e−γ0

for models M1-M4 and ϕ = 1
γ0

for models M5-M8. It is clear that in this case
the serial dependence can only be linear. On the contrary, when γ1 assumes
very large values (theoretically when γ1 → +∞) all models under study are
equivalent to an i.i.d. sequence.

As anticipated above, with our simulation study we are interested in in-
vestigating how the parameter γ1 affects nonlinearity in simulated time series.
The study consider a sample size n = 500 and it is based on S = 5000 repli-
cations.

3.1 Independence and linearity tests

In this section we compute test statistics of two different independence and
linearity tests: the independence test introduced in Fokianos and Pitsillou
(2017) and the White neural network test considered in White (1989) and in
Lee et al. (1993). The interested reader can find the explicit expressions of
the test statistic and their asymptotic behaviour in the mentioned papers. To
perform the two tests on simulated trajectories we use the R environment.
The R functions necessary to compute the independence and linearity tests
are ’UnivTest’ from the package ’dCovTS’ and ’wnnTest’ from the package
’fNonlinear’ respectively. The first independence test of Fokianos and Psitillou
(2017) (from now on ADCFind) is a portmanteau type statistic based on
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Identifier ψ(y; γ0, γ1) Error distribution Parameters

M1 r = 1, e−(γ0+γ1y2) ξt ∼ N(0, 1) γ0 = 0.2, γ1 ∈ {0, 0.1, 0.2, ..., 2.5}
M2 r = 1, e−(γ0+γ1y2) ξt ∼ t(5) γ0 = 0.2, γ1 ∈ {0, 0.1, 0.2, ..., 2.5}
M3 r = 2, e−(γ0+γ1y4) ξt ∼ N(0, 1) γ0 = 0.42, γ1 ∈ {0, 0.1, 0.2, ..., 2.5}
M4 r = 2, e−(γ0+γ1y4) ξt ∼ t(5) γ0 = 0.42, γ1 ∈ {0, 0.1, 0.2, ..., 2.5}
M5 r = 1, 1

γ0+γ1y2
ξt ∼ N(0, 1) γ0 = 1.13, γ1 ∈ {0, 0.2, 0.4, ..., 5}

M6 r = 1, 1
γ0+γ1y2

ξt ∼ t(5) γ0 = 1.13, γ1 ∈ {0, 0.2, 0.4, ..., 5}
M7 r = 2, 1

γ0+γ1y4
ξt ∼ N(0, 1) γ0 = 1.57, γ1 ∈ {0, 0.2, 0.4, ..., 5}

M8 r = 2, 1
γ0+γ1y4

ξt ∼ t(5) γ0 = 1.57, γ1 ∈ {0, 0.2, 0.4, ..., 5}

Table 1: Adopted models.

ADCF which tests the null hypothesis that the data generating process (Yt)t
is i.i.d., whereas the second test of linearity of White (1989) (from now on
Wnn) requires to precise about the meaning of the word linearity. In fact,
as specified in Lee at al. (1993), the focus is on a property best described as
linearity in conditional mean. In our autoregressive framework we can define
that our process (Yt)t is linear in mean conditional on Yt−1, if

P (E [Yt|Yt−1] = ϕ0 + ϕ1Yt−1) = 1, for some (ϕ0 , ϕ1 ) ∈ R2 .

This is the null hypothesis of the Wnn test. The alternative of interest is that
(Yt)t, is not linear in mean conditional on Yt−1, so that

P (E [Yt|Yt−1] = ϕ0 + ϕ1Yt−1) < 1, for all (ϕ0 , ϕ1 ) ∈ R2 .

When the alternative is true, a linear model is said to suffer from neglected
nonlinearity. Notice that the specifications of the SDAR(1) model considered
in table 1 satisfy the null hypothesis if γ1 = 0 or if γ1 → +∞. In the first
case, models M1-M4 are linear in mean since ϕ0 = α and ϕ1 = e−γ0 whereas
models M5-M8 are linear in mean since ϕ0 = α and ϕ1 = 1

γ0
. In the second

case, all models considered in this study are equivalent to an i.i.d. process
which satisfies the definition of linearity in mean by taking ϕ0 = α and ϕ1 = 0.

Results of the Monte Carlo simulation are displayed in figures 1 and 2,
which report the average of simulated p-values as a function of γ1 relative
to ADCFind test and to Wnn test. Figure 1 takes into account the first
four models under consideration, M1-M4. We are interested in identifying
which intervals of values of γ1 lead to the rejection of both null hypothesis
simultaneously. Consider the upper panel of the figure 1. We can see that
the dynamics of p-values is affected by the value of r and by the distribution
of the errors. If we consider models M1 and M2 (for which r = 1) the null
hypothesis of independence is rejected for γ1 ∈ [0, 1.3] if errors are normally
distributed and for all γ1 ∈ [0, 1] if errors are Student’s t distributed. For
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Figure 1: Average of simulated p-values as a function of γ1 for ADCFind test (upper
panel) and for Wnn test of linearity (lower panel) relative to models M1-M4. The
horizontal dotted line is the threshold of 5%.
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Figure 2: Average of simulated p-values as a function of γ1 for ADCFind test (upper
panel) and for Wnn test of linearity (lower panel) relative to models M5-M8. The
horizontal dotted line is the threshold of 5%.
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model M3 and M4, where we are set r = 2, the range of values of the parameter
shrinks, γ1 ∈ [0, 1.1] for M3 and γ1 ∈ [0, 0.4] for M4. This leads to at least
three considerations. The first value of γ1 beyond which we cannot reject the
hypothesis of independence is relatively low for all considered models M1-M4.
In particular, for M4, it seems that only if γ1 is within [0, 0.4] the model yields
non i.i.d. time series. A second consideration concerns the role of the error.
Both for M1 and for M3, in which the error term has a gaussian distribution,
the range of values of γ1 for which p-values does not exceed 5% (we reject the
null) is wider than in the case of models M2 and M4 where the error term
is t(5) distributed. Finally, a third observation may be the most significant
for the rest of our study. In fact, except for the case γ1 = 0 for which
all considered models are AR(1) and so they point out serial correlation, the
ranges of γ1 considered above potentially intercept a nonlinearity in simulated
time series. This belief is reinforced by the observation of the lower panel
of figure 1 where we report the average of simulated p-values of the White
neural network linearity test. As expected, in this case if we set γ1 = 0
the Wnn test leads to the acceptance of the null hypothesis of linearity in
mean for all adopted models M1-M4. On the other hand, the rejection of
the null (the model is not linear in mean) occurs in a range of values of
γ1 different for each model but coherent with the rejection intervals already
identified for the independence test based on ADCF. For example, for model
M1 we observe that if γ1 ∈ (0, 1.2] the Wnn test rejects the hypothesis of
linearity. On the other hand, if γ1 > 1.2 the Wnn test seems to signal that
M1 generates i.i.d. time series which are linear in mean by construction.
Similar considerations apply to the remaining models M2-M4. Actually, the
two tests should be jointly considered in order to identify the intersections
between the simulated rejection intervals in the two tests. In this way we
highlight at least three ranges of interest based on two bounds of γ1, say γ

a
1

and γb2. So, if γ1 ∈ (0, γa1 ) then both null hypotheses are rejected and therefore
we can say that, according on the adopted tests, the model yields time series
with nonlinear serial dependence. On the other hand, if γ1 ∈ (γa1 , γ

b
1), then

only IndTest leads to the rejection of the null hypothesis while Wnn test leads
to its acceptance, therefore we can conclude the model generates time series
which are not i.i.d. but are linear in mean. Finally, if γ1 > γb1 both hypotheses
of linearity and independence are accepted, and therefore the model generates
i.i.d time series.

Figure 2 shows the same results relative to models M5-M8. In this case
we can observe that the range of possible values of γ1 suggesting the rejection
of independence is wider than in models M1-M4. Considering both tests, we
notice, for example, that for M5 choosing a γ1 lesser than 2 we can jointly re-
ject the hypotheses of independence and linearity in mean. For the remaining
models M6-M8, the maximum value of γ1 which leads to the rejection of the
null is, respectively, 1.8, 1.8 and 1.4. Table 2 summarizes the independence
and linearity bounds for all models considered.
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Identifier
Bounds M1 M2 M3 M4 M5 M6 M7 M8
γa1 1.1 0.8 0.9 0.4 2 1.6 2 1
γb1 1.3 1 1 0.5 3.8 3 3 1.5

Table 2: Bounds for intervals of γ1: if γ1 ∈ (0, γa1 ) both null hypothesis are rejected,
if γ1 ∈ (γa1 , γ

b
1) the null hypothesis of independence is rejected whereas the nul

hypothesis of linearity is accepted, if γ1 > γb1 both hypothesis are accepted.

3.2 Detecting nonlinearity

Motivated by the above considerations about the rejection of hypotheses of
independence and linearity, we can try to detect nonlinearity in the simu-
lated time series using two measures recently introduced in the literature: the
auto-distance correlation function and the autodependence function. In the
appendix we report and briefly discuss how both measures works with time se-
ries. For a detailed discussion of properties of the two measures the interested
reader can consult Zhou (2012) for ADCF and Bagnato et al. (2012) for ADF.
It is interesting to notice that both ADCF and ADF are capable of exploring
every form of departure from independence, therefore they represent an effec-
tive measure of nonlinearity if accurately compared with the autocorrelation
function (Acf). In fact, in the linear case Acf, ADCF and ADF provide similar
information (see, i.e., Bagnato et al. (2012) for the MA(1) model), whereas
in the nonlinear case only ADCF and ADF should indicate serial dependence
(at a fixed lag) in time series and Acf should not be significantly different
from zero. For example, figure 3 reports the simulated average values of the
three considered measures in a linear case represented by model M1 setting
γ1 = 0. We clearly see that Acf, ADCF and ADF behave in a similar way
remaining significantly different from zero for 11 or 12 lags, as we theoretically
expect. In practice, in this case the linear serial dependence is detected in a
similar way from Acf, ADCF and ADF. On the contrary, if we simulate, as in
Bagnato et al. (2012), a quadratic MA(3) model of equation Yt = 0.8ξ2t−3+ ξt

where ξt
i.i.d.∼ N(0, 1), and we compute the simulated average values of Acf,

ADCF and ADF relative to the first 30 lags, we get the results in figure 4.
As expected, ADCF and ADF signal a spike at lag 3 indicating dependence
whereas Acf is never significantly different from zero suggesting the absence of
linearity. It should be noted that both ADCF and ADF are very effective in
testing the adequacy of GARCH or ARMA models, as shown in Zhou (2012)
and Bagnato et al. (2012), through the analysis of serial dependence of the
residuals. In particular, neither ADCF nor ADF provide guidance about the
type of nonlinearity but both allow the identification of possible lags relatively
to which it is necessary to proceed with a further analysis.
The results that we are going to comment in this section will show that, al-
though all the models proposed are intrinsically nonlinear, it may not be easy
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to detect nonlinearity in time series. In fact, we simulate 5000 paths of 500
points from models M1-M8 with parameters identified by independence and
linearity tests performed in the previous section. In other words, γ1 is set
equal to a value which ensures the simultaneous rejection of hypothesis of
independence and linearity (table 2).

The analysis of the results concerning the simulated average values of Acf,
ADCF and ADF (figures 5-12) leads us to the following considerations.

� Model M1 (figure 5). Consider the case γ1 = 0.1 (case (a) in the figure).
Despite both hypothesis of independence and linearity are rejected, the
model is characterized by a non negligible linearity in the serial depen-
dence. In fact, Acf is significantly different from zero for the first three
lags, exactly as for ADCF, whereas ADF is significant for the first two
lags. If we consider the cases γ1 = 0.6 and γ1 = 1.1 we cannot appreciate
any different behavior.

� Model M2 (figure 6). Here, we observe that the case γ1 = 0.9 (column
(c)) meets our expectations. Correctly, Acf is never significantly different
from zero, suggesting the absence of linearity in the serial dependence,
while ADCF and ADF are both significantly different from zero to the
first lag. Therefore, in this case, the presence of nonlinear dependence
in time series generated by this model is clearly evident. Recall that
both ADCF and ADF suggest the presence of nonlinearity but not the
percentage of the maximum dependence as it happens for Acf. On the
contrary, in the remaining cases (γ1 = 0.1 and γ1 = 0.4) no differences
can be found in the dynamics of Acf, ADCF and ADF.

� Model M3 (figure 7). We can see a behavior very similar to the model
M2 with the difference that in the latter case the value of Acf is barely
significant even at the first lag of the case (c). Note that M2 and M3
differ in the choice of r and in the distribution of errors.

� Model M4 (figure 8). Nonlinearity is correctly detected in the case where
γ1 = 0.5 (column (c)). This model is characterized by r = 2 and ξt
distributed as t(5). Compared to the previous models M1-M3 when γ1
is small only the first lag is significant. Linearity in serial dependence is
reduced only to the first lag but does not disappear as expected.

� Model M5 (figure 9). In this case, although the functional form of ψ
has changed, we do not notice acceptable differences in the dynamics
of Acf, ADCF and ADF that suggest us to detect nonlinearity in serial
dependence. However, it should be noted from now on and for the
remaining models analyzed, that ADF will be significant always and
only at the first lag suggesting serial dependence only in this case.

� Model M6 (figure 10). Confirming what was observed in the previous
case, it seems that γ1 does not affect the behavior of ADF while the
dynamics of Acf and ADCF seem perfectly overlapping.

� Models M7 and M8 (figures 11 and 12). We can repeat the same con-
siderations made for models M5 and M6.
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At this point a general consideration is mandatory but not simple. However,
at least a couple of conclusions can be set. Out of 24 simulated models only in
two cases our expectations are realized: for model M2 with γ1 = 0.9 and model
M4 with γ1 = 0.5, Acf is never significantly different from zero, indicating the
absence of linearity in serial dependence, whereas ADCF and ADF are both
significant at the first lag, suggesting that time series are nonlinear. Both
models are characterized by an autoregressive coefficient of exponential type
and by a error distribution of Student’s t type. On the other hand, no other
case seems consistent with the independence and linearity tests discussed in
the previous section. The presence of linearity in the serial dependence cannot
be excluded as it is significantly different from zero at least at the first lag.
With a picturesque statement we could say that the dependence is ”dirty”
with a residual linearity that Acf cannot exclude. At the same time, it is
clear that nonlinearity is effectively detecting only the first lag in most cases
(and this is particularly evident for ADF). In essence, Yt−1 does not transfer
serial dependence on lags greater than 1, unlike what happens for example in
an AR(1) model where the functional form involves only Yt−1 but the linear
dependence is characterized by a power decay (figure 3).
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Figure 3: Plots of simulated Acf, ADCF and ADF in the linear case (model M1
with γ1 = 0). The solid vertical lines are average values of Acf, ADCF and ADF
and the dotted horizontal lines or curves are the critical values at 5% level.
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Figure 4: Plots of simulated Acf, ADCF and ADF for a quadratic MA(3). The solid
vertical lines are average values of Acf, ADCF and ADF and the dotted horizontal
lines or curves are the critical values at 5% level.
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Figure 5: Plots of simulated Acf, ADCF and ADF relative to model M1. From top
to bottom, the plots are referred to a fixed value of γ1. (a) γ1 = 0.1, (b) γ1 = 0.6,
(c) γ1 = 1.1. The solid vertical lines are average values of Acf, ADCF and ADF and
the dotted horizontal lines or curves are the critical values at 5% level.
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Figure 6: Plots of simulated Acf, ADCF and ADF relative to model M2. From top
to bottom, the plots are referred to a fixed value of γ1. (a) γ1 = 0.1, (b) γ1 = 0.4,
(c) γ1 = 0.9. The solid vertical lines are average values of Acf, ADCF and ADF and
the dotted horizontal lines or curves are the critical values at 5% level.
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Figure 7: Plots of simulated Acf, ADCF and ADF relative to model M3. From top
to bottom, the plots are referred to a fixed value of γ1. (a) γ1 = 0.1, (b) γ1 = 0.4,
(c) γ1 = 0.9. The solid vertical lines are average values of Acf, ADCF and ADF and
the dotted horizontal lines or curves are the critical values at 5% level.
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Figure 8: Plots of simulated Acf, ADCF and ADF relative to model M4. From top
to bottom, the plots are referred to a fixed value of γ1. (a) γ1 = 0.1, (b) γ1 = 0.3,
(c) γ1 = 0.5. The solid vertical lines are average values of Acf, ADCF and ADF and
the dotted horizontal lines or curves are the critical values at 5% level.
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Figure 9: Plots of simulated Acf, ADCF and ADF relative to model M5. From top
to bottom, the plots are referred to a fixed value of γ1. (a) γ1 = 0.5, (b) γ1 = 1.2,
(c) γ1 = 1.8. The solid vertical lines are average values of Acf, ADCF and ADF and
the dotted horizontal lines or curves are the critical values at 5% level.
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Figure 10: Plots of simulated Acf, ADCF and ADF relative to model M6. From top
to bottom, the plots are referred to a fixed value of γ1. (a) γ1 = 0.5, (b) γ1 = 1, (c)
γ1 = 1.5. The solid vertical lines are average values of Acf, ADCF and ADF and
the dotted horizontal lines or curves are the critical values at 5% level.
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Figure 11: Plots of simulated Acf, ADCF and ADF relative to model M6. From top
to bottom, the plots are referred to a fixed value of γ1. (a) γ1 = 0.5, (b) γ1 = 1.2,
(c) γ1 = 1.8. The solid vertical lines are average values of Acf, ADCF and ADF and
the dotted horizontal lines or curves are the critical values at 5% level.
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Figure 12: Plots of simulated Acf, ADCF and ADF relative to model M6. From top
to bottom, the plots are referred to a fixed value of γ1. (a) γ1 = 0.2, (b) γ1 = 0.6,
(c) γ1 = 1. The solid vertical lines are average values of Acf, ADCF and ADF and
the dotted horizontal lines or curves are the critical values at 5% level.
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4 Concluding remarks

The simulation study conducted in this paper allows us to conclude that is
often not easy to recognize the nonlinear serial dependence in a time series
even if it is generated by an intrinsically nonlinear autoregressive model as
our SDAR(1) model proposed in this work. The key point reached in this
simulation study is that, often, the nonlinearity is not clearly predominant on
the linearity even when it should be by construction. As a consequence, the
measures adopted to isolate nonlinearity do not allow to distinguish the two
kinds of dependence. Future efforts can be devoted to understanding if there
exists a different specification of ψ that allows to detect nonlinearity using the
auto-distance correlation and the autodependence function just used in this
work.

5 Appendix

We report here the definitions of auto-distance correlation and autodepen-
dence function which are used through the paper.

5.1 Auto-distance correlation

Let (Yt)t be a strictly stationary time series. Define the distance corre-
lation function as a function of the bivariate marginal characteristic func-
tions (c.f.) of (Yt, Yt+h), h ∈ Z. The joint c.f. of the pair (Yt, Yt+h) is
ft,t+h(u, v) = E

[
ei(uYt+vYt+h)

]
, where (u, v) ∈ R2 and i2 = −1. The marginal

c.f. of Yt and Yt+h are ft(u) = ft,t+h(u, 0) and ft+h(v) = ft,t+h(0, v) re-
spectively. It is well known that Yt and Yt+h are independent if and only if
ft,t+h(u, v) = ft(u)ft+h(v) for all (u, v) ∈ R2. The auto-distance covariance
function (ADCV) between Yt and Yt+h is defined as

vy(h) =

∫
R2

|ft,t+h(u, v)− ft(u)ft+h(v)|2
1

π2u2v2
dudv, h = 0,±1,±2, ...

whereas the auto-distance correlation (ADCF), intensively used in this paper,
is given by

ry(h) =
vy(h)

vy(0)
, h = 0,±1,±2, ...

if vy(0) ̸= 0 and zero otherwise. The auto-distance correlation satisfies 0 ≤
ry(h) ≤ 1 for all h and ry(h) = 0 if and only if Yt and Yt+h are independent.

Following Zhou (2012), given an observed time series (y1, ..., yn) from (Yt)t,
let ats = |yt − ys| and bts = |yt+h − ys+h|. Define

āt· =

∑n−h
s=1 ats
n− h

, ā·s =

∑n−h
t=1 ats
n− h

, ā· =

∑n−h
t,s=1 ats

(n− h)2
,
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and Ats = ats − āt· − ā·s + ā·. Define bts, b̄t·, b̄·s, b̄· and Bts similarly. The
empirical ADCV is

v̂y(h) =
1

(n− h)2

n−h∑
t,s=1

AtsBts,

and the empirical ADCF will be r̂y(h) =
v̂y(h)
v̂y(0)

. The R package (dCovTS) used

in this paper to implement the ADCF methodology is introduced in Pitsillou
and Fokianos (2016).

5.2 Autodependogram

The method consider the problem of studying the generic dependence of lag h
by using the well-known and general χ2-statistic of independence. Following
Bagnato et al. (2012), let (Yt)t be a strictly stationary stochastic process

and let (y1, ..., yn) be an observed time series from (Yt)t. Define (C
(h)
u )ku=1

and (D
(h)
v )kv=1 two generic sets of k adjacent intervals such that, fixed h,

yt ∈ ∪k
u=1C

(h)
u for all t = 1, ..., n − h and yt ∈ ∪k

v=1D
(h)
v for all t = h +

1, ..., n. Starting from these sets of intervals all the n(h) = n − h couples
(y1, y1+h), ..., (yn−h, yn) can be grouped to obtain a contingency table where
the observed frequencies are

n(h)uv = #{(yt, yt+h) : (yt, yt+h) ∈ C(h)
u ×D(h)

v , t = 1, ..., n−h}, u, v = 1, ..., k.

A discussion on how to choose the partitions (C
(h)
u )ku=1 and (D

(h)
v )kv=1 is avail-

able in Bagnato et al. (2012). So, the χ2-statistic that can be used to test
the dependence of lag h is given by

δ̂h =

k∑
u=1

k∑
v=1

∣∣∣n(h)uv − n̂
(h)
uv

∣∣∣2
n̂
(h)
uv

,

where n̂
(h)
uv = n

(h)
u· n

(h)
·v

n(h) are the theoretical frequencies under the null hypothesis
of independence of lag h. Bagnato et al. (2012) report that under this condi-
tion δ̂h is asymptotically distributed as a χ2 distribution with (k−1)2 degrees
of freedom. The diagram obtained by plotting δ̂h as a function of h is called
autodependogram. The R package (SDD) used in this paper to implement
the ADF methodology is introduced and discussed in Bagnato el al. (2015).
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